1
|
Feng Y, Zhang S, Li H, Li H, Dong R, Zhu S, Zhou Y. Association of Lipoprotein-Associated Phospholipase A2 and Lipoprotein(a) With the Risk of Recurrence Stroke in Patients With Acute Ischemic Stroke. J Clin Lab Anal 2024; 38:e25120. [PMID: 39625858 DOI: 10.1002/jcla.25120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/15/2024] [Accepted: 10/23/2024] [Indexed: 12/21/2024] Open
Abstract
OBJECTIVE It is still a major global challenge to reduce the high morbidity and mortality of acute ischemic stroke (AIS) and improve the prognosis of patients. This study aims to investigate the prognostic value of lipoprotein-associated phospholipase A2 (Lp-PLA2) combined with lipoprotein(a) (Lp(a)) for long-term stroke recurrence in patients with AIS. METHODS This study included 580 patients with AIS. Assessment of Lp-PLA2 and Lp(a) levels was conducted upon patient admission. Continuous monitoring over the long term categorized stroke recurrence as an endpoint. Patients were categorized based on these identified thresholds to compare the risk of stroke recurrence: high Lp-PLA2 and high Lp(a), high Lp-PLA2 and low Lp(a), low Lp-PLA2 and high Lp(a), and low Lp-PLA2 combined with low Lp(a). RESULTS Among the 580 participants, 101 individuals (17.41%) experienced stroke recurrence within the 2-year follow-up. The majority were male (61.39%), with a median age of 62 years (interquartile range: 55-69.5). Factors independently associated with heightened the risk of recurrence stroke comprised age (hazard ratio [HR], 1.025; p = 0.021), diabetes mellitus (HR, 1.751; p = 0.007), Lp-PLA2 (HR, 1.004; p < 0.001), and Lp(a) (HR, 1.002; p < 0.001). Noteworthy is that the combination of Lp-PLA2 and Lp(a) displayed superior predictive efficacy for long-term stroke recurrence risk in AIS patients compared to individual factors. CONCLUSION This investigation underscores the potential advantage of leveraging the combined impact of Lp-PLA2 in conjunction with Lp(a) as a more precise and cost-effective predictive tool for the risk of recurrence stroke in patients with AIS.
Collapse
Affiliation(s)
- Yu Feng
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Shenyang Zhang
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hailiang Li
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hao Li
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ruiguo Dong
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Shiguang Zhu
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yanlong Zhou
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
2
|
Xue J, Xiang Y, Jiang X, Jin A, Hao X, Li K, Lin J, Meng X, Li H, Zheng L, Wang Y, Xu J. The joint association of lipoprotein(a) and lipoprotein-associated phopholipase A2 with the risk of stroke recurrence. J Clin Lipidol 2024; 18:e729-e737. [PMID: 38981820 DOI: 10.1016/j.jacl.2024.04.133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 04/03/2024] [Accepted: 04/23/2024] [Indexed: 07/11/2024]
Abstract
BACKGROUND AND PURPOSE Currently little is known about the joint association of lipoprotein (a) [Lp(a)] and lipoprotein-associated phospholipase A2 (Lp-PLA2) with stroke recurrence. METHODS In this prospective multicenter cohort study, 10,675 consecutive acute ischemic stroke (IS) and transient ischemic attack (TIA) patients with Lp(a) and Lp-PLA2 were enrolled. The association of stroke recurrence within 1 year with Lp(a) and Lp-PLA2 was assessed using Cox proportional hazards models and Kaplan-Meier curves. The interaction between Lp(a) and Lp-PLA2 with stroke recurrence was evaluated by multiplicative and additive scales. RESULTS A significant joint association of Lp(a) and Lp-PLA2 with the risk of stroke recurrence was observed. Multivariate Cox regression analysis demonstrated that the combination of elevated Lp(a) (≥ 50 mg/dL) and Lp-PLA2 (≥175.1 ng/mL) was independently associated with the risk of stroke recurrence (adjusted hazard ratio: 1.42; 95% confidence interval [CI]: 1.15-1.76). Both significant multiplicative [(exp(β3): 1.63, 95% CI: 1.17-2.29, P = 0.004] and additive interaction (RERI: 0.55, 95% CI: 0.20-0.90, P = 0.002; AP: 0.39, 95% CI, 0.24-0.53) were observed between Lp(a) and Lp-PLA2. CONCLUSIONS Our results indicated that Lp(a) and Lp-PLA2 have a joint association with the risk of stroke recurrence in IS/TIA patients. Patients with concomitant presence of elevated Lp(a) and Lp-PLA2 have greater risk of stroke recurrence.
Collapse
Affiliation(s)
- Jing Xue
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing 100070, China (Drs Xue, Xiang, Jiang, Jin, Hao, Li, Lin, Meng, Li, Zheng, Wang and Xu); China National Clinical Research Center for Neurological Diseases, Capital Medical University, Beijing, China (Drs Xue, Xiang, Jiang, Jin, Hao, Li, Lin, Meng, Li, Zheng, Wang and Xu); Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China (Drs Xue, Xiang, Jiang, Jin, Hao, Li, Lin, Meng, Li, Zheng, Wang and Xu)
| | - Yukun Xiang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing 100070, China (Drs Xue, Xiang, Jiang, Jin, Hao, Li, Lin, Meng, Li, Zheng, Wang and Xu); China National Clinical Research Center for Neurological Diseases, Capital Medical University, Beijing, China (Drs Xue, Xiang, Jiang, Jin, Hao, Li, Lin, Meng, Li, Zheng, Wang and Xu); Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China (Drs Xue, Xiang, Jiang, Jin, Hao, Li, Lin, Meng, Li, Zheng, Wang and Xu)
| | - Xue Jiang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing 100070, China (Drs Xue, Xiang, Jiang, Jin, Hao, Li, Lin, Meng, Li, Zheng, Wang and Xu); China National Clinical Research Center for Neurological Diseases, Capital Medical University, Beijing, China (Drs Xue, Xiang, Jiang, Jin, Hao, Li, Lin, Meng, Li, Zheng, Wang and Xu); Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China (Drs Xue, Xiang, Jiang, Jin, Hao, Li, Lin, Meng, Li, Zheng, Wang and Xu)
| | - Aoming Jin
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing 100070, China (Drs Xue, Xiang, Jiang, Jin, Hao, Li, Lin, Meng, Li, Zheng, Wang and Xu); China National Clinical Research Center for Neurological Diseases, Capital Medical University, Beijing, China (Drs Xue, Xiang, Jiang, Jin, Hao, Li, Lin, Meng, Li, Zheng, Wang and Xu); Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China (Drs Xue, Xiang, Jiang, Jin, Hao, Li, Lin, Meng, Li, Zheng, Wang and Xu)
| | - Xiwa Hao
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing 100070, China (Drs Xue, Xiang, Jiang, Jin, Hao, Li, Lin, Meng, Li, Zheng, Wang and Xu); China National Clinical Research Center for Neurological Diseases, Capital Medical University, Beijing, China (Drs Xue, Xiang, Jiang, Jin, Hao, Li, Lin, Meng, Li, Zheng, Wang and Xu); Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China (Drs Xue, Xiang, Jiang, Jin, Hao, Li, Lin, Meng, Li, Zheng, Wang and Xu); Department of Neurology, Baotou Center Hospital, Inner Mongolia, China (Dr Hao)
| | - Ke Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing 100070, China (Drs Xue, Xiang, Jiang, Jin, Hao, Li, Lin, Meng, Li, Zheng, Wang and Xu); China National Clinical Research Center for Neurological Diseases, Capital Medical University, Beijing, China (Drs Xue, Xiang, Jiang, Jin, Hao, Li, Lin, Meng, Li, Zheng, Wang and Xu); Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China (Drs Xue, Xiang, Jiang, Jin, Hao, Li, Lin, Meng, Li, Zheng, Wang and Xu)
| | - Jinxi Lin
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing 100070, China (Drs Xue, Xiang, Jiang, Jin, Hao, Li, Lin, Meng, Li, Zheng, Wang and Xu); China National Clinical Research Center for Neurological Diseases, Capital Medical University, Beijing, China (Drs Xue, Xiang, Jiang, Jin, Hao, Li, Lin, Meng, Li, Zheng, Wang and Xu); Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China (Drs Xue, Xiang, Jiang, Jin, Hao, Li, Lin, Meng, Li, Zheng, Wang and Xu)
| | - Xia Meng
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing 100070, China (Drs Xue, Xiang, Jiang, Jin, Hao, Li, Lin, Meng, Li, Zheng, Wang and Xu); China National Clinical Research Center for Neurological Diseases, Capital Medical University, Beijing, China (Drs Xue, Xiang, Jiang, Jin, Hao, Li, Lin, Meng, Li, Zheng, Wang and Xu); Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China (Drs Xue, Xiang, Jiang, Jin, Hao, Li, Lin, Meng, Li, Zheng, Wang and Xu)
| | - Hao Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing 100070, China (Drs Xue, Xiang, Jiang, Jin, Hao, Li, Lin, Meng, Li, Zheng, Wang and Xu); China National Clinical Research Center for Neurological Diseases, Capital Medical University, Beijing, China (Drs Xue, Xiang, Jiang, Jin, Hao, Li, Lin, Meng, Li, Zheng, Wang and Xu); Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China (Drs Xue, Xiang, Jiang, Jin, Hao, Li, Lin, Meng, Li, Zheng, Wang and Xu)
| | - Lemin Zheng
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing 100070, China (Drs Xue, Xiang, Jiang, Jin, Hao, Li, Lin, Meng, Li, Zheng, Wang and Xu); China National Clinical Research Center for Neurological Diseases, Capital Medical University, Beijing, China (Drs Xue, Xiang, Jiang, Jin, Hao, Li, Lin, Meng, Li, Zheng, Wang and Xu); Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China (Drs Xue, Xiang, Jiang, Jin, Hao, Li, Lin, Meng, Li, Zheng, Wang and Xu); The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, Peking University, Beijing 100191, China (Dr Zheng).
| | - Yongjun Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing 100070, China (Drs Xue, Xiang, Jiang, Jin, Hao, Li, Lin, Meng, Li, Zheng, Wang and Xu); China National Clinical Research Center for Neurological Diseases, Capital Medical University, Beijing, China (Drs Xue, Xiang, Jiang, Jin, Hao, Li, Lin, Meng, Li, Zheng, Wang and Xu); Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China (Drs Xue, Xiang, Jiang, Jin, Hao, Li, Lin, Meng, Li, Zheng, Wang and Xu); Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences (Dr Wang).
| | - Jie Xu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing 100070, China (Drs Xue, Xiang, Jiang, Jin, Hao, Li, Lin, Meng, Li, Zheng, Wang and Xu); China National Clinical Research Center for Neurological Diseases, Capital Medical University, Beijing, China (Drs Xue, Xiang, Jiang, Jin, Hao, Li, Lin, Meng, Li, Zheng, Wang and Xu); Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China (Drs Xue, Xiang, Jiang, Jin, Hao, Li, Lin, Meng, Li, Zheng, Wang and Xu); Institutes of Brain Science, Wannan Medical College, Wuhu, Anhui, China (Dr Xu); Department of Neurology, the First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China (Dr Xu).
