1
|
O’Connor TW, Hick PM, Finlaison DS, Kirkland PD, Toribio JAL. Revisiting the Importance of Orthobunyaviruses for Animal Health: A Scoping Review of Livestock Disease, Diagnostic Tests, and Surveillance Strategies for the Simbu Serogroup. Viruses 2024; 16:294. [PMID: 38400069 PMCID: PMC10892073 DOI: 10.3390/v16020294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/07/2024] [Accepted: 02/11/2024] [Indexed: 02/25/2024] Open
Abstract
Orthobunyaviruses (order Bunyavirales, family Peribunyaviridae) in the Simbu serogroup have been responsible for widespread epidemics of congenital disease in ruminants. Australia has a national program to monitor arboviruses of veterinary importance. While monitoring for Akabane virus, a novel orthobunyavirus was detected. To inform the priority that should be given to this detection, a scoping review was undertaken to (1) characterise the associated disease presentations and establish which of the Simbu group viruses are of veterinary importance; (2) examine the diagnostic assays that have undergone development and validation for this group of viruses; and (3) describe the methods used to monitor the distribution of these viruses. Two search strategies identified 224 peer-reviewed publications for 33 viruses in the serogroup. Viruses in this group may cause severe animal health impacts, but only those phylogenetically arranged in clade B are associated with animal disease. Six viruses (Akabane, Schmallenberg, Aino, Shuni, Peaton, and Shamonda) were associated with congenital malformations, neurological signs, and reproductive disease. Diagnostic test interpretation is complicated by cross-reactivity, the timing of foetal immunocompetence, and sample type. Serological testing in surveys remains a mainstay of the methods used to monitor the distribution of SGVs. Given significant differences in survey designs, only broad mean seroprevalence estimates could be provided. Further research is required to determine the disease risk posed by novel orthobunyaviruses and how they could challenge current diagnostic and surveillance capabilities.
Collapse
Affiliation(s)
- Tiffany W. O’Connor
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camden, NSW 2570, Australia;
- Virology Laboratory, Elizabeth Macarthur Agricultural Institute, NSW Department of Primary Industries, Menangle, NSW 2568, Australia; (P.M.H.); (D.S.F.); (P.D.K.)
| | - Paul M. Hick
- Virology Laboratory, Elizabeth Macarthur Agricultural Institute, NSW Department of Primary Industries, Menangle, NSW 2568, Australia; (P.M.H.); (D.S.F.); (P.D.K.)
| | - Deborah S. Finlaison
- Virology Laboratory, Elizabeth Macarthur Agricultural Institute, NSW Department of Primary Industries, Menangle, NSW 2568, Australia; (P.M.H.); (D.S.F.); (P.D.K.)
| | - Peter D. Kirkland
- Virology Laboratory, Elizabeth Macarthur Agricultural Institute, NSW Department of Primary Industries, Menangle, NSW 2568, Australia; (P.M.H.); (D.S.F.); (P.D.K.)
| | - Jenny-Ann L.M.L. Toribio
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camden, NSW 2570, Australia;
| |
Collapse
|
2
|
Kimura K, Yanase T, Kato T. Histopathological, Immunohistochemical and In-Situ Hybridization Findings in Suckling Rats Experimentally Infected With Akabane Genogroups Ⅰ and Ⅱ, Aino and Peaton Viruses. J Comp Pathol 2021; 187:27-39. [PMID: 34503652 DOI: 10.1016/j.jcpa.2021.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/20/2021] [Accepted: 06/18/2021] [Indexed: 11/29/2022]
Abstract
Akabane, Aino and Peaton viruses are closely related arthropod-borne viruses in the genus Orthobunyavirus of the family Peribunyaviridae that can cause congenital abnormalities in cattle, sheep and goats. East Asian Akabane virus strains are subdivided into genogroups Ⅰ and Ⅱ, and the former can also cause non-suppurative encephalomyelitis in post-natal animals. Specific detection of the infecting virus in tissues is essential for accurate diagnosis. Immunohistochemistry (IHC) has been used to identify viral antigen but cannot always detect specific viruses due to potential cross-reactivity of the primary antisera. We compared in-situ hybridization (ISH), based on the use of cocktail probe sets targeted at the RNA of each virus, with IHC for the detection of the specific viruses in tissues of suckling rats inoