1
|
Sreenivasan CC, Liu R, Gao R, Guo Y, Hause BM, Thomas M, Naveed A, Clement T, Rausch D, Christopher-Hennings J, Nelson E, Druce J, Zhao M, Kaushik RS, Li Q, Sheng Z, Wang D, Li F. Influenza C and D Viruses Demonstrated a Differential Respiratory Tissue Tropism in a Comparative Pathogenesis Study in Guinea Pigs. J Virol 2023; 97:e0035623. [PMID: 37199648 PMCID: PMC10308911 DOI: 10.1128/jvi.00356-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/26/2023] [Indexed: 05/19/2023] Open
Abstract
Influenza C virus (ICV) is increasingly associated with community-acquired pneumonia (CAP) in children and its disease severity is worse than the influenza B virus, but similar to influenza A virus associated CAP. Despite the ubiquitous infection landscape of ICV in humans, little is known about its replication and pathobiology in animals. The goal of this study was to understand the replication kinetics, tissue tropism, and pathogenesis of human ICV (huICV) in comparison to the swine influenza D virus (swIDV) in guinea pigs. Intranasal inoculation of both viruses did not cause clinical signs, however, the infected animals shed virus in nasal washes. The huICV replicated in the nasal turbinates, soft palate, and trachea but not in the lungs while swIDV replicated in all four tissues. A comparative analysis of tropism and pathogenesis of these two related seven-segmented influenza viruses revealed that swIDV-infected animals exhibited broad tissue tropism with an increased rate of shedding on 3, 5, and 7 dpi and high viral loads in the lungs compared to huICV. Seroconversion occurred late in the huICV group at 14 dpi, while swIDV-infected animals seroconverted at 7 dpi. Guinea pigs infected with huICV exhibited mild to moderate inflammatory changes in the epithelium of the soft palate and trachea, along with mucosal damage and multifocal alveolitis in the lungs. In summary, the replication kinetics and pathobiological characteristics of ICV in guinea pigs agree with the clinical manifestation of ICV infection in humans, and hence guinea pigs could be used to study these distantly related influenza viruses. IMPORTANCE Similar to influenza A and B, ICV infections are seen associated with bacterial and viral co-infections which complicates the assessment of its real clinical significance. Further, the antivirals against influenza A and B viruses are ineffective against ICV which mandates the need to study the pathobiological aspects of this virus. Here we demonstrated that the respiratory tract of guinea pigs possesses specific viral receptors for ICV. We also compared the replication kinetics and pathogenesis of huICV and swIDV, as these viruses share 50% sequence identity. The tissue tropism and pathology associated with huICV in guinea pigs are analogous to the mild respiratory disease caused by ICV in humans, thereby demonstrating the suitability of guinea pigs to study ICV. Our comparative analysis revealed that huICV and swIDV replicated differentially in the guinea pigs suggesting that the type-specific genetic differences can result in the disparity of the viral shedding and tissue tropism.
Collapse
Affiliation(s)
- Chithra C. Sreenivasan
- Department of Veterinary Science, M. H. Gluck Equine Research Center, University of Kentucky, Lexington, Kentucky, USA
| | - Runxia Liu
- Department of Biology and Microbiology, South Dakota State University, Brookings, South Dakota, USA
| | - Rongyuan Gao
- Department of Biology and Microbiology, South Dakota State University, Brookings, South Dakota, USA
| | - Yicheng Guo
- Zuckerman Mind Brian Behavior Institute, Columbia University, New York, New York, USA
| | - Ben M. Hause
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, South Dakota, USA
| | - Milton Thomas
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, South Dakota, USA
| | - Ahsan Naveed
- Department of Veterinary Science, M. H. Gluck Equine Research Center, University of Kentucky, Lexington, Kentucky, USA
| | - Travis Clement
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, South Dakota, USA
| | - Dana Rausch
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, South Dakota, USA
| | - Jane Christopher-Hennings
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, South Dakota, USA
| | - Eric Nelson
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, South Dakota, USA
| | - Julian Druce
- Virology Section, Victorian Infectious Diseases Reference Laboratory, Melbourne, Victoria, Australia
| | - Miaoyun Zhao
- Nebraska Center for Virology, University of Nebraska—Lincoln, Lincoln, Nebraska, USA
- School of Biological Sciences, University of Nebraska—Lincoln, Lincoln, Nebraska, USA
| | - Radhey S. Kaushik
- Department of Biology and Microbiology, South Dakota State University, Brookings, South Dakota, USA
| | - Qingsheng Li
- Nebraska Center for Virology, University of Nebraska—Lincoln, Lincoln, Nebraska, USA
- School of Biological Sciences, University of Nebraska—Lincoln, Lincoln, Nebraska, USA
| | - Zizhang Sheng
- Zuckerman Mind Brian Behavior Institute, Columbia University, New York, New York, USA
| | - Dan Wang
- Department of Veterinary Science, M. H. Gluck Equine Research Center, University of Kentucky, Lexington, Kentucky, USA
| | - Feng Li
- Department of Veterinary Science, M. H. Gluck Equine Research Center, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
2
|
Transmission and pathogenicity of canine H3N2 influenza virus in dog and guinea pig models. Virol J 2022; 19:162. [PMID: 36224594 PMCID: PMC9559841 DOI: 10.1186/s12985-022-01888-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/17/2022] [Accepted: 09/26/2022] [Indexed: 12/05/2022] Open
Abstract
Background Influenza A virus causes respiratory disease in many animal species as well as in humans. Due to the high human-animal interface, the monitoring of canine influenza in dogs and the study of the transmission and pathogenicity of canine influenza in animals are important. Methods Eight-week-old beagle dogs (Canis lupus familaris) (n = 13) were used for the intraspecies transmission model. The dogs were inoculated intranasally with 1 ml of 106 EID50 per ml of canine H3N2 influenza virus (A/canine/Thailand/CU-DC5299/2012) (CIV-H3N2). In addition, 4-week-old guinea pigs (Cavia porcellus) (n = 20) were used for the interspecies transmission model. The guinea pigs were inoculated intranasally with 300 µl of 106 EID50 per ml of CIV-H3N2. Results For the Thai CIV-H3N2 challenged in the dog model, the incoculated and direct contact dogs developed respiratory signs at 2 dpi. The dogs shed the virus in the respiratory tract at 1 dpi and developed an H3-specific antibody against the virus at 10 dpi. Lung congestion and histopathological changes in the lung were observed. For the Thai CIV-H3N2 challenge in the guinea pig model, the incoculated, direct contact and aerosol-exposed guinea pigs developed fever at 1–2 dpi. The guinea pigs shed virus in the respiratory tract at 2 dpi and developed an H3-specific antibody against the virus at 7 dpi. Mild histopathological changes in the lung were observed. Conclusion The result of this study demonstrated evidence of intraspecies and interspecies transmission of CIV-H3N2 in a mammalian model.