| |
Collapse
|
3
|
Lampsas S, Xenou M, Oikonomou E, Pantelidis P, Lysandrou A, Sarantos S, Goliopoulou A, Kalogeras K, Tsigkou V, Kalpis A, Paschou SA, Theofilis P, Vavuranakis M, Tousoulis D, Siasos G. Lipoprotein(a) in Atherosclerotic Diseases: From Pathophysiology to Diagnosis and Treatment. Molecules 2023; 28:969. [PMID: 36770634 PMCID: PMC9918959 DOI: 10.3390/molecules28030969] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
Lipoprotein(a) (Lp(a)) is a low-density lipoprotein (LDL) cholesterol-like particle bound to apolipoprotein(a). Increased Lp(a) levels are an independent, heritable causal risk factor for atherosclerotic cardiovascular disease (ASCVD) as they are largely determined by variations in the Lp(a) gene (LPA) locus encoding apo(a). Lp(a) is the preferential lipoprotein carrier for oxidized phospholipids (OxPL), and its role adversely affects vascular inflammation, atherosclerotic lesions, endothelial function and thrombogenicity, which pathophysiologically leads to cardiovascular (CV) events. Despite this crucial role of Lp(a), its measurement lacks a globally unified method, and, between different laboratories, results need standardization. Standard antilipidemic therapies, such as statins, fibrates and ezetimibe, have a mediocre effect on Lp(a) levels, although it is not yet clear whether such treatments can affect CV events and prognosis. This narrative review aims to summarize knowledge regarding the mechanisms mediating the effect of Lp(a) on inflammation, atherosclerosis and thrombosis and discuss current diagnostic and therapeutic potentials.
Collapse
Affiliation(s)
- Stamatios Lampsas
- 3rd Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Maria Xenou
- 3rd Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Evangelos Oikonomou
- 3rd Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Panteleimon Pantelidis
- 3rd Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Antonios Lysandrou
- 3rd Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Savvas Sarantos
- 3rd Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Athina Goliopoulou
- 3rd Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Konstantinos Kalogeras
- 3rd Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Sotiria Chest Disease Hospital, 11527 Athens, Greece
- 1st Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Hippokration General Hospital, 11527 Athens, Greece
| | - Vasiliki Tsigkou
- 3rd Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Athanasios Kalpis
- 3rd Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Stavroula A. Paschou
- 1st Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Hippokration General Hospital, 11527 Athens, Greece
| | - Panagiotis Theofilis
- 3rd Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Manolis Vavuranakis
- 3rd Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Dimitris Tousoulis
- 1st Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Hippokration General Hospital, 11527 Athens, Greece
| | - Gerasimos Siasos
- 3rd Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Sotiria Chest Disease Hospital, 11527 Athens, Greece
- Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
4
|
Pantazi D, Tellis C, Tselepis AD. Oxidized phospholipids and lipoprotein-associated phospholipase A 2 (Lp-PLA 2 ) in atherosclerotic cardiovascular disease: An update. Biofactors 2022; 48:1257-1270. [PMID: 36192834 DOI: 10.1002/biof.1890] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/06/2022] [Indexed: 12/24/2022]
Abstract
Inflammation and oxidative stress conditions lead to a variety of oxidative modifications of lipoprotein phospholipids implicated in the occurrence and development of atherosclerotic lesions. Lipoprotein-associated phospholipase A2 (Lp-PLA2 ) is established as an independent risk biomarker of atherosclerosis-related cardiovascular disease (ASCVD) and mediates vascular inflammation through the regulation of lipid metabolism in the blood and in atherosclerotic lesions. Lp-PLA2 is associated with low- and high-density lipoproteins and Lipoprotein (a) in human plasma and specifically hydrolyzes oxidized phospholipids involved in oxidative stress modification. Several oxidized phospholipids (OxPLs) subspecies can be detoxified through enzymatic degradation by Lp-PLA2 activation, forming lysophospholipids and oxidized non-esterified fatty acids (OxNEFAs). Lysophospholipids promote the expression of adhesion molecules, stimulate cytokines production (TNF-α, IL-6), and attract macrophages to the arterial intima. The present review article discusses new data on the functional roles of OxPLs and Lp-PLA2 associated with lipoproteins.
Collapse
Affiliation(s)
- Despoina Pantazi
- Atherothrombosis Research Centre/Laboratory of Biochemistry, Department of Chemistry, University of Ioannina, Ioannina, Greece
| | - Constantinos Tellis
- Atherothrombosis Research Centre/Laboratory of Biochemistry, Department of Chemistry, University of Ioannina, Ioannina, Greece
| | - Alexandros D Tselepis
- Atherothrombosis Research Centre/Laboratory of Biochemistry, Department of Chemistry, University of Ioannina, Ioannina, Greece
| |
Collapse
|
5
|
Koschinsky ML, Boffa MB. Oxidized phospholipid modification of lipoprotein(a): Epidemiology, biochemistry and pathophysiology. Atherosclerosis 2022; 349:92-100. [DOI: 10.1016/j.atherosclerosis.2022.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/22/2022] [Accepted: 04/01/2022] [Indexed: 02/05/2023]
|
6
|
Koutsogianni AD, Liberopoulos E, Tellis K, Tselepis AD. Oxidized phospholipids and lipoprotein(a): An update. Eur J Clin Invest 2022; 52:e13710. [PMID: 34837383 DOI: 10.1111/eci.13710] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/21/2021] [Accepted: 10/21/2021] [Indexed: 12/17/2022]
Abstract
Over the past few years, there has been an undiminished interest in lipoprotein(a) [Lp(a)] and oxidized phospholipids (OxPLs), mainly carried on this lipoprotein. Elevated Lp(a) has been established as an independent causal risk factor for cardiovascular disease. OxPLs play an important role in atherosclerosis. The main questions that remain to be answered, however, is to what extent OxPLs contribute to the atherogenicity of Lp(a), what effect hypolipidaemic medications may have on their levels and the potential clinical benefit of their reduction. This narrative review aimed to summarize currently available data on OxPLs and cardiovascular risk, as well as the effect of established and emerging hypolipidaemic medications on Lp(a)-OxPLs.
Collapse
Affiliation(s)
| | - Evangelos Liberopoulos
- Department of Internal Medicine, Faculty of Medicine, University of Ioannina, Ioannina, Greece
| | - Konstantinos Tellis
- Department of Chemistry, Atherothrombosis Research Centre/Laboratory of Biochemistry, University of Ioannina, Ioannina, Greece
| | - Alexandros D Tselepis
- Department of Chemistry, Atherothrombosis Research Centre/Laboratory of Biochemistry, University of Ioannina, Ioannina, Greece
| |
Collapse
|
7
|
Tuten A, Gungor Z, Ekmekci H, Ekmekci OB, Kucur M, Yilmaz N, Donma O, Sonmez H, Acıkgoz A, Madazlı R. Relationship between LPA SNPs and inflammatory burden in patients with preeclampsia to address future cardiovascular risk. J Matern Fetal Neonatal Med 2019; 34:898-906. [PMID: 31113255 DOI: 10.1080/14767058.2019.1622667] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The study tested whether cardiovascular corresponding LPA risk genotypes improve pre-eclampsia and coronary heart disease (CHD) risk prediction beyond conventional risk factors. BACKGROUND Studies have shown that women specific risk factors for cardiovascular disease (CVD) have taken an attention recently. It might be possible to identify women who have the highest risk in developing CVD in their further lives. It is well-known that Lp(a) levels have an impact on increased risk of CVD which is affected by LPA gene. Further, LPA risk genotypes are not considered in cardiovascular risk prediction. METHODS We have included 200 pregnant Turkish women into the study. We stratified the preeclamptic (PE) group: early (EOP) (28.7 ± 3.0 weeks) and late onset (LOP) (36.0 ± 1.4 weeks). 14 LPA SNPs were evaluated in the study. Rs9355296 and rs3798220 were found as independent risk factors for preeclampsia by logistic regression analysis. A positive correlation was found between rs9355296 and the diagnostic criteria of preeclampsia. Further rs9355296 G/* carriers have higher vascular inflammation rather than AA carriers. CONCLUSIONS The findings reveal that LPA genetic variability with high inflammatory response might be an indication of future cardiovascular events.
Collapse
Affiliation(s)
- Abdullah Tuten
- Faculty of Medicine, University of Istanbul, Cerrahpasa Medical School, Istanbul, Turkey
| | - Zeynep Gungor
- Faculty of Medicine, University of Istanbul, Cerrahpasa Medical School, Istanbul, Turkey
| | - Hakan Ekmekci
- Faculty of Medicine, University of Istanbul, Cerrahpasa Medical School, Istanbul, Turkey
| | - Ozlem Balci Ekmekci
- Faculty of Medicine, University of Istanbul, Cerrahpasa Medical School, Istanbul, Turkey
| | - Mine Kucur
- Faculty of Medicine, University of Istanbul, Cerrahpasa Medical School, Istanbul, Turkey
| | - Nevin Yilmaz
- Faculty of Medicine, University of Istanbul, Cerrahpasa Medical School, Istanbul, Turkey
| | - Orkide Donma
- Faculty of Medicine, University of Istanbul, Cerrahpasa Medical School, Istanbul, Turkey
| | - Huseyin Sonmez
- Faculty of Medicine, University of Istanbul, Cerrahpasa Medical School, Istanbul, Turkey
| | - Abdullah Acıkgoz
- Faculty of Medicine, University of Istanbul, Cerrahpasa Medical School, Istanbul, Turkey
| | - Rıza Madazlı
- Faculty of Medicine, University of Istanbul, Cerrahpasa Medical School, Istanbul, Turkey
| |
Collapse
|
8
|
Boffa MB, Koschinsky ML. Oxidized phospholipids as a unifying theory for lipoprotein(a) and cardiovascular disease. Nat Rev Cardiol 2019; 16:305-318. [DOI: 10.1038/s41569-018-0153-2] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
9
|
Tselepis AD. Oxidized phospholipids and lipoprotein-associated phospholipase A 2 as important determinants of Lp(a) functionality and pathophysiological role. J Biomed Res 2018; 31. [PMID: 27346583 PMCID: PMC5956253 DOI: 10.7555/jbr.31.20160009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 01/29/2016] [Accepted: 02/12/2016] [Indexed: 12/23/2022] Open
Abstract
Lipoprotein(a) [Lp(a)] is composed of a low density lipoprotein (LDL)-like particle to which apolipoprotein (a) [apo(a)] is linked by a single disulfide bridge. Lp(a) is considered a causal risk factor for ischemic cardiovascular disease (CVD) and calcific aortic valve stenosis (CAVS). The evidence for a causal role of Lp(a) in CVD and CAVS is based on data from large epidemiological databases, mendelian randomization studies, and genome-wide association studies. Despite the well-established role of Lp(a) as a causal risk factor for CVD and CAVS, the underlying mechanisms are not well understood. A key role in the Lp(a) functionality may be played by its oxidized phospholipids (OxPL) content. Importantly, most of circulating OxPL are associated with Lp(a); however, the underlying mechanisms leading to this preferential sequestration of OxPL on Lp(a) over the other lipoproteins, are mostly unknown. Several studies support the hypothesis that the risk of Lp(a) is primarily driven by its OxPL content. An important role in Lp(a) functionality may be played by the lipoprotein-associated phospholipase A2 (Lp-PLA2), an enzyme that catalyzes the degradation of OxPL and is bound to plasma lipoproteins including Lp(a). The present review article discusses new data on the pathophysiological role of Lp(a) and particularly focuses on the functional role of OxPL and Lp-PLA2 associated with Lp(a).