Collapse
|
3
|
Pomorska-Mól M, Dors A, Kwit K, Czyżewska-Dors E, Pejsak Z. Coinfection modulates inflammatory responses, clinical outcome and pathogen load of H1N1 swine influenza virus and Haemophilus parasuis infections in pigs. BMC Vet Res 2017; 13:376. [PMID: 29202835 PMCID: PMC5716233 DOI: 10.1186/s12917-017-1298-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 11/23/2017] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Respiratory co-infections are important factor affecting the profitability of pigs production. Swine influenza virus (SIV) may predispose to secondary infection. Haemophilus parasuis (Hps) can be a primary pathogen or be associated with other pathogens such as SIV. To date, little is known about the effect of coinfection with SIV and Hps on the disease severity and inflammatory response and the role of Hps in the induction of pneumonia in the absence of other respiratory pathogens. In the study we investigated the influence of SIV and Hps coinfection on clinical course, inflammatory response, pathogens shedding and load at various time points following intranasal inoculation. The correlation between local concentration of cytokines and severity of disease as well as serum acute phase proteins (APP) concentration has been also studied. RESULTS All co-infected pigs had fever, while in single inoculated pigs fever was observed only in part of animals. Necropsy revealed lesions in the lungs all SIV-inoculated and co-inoculated pigs, while in Hps-single inoculated animals only 1 out of 11 pigs revealed gross lung lesions. The SIV shedding was the highest in co-inoculated pigs. There were no differences between Hps-single inoculated and co-inoculated groups with regard to Hps shedding. The significant increase in Hps titre in the lung has been found only in co-inoculated group. All APP increased after co-infection. In single-inoculated animals various kinetics of APP response has been observed. The lung concentrations of cytokines were induced mostly in SIV + Hps pigs in the apical and middle lobe. These results correlated well with localization of gross lung lesions. CONCLUSIONS The results revealed that SIV increased the severity of lung lesions and facilitated Hps (PIWetHps192/2015) replication in the porcine lung. Furthermore, Hps influenced the SIV nasal shedding. Enhanced Hps and SIV replication, together with stronger systemic and local inflammatory response contributed to a more severe clinical signs and stronger, earlier immune response in co-inoculated animals. We confirmed the previous evidence that single-Hps infection does not produce significant pneumonic lesions but it should be in mind that other strains of Hps may produce lesions different from that reported in the present study.
Collapse
Affiliation(s)
- Małgorzata Pomorska-Mól
- Department of Swine Diseases, National Veterinary Research Institute, Partyzantów 57, 24-100, Pulawy, Poland.
| | - Arkadiusz Dors
- Department of Swine Diseases, National Veterinary Research Institute, Partyzantów 57, 24-100, Pulawy, Poland
| | - Krzysztof Kwit
- Department of Swine Diseases, National Veterinary Research Institute, Partyzantów 57, 24-100, Pulawy, Poland
| | - Ewelina Czyżewska-Dors
- Department of Swine Diseases, National Veterinary Research Institute, Partyzantów 57, 24-100, Pulawy, Poland
| | - Zygmunt Pejsak
- Department of Swine Diseases, National Veterinary Research Institute, Partyzantów 57, 24-100, Pulawy, Poland
| |
Collapse
|
4
|
Replication and Transmission of the Novel Bovine Influenza D Virus in a Guinea Pig Model. J Virol 2015; 89:11990-2001. [PMID: 26378161 DOI: 10.1128/jvi.01630-15] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 09/11/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Influenza D virus (FLUDV) is a novel influenza virus that infects cattle and swine. The goal of this study was to investigate the replication and transmission of bovine FLUDV in guinea pigs. Following direct intranasal inoculation of animals, the virus was detected in nasal washes of infected animals during the first 7 days postinfection. High viral titers were obtained from nasal turbinates and lung tissues of directly inoculated animals. Further, bovine FLUDV was able to transmit from the infected guinea pigs to sentinel animals by means of contact and not by aerosol dissemination under the experimental conditions tested in this study. Despite exhibiting no clinical signs, infected guinea pigs developed seroconversion and the viral antigen was detected in lungs of animals by immunohistochemistry. The observation that bovine FLUDV replicated in the respiratory tract of guinea pigs was similar to observations described previously in studies of gnotobiotic calves and pigs experimentally infected with bovine FLUDV but different from those described previously in experimental infections in ferrets and swine with a swine FLUDV, which supported virus replication only in the upper respiratory tract and not in the lower respiratory tract, including lung. Our study established that guinea pigs could be used as an animal model for studying this newly emerging influenza virus. IMPORTANCE Influenza D virus (FLUDV) is a novel emerging pathogen with bovine as its primary host. The epidemiology and pathogenicity of the virus are not yet known. FLUDV also spreads to swine, and the presence of FLUDV-specific antibodies in humans could indicate that there is a potential for zoonosis. Our results showed that bovine FLUDV replicated in the nasal turbinate and lungs of guinea pigs at high titers and was also able to transmit from an infected animal to sentinel animals by contact. The fact that bovine FLUDV replicated productively in both the upper and lower respiratory tracts of guinea pigs, similarly to virus infection in its native host, demonstrates that guinea pigs would be a suitable model host to study the replication and transmission potential of bovine FLUDV.
Collapse
|
5
|
Animal models for influenza virus transmission studies: a historical perspective. Curr Opin Virol 2015; 13:101-8. [PMID: 26126082 DOI: 10.1016/j.coviro.2015.06.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 06/10/2015] [Indexed: 01/09/2023]
Abstract
Animal models are used to simulate, under experimental conditions, the complex interactions among host, virus, and environment that affect the person-to-person spread of influenza viruses. The three species that have been most frequently employed, both past and present, as influenza virus transmission models-ferrets, mice, and guinea pigs-have each provided unique insights into the factors governing the efficiency with which these viruses pass from an infected host to a susceptible one. This review will highlight a few of these noteworthy discoveries, with a particular focus on the historical contexts in which each model was developed and the advantages and disadvantages of each species with regard to the study of influenza virus transmission among mammals.
Collapse
|
6
|
Abstract
The ability of an influenza virus to transmit efficiently from human-to-human is a major factor in determining the epidemiological impact of that strain. The use of a relevant animal model to identify viral determinants of transmission, as well as host and environmental factors affecting transmission efficiency, is therefore critical for public health. The characterization of newly emerging influenza viruses in terms of their potential to transmit in a mammalian host is furthermore an important part of pandemic risk assessment. For these reasons, a guinea pig model of influenza virus transmission was developed in 2006. The guinea pig provides an important alternative to preexisting models for influenza. Most influenza viruses do not readily transmit among mice. Ferrets, while highly relevant, are expensive and can be difficult to obtain in high numbers. Moreover, it is generally accepted that efforts to accurately model human disease are strengthened by the use of multiple animal species. Herein, we provide an overview of influenza virus infectivity, growth, and transmission in the guinea pig and highlight knowledge gained on the topic of influenza virus transmission using the guinea pig model.
Collapse
Affiliation(s)
- Anice C Lowen
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | | | | |
Collapse
|
7
|
Wiersma LCM, Vogelzang-van Trierum SE, van Amerongen G, van Run P, Nieuwkoop NJ, Ladwig M, Banneke S, Schaefer H, Kuiken T, Fouchier RAM, Osterhaus ADME, Rimmelzwaan GF. Pathogenesis of infection with 2009 pandemic H1N1 influenza virus in isogenic guinea pigs after intranasal or intratracheal inoculation. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 185:643-50. [PMID: 25555619 DOI: 10.1016/j.ajpath.2014.11.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 10/28/2014] [Accepted: 11/06/2014] [Indexed: 01/08/2023]
Abstract
To elucidate the pathogenesis and transmission of influenza virus, the ferret model is typically used. To investigate protective immune responses, the use of inbred mouse strains has proven invaluable. Here, we describe a study with isogenic guinea pigs, which would uniquely combine the advantages of the mouse and ferret models for influenza virus infection. Strain 2 isogenic guinea pigs were inoculated with H1N1pdm09 influenza virus A/Netherlands/602/09 by the intranasal or intratracheal route. Viral replication kinetics were assessed by determining virus titers in nasal swabs and respiratory tissues, which were also used to assess histopathologic changes and the number of infected cells. In all guinea pigs, virus titers peaked in nasal secretions at day 2 after inoculation. Intranasal inoculation resulted in higher virus excretion via the nose and higher virus titers in the nasal turbinates than intratracheal inoculation. After intranasal inoculation, infectious virus was recovered only from nasal epithelium; after intratracheal inoculation, it was recovered also from trachea, lung, and cerebrum. Histopathologic changes corresponded with virus antigen distribution, being largely limited to nasal epithelium for intranasally infected guinea pigs and more widespread in the respiratory tract for intratracheally infected guinea pigs. In summary, isogenic guinea pigs show promise as a model to investigate the role of humoral and cell-mediated immunities to influenza and their effect on virus transmission.
Collapse
Affiliation(s)
| | | | - Geert van Amerongen
- Viroscience Laboratory, Erasmus Medical Centre, Rotterdam, the Netherlands; Viroclinics Biosciences BV, Rotterdam, the Netherlands
| | - Peter van Run
- Viroscience Laboratory, Erasmus Medical Centre, Rotterdam, the Netherlands
| | - Nella J Nieuwkoop
- Viroscience Laboratory, Erasmus Medical Centre, Rotterdam, the Netherlands
| | - Mechtild Ladwig
- Department of Experimental Toxicology and Centre for Documentation and Evaluation of Alternatives to Animal Experiments, the Federal Institute for Risk Assessment, Berlin, Germany
| | - Stefanie Banneke
- Department of Experimental Toxicology and Centre for Documentation and Evaluation of Alternatives to Animal Experiments, the Federal Institute for Risk Assessment, Berlin, Germany
| | - Hubert Schaefer
- Experimental Immunology, the Robert Koch Institute, Berlin, Germany
| | - Thijs Kuiken
- Viroscience Laboratory, Erasmus Medical Centre, Rotterdam, the Netherlands
| | - Ron A M Fouchier
- Viroscience Laboratory, Erasmus Medical Centre, Rotterdam, the Netherlands
| | - Albert D M E Osterhaus
- Viroscience Laboratory, Erasmus Medical Centre, Rotterdam, the Netherlands; Viroclinics Biosciences BV, Rotterdam, the Netherlands
| | - Guus F Rimmelzwaan
- Viroscience Laboratory, Erasmus Medical Centre, Rotterdam, the Netherlands; Viroclinics Biosciences BV, Rotterdam, the Netherlands.