Collapse
Affiliation(s)
- Alexandros D Tselepis
- Atherothrombosis Research Centre / Laboratory of Biochemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece.
| |
Collapse
|
10
|
Scipione CA, Koschinsky ML, Boffa MB. Lipoprotein(a) in clinical practice: New perspectives from basic and translational science. Crit Rev Clin Lab Sci 2017; 55:33-54. [PMID: 29262744 DOI: 10.1080/10408363.2017.1415866] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Elevated plasma concentrations of lipoprotein(a) (Lp(a)) are a causal risk factor for coronary heart disease (CHD) and calcific aortic valve stenosis (CAVS). Genetic, epidemiological and in vitro data provide strong evidence for a pathogenic role for Lp(a) in the progression of atherothrombotic disease. Despite these advancements and a race to develop new Lp(a) lowering therapies, there are still many unanswered and emerging questions about the metabolism and pathophysiology of Lp(a). New studies have drawn attention to Lp(a) as a contributor to novel pathogenic processes, yet the mechanisms underlying the contribution of Lp(a) to CVD remain enigmatic. New therapeutics show promise in lowering plasma Lp(a) levels, although the complete mechanisms of Lp(a) lowering are not fully understood. Specific agents targeted to apolipoprotein(a) (apo(a)), namely antisense oligonucleotide therapy, demonstrate potential to decrease Lp(a) to levels below the 30-50 mg/dL (75-150 nmol/L) CVD risk threshold. This therapeutic approach should aid in assessing the benefit of lowering Lp(a) in a clinical setting.
Collapse
Affiliation(s)
- Corey A Scipione
- a Department of Advanced Diagnostics , Toronto General Hospital Research Institute, UHN , Toronto , Canada
| | - Marlys L Koschinsky
- b Robarts Research Institute , Western University , London , Canada.,c Department of Physiology & Pharmacology , Schulich School of Medicine & Dentistry, Western University , London , Canada
| | - Michael B Boffa
- d Department of Biochemistry , Western University , London , Canada
| |
Collapse
|
11
|
Ellis KL, Boffa MB, Sahebkar A, Koschinsky ML, Watts GF. The renaissance of lipoprotein(a): Brave new world for preventive cardiology? Prog Lipid Res 2017; 68:57-82. [DOI: 10.1016/j.plipres.2017.09.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 09/01/2017] [Accepted: 09/05/2017] [Indexed: 12/24/2022]
|
12
|
Prasad A, Clopton P, Ayers C, Khera A, de Lemos JA, Witztum JL, Tsimikas S. Relationship of Autoantibodies to MDA-LDL and ApoB-Immune Complexes to Sex, Ethnicity, Subclinical Atherosclerosis, and Cardiovascular Events. Arterioscler Thromb Vasc Biol 2017; 37:1213-1221. [PMID: 28473443 PMCID: PMC5500201 DOI: 10.1161/atvbaha.117.309101] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 04/18/2017] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Modifications of lipid constituents within atherosclerotic lesions generate neoepitopes that activate innate and adaptive immune responses. We aimed to define the prevalence, distribution, and relationship of autoantibody titers of oxidized lipoproteins to subclinical atherosclerosis and major adverse cardiovascular events (MACE) in different ethnic groups. APPROACH AND RESULTS IgG and IgM autoantibodies to malondialdehyde-modified low-density lipoprotein (MDA-LDL) and apolipoprotein B-100-immune complexes were measured in 3509 individuals (1814 blacks, 1031 whites, 589 Hispanics, and 85 no race identifier) from the Dallas Heart Study with median 10.5-year follow-up. Coronary artery calcium score, abdominal aortic plaque by magnetic resonance imaging, and MACE were quantified. IgG MDA-LDL and IgG and IgM apolipoprotein B-100-immune complexes were significantly different between groups, with blacks having the highest levels of IgG MDA-LDL and IgG apolipoprotein B-100-immune complexes and Hispanics having the highest levels of IgM apolipoprotein B-100-immune complexes (P<0.001 for all). IgGs tended to be higher and IgMs lower with age for all markers. In multivariable-adjusted binary logistic regression analysis, a doubling of IgG MDA-LDL levels was associated with prevalent coronary artery calcium score >10 Agatston units (odds ratio [95% confidence interval], 1.21 [1.07-1.36]; P=0.002). Multivariable-adjusted Cox regression analysis revealed that IgG MDA-LDL was independently associated with time to incident MACE in the entire group (hazard ratio [95% confidence interval], 1.76 [1.16-2.72]; P=0.009 for fourth versus first quartile). This effect was particularly prominent in black subjects (hazard ratio [95% confidence interval], 2.52 [1.39-4.57]; P=0.002). CONCLUSIONS Autoantibodies to oxidized lipoproteins and immune complexes with apoB-100 lipoproteins vary significantly by sex, age, and ethnicity. Higher baseline IgG MDA-LDL titers independently associate with new MACE. These findings may contribute to the understanding of differences in ethnic-specific MACE events.
Collapse
Affiliation(s)
- Anand Prasad
- From the Division of Cardiology, Department of Medicine, The University of Texas Health Science Center San Antonio (A.P.); Veterans Affairs Medical Center, San Diego, CA (P.C.); Division of Cardiology, University of Texas Southwestern Medical Center at Dallas (C.A., A.K., J.A.d.L.); Division of Endocrinology and Metabolism (J.L.W.) and Department of Medicine (S.T.), University of California San Diego, La Jolla; and Division of Cardiovascular Diseases, Sulpizio Cardiovascular Center, La Jolla, CA (S.T.)
| | - Paul Clopton
- From the Division of Cardiology, Department of Medicine, The University of Texas Health Science Center San Antonio (A.P.); Veterans Affairs Medical Center, San Diego, CA (P.C.); Division of Cardiology, University of Texas Southwestern Medical Center at Dallas (C.A., A.K., J.A.d.L.); Division of Endocrinology and Metabolism (J.L.W.) and Department of Medicine (S.T.), University of California San Diego, La Jolla; and Division of Cardiovascular Diseases, Sulpizio Cardiovascular Center, La Jolla, CA (S.T.)
| | - Colby Ayers
- From the Division of Cardiology, Department of Medicine, The University of Texas Health Science Center San Antonio (A.P.); Veterans Affairs Medical Center, San Diego, CA (P.C.); Division of Cardiology, University of Texas Southwestern Medical Center at Dallas (C.A., A.K., J.A.d.L.); Division of Endocrinology and Metabolism (J.L.W.) and Department of Medicine (S.T.), University of California San Diego, La Jolla; and Division of Cardiovascular Diseases, Sulpizio Cardiovascular Center, La Jolla, CA (S.T.)
| | - Amit Khera
- From the Division of Cardiology, Department of Medicine, The University of Texas Health Science Center San Antonio (A.P.); Veterans Affairs Medical Center, San Diego, CA (P.C.); Division of Cardiology, University of Texas Southwestern Medical Center at Dallas (C.A., A.K., J.A.d.L.); Division of Endocrinology and Metabolism (J.L.W.) and Department of Medicine (S.T.), University of California San Diego, La Jolla; and Division of Cardiovascular Diseases, Sulpizio Cardiovascular Center, La Jolla, CA (S.T.)
| | - James A de Lemos
- From the Division of Cardiology, Department of Medicine, The University of Texas Health Science Center San Antonio (A.P.); Veterans Affairs Medical Center, San Diego, CA (P.C.); Division of Cardiology, University of Texas Southwestern Medical Center at Dallas (C.A., A.K., J.A.d.L.); Division of Endocrinology and Metabolism (J.L.W.) and Department of Medicine (S.T.), University of California San Diego, La Jolla; and Division of Cardiovascular Diseases, Sulpizio Cardiovascular Center, La Jolla, CA (S.T.)
| | - Joseph L Witztum
- From the Division of Cardiology, Department of Medicine, The University of Texas Health Science Center San Antonio (A.P.); Veterans Affairs Medical Center, San Diego, CA (P.C.); Division of Cardiology, University of Texas Southwestern Medical Center at Dallas (C.A., A.K., J.A.d.L.); Division of Endocrinology and Metabolism (J.L.W.) and Department of Medicine (S.T.), University of California San Diego, La Jolla; and Division of Cardiovascular Diseases, Sulpizio Cardiovascular Center, La Jolla, CA (S.T.)
| | - Sotirios Tsimikas
- From the Division of Cardiology, Department of Medicine, The University of Texas Health Science Center San Antonio (A.P.); Veterans Affairs Medical Center, San Diego, CA (P.C.); Division of Cardiology, University of Texas Southwestern Medical Center at Dallas (C.A., A.K., J.A.d.L.); Division of Endocrinology and Metabolism (J.L.W.) and Department of Medicine (S.T.), University of California San Diego, La Jolla; and Division of Cardiovascular Diseases, Sulpizio Cardiovascular Center, La Jolla, CA (S.T.).
| |
Collapse
|
13
|
Kamstrup PR, Nordestgaard BG. Lipoprotein(a) concentrations, isoform size, and risk of type 2 diabetes: a Mendelian randomisation study. Lancet Diabetes Endocrinol 2013; 1:220-7. [PMID: 24622370 DOI: 10.1016/s2213-8587(13)70064-0] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND Low concentrations of lipoprotein(a) in plasma are associated with increased risk of type 2 diabetes, but whether this association is causal is unclear. Variations in the LPA gene affect lipoprotein(a) isoform size and concentrations in plasma. We therefore did a Mendelian randomisation study to investigate whether large isoform size, low concentrations in plasma, or both, are causally associated with type 2 diabetes. METHODS We assessed data for adults from the Danish general population enrolled in the Copenhagen City Heart Study and the Copenhagen General Population Study, with and without type 2 diabetes. Eligible participants had data for lipoprotein(a) concentrations in plasma, LPA kringle IV type 2 (KIV-2) sums of repeats (affecting both isoform size and plasma concentrations), and carrier status for the LPA single-nucleotide polymorphism rs10455872 (mainly affecting concentrations in plasma). FINDINGS 77,901 individuals had lipoprotein(a) data, of whom 28,567 (36·7%) had all three measurements. Low concentrations of lipoprotein(a) in plasma were associated with risk of type 2 diabetes, with adjusted odds ratios of 1·26 (1·09-1·45), 1·17 (1·01-1·36), 1·04 (0·90-1·21), and 1·05 (95% CI 0·90-1·22), respectively, for quintiles 1-4, compared with quintile 5 concentrations. High KIV-2 sums of repeats were associated with risk of type 2 diabetes (adjusted odds ratio 1·16, 95% CI 1·05-1·28) for KIV-2 quintile 5 versus quintiles 1-4 combined. Being a carrier of rs10455872 did not affect risk of type 2 diabetes. For a halving of lipoprotein(a) concentrations, the instrumental variable estimate of the causal odds ratio for type 2 diabetes was 1·15 (95% CI 1·05-1·27) for KIV-2 sum of repeats and 0·99 (0·95-1·03) for rs10455872 genotype. INTERPRETATION Low lipoprotein(a) concentrations alone seem not to be causally associated with type 2 diabetes, but a causal association for large lipoprotein(a) isoform size cannot be excluded. FUNDING Danish Heart Foundation, Danish Council for Independent Research-Medical Sciences, IMK Almene Fund, and Johan and Lise Boserup's Fund.