| |
Collapse
|
8
|
Jiao P, Wei L, Song Y, Cui J, Song H, Cao L, Yuan R, Luo K, Liao M. D701N mutation in the PB2 protein contributes to the pathogenicity of H5N1 avian influenza viruses but not transmissibility in guinea pigs. Front Microbiol 2014; 5:642. [PMID: 25505461 PMCID: PMC4243574 DOI: 10.3389/fmicb.2014.00642] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 11/06/2014] [Indexed: 11/23/2022] Open
Abstract
H5N1 highly pathogenic avian influenza virus (HPAIV) of clade 2.3.2 has been circulating in waterfowl in Southern China since 2003. Our previous studies showed that certain H5N1 HPAIV isolates within clade 2.3.2 from Southern China had high pathogenicity in different birds. Guinea pigs have been successfully used as models to evaluate the transmissibility of AIVs and other species of influenza viruses in mammalian hosts. However, few studies have reported pathogenicity and transmissibility of H5N1 HPAIVs of this clade in guinea pigs. In this study, we selected an H5N1 HPAIV isolate, A/duck/Guangdong/357/2008, to investigate the pathogenicity and transmissibility of the virus in guinea pigs. The virus had high pathogenicity in mice; additionally, it only replicated in some tissues of the guinea pigs without production of clinical signs, but was transmissible among guinea pigs. Interestingly, virus isolates from co-caged guinea pigs had the D701N mutation in the PB2 protein. These mutant viruses showed higher pathogenicity in mice and higher replication capability in guinea pigs but did not demonstrate enhanced the transmissibility among guinea pigs. These findings indicate the transmission of the H5N1 virus between mammals could induce virus mutations, and the mutant viruses might have higher pathogenicity in mammals without higher transmissibility. Therefore, the continued evaluation of the pathogenicity and transmissibility of avian influenza virus (AIVs) in mammals is critical to the understanding of the evolutionary characteristics of AIVs and the emergence of potential pandemic strains.
Collapse
Affiliation(s)
- Peirong Jiao
- College of Veterinary Medicine, South China Agricultural University Guangzhou, China
| | - Liangmeng Wei
- College of Veterinary Medicine, South China Agricultural University Guangzhou, China ; College of Animal Science and Veterinary Medicine, Shandong Agricultural University Shandong, China
| | - Yafen Song
- College of Veterinary Medicine, South China Agricultural University Guangzhou, China
| | - Jin Cui
- College of Veterinary Medicine, South China Agricultural University Guangzhou, China
| | - Hui Song
- College of Veterinary Medicine, South China Agricultural University Guangzhou, China
| | - Lan Cao
- College of Veterinary Medicine, South China Agricultural University Guangzhou, China
| | - Runyu Yuan
- College of Veterinary Medicine, South China Agricultural University Guangzhou, China
| | - Kaijian Luo
- College of Veterinary Medicine, South China Agricultural University Guangzhou, China
| | - Ming Liao
- College of Veterinary Medicine, South China Agricultural University Guangzhou, China
| |
Collapse
|
9
|
Lyoo KS, Kim JK, Kang B, Moon H, Kim J, Song M, Park B, Kim SH, Webster RG, Song D. Comparative analysis of virulence of a novel, avian-origin H3N2 canine influenza virus in various host species. Virus Res 2014; 195:135-40. [PMID: 25218482 DOI: 10.1016/j.virusres.2014.08.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 07/31/2014] [Accepted: 08/27/2014] [Indexed: 01/31/2023]
Abstract
A novel avian-origin H3N2 canine influenza A virus (CIV) that showed high sequence similarities in hemagglutinin and neuraminidase genes with those of non-pathogenic avian influenza viruses was isolated in our routine surveillance program in South Korea. We previously reported that the pathogenicity of this strain could be reproduced in dogs and cats. In the present study, the host tropism of H3N2 CIV was examined by experimental inoculation into several host species, including chickens, pigs, mice, guinea pigs, and ferrets. The CIV infection resulted in no overt symptoms of disease in these host species. However, sero-conversion, virus shedding, and gross and histopathologic lung lesions were observed in guinea pig and ferrets but not in pigs, or mice. Based on the genetic similarity of our H3N2 CIV with currently circulating avian influenza viruses and the presence of α-2,3-linked rather than α-2,6-linked sialic acid receptors in the respiratory tract of dogs, we believed that this strain of CIV would have avian virus-like receptor specificity, but that seems to be contrary to our findings in the present study. Further studies are needed to determine the co-receptors of hemagglutinin or post-attachment factors related to virus internalization or pathogenesis in other animals.
Collapse
Affiliation(s)
- Kwang-Soo Lyoo
- Korea Zoonosis Research Institute, Chonbuk National University, Jeonju, Jeonbuk 561-756, Republic of Korea
| | - Jeong-Ki Kim
- Department of Pharmacy, College of Pharmacy, Korea University, Sejong 339-700, Republic of Korea
| | - Bokyu Kang
- Research Unit, Green Cross Veterinary Products, Yongin, Gyeonggi 446-569, Republic of Korea
| | - Hyoungjoon Moon
- Research Unit, Green Cross Veterinary Products, Yongin, Gyeonggi 446-569, Republic of Korea
| | - Jongman Kim
- Research Unit, Green Cross Veterinary Products, Yongin, Gyeonggi 446-569, Republic of Korea
| | - Manki Song
- International Vaccine Institute, Seoul 151-919, Republic of Korea
| | - Bongkyun Park
- Department of Veterinary Medicine Virology Laboratory, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Republic of Korea
| | - Sang-Hyun Kim
- Viral Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea
| | | | - Daesub Song
- Viral Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea; University of Science and Technology, Daejeon 305-806, Republic of Korea.
| |
Collapse
|
10
|
Thangavel RR, Bouvier NM. Animal models for influenza virus pathogenesis, transmission, and immunology. J Immunol Methods 2014; 410:60-79. [PMID: 24709389 PMCID: PMC4163064 DOI: 10.1016/j.jim.2014.03.023] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 03/22/2014] [Accepted: 03/24/2014] [Indexed: 12/24/2022]
Abstract
In humans, infection with an influenza A or B virus manifests typically as an acute and self-limited upper respiratory tract illness characterized by fever, cough, sore throat, and malaise. However, influenza can present along a broad spectrum of disease, ranging from sub-clinical or even asymptomatic infection to a severe primary viral pneumonia requiring advanced medical supportive care. Disease severity depends upon the virulence of the influenza virus strain and the immune competence and previous influenza exposures of the patient. Animal models are used in influenza research not only to elucidate the viral and host factors that affect influenza disease outcomes in and spread among susceptible hosts, but also to evaluate interventions designed to prevent or reduce influenza morbidity and mortality in man. This review will focus on the three animal models currently used most frequently in influenza virus research - mice, ferrets, and guinea pigs - and discuss the advantages and disadvantages of each.