Collapse
Affiliation(s)
- Pia R Kamstrup
- Department of Clinical Biochemistry, Herlev Hospital, Copenhagen University Hospital, Herlev, Denmark; Copenhagen General Population Study, Herlev Hospital, Copenhagen University Hospital, Herlev, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Børge G Nordestgaard
- Department of Clinical Biochemistry, Herlev Hospital, Copenhagen University Hospital, Herlev, Denmark; Copenhagen General Population Study, Herlev Hospital, Copenhagen University Hospital, Herlev, Denmark; Copenhagen City Heart Study, Bispebjerg Hospital, Copenhagen University Hospital, Bispebjerg, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
14
|
New therapeutic targets for calcific aortic valve stenosis: the lipoprotein(a)-lipoprotein-associated phospholipase A2-oxidized phospholipid axis. J Am Coll Cardiol 2013; 63:478-80. [PMID: 24161316 DOI: 10.1016/j.jacc.2013.08.1639] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 08/02/2013] [Accepted: 08/13/2013] [Indexed: 11/21/2022]
|
15
|
Tellis CC, Moutzouri E, Elisaf M, Wolfert RL, Tselepis AD. The elevation of apoB in hypercholesterolemic patients is primarily attributed to the relative increase of apoB/Lp-PLA₂. J Lipid Res 2013; 54:3394-402. [PMID: 24092915 DOI: 10.1194/jlr.m041806] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lipoprotein-associated phospholipase A₂ (Lp-PLA₂) is a risk factor of cardiovascular disease. Plasma Lp-PLA₂ is mainly associated with apolipoprotein (apo)B-containing lipoproteins, primarily with low density lipoproteins (LDLs). Importantly, only a proportion of circulating lipoproteins contain Lp-PLA₂. We determined the plasma levels of Lp-PLA₂-bound apoB (apoB/Lp-PLA₂) in patients with primary hypercholesterolemia. The effect of simvastatin therapy was also addressed. The plasma apoB/Lp-PLA₂ concentration in 50 normolipidemic controls and 53 patients with primary hypercholesterolemia at baseline and at 3 months posttreatment with simvastatin (40 mg/day) was determined by an enzyme-linked immunosorbent assay. The concentration of the apoB-containing lipoproteins that do not bind Lp-PLA₂ [apoB/Lp-PLA₂⁻] was calculated by subtracting the apoB/Lp-PLA₂ from total apoB. The apoB/Lp-PLA₂ levels were 3.6-fold higher, while apoB/Lp-PLA₂⁻ were 1.3-fold higher in patients compared with controls. After 3 months of simvastatin treatment apoB/Lp-PLA₂ and apoB/Lp-PLA₂⁻ levels were reduced by 52% and 33%, respectively. The elevation in apoB-containing lipoproteins in hypercholesterolemic patients is mainly attributed to the relative increase in the proatherogenic apoB/Lp-PLA₂, while simvastatin reduces these particles to a higher extent compared with apoB/Lp-PLA₂⁻. Considering that Lp-PLA₂ is proatherogenic, the predominance of apoB/Lp-PLA₂ particles in hypercholesterolemic patients may contribute to their higher atherogenicity and incidence of cardiovascular disease.
Collapse
Affiliation(s)
- Constantinos C Tellis
- Laboratory of Biochemistry, Department of Chemistry University of Ioannina, Ioannina, Greece
| | | | | | | | | |
Collapse
|
16
|
Lipoprotein(a): Cellular Effects and Molecular Mechanisms. CHOLESTEROL 2012; 2012:923289. [PMID: 22991657 PMCID: PMC3443569 DOI: 10.1155/2012/923289] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 07/24/2012] [Indexed: 01/31/2023]
Abstract
Lipoprotein(a) (Lp(a)) is an independent risk factor for the development of cardiovascular disease (CVD). Indeed, individuals with plasma concentrations >20 mg/dL carry a 2-fold increased risk of developing CVD, accounting for ~25% of the population. Circulating levels of Lp(a) are remarkably resistant to common lipid lowering therapies, and there are currently no robust treatments available for reduction of Lp(a) apart from plasma apheresis, which is costly and labour intensive. The Lp(a) molecule is composed of two parts, an LDL/apoB-100 core and a unique glycoprotein, apolipoprotein(a) (apo(a)), both of which can interact with components of the coagulation cascade, inflammatory pathways, and cells of the blood vessel wall (smooth muscle cells (SMC) and endothelial cells (EC)). Therefore, it is of key importance to determine the molecular pathways by which Lp(a) exerts its influence on the vascular system in order to design therapeutics to target its cellular effects. This paper will summarise the role of Lp(a) in modulating cell behaviour in all aspects of the vascular system including platelets, monocytes, SMC, and EC.
Collapse
|
17
|
Arai K, Orsoni A, Mallat Z, Tedgui A, Witztum JL, Bruckert E, Tselepis AD, Chapman MJ, Tsimikas S. Acute impact of apheresis on oxidized phospholipids in patients with familial hypercholesterolemia. J Lipid Res 2012; 53:1670-8. [PMID: 22628616 DOI: 10.1194/jlr.p027235] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We measured oxidized phospholipids (OxPL), lipoprotein (a) [Lp(a)], and lipoprotein-associated phospholipase A(2) (Lp-PLA(2)) pre- and postapheresis in 18 patients with familial hypercholesterolemia (FH) and with low(∼10 mg/dl; range 10-11 mg/dl), intermediate (∼50 mg/dl; range 30-61 mg/dl), or high (>100 mg/dl; range 78-128 mg/dl) Lp(a) levels. By using enzymatic and immunoassays, the content of OxPL and Lp-PLA(2) mass and activity were quantitated in lipoprotein density fractions plated in microtiter wells, as well as directly on apoB-100, Lp(a), and apoA-I immunocaptured within each fraction (i.e., OxPL/apoB and Lp-PLA(2)/apoB). In whole fractions, OxPL was primarily detected in the Lp(a)-containing fractions, whereas Lp-PLA(2) was primarily detected in the small, dense LDL and light Lp(a) range. In lipoprotein capture assays, OxPL/apoB and OxPL/apo(a) increased proportionally with increasing Lp(a) levels. Lp-PLA(2)/apoB and Lp-PLA(2)/apoA-I levels were highest in the low Lp(a) group but decreased proportionally with increasing Lp(a) levels. Lp-PLA(2)/apo(a) was lowest in patients with low Lp(a) levels and increased proportionally with increasing Lp(a) levels. Apheresis significantly reduced levels of OxPL and Lp-PLA(2) on apoB and Lp(a) (50-75%), particularly in patients with intermediate and high Lp(a) levels. In contrast, apheresis increased Lp-PLA(2)-specific activity (activity/mass ratio) in buoyant LDL fractions. The impact of apheresis on Lp(a), OxPL, and Lp-PLA(2) provides insights into its therapeutic benefits beyond lowering apoB-containing lipoproteins.
Collapse
|
18
|
Ryu SK, Hutten BA, Vissers MN, Wiegman A, Kastelein JJ, Tsimikas S. Lipoprotein-associated phospholipase A2 mass and activity in children with heterozygous familial hypercholesterolemia and unaffected siblings: Effect of pravastatin. J Clin Lipidol 2011; 5:50-6. [DOI: 10.1016/j.jacl.2010.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 10/26/2010] [Accepted: 11/09/2010] [Indexed: 10/18/2022]
|
19
|
Extracellular phospholipases in atherosclerosis. Biochimie 2010; 92:594-600. [DOI: 10.1016/j.biochi.2010.02.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Accepted: 02/02/2010] [Indexed: 01/01/2023]
|
20
|
Enkhmaa B, Anuurad E, Zhang W, Pearson TA, Berglund L. Association of Lp-PLA(2) activity with allele-specific Lp(a) levels in a bi-ethnic population. Atherosclerosis 2010; 211:526-30. [PMID: 20444451 DOI: 10.1016/j.atherosclerosis.2010.03.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Revised: 02/24/2010] [Accepted: 03/10/2010] [Indexed: 11/19/2022]
Abstract
OBJECTIVES Lipoprotein-associated phospholipase A(2) (Lp-PLA(2)) and lipoprotein(a) [Lp(a)] have been implicated as cardiovascular disease risk factors, and are differentially regulated across ethnicity. We investigated the association between Lp-PLA(2) activity and allele-specific apolipoprotein(a) [apo(a)] levels in a bi-ethnic population. METHODS Lp-PLA(2) activity, Lp(a) and allele-specific apo(a) levels were determined in 224 African Americans and 336 Caucasians. RESULTS Lp-PLA(2) activity level was higher among Caucasians compared to African Americans (173 + or - 41 nmol/min/ml vs. 141 + or - 39 nmol/min/ml, P<0.001), and positively associated with Lp(a), total and LDL cholesterol, triglyceride, apolipoprotein B-100, and negatively with HDL cholesterol levels in both ethnic groups. The association between Lp-PLA(2) activity and Lp(a) was stronger among African Americans compared to Caucasians (R=0.238, beta(1)=3.48, vs. R=0.111, beta(1)=1.93, respectively). The Lp-PLA(2) activity level was significantly associated with allele-specific apo(a) levels for smaller (<26 K4 repeats) apo(a) sizes in both ethnic groups (P=0.015 for African Americans, P=0.038 for Caucasians). In contrast, for larger (>26 K4 repeats) apo(a) sizes, high Lp-PLA(2) activity levels were associated with higher allele-specific apo(a) levels in African Americans (P=0.009), but not in Caucasians. CONCLUSION The association between Lp-PLA(2) activity and allele-specific apo(a) levels differs across African American-Caucasian ethnicity.
Collapse
Affiliation(s)
- Byambaa Enkhmaa
- Department of Medicine, University of California, Davis, CA, USA
| | | | | | | | | |
Collapse
|
21
|
The role of lipoprotein-associated phospholipase A2 in atherosclerosis may depend on its lipoprotein carrier in plasma. Biochim Biophys Acta Mol Cell Biol Lipids 2009; 1791:327-38. [PMID: 19272461 DOI: 10.1016/j.bbalip.2009.02.015] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Revised: 02/06/2009] [Accepted: 02/19/2009] [Indexed: 01/28/2023]
Abstract
Platelet-activating factor (PAF) acetylhydrolase exhibits a Ca(2+)-independent phospholipase A2 activity and degrades PAFas well as oxidized phospholipids (oxPL). Such phospholipids are accumulated in the artery wall and may play key roles in vascular inflammation and atherosclerosis. PAF-acetylhydrolase in plasma is complexed to lipoproteins; thus it is also referred to as lipoprotein-associated phospholipase A2 (Lp-PLA2). Lp-PLA2 is primarily associated with low-density lipoprotein (LDL), whereas a small proportion of circulating enzyme activity is also associated with high-density lipoprotein (HDL). The majority of the LDL-associated Lp-PLA2 (LDL-Lp-PLA2) activity is bound to atherogenic small-dense LDL particles and it is a potential marker of these particles in plasma. The distribution of Lp-PLA2 between LDL and HDL is altered in various types of dyslipidemias. It can be also influenced by the presence of lipoprotein (a) [Lp(a)] when plasma levels of this lipoprotein exceed 30 mg/dl. Several lines of evidence suggest that the role of plasma Lp-PLA2 in atherosclerosis may depend on the type of lipoprotein particle with which this enzyme is associated. In this regard, data from large Caucasian population studies have shown an independent association between the plasma Lp-PLA2 levels (which are mainly influenced by the levels of LDL-Lp-PLA2) and the risk of future cardiovascular events. On the contrary, several lines of evidence suggest that HDL-associated Lp-PLA2 may substantially contribute to the HDL antiatherogenic activities. Recent studies have provided evidence that oxPL are preferentially sequestered on Lp(a) thus subjected to degradation by the Lp(a)-associated Lp-PLA2. These data suggest that Lp(a) may be a potential scavenger of oxPL and provide new insights into the functional role of Lp(a) and the Lp(a)-associated Lp-PLA2 in normal physiology as well as in inflammation and atherosclerosis. The present review is focused on recent advances concerning the Lp-PLA2 structural characteristics, the molecular basis of the enzyme association with distinct lipoprotein subspecies, as well as the potential role of Lp-PLA2 associated with different lipoprotein classes in atherosclerosis and cardiovascular disease.
Collapse
|
22
|
Ali M, Madjid M. Lipoprotein-associated phospholipase A2: a cardiovascular risk predictor and a potential therapeutic target. Future Cardiol 2009; 5:159-73. [DOI: 10.2217/14796678.5.2.159] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Lipoprotein-associated phospholipase A2 (Lp-PLA2), present in the circulation and in atherosclerotic plaque, is an inflammatory marker with potential use as a predictor of cardiovascular risk and as a therapeutic target. Although Lp-PLA2 is associated with both LDL and HDL, it is important to determine whether Lp-PLA2 has a predominantly pro- or anti-atherogenic effect. Increasing evidence suggests a proatherogenic role for Lp-PLA2. ©iEpidemiologic and clinical evidence suggests Lp-PLA2 is an independent predictor of risk and may be superior to other inflammatory markers owing to its specificity and minimal biovariation. Lp-PLA2 inhibitors currently being investigated in clinical trials are promising novel anti-inflammatory agents with a specificity for the vascular bed and a potential for decreasing plaque vulnerability.
Collapse
Affiliation(s)
- Muzammil Ali
- Texas Heart Institute, 6770 Bertner Ave, MC 2-255, Houston, TX 77030, USA
| | - Mohammad Madjid
- Texas Heart Institute at St Luke’s Episcopal Hospital, The University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW To review emerging data on the relationship between lipoprotein(a) and oxidized phospholipids. RECENT FINDINGS We have recently proposed that a unique physiological role of lipoprotein(a) may be to bind and transport proinflammatory oxidized phospholipids and that this interaction may mediate a common biological influence on cardiovascular disease. In a large series of clinical studies performed to date, a very strong correlation was found between plasma levels of lipoprotein(a) and the content of oxidized phospholipids on apolipoprotein B-100 particles (OxPL/apoB), measured by monoclonal antibody E06, which binds the phosphocholine head group of oxidized phospholipids but not native phospholipids. The correlation of OxPL/apoB to lipoprotein(a) is very strong in individuals with small apolipoprotein(a) isoforms (r = approximately 0.95) and modest in individuals with large isoforms (r = approximately 0.60). In-vitro studies have demonstrated that the vast majority of oxidized phospholipids detected by E06 are bound to lipoprotein(a) in human plasma. A similarly strong association with oxidized phospholipids was also documented in transgenic mice overexpressing lipoprotein(a), even in mice not fed atherogenic diets or with overt atherosclerosis. SUMMARY A better understanding of the ability of human lipoprotein(a) to bind oxidized phospholipids may allow clinically important insights into the role of oxidized phospholipids and lipoprotein(a) in human atherogenesis and cardiovascular disease and may provide novel diagnostic tools and therapeutic interventions aimed at measuring and treating elevated levels of OxPL/apoB and lipoprotein(a).
Collapse
Affiliation(s)
- Sotirios Tsimikas
- Vascular Medicine Program, Department of Medicine, University of California San Diego, Cardiovascular Diseases, La Jolla, CA 92037-0975, USA.
| | | |
Collapse
|
24
|
Bergmark C, Dewan A, Orsoni A, Merki E, Miller ER, Shin MJ, Binder CJ, Hörkkö S, Krauss RM, Chapman MJ, Witztum JL, Tsimikas S. A novel function of lipoprotein [a] as a preferential carrier of oxidized phospholipids in human plasma. J Lipid Res 2008; 49:2230-9. [PMID: 18594118 DOI: 10.1194/jlr.m800174-jlr200] [Citation(s) in RCA: 271] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Oxidized phospholipids (OxPLs) on apolipoprotein B-100 (apoB-100) particles are strongly associated with lipoprotein [a] (Lp[a]). In this study, we evaluated whether Lp[a] is preferentially the carrier of OxPL in human plasma. The content of OxPL on apoB-100 particles was measured with monoclonal antibody E06, which recognizes the phosphocholine (PC) headgroup of oxidized but not native phospholipids. To assess whether OxPLs were preferentially bound by Lp[a] as opposed to other lipoproteins, immunoprecipitation and ultracentrifugation experiments, in vitro transfer studies, and chemiluminescent ELISAs were performed. Immunoprecipitation of Lp[a] from human plasma with an apolipoprotein [a] (apo[a])-specific antibody demonstrated that more than 85% of E06 reactivity (i.e., OxPL) coimmunoprecipitated with Lp[a]. Ultracentrifugation experiments showed that nearly all OxPLs were found in fractions containing apo[a], as opposed to other apolipoproteins. In vitro transfer studies showed that oxidized LDL preferentially donates OxPLs to Lp[a], as opposed to LDL, in a time- and temperature-dependent manner, even in aqueous buffer. Approximately 50% of E06 immunoreactivity could be extracted from isolated Lp[a] following exposure of plasma to various lipid solvents. These data demonstrate that Lp[a] is the preferential carrier of PC-containing OxPL in human plasma. This unique property of Lp[a] suggests novel insights into its physiological function and mechanisms of atherogenicity.
Collapse
Affiliation(s)
- Claes Bergmark
- Department of Vascular Surgery, Karolinska University Hospital, Karolinska Institute, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Over the last decade, significant data has accumulated to suggest that biomarkers of oxidative stress accurately reflect the presence of cardiovascular risk factors, the extent of cardiovascular disease (CVD), and cardiovascular outcomes. This cumulative evidence has supported the approval of several of these biomarkers for clinical applications. For example, lipoprotein-associated phospholipase A(2) (Lp-PLA2) and myeloperoxidase (MPO) mass assays are now available to assist clinicians in determining overall cardiovascular risk in asymptomatic patients thought to be at increased risk or in patients with cardiovascular symptoms. However, it is not yet firmly established whether and to what extent these oxidative biomarkers reflect changes in response to therapeutic interventions. This article reviews the latest data on MPO, isoprostanes, oxidized low-density lipoprotein, oxidized phospholipids, and Lp-PLA2 biomarker assays, and it assesses their role in reflecting therapeutic interventions to treat CVD.
Collapse
|
26
|
Tsimikas S, Tsironis LD, Tselepis AD. New Insights Into the Role of Lipoprotein(a)-Associated Lipoprotein-Associated Phospholipase A
2
in Atherosclerosis and Cardiovascular Disease. Arterioscler Thromb Vasc Biol 2007; 27:2094-9. [PMID: 17626905 DOI: 10.1161/01.atv.0000280571.28102.d4] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Lipoprotein(a) [Lp(a)] plays an important role in atherosclerosis. The biological effects of Lp(a) have been attributed either to apolipoprotein(a) or to its low-density lipoprotein-like particle. Lp(a) contains platelet-activating factor acetylhydrolase, an enzyme that exhibits a Ca
2+
-independent phospholipase A
2
activity and is complexed to lipoproteins in plasma; thus, it is also referred to as lipoprotein-associated phospholipase A
2
. Substrates for lipoprotein-associated phospholipase A
2
include phospholipids containing oxidatively fragmented residues at the
sn-2
position (oxidized phospholipids; OxPLs). OxPLs may play important roles in vascular inflammation and atherosclerosis. Plasma levels of OxPLs present on apolipoprotein B-100 particles (OxPL/apolipoprotein B) are correlated with coronary artery, carotid, and peripheral arterial disease. Furthermore, OxPL/apolipoprotein B levels in plasma are strongly correlated with Lp(a) levels, are preferentially sequestered on Lp(a), and thus are potentially subjected to degradation by the Lp(a)-associated lipoprotein-associated phospholipase A
2
. The present review article focuses specifically on the characteristics of the lipoprotein-associated phospholipase A
2
associated with Lp(a) and discusses the possible role of this enzyme in view of emerging data showing that OxPLs in plasma are preferentially sequestered on Lp(a) and may significantly contribute to the increased atherogenicity of this lipoprotein.