Collapse
Affiliation(s)
- Rajagowthamee R Thangavel
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Nicole M Bouvier
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA.
| |
Collapse
|
11
|
Pomorska-Mól M, Markowska-Daniel I, Kwit K, Stępniewska K, Pejsak Z. C-reactive protein, haptoglobin, serum amyloid A and pig major acute phase protein response in pigs simultaneously infected with H1N1 swine influenza virus and Pasteurella multocida. BMC Vet Res 2013; 9:14. [PMID: 23332090 PMCID: PMC3554491 DOI: 10.1186/1746-6148-9-14] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 01/16/2013] [Indexed: 11/29/2022] Open
Abstract
Background Swine influenza (SI) is an acute respiratory disease caused by swine influenza virus (SIV). Swine influenza is generally characterized by acute onset of fever and respiratory symptoms. The most frequent complications of influenza are secondary bacterial pneumonia. The objective of this work was to study the acute phase proteins (APP) responses after coinfection of piglets with H1N1 swine influenza virus (SwH1N1) and Pasteurella multocida (Pm) in order to identify whether the individual APP response correlate with disease severity and whether APP could be used as markers of the health status of coinfected pigs. Results In all coinfected pigs clinical sings, including fever, coughing and dyspnea, were seen. Viral shedding was observed from 2 to 7 dpi. The mean level of antibodies against Pm dermonecrotoxin in infected piglets increase significantly from 7 dpi. Anti-SwH1N1 antibodies in the serum were detected from 7 dpi. The concentration of C-reactive protein (CRP) increased significantly at 1 dpi as compared to control pigs, and remained significantly higher to 3 dpi. Level of serum amyloid A (SAA) was significantly higher from 2 to 3 dpi. Haptoglobin (Hp) was significantly elevated from 3 dpi to the end of study, while pig major acute phase protein (Pig-MAP) from 3 to 7 dpi. The concentrations of CRP, Hp and SAA significantly increased before specific antibodies were detected. Positive correlations were found between serum concentration of Hp and SAA and lung scores, and between clinical score and concentrations of Pig-MAP and SAA. Conclusions The results of current study confirmed that monitoring of APP may revealed ongoing infection, and in this way may be useful in selecting clinically healthy pigs (i.e. before integration into an uninfected herd). Present results corroborated our previous findings that SAA could be a potentially useful indicator in experimental infection studies (e.g. vaccine efficiency investigations) or as a marker for disease severity, because of correlation observed between its concentration in serum and disease severity (lung scores, clinical scores).
Collapse
Affiliation(s)
- Małgorzata Pomorska-Mól
- Department of Swine Diseases, National Veterinary Research Institute, Partyzantów 57, Pulawy 24-100, Poland.
| | | | | | | | | |
Collapse
|
12
|
Luke CJ, Subbarao K. The Role of Animal Models In Influenza Vaccine Research. INFLUENZA VACCINES FOR THE FUTURE 2011. [PMCID: PMC7123018 DOI: 10.1007/978-3-0346-0279-2_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A major challenge for research on influenza vaccines is the selection of an appropriate animal model that accurately reflects the disease and the protective immune response to influenza infection in humans. Vaccines for seasonal influenza have been available for decades and there is a wealth of data available on the immune response to these vaccines in humans, with well-established correlates of protection for inactivated influenza virus vaccines. Many of the seminal studies on vaccines for epidemic influenza have been conducted in human subjects. Studies in humans are performed less frequently now than they were in the past. Therefore, as the quest for improved influenza vaccines continues, it is important to consider the use of animal models for the evaluation of influenza vaccines, and a major challenge is the selection of an appropriate animal model that accurately reflects the disease and the protective immune response to influenza infection in humans. The emergence of highly pathogenic H5N1 avian influenza (AI) viruses and the threat of a pandemic caused by AI viruses of this or another subtype has resulted in a resurgence of interest in influenza vaccine research. The development of vaccines for pandemic influenza presents a unique set of obstacles, not the least of which is that the demonstration of efficacy in humans is not possible. As the correlates of protection from pandemic influenza are not known, we rely on extrapolation of the lessons from seasonal influenza vaccines and on data from the evaluation of pandemic influenza vaccines in animal models to guide our decisions on vaccines for use in humans. The features and contributions of commonly used animal models for influenza vaccine research are discussed. The recent emergence of the pandemic 2009 H1N1 influenza virus underscores the unpredictable nature of influenza viruses and the importance of pandemic preparedness.
Collapse
|
13
|
Influenza A virus transmission: contributing factors and clinical implications. Expert Rev Mol Med 2010; 12:e39. [PMID: 21144091 DOI: 10.1017/s1462399410001705] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Efficient human-to-human transmission is a necessary property for the generation of a pandemic influenza virus. To date, only influenza A viruses within the H1-H3 subtypes have achieved this capacity. However, sporadic cases of severe disease in individuals following infection with avian influenza A viruses over the past decade, and the emergence of a pandemic H1N1 swine-origin virus in 2009, underscore the need to better understand how influenza viruses acquire the ability to transmit efficiently. In this review, we discuss the biological constraints and molecular features known to affect virus transmissibility to and among humans. Factors influencing the behaviour of aerosols in the environment are described, and the mammalian models used to study virus transmission are presented. Recent progress in understanding the molecular determinants that confer efficient transmission has identified crucial roles for the haemagglutinin and polymerase proteins; nevertheless, influenza virus transmission remains a polygenic trait that is not completely understood. The clinical implications of this research, including methods currently under investigation to mitigate influenza virus human-to-human transmission, are discussed. A better understanding of the viral determinants necessary for efficient transmission will allow us to identify avian influenza viruses with pandemic potential.