Collapse
Affiliation(s)
- Sotirios Tsimikas
- Department of Medicine, University of California San Diego, La Jolla, Calif, USA
| | | | | |
Collapse
|
27
|
Saougos VG, Tambaki AP, Kalogirou M, Kostapanos M, Gazi IF, Wolfert RL, Elisaf M, Tselepis AD. Differential effect of hypolipidemic drugs on lipoprotein-associated phospholipase A2. Arterioscler Thromb Vasc Biol 2007; 27:2236-2243. [PMID: 17656665 DOI: 10.1161/atvbaha.107.147280] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
OBJECTIVE Lipoprotein-associated phospholipase A2 (Lp-PLA2) is a predictor for incident atherosclerotic disease. We investigated the effect of 3 hypolipidemic drugs that exert their action through different mechanisms on plasma and lipoprotein-associated Lp-PLA2 activity and mass. METHODS AND RESULTS In 50 patients with Type IIA dyslipidemia were administered rosuvastatin (10 mg daily), whereas in 50 Type IIA dyslipidemic patients exhibiting intolerance to previous statin therapy were administered ezetimibe as monotherapy (10 mg daily). Fifty patients with Type IV dyslipidemia were given micronised fenofibrate (200 mg daily). Low- and high-density lipoprotein (LDL and HDL, respectively) subclass analysis was performed electrophoretically, whereas lipoprotein subfractions were isolated by ultracentrifugation. Ezetimibe reduced plasma Lp-PLA2 activity and mass attributable to the reduction in plasma levels of all LDL subfractions. Rosuvastatin reduced enzyme activity and mass because of the decrease in plasma levels of all LDL subfractions and especially the Lp-PLA2 on dense LDL subfraction (LDL-5). Fenofibrate preferentially reduced the Lp-PLA2 activity and mass associated with the VLDL+IDL and LDL-5 subfractions. Among studied drugs only fenofibrate increased HDL-associated Lp-PLA2 (HDL-Lp-PLA2) activity and mass attributable to a preferential increase in Lp-PLA2 associated with the HDL-3c subfraction. CONCLUSIONS Ezetimibe, rosuvastatin, and fenofibrate reduce Lp-PLA2 activity and mass associated with the atherogenic apoB-lipoproteins. Furthermore, fenofibrate improves the enzyme specific activity on apoB-lipoproteins and induces the HDL-Lp-PLA2. The clinical implications of these effects remain to be established.
Collapse
Affiliation(s)
- Vasilios G Saougos
- Department of Internal Medicine, Medical School, University of Ioannina, 45110 Ioannina, Greece
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Kiechl S, Willeit J, Mayr M, Viehweider B, Oberhollenzer M, Kronenberg F, Wiedermann CJ, Oberthaler S, Xu Q, Witztum JL, Tsimikas S. Oxidized Phospholipids, Lipoprotein(a), Lipoprotein-Associated Phospholipase A2 Activity, and 10-Year Cardiovascular Outcomes. Arterioscler Thromb Vasc Biol 2007; 27:1788-95. [PMID: 17541022 DOI: 10.1161/atvbaha.107.145805] [Citation(s) in RCA: 186] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Oxidized phospholipids (OxPL) circulate on apolipoprotein B-100 particles (OxPL/apoB), and primarily on Lp(a) lipoprotein (a) [Lp(a)]. The relationship of OxPL/apoB levels to future cardiovascular events is not known. METHODS AND RESULTS The Bruneck study is a prospective population-based survey of 40- to 79-year-old men and women recruited in 1990. Plasma levels of OxPL/apoB and lipoprotein (a) [Lp(a)] were measured in 765 subjects in 1995 and incident cardiovascular disease (CVD), defined as cardiovascular death, myocardial infarction, stroke, and transient ischemic attack, was assessed from 1995 to 2005. During the follow-up period, 82 subjects developed CVD. In multivariable analysis, which included traditional risk factors, high sensitivity C-reactive protein (hsCRP), and lipoprotein-associated phospholipase A2 (Lp-PLA2) activity, subjects in the highest tertile of OxPL/apoB had a significantly higher risk of cardiovascular events than those in the lowest tertile (hazard ratio[95% CI] 2.4[1.3 to 4.3], P=0.004). The strength of the association between OxPL/apoB and CVD risk was amplified with increasing Lp-PLA2 activity (P=0.018 for interaction). Moreover, OxPL/apoB levels predicted future cardiovascular events beyond the information provided by the Framingham Risk Score (FRS). The effects of OxPL/apoB and Lp(a) were not independent of each other but they were independent of all other measured risk factors. CONCLUSIONS This study demonstrates that OxPL/apoB levels predict 10-year CVD event rates independently of traditional risk factors, hsCRP, and FRS. Increasing Lp-PLA2 activity further amplifies the risk of CVD mediated by OxPL/apoB.
Collapse
Affiliation(s)
- Stefan Kiechl
- Department of Neurology, Medical University of Innsbruck, Austria
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Lourida ES, Georgiadis AN, Papavasiliou EC, Papathanasiou AI, Drosos AA, Tselepis AD. Patients with early rheumatoid arthritis exhibit elevated autoantibody titers against mildly oxidized low-density lipoprotein and exhibit decreased activity of the lipoprotein-associated phospholipase A2. Arthritis Res Ther 2007; 9:R19. [PMID: 17326817 PMCID: PMC1860077 DOI: 10.1186/ar2129] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2006] [Revised: 01/22/2007] [Accepted: 02/27/2007] [Indexed: 12/01/2022] Open
Abstract
Rheumatoid arthritis is a chronic inflammatory disease, associated with an excess of cardiovascular morbidity and mortality due to accelerated atherosclerosis. Oxidized low-density lipoprotein (oxLDL), the antibodies against oxLDL and the lipoprotein-associated phospholipase A2 (Lp-PLA2) may play important roles in inflammation and atherosclerosis. We investigated the plasma levels of oxLDL and Lp-PLA2 activity as well as the autoantibody titers against mildly oxLDL in patients with early rheumatoid arthritis (ERA). The long-term effects of immunointervention on these parameters in patients with active disease were also determined. Fifty-eight ERA patients who met the American College of Rheumatology criteria were included in the study. Patients were treated with methotrexate and prednisone. Sixty-three apparently healthy volunteers also participated in the study and served as controls. Three different types of mildly oxLDL were prepared at the end of the lag, propagation and decomposition phases of oxidation. The serum autoantibody titers of the IgG type against all types of oxLDL were determined by an ELISA method. The plasma levels of oxLDL and the Lp-PLA2 activity were determined by an ELISA method and by the trichloroacetic acid precipitation procedure, respectively. At baseline, ERA patients exhibited elevated autoantibody titers against all types of mildly oxLDL as well as low activity of the total plasma Lp-PLA2 and the Lp-PLA2 associated with the high-density lipoprotein, compared with controls. Multivariate regression analysis showed that the elevated autoantibody titers towards oxLDL at the end of the decomposition phase of oxidation and the low plasma Lp-PLA2 activity are independently associated with ERA. After immunointervention autoantibody titers against all types of oxLDL were decreased in parallel to the increase in high-density lipoprotein-cholesterol and high-density lipoprotein-Lp-PLA2 activity. We conclude that elevated autoantibody titers against oxLDL at the end of the decomposition phase of oxidation and low plasma Lp-PLA2 activity are feature characteristics of patients with ERA, suggesting an important role of these parameters in the pathophysiology of ERA as well as in the accelerated atherosclerosis observed in these patients.
Collapse
Affiliation(s)
- Evangelia S Lourida
- Department of Chemistry, Laboratory of Biochemistry, University of Ioannina, 45110 Ioannina, Greece
| | - Athanasios N Georgiadis
- Department of Internal Medicine, Medical School, University of Ioannina, 45110 Ioannina, Greece
| | - Eleni C Papavasiliou
- Department of Chemistry, Laboratory of Biochemistry, University of Ioannina, 45110 Ioannina, Greece
| | | | - Alexandros A Drosos
- Department of Internal Medicine, Medical School, University of Ioannina, 45110 Ioannina, Greece
| | - Alexandros D Tselepis
- Department of Chemistry, Laboratory of Biochemistry, University of Ioannina, 45110 Ioannina, Greece
| |
Collapse
|
30
|
Karasawa K. Clinical aspects of plasma platelet-activating factor-acetylhydrolase. Biochim Biophys Acta Mol Cell Biol Lipids 2006; 1761:1359-72. [PMID: 17049457 DOI: 10.1016/j.bbalip.2006.06.017] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2006] [Accepted: 06/15/2006] [Indexed: 11/25/2022]
Abstract
Plasma platelet-activating factor (PAF)-acetylhydrolase (PAF-AH), which is characterized by tight association with plasma lipoproteins, degrades not only PAF but also phospholipids with oxidatively modified short fatty acyl chain esterified at the sn-2 position. Production and accumulation of these phospholipids are associated with the onset of inflammatory diseases and preventive role of this enzyme has been evidenced by many recent studies including prevalence of the genetic deficiency of the enzyme in the patients and therapeutic effects of treatment with recombinant protein or gene transfer. With respect to the atherosclerosis, however, it is not fully cleared whether this enzyme plays an anti-atherogenic role or pro-atherogenic role because plasma PAF-AH also might produce lysophosphatidylcholine (LysoPC) and oxidatively modified nonesterified fatty acids with potent pro-inflammatory and pro-atherogenic bioactivities. These dual roles of plasma PAF-AH might be regulated by the altered distribution of the enzyme between low density lipoprotein (LDL) and high density lipoprotein (HDL) particles because HDL-associated enzymes are considered to contribute to the protection of LDL from oxidative modification. This review focuses on the recent findings which address the role of this enzyme in the human diseases especially including asthma, septic shock and atherosclerosis.
Collapse
Affiliation(s)
- Ken Karasawa
- Laboratory of Molecular Pharmaceutics, Faculty of Pharmaceutical Sciences, Teikyo University, Sagamihara, Kanagawa 199-0195, Japan.
| |
Collapse
|
31
|
Karabina SA, Ninio E. Plasma PAF-acetylhydrolase: an unfulfilled promise? Biochim Biophys Acta Mol Cell Biol Lipids 2006; 1761:1351-8. [PMID: 16807087 DOI: 10.1016/j.bbalip.2006.05.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2006] [Revised: 05/04/2006] [Accepted: 05/08/2006] [Indexed: 01/04/2023]
Abstract
Plasma Platelet-activating-Factor (PAF)-acetylhydrolase (PAF-AH also named lipoprotein-PLA(2) or PLA(2)G7 gene) is secreted by macrophages, it degrades PAF and oxidation products of phosphatidylcholine produced upon LDL oxidation and/or oxidative stress, and thus is considered as a potentially anti-inflammatory enzyme. Cloning of PAF-AH has sustained tremendous promises towards the use of PAF-AH recombinant protein in clinical situations. The reason for that stems from the numerous animal models of inflammation, atherosclerosis or sepsis, where raising the levels of circulating PAF-AH either through recombinant protein infusion or through the adenoviral gene transfer showed to be beneficial. Unfortunately, neither in human asthma nor in sepsis the recombinant PAF-AH showed sufficient efficacy. One of the most challenging questions nowadays is as to whether PAF-AH is pro- or anti-atherogenic in humans, as PAF-AH may possess a dual pro- and anti-inflammatory role, depending on the concentration and the availability of potential substrates. It is equally possible that the plasma level of PAF-AH is a diagnostic marker of ongoing atherosclerosis.
Collapse
Affiliation(s)
- Sonia-Athina Karabina
- INSERM U525, Université Pierre et Marie Curie-Paris6, Faculté de Médecine Pierre et Marie Curie, 91, bd de l'Hôpital 75634 Paris cedex 13, France
| | | |
Collapse
|
32
|
Katsouras CS, Tsironis LD, Elisaf M, Goodevenos JA, Michalis LK, Tselepis AD. Lipoprotein(a) as a cardiovascular risk factor. Future Cardiol 2005; 1:509-17. [DOI: 10.2217/14796678.1.4.509] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Evidence for the role of lipoprotein(a) (Lp[a]) in atherosclerosis and thrombosis has considerably increased over the past few years. Therefore, Lp(a) is currently classified as an emerging lipid risk factor for cardiovascular disease. High Lp(a) plasma levels carried in particles with small-sized apolipoprotein(a) isoforms are associated with preclinical vascular changes, cardiovascular disease and the mode of presentation of coronary artery disease (acute coronary syndromes). However, randomized clinical trials with an emphasis on agents that specifically lower plasma Lp(a) do not exist. At present, screening for increases in Lp(a) in the general population is not recommended. The measurement of Lp(a) may be of value in individuals with an increased risk of cardiovascular disease, particularly in patients with high low-density lipoprotein cholesterol plasma levels, since a high Lp(a) concentration in such subjects further increases the risk of coronary heart disease.
Collapse
Affiliation(s)
| | - Loukas D Tsironis
- University of Ioannina, Laboratory of Biochemistry, Department of Chemistry, 45100 Ioannina, Greece
| | - Moses Elisaf
- University of Ioannina, Department of Internal Medicine, 45110 Ioannina, Greece
| | - John A Goodevenos
- University of Ioannina, Department of Cardiology, 45110 Ioannina, Greece
| | - Lampros K Michalis
- University of Ioannina, Department of Cardiology, 45110 Ioannina, Greece
| | - Alexandros D Tselepis
- University of Ioannina, Laboratory of Biochemistry, Department of Chemistry, 45110 Ioannina, Greece
| |
Collapse
|
33
|
Tsironis LD, Katsouras CS, Lourida ES, Mitsios JV, Goudevenos J, Elisaf M, Tselepis AD. Reduced PAF-acetylhydrolase activity associated with Lp(a) in patients with coronary artery disease. Atherosclerosis 2004; 177:193-201. [PMID: 15488884 DOI: 10.1016/j.atherosclerosis.2004.07.030] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2003] [Revised: 06/18/2004] [Accepted: 07/16/2004] [Indexed: 11/18/2022]
Abstract
Lipoprotein(a) [Lp(a)] may be an independent risk factor for coronary artery disease (CAD). Lp(a) is enriched in platelet activating factor acetylhydrolase (PAF-AH), an enzyme which hydrolyzes and inactivates platelet activating factor (PAF) and oxidized phospholipids that are implicated in atherogenesis. We determined the mass and catalytic properties of the Lp(a)-associated PAF-AH in 28 CAD patients in relation to the LDL-associated enzyme ones. Results were then compared to those of 30 control subjects and 16 unrelated patients with primary hypercholesterolemia (Type IIA dyslipidemia) before and after atorvastatin therapy. The mass, the specific activity and kinetic constants of the Lp(a)-associated PAF-AH were significantly lower in CAD patients compared to those of either controls or hypercholesterolemic patients, a phenomenon not observed for LDL-associated PAF-AH. The enzyme specific activity and kinetic constants were significantly increased after removal of apo(a) from Lp(a) by reductive cleavage, which was not found in the control population, suggesting that the apo(a) moiety of Lp(a) from CAD patients may play an important role in the observed lower catalytic efficiency of PAF-AH. The reduced PAF-AH mass and specific activity on Lp(a) is a feature characteristic of this lipoprotein in CAD patients and may lead to a diminished capability of Lp(a) to degrade proinflammatory phospholipids. The consequences of this phenomenon as regards the pathophysiological role of Lp(a) in atherosclerosis remain to be established.
Collapse
Affiliation(s)
- Loukas D Tsironis
- Laboratory of Biochemistry, Department of Chemistry, Medical School, University of Ioannina, 45110 Ioannina, Greece
| | | | | | | | | | | | | |
Collapse
|
34
|
Brites FD, Verona J, Schreier LE, Fruchart JC, Castro GR, Wikinski RL. Paraoxonase 1 and platelet-activating factor acetylhydrolase activities in patients with low hdl-cholesterol levels with or without primary hypertriglyceridemia. Arch Med Res 2004; 35:235-40. [PMID: 15163466 DOI: 10.1016/j.arcmed.2004.02.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2003] [Accepted: 02/18/2004] [Indexed: 02/02/2023]
Abstract
BACKGROUND Previous studies have shown that high density lipoprotein (HDL)-deficient states are associated with reduced paraoxonase 1 (PON1) activity. However, HDL reduction caused by primary hypertriglyceridemia has not been fully explored. The aim of the present study was to evaluate whether PON1 and platelet-activating factor acetylhydrolase (PAF-AH), two antioxidant enzymes, were altered in patients with low HDL-cholesterol levels with or without primary hypertriglyceridemia in comparison with control normolipemic subjects. METHODS We studied 24 patients with low HDL-cholesterol levels with (n=12) or without (n=12) primary hypertriglyceridemia in comparison with 12 control subjects who presented normal HDL-cholesterol and triglyceride levels. Paraoxon and phenylacetate were used as substrate for measuring PON1 activities and 1-hexadecyl-2-[3H]acetyl-glycero-3-phosphocholine for platelet-activating factor acetylhydrolase (PAF-AH) activity. Double substrate method was used to assign phenotypes. Lipid, lipoprotein, apolipoprotein, and lipoprotein particles were determined by standardized methods. RESULTS Both PON1 activities were significantly reduced in patients with low HDL-cholesterol levels. This reduction could be selectively attributed to the hypertriglyceridemic subgroup. PAF-AH activity was not different between hypoalphalipoproteinemic patients and controls. PON1 activities correlated positively and significantly with HDL-cholesterol, HDL2-cholesterol, HDL3-cholesterol, HDL-phospholipids, apo A-I, apo A-II, and LpA-I:A-II. PAF-AH correlated positively and significantly with total and low density lipoprotein-cholesterol. CONCLUSIONS Data from this study would suggest that in hypoalphalipoproteinemic syndrome, particularly when associated with hypertriglyceridemia, there is impairment in enzymatic antioxidant activity exclusively related with HDL.
Collapse
Affiliation(s)
- Fernando Daniel Brites
- Laboratorio de Lípidos y Lipoproteínas, Departamento de Bioquímica Clínica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.
| | | | | | | | | | | |
Collapse
|
35
|
Khovidhunkit W, Kim MS, Memon RA, Shigenaga JK, Moser AH, Feingold KR, Grunfeld C. Effects of infection and inflammation on lipid and lipoprotein metabolism: mechanisms and consequences to the host. J Lipid Res 2004; 45:1169-96. [PMID: 15102878 DOI: 10.1194/jlr.r300019-jlr200] [Citation(s) in RCA: 1070] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Infection and inflammation induce the acute-phase response (APR), leading to multiple alterations in lipid and lipoprotein metabolism. Plasma triglyceride levels increase from increased VLDL secretion as a result of adipose tissue lipolysis, increased de novo hepatic fatty acid synthesis, and suppression of fatty acid oxidation. With more severe infection, VLDL clearance decreases secondary to decreased lipoprotein lipase and apolipoprotein E in VLDL. In rodents, hypercholesterolemia occurs attributable to increased hepatic cholesterol synthesis and decreased LDL clearance, conversion of cholesterol to bile acids, and secretion of cholesterol into the bile. Marked alterations in proteins important in HDL metabolism lead to decreased reverse cholesterol transport and increased cholesterol delivery to immune cells. Oxidation of LDL and VLDL increases, whereas HDL becomes a proinflammatory molecule. Lipoproteins become enriched in ceramide, glucosylceramide, and sphingomyelin, enhancing uptake by macrophages. Thus, many of the changes in lipoproteins are proatherogenic. The molecular mechanisms underlying the decrease in many of the proteins during the APR involve coordinated decreases in several nuclear hormone receptors, including peroxisome proliferator-activated receptor, liver X receptor, farnesoid X receptor, and retinoid X receptor. APR-induced alterations initially protect the host from the harmful effects of bacteria, viruses, and parasites. However, if prolonged, these changes in the structure and function of lipoproteins will contribute to atherogenesis.
Collapse
Affiliation(s)
- Weerapan Khovidhunkit
- Division of Endocrinology and Metabolism, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | | | | | | | | | | | | |
Collapse
|
36
|
Eisaf M, Tselepis AD. Effect of hypolipidemic drugs on lipoprotein-associated platelet activating factor acetylhydrolase. Implication for atherosclerosis. Biochem Pharmacol 2004; 66:2069-73. [PMID: 14609731 DOI: 10.1016/s0006-2952(03)00559-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Human plasma platelet activating factor acetylhydrolase (PAF-AH) is an enzyme associated mainly with the apolipoprotein B (apoB)-containing lipoproteins and primarily with low-density lipoprotein (LDL). A small proportion of enzyme activity is also associated with high-density lipoprotein (HDL). PAF-AH activity is essential for the metabolism of PAF and oxidized phospholipids, i.e. bioactive lipids that are involved in the pathophysiology of atherosclerosis. Thus, PAF-AH may play a significant role in atherogenesis. Accumulating data indicate that PAF-AH associated with HDL particles plays a predominantly antiatherogenic role. By contrast, the role of LDL-associated PAF-AH remains controversial. Dyslipidemia induces a significant increase in total plasma PAF-AH activity and alters the enzyme distribution between proatherogenic apoB- and antiatherogenic apo AI-containing lipoproteins by increasing the PAF-AH activity associated with apoB-containing lipoproteins. The decreased rate of LDL removal from the circulation and the abnormal catabolism of triglyceride-rich lipoproteins play important roles in these abnormalities. Atorvastatin or fenofibrate therapy can restore, at least partially, the dyslipidemia-induced alterations in plasma PAF-AH by increasing the ratio of HDL-PAF-AH to plasma PAF-AH (or to LDL-cholesterol) levels, which may represent an important antiatherogenic effect of these hypolipidemic drugs.