Collapse
|
14
|
Loving CL, Brockmeier SL, Vincent AL, Palmer MV, Sacco RE, Nicholson TL. Influenza virus coinfection with Bordetella bronchiseptica enhances bacterial colonization and host responses exacerbating pulmonary lesions. Microb Pathog 2010; 49:237-45. [DOI: 10.1016/j.micpath.2010.06.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Revised: 05/25/2010] [Accepted: 06/07/2010] [Indexed: 02/06/2023]
|
15
|
Bushnell RV, Tobin JK, Long J, Schultz-Cherry S, Chaudhuri AR, Nara PL, Tobin GJ. Serological characterization of guinea pigs infected with H3N2 human influenza or immunized with hemagglutinin protein. Virol J 2010; 7:200. [PMID: 20735849 PMCID: PMC2939558 DOI: 10.1186/1743-422x-7-200] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Accepted: 08/24/2010] [Indexed: 11/11/2022] Open
Abstract
Background Recent and previous studies have shown that guinea pigs can be infected with, and transmit, human influenza viruses. Therefore guinea pig may be a useful animal model for better understanding influenza infection and assessing vaccine strategies. To more fully characterize the model, antibody responses following either infection/re-infection with human influenza A/Wyoming/03/2003 H3N2 or immunization with its homologous recombinant hemagglutinin (HA) protein were studied. Results Serological samples were collected and tested for anti-HA immunoglobulin by ELISA, antiviral antibodies by hemagglutination inhibition (HI), and recognition of linear epitopes by peptide scanning (PepScan). Animals inoculated with infectious virus demonstrated pronounced viral replication and subsequent serological conversion. Animals either immunized with the homologous HA antigen or infected, showed a relatively rapid rise in antibody titers to the HA glycoprotein in ELISA assays. Antiviral antibodies, measured by HI assay, were detectable after the second inoculation. PepScan data identified both previously recognized and newly defined linear epitopes. Conclusions Infection and/or recombinant HA immunization of guinea pigs with H3N2 Wyoming influenza virus resulted in a relatively rapid production of viral-specific antibody thus demonstrating the strong immunogenicity of the major viral structural proteins in this animal model for influenza infection. The sensitivity of the immune response supports the utility of the guinea pig as a useful animal model of influenza infection and immunization.
Collapse
|
16
|
Abstract
Influenza virus infection of humans results in a respiratory disease that ranges in severity from sub-clinical infection to primary viral pneumonia that can result in death. The clinical effects of infection vary with the exposure history, age and immune status of the host, and also the virulence of the influenza strain. In humans, the virus is transmitted through either aerosol or contact-based transfer of infectious respiratory secretions. As is evidenced by most zoonotic influenza virus infections, not all strains that can infect humans are able to transmit from person-to-person. Animal models of influenza are essential to research efforts aimed at understanding the viral and host factors that contribute to the disease and transmission outcomes of influenza virus infection in humans. These models furthermore allow the pre-clinical testing of antiviral drugs and vaccines aimed at reducing morbidity and mortality in the population through amelioration of the virulence or transmissibility of influenza viruses. Mice, ferrets, guinea pigs, cotton rats, hamsters and macaques have all been used to study influenza viruses and therapeutics targeting them. Each model presents unique advantages and disadvantages, which will be discussed herein.
Collapse
|
17
|
Bodewes R, Rimmelzwaan GF, Osterhaus ADME. Animal models for the preclinical evaluation of candidate influenza vaccines. Expert Rev Vaccines 2010; 9:59-72. [PMID: 20021306 DOI: 10.1586/erv.09.148] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
At present, new influenza A (H1N1)2009 viruses of swine origin are responsible for the first influenza pandemic of the 21st Century. In addition, highly pathogenic avian influenza A/H5N1 viruses continue to cause outbreaks in poultry and, after zoonotic transmission, cause an ever-increasing number of human cases, of which 59% have a fatal clinical outcome. It is also feared that these viruses adapt to replication in humans and become transmissible from human to human. The development of effective vaccines against epidemic and (potentially) pandemic viruses is therefore considered a priority. In this review, we discuss animal models that are used for the preclinical evaluation of novel candidate influenza vaccines. In most cases, a tier of multiple animal models is used before the evaluation of vaccine candidates in clinical trials is considered. Commonly, vaccines are tested for safety and efficacy in mice, ferrets and/or macaques. The use of each of these species has its advantages and limitations, which are addressed here.
Collapse
Affiliation(s)
- Rogier Bodewes
- Department of Virology, Erasmus Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.
| | | | | |
Collapse
|
18
|
Pittet LA, Hall-Stoodley L, Rutkowski MR, Harmsen AG. Influenza virus infection decreases tracheal mucociliary velocity and clearance of Streptococcus pneumoniae. Am J Respir Cell Mol Biol 2009; 42:450-60. [PMID: 19520922 DOI: 10.1165/rcmb.2007-0417oc] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Influenza virus infections increase susceptibility to secondary bacterial infections, such as pneumococcal pneumonia, resulting in increased morbidity and mortality. Influenza-induced tissue damage is hypothesized to increase susceptibility to Streptococcus pneumoniae infection by increasing adherence to the respiratory epithelium. Using a mouse model of influenza infection followed by S. pneumoniae infection, we found that an influenza infection does not increase the number of pneumococci initially present within the trachea, but does inhibit pneumococcal clearance by 2 hours after infection. To determine whether influenza damage increases pneumococcal adherence, we developed a novel murine tracheal explant system to determine influenza-induced tissue damage and subsequent pneumococcal adherence. Murine tracheas were kept viable ex vivo as shown by microscopic examination of ciliary beating and cellular morphology using continuous media flow for up to 8 days. Tracheas were infected with influenza virus for 0.5-5 days ex vivo, and influenza-induced tissue damage and the early stages of repair to the epithelium were assessed histologically. A prior influenza infection did not increase pneumococcal adherence, even when the basement membrane was maximally denuded or during the repopulation of the basement membrane with undifferentiated epithelial cells. We measured mucociliary clearance in vivo and found it was decreased in influenza-infected mice. Together, our results indicate that exposure of the tracheal basement membrane contributes minimally to pneumococcal adherence. Instead, an influenza infection results in decreased tracheal mucociliary velocity and initial clearance of pneumococci, leading to an increased pneumococcal burden as early as 2 hours after pneumococcal infection.
Collapse
Affiliation(s)
- Lynnelle A Pittet
- The Pulmonary Center, Boston University School of Medicine, 715 Albany Street, Boston, MA 02118, USA.
| | | | | | | |
Collapse
|
19
|
Kwon YK, Lipatov AS, Swayne DE. Bronchointerstitial pneumonia in guinea pigs following inoculation with H5N1 high pathogenicity avian influenza virus. Vet Pathol 2009; 46:138-41. [PMID: 19112127 DOI: 10.1354/vp.46-1-138] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The H5N1 high-pathogenicity avian influenza (HPAI) viruses have caused widespread disease of poultry in Asia, Africa and the Middle East, and sporadic human infections. The guinea pig model has been used to study human H3N2 and H1N1 influenza viruses, but knowledge is lacking on H5N1 HPAI virus infections. Guinea pigs were inoculated intranasally or intragastrically with A/Vietnam/1203/04 (VN/04) or A/Muscovy duck/Vietnam/209/05 (MDk/VN/05) viruses. Mild listlessness was seen at 2 and 3 days postinoculation (DPI) in guinea pigs inoculated intranasally with VN/04 virus. At 5 DPI, the guinea pigs had bronchointerstitial pneumonia and virus was identified in bronchiolar epithelium and alveolar macrophages. Virus was isolated from the lungs but was lacking from other organs. Minimal lung lesions were seen in intranasal MDk/VN/06 group and virus was not detected, but serologic evidence of infection was observed. Intragastric exposure failed to produce infection or lesions with either virus. The localized respiratory disease in guinea pigs with H5N1 viruses was very similar to that of H3N2 and H1N1 influenza in humans and was less severe than reported for H5N1 human cases.
Collapse
Affiliation(s)
- Y K Kwon
- Southeast Poultry Research Laboratory, Agricultural Research Service, United States Department of Agriculture, Athens, Georgia 30605, USA
| | | | | |
Collapse
|
20
|
Tang X, Chong KT. Histopathology and growth kinetics of influenza viruses (H1N1 and H3N2) in the upper and lower airways of guinea pigs. J Gen Virol 2009; 90:386-391. [PMID: 19141447 DOI: 10.1099/vir.0.007054-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Recent investigations have shown that guinea pigs are important for the study of influenza A virus (IAV) transmission. However, very little is known about IAV replication and histopathology in the guinea pig respiratory tract. Here, we describe viral growth kinetics, target cells and histopathology in the nasosinus, trachea and lungs of IAV-infected guinea pigs. We found that guinea pigs infected with either A/Puerto Rico/8/34 (H1N1) or A/Hong Kong/8/68 (H3N2) developed a predominantly upper airway infection with high nasal viral titres. IAV grew to moderate titres in the lungs but induced marked inflammatory responses, resulting in severe bronchopneumonia and alveolitis. Although non-lethal at the high dose of 2x10(6) p.f.u., infections with these IAV strains were associated with reduced weight gain. IAV infection in guinea pigs is characterized by extensive viral replication in the ciliated nasal epithelial cells followed by heavy nasal mucus secretion.
Collapse
Affiliation(s)
- Xuehui Tang
- Department of Otolaryngology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Kong T Chong
- Department of Microbiology, University of Mississippi Medical Center, Jackson, MS 39216, USA.,Department of Otolaryngology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| |
Collapse
|
21
|
Lowen AC, Mubareka S, Tumpey TM, García-Sastre A, Palese P. The guinea pig as a transmission model for human influenza viruses. Proc Natl Acad Sci U S A 2006; 103:9988-92. [PMID: 16785447 PMCID: PMC1502566 DOI: 10.1073/pnas.0604157103] [Citation(s) in RCA: 270] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The severity of epidemic and pandemic influenza outbreaks is dictated in part by the efficiency with which the causative strain transmits between human hosts. The mechanisms underlying influenza virus spread are poorly understood, in part because of the lack of a convenient animal model to study this phenomenon. Indeed, despite extremely efficient transmission among humans and virulence in the mouse model, we have shown that even the 1918 pandemic influenza virus does not transmit between mice. We therefore evaluated the guinea pig as a model mammalian host for influenza virus. Using the recent human isolate A/Panama/2007/99 (Pan/99) (H3N2) virus, we found that guinea pigs were highly susceptible to infection with the unadapted virus (ID(50) = 5 plaque-forming units). Pan/99 virus grew to high titers in the upper respiratory tract and was shed in nasal washings of infected animals. Moreover, influenza virus was transmitted from infected guinea pigs to noninfected guinea pigs housed in the same cage, an adjacent cage, and a cage placed 91 cm away. Our results demonstrate that influenza virus can pass between guinea pigs by means of droplet spread and thereby establish the suitability of the guinea pig as a model host for influenza virus transmission studies.