Collapse
Affiliation(s)
- Moses Eisaf
- Department of Internal Medicine, University of Ioannina, 45110 Ioannina, Greece
| | | |
Collapse
|
37
|
Tselepis AD, John Chapman M. Inflammation, bioactive lipids and atherosclerosis: potential roles of a lipoprotein-associated phospholipase A2, platelet activating factor-acetylhydrolase. ATHEROSCLEROSIS SUPP 2002; 3:57-68. [PMID: 12573364 DOI: 10.1016/s1567-5688(02)00045-4] [Citation(s) in RCA: 214] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
It is well established that inflammation is an integral feature of atherosclerosis and of the cardiovascular diseases which it underlies. Oxidative stress is also recognized as a key actor in atherogenesis, in which it is closely associated with the inflammatory response and bioactive lipid formation. Several bioactive lipids have been identified in the atherosclerotic plaque, including the potent inflammatory mediator platelet activating factor (PAF), PAF-like lipids, oxidised phospholipids (oxPL) and lysophosphatidylcholine (lyso-PC). Recent evidence has established a central role of two phospholipases (PL) in atherogenesis, the non-pancreatic Type II secretory phospholipase A(2) (sPLA(2)) and the lipoprotein-associated PLA(2)-alternatively termed as PAF-acetylhydrolase (PAF-AH). sPLA(2) is calcium-dependent and hydrolyses the sn-2 acyl group of glycerophospholipids of lipoproteins and cell membranes to produce lyso-PC and free fatty acids. It is also implicated in isoprostane production from oxPL. sPLA(2) is an acute phase reactant, which is upregulated by inflammatory cytokines and may represent a new independent risk factor for coronary heart disease. In contrast to sPLA(2), PAF-AH is calcium-independent and is specific for short acyl groups at the sn-2 position of the phospholipid substrate and with the exception of PAF, can equally hydrolyze oxPL to generate lyso-PC and oxidized fatty acids. Thus PAF-AH plays a key role in the degradation of proinflammatory oxPL and in the generation of lyso-PC and oxidized fatty acids. PAF-AH equally can also hydrolyze short-chain diacylglycerols, triacylglycerols, and acetylated alkanols, and displays a PLA(1) activity. Whereas sPLA(2) may represent a new independent risk factor for coronary artery disease, the potential relevance of PAF-AH to atherosclerosis remains the subject of debate, and recent results suggest that the potential role of the LDL-associated PAF-AH in atherogenesis may be distinct to that of the HDL-associated enzyme. This review is focused on the main structural and catalytic features of plasma PAF-AH, on the association of the enzyme with distinct lipoprotein particle subspecies, on its cellular sources, and finally on the potential significance of this lipoprotein-associated PLA(2) in cardiovascular disease.
Collapse
|
38
|
Tsimihodimos V, Karabina SAP, Tambaki AP, Bairaktari E, Miltiadous G, Goudevenos JA, Cariolou MA, Chapman MJ, Tselepis AD, Elisaf M. Altered distribution of platelet-activating factor-acetylhydrolase activity between LDL and HDL as a function of the severity of hypercholesterolemia. J Lipid Res 2002. [DOI: 10.1016/s0022-2275(20)30167-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
39
|
Abstract
Fibric acid derivatives are a class of hypolipidaemic drugs used in the treatment of patients with hypertriglyceridaemia, mixed hyperlipidaemia and diabetic dyslipidaemia. Fibrate therapy results in a significant decrease in serum triglycerides and an increase in high-density lipoprotein (HDL) cholesterol levels. The latest drugs of this class are also effective in lowering low-density (LDL) cholesterol levels and can change the distribution of LDL towards higher and larger particles. The effects of fibrates on lipid metabolism are mostly mediated through the activation of peroxisome proliferator-activated receptors (PPARalpha). A number of angiographic and clinical trials have confirmed that fibrates can slow the progression of atherosclerotic disease and decrease cardiovascular morbidity and mortality. Recently published data suggest that the ability of fibrates to prevent atherosclerosis is not related only to their hypolipidaemic effects but also to other 'pleiotropic effects', such as their anti-inflammatory, antioxidant and antithrombotic effects, as well as their ability to improve endothelial function. Interestingly, fibrates may favourably influence the thrombotic/fibrinolytic system. In fact, most of these drugs can significantly decrease plasma fibrinogen levels and inhibit tissue factor expression and activity in human monocytes and macrophages. Some studies have shown that fibrates can improve carbohydrate metabolism in patients with dyslipidaemia, including diabetic patients. Among fibrates only fenofibrate can significantly decrease serum uric acid levels by increasing renal urate excretion. Fibrates, with the possible exception of gemfibrozil, can significantly increase serum creatinine and homocysteine levels. Finally, a reduction in serum alkaline phosphatase and gamma glutamyltranspeptidase (gammaGT) activity is a well-documented effect of therapy with fibrates. The fibrates are generally well-tolerated drugs with few side-effects. The most important side-effect is myositis, which is observed in patients with impaired renal function or when statins are given concomitantly.
Collapse
Affiliation(s)
- Moses Elisaf
- Department of Internal Medicine, Medical School, University of Ioannina, Greece
| |
Collapse
|
40
|
Milionis HJ, Elisaf MS, Karabina SA, Bairaktari E, Tselepis AD, Siamopoulos KC. Plasma and Lp(a)-associated PAF-acetylhydrolase activity in uremic patients undergoing different dialysis procedures. Kidney Int 1999; 56:2276-85. [PMID: 10594806 DOI: 10.1046/j.1523-1755.1999.00788.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
UNLABELLED Plasma and Lp(a)-associated PAF-acetylhydrolase activity in uremic patients undergoing different dialysis procedures. BACKGROUND Platelet-activating factor (PAF) is a potent inflammatory mediator associated with several physiopathological conditions, including renal diseases. PAF is degraded to the inactive metabolite lyso-PAF by PAF-acetylhydrolase (PAF-AH), which is considered as a potent anti-inflammatory and anti-atherogenic enzyme associated with lipoproteins. In this study, we evaluated the plasma- and lipoprotein(a) [Lp(a)]-associated PAF-AH activity in relationship to plasma lipid parameters and Lp(a) isoform size in patients with mild/moderate chronic renal failure (CRF), as well as in hemodialysis (HD) and chronic ambulatory peritoneal dialysis (CAPD) patients. METHODS We studied 74 patients undergoing maintenance HD, 44 patients undergoing CAPD, 56 patients with mild/moderate CRF, and 98 healthy subjects whose lipid profile, as well as plasma and high-density lipoprotein (HDL)-associated PAF-AH activity, was determined. Moreover, the effect of Lp(a) plasma levels on the distribution of PAF-AH among plasma lipoproteins, as well as the specific activity and kinetic properties of PAF-AH on two different Lp(a) isoforms, was measured in each studied group. RESULTS The plasma PAF-AH activity in all studied groups was significantly higher than in controls, and the increase was more profound in CAPD patients. The HDL-associated PAF-AH activity, expressed per milliliter of plasma, was similar among all studied groups; however, when it was expressed as either per milligrams of HDL cholesterol or per milligrams of plasma apolipoprotein (apo) AI, the PAF-AH activity was significantly higher in all patient groups compared with controls. All patient groups had significantly elevated plasma Lp(a) levels, which altered the distribution of PAF-AH among the plasma lipoproteins compared with that observed in subjects with very low plasma Lp(a) levels (<8 mg/dl). Additionally, in each studied group, the specific activity as well as the apparent Km and Vmax values of the 19K4 apo(a) isoform were significantly higher (P < 0.01) compared with the values of the 23K4 isoform. However, the specific activity, as well as the Km and Vmax values on either the 19K4 apo(a) isoform or the 23K4 isoform, was significantly higher in CAPD patients compared with the other three groups. CONCLUSIONS Plasma PAF-AH activity is increased in uremic patients. This elevation is more profound in CAPD patients, who also exhibit a more atherogenic lipid profile and more pronounced alterations in the specific activity and the kinetic constants of Lp(a)-associated PAF-AH.
Collapse
Affiliation(s)
- H J Milionis
- Department of Internal Medicine, Medical School, and Laboratory of Biochemistry, University of Ioannina, Greece
| | | | | | | | | | | |
Collapse
|
41
|
Peplow PV. Regulation of platelet-activating factor (PAF) activity in human diseases by phospholipase A2 inhibitors, PAF acetylhydrolases, PAF receptor antagonists and free radical scavengers. Prostaglandins Leukot Essent Fatty Acids 1999; 61:65-82. [PMID: 10509861 DOI: 10.1054/plef.1999.0038] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The aim of this review is to present recent findings indicating the likely involvement of platelet-activating factor (PAF) in human diseases, and possible ways of alleviating its harmful effects. PAF is a potent proinflammatory mediator and promotes adhesive interactions between leukocytes and endothelial cells, leading to transendothelial migration of leukocytes, by a process of juxtacrine intercellular signalling. This process leads to activation of leukocytes and the release of reactive oxygen radicals, lipid mediators, cytokines and enzymes. These reaction products subsequently contribute to the pathological features of various inflammatory diseases. The reactive oxygen radicals cause low density lipoprotein (LDL) oxidation which mediates the development of atherosclerosis. Oxidized LDL may damage cellular and subcellular membranes, leading to tissue injury and cell death. Among the therapeutic approaches considered are agents that inhibit/degrade proinflammatory mediators and thereby have anti-inflammatory and/or anti-atherogenic potential. These include inhibitors of phospholipase A2 activity, PAF-acetylhydrolases, PAF antagonists and free radical scavengers/antioxidants, the latter protecting against oxidized LDL-induced cytotoxicity.
Collapse
Affiliation(s)
- P V Peplow
- Department of Anatomy and Structural Biology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
42
|
Schnitzer E, Pinchuk I, Fainaru M, Lichtenberg D, Yedgar S. LDL-associated phospholipase A does not protect LDL against lipid peroxidation in vitro. Free Radic Biol Med 1998; 24:1294-303. [PMID: 9626586 DOI: 10.1016/s0891-5849(97)00454-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The irreversible proteinase inhibitor Pefabloc (4-[2-aminoethyl] benzenesulfonyl fluoride) inactivates LDL-catalyzed hydrolysis of the short-chain fluorescent phospholipid C6-NBD-PC (1-acyl-2-(N-4-nitrobenzo-2-oxa-1,3-diazole)-aminocaproyl phosphatidylcholine). The dose-dependence of this inactivation is similar to that obtained previously for the inhibitory effect of Pefabloc on the hydrolysis of platelet activating factor (PAF) by the LDL-associated PAF acetylhydrolase (PAF-AH), in agreement with the notion that the hydrolysis of C6-NBD-PC and PAF is catalyzed by the same enzyme (LDL-associated phospholipase A; LDL-PLA). This conclusion is also supported by the finding that hydrolysis of C6-NBD-PC by LDL becomes inactivated by LDL oxidation only at late stages of the oxidation, similar to the effect of oxidation on the hydrolysis of PAF by the LDL-associated PAF-AH. Under conditions of complete inactivation of this enzyme towards C6-NBD-PC, the kinetics of lipid peroxidation, induced either by copper ions or by the free radical generator AAPH at varying doses of the prooxidant, was similar to that observed when the PLA was active (i.e., in the absence of Pefabloc). Hence, LDL-associated PLA (PAF-AH) does not protect LDL lipids from peroxidation. Similar results were obtained with fractionated LDL in albumin-containing buffer and for non-fractionated serum, in which copper-induced peroxidation was also not influenced by inactivation of the enzyme responsible for hydrolysis of C6-NBD-PC. Phospholipolysis of short chain phospholipids by LDL-PLA may still play a protective role against the toxic effects of oxidized phospholipids by reducing their internalization into cells (Schmitt et al. 1995).
Collapse
Affiliation(s)
- E Schnitzer
- Department of Physiology, Tel-Aviv University, Sackler Faculty of Medicine, Israel
| | | | | | | | | |
Collapse
|