Collapse
Affiliation(s)
- Anice C. Lowen
- *Department of Microbiology, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1124, New York, NY 10029; and
| | - Samira Mubareka
- *Department of Microbiology, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1124, New York, NY 10029; and
| | - Terrence M. Tumpey
- Influenza Branch, Centers for Disease Control and Prevention, 1600 Clifton Road, Mail Stop G-16, Atlanta, GA 30333
| | - Adolfo García-Sastre
- *Department of Microbiology, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1124, New York, NY 10029; and
| | - Peter Palese
- *Department of Microbiology, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1124, New York, NY 10029; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
22
|
Look DC, Walter MJ, Williamson MR, Pang L, You Y, Sreshta JN, Johnson JE, Zander DS, Brody SL. Effects of paramyxoviral infection on airway epithelial cell Foxj1 expression, ciliogenesis, and mucociliary function. THE AMERICAN JOURNAL OF PATHOLOGY 2001; 159:2055-69. [PMID: 11733356 PMCID: PMC1850590 DOI: 10.1016/s0002-9440(10)63057-x] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
To elucidate molecular mechanisms underlying the association between respiratory viral infection and predisposition to subsequent bacterial infection, we used in vivo and in vitro models and human samples to characterize respiratory virus-induced changes in airway epithelial cell morphology, gene expression, and mucociliary function. Mouse paramyxoviral bronchitis resulted in airway epithelial cell infection and a distinct pattern of epithelial cell morphology changes and altered expression of the differentiation markers beta-tubulin-IV, Clara cell secretory protein, and Foxj1. Furthermore, changes in gene expression were recapitulated using an in vitro epithelial cell culture system and progressed independent of the host inflammatory response. Restoration of mature airway epithelium occurred in a pattern similar to epithelial cell differentiation and ciliogenesis in embryonic lung development characterized by sequential proliferation of undifferentiated cells, basal body production, Foxj1 expression, and beta-tubulin-IV expression. The effects of virus-induced alterations in morphology and gene expression on epithelial cell function were illustrated by decreased airway mucociliary velocity and impaired bacterial clearance. Similar changes in epithelial cell Foxj1 expression were also observed in human paramyxoviral respiratory infection. Taken together, these model systems of paramyxoviral respiratory infection mimic human pathology and identify epithelial cell Foxj1 expression as an early marker of epithelial cell differentiation, recovery, and function.
Collapse
Affiliation(s)
- D C Look
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Suzuki S, Suzuki Y, Yamamoto N, Matsumoto Y, Shirai A, Okubo T. Influenza A virus infection increases IgE production and airway responsiveness in aerosolized antigen-exposed mice. J Allergy Clin Immunol 1998; 102:732-40. [PMID: 9819289 PMCID: PMC7112289 DOI: 10.1016/s0091-6749(98)70012-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Respiratory viral infection is known clinically to promote sensitization to antigen inhalation and the development of asthma. OBJECTIVE The purpose of this investigation was to determine whether influenza type A virus infection enhances inhalation sensitization and increases airway responsiveness in mice. METHODS Mice were infected by intranasal inoculation with influenza A viruses (strains: H1N1 and H3N2) or PBS. Animals were exposed to aerosols of ovalbumin on day 3. Two weeks after ovalbumin sensitization, mice were challenged with ovalbumin aerosols; 24 hours later, airway responsiveness (AR) to inhaled methacholine, levels of ovalbumin-specific IgE, and bronchoalveolar lavage fluid (BALF) were examined. RESULTS Neither influenza A virus (H1N1 nor H3N2) alone nor ovalbumin sensitization alone caused changes in AR or IgE. However, ovalbumin sensitization after inoculation with either influenza A virus increased AR and levels of ovalbumin-specific IgE. On BALF-cell analysis, ovalbumin sensitization after inoculation with influenza virus A increased the number of lymphocytes but not the number of eosinophils. No difference in AR or IgE levels was observed between the 2 strains of influenza A viruses. Immmunostaining of BALF cells showed an increase in T cells, especially CD8(+) cells, with ovalbumin sensitization after inoculation with influenza virus A. CONCLUSION Infection by influenza A virus enhances sensitization to inhaled antigens and airway responsiveness in mice by means of mechanisms including CD8(+) cells and antigen-specific IgE.
Collapse
Affiliation(s)
- S Suzuki
- First Department of Internal Medicine, Yokohama City University School of Medicine, Fukuura, Kanazawa-ky, Yokohama 236, Japan
| | | | | | | | | | | |
Collapse
|
24
|
Nahori MA, Etievant M, Terzidis-Trabelsi H, David B, Lambre CR. Binding of serum autoantibodies to sialidase-treated tracheal epithelial cells. Determination of autoantibodies isotypes in normal and influenza virus infected guinea pig sera. Immunol Lett 1994; 42:67-73. [PMID: 7829132 DOI: 10.1016/0165-2478(94)90037-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Cultured epithelial cells isolated from guinea pig trachea were treated with Vibrio cholerae sialidase. The treatment was not cytotoxic and resulted in membrane desialylation as assessed by measurement of sialic acids released, along with an increased fixation of the galactose-specific lectin peanut agglutinin. After incubation in serum from normal guinea pigs, membrane-bound immunoglobulins were detected using peroxidase-labelled antibodies. Sialidase-treated cells bound significantly more IgM than controls (P < 0.0005), whereas binding of IgG was not significantly different between treated and untreated cells (0.1 < P < 0.375); IgA were never detected. In influenza-infected guinea-pigs, as assessed by reactivity with peanut agglutinin, the tracheal and lung epithelium, as well as alveolar cells were hyposialylated. In these animals, the level of serum IgG autoantibodies capable to bind sialidase treated cultured cells increased, while the level of IgM autoantibodies did not change. These autoantibodies may participate in cellular dysfunctions and modified bronchoreactivity that occur during infection of the respiratory tract by sialidase-producing microorganisms, either through activation of the complement system, or subsequently to their reaction with cells expressing membrane complement and/or Fc receptors.
Collapse
Affiliation(s)
- M A Nahori
- Unité de Pharmacologie Cellulaire I.P.-INSERM U 285, Institut Pasteur, Paris, France
| | | | | | | | | |
Collapse
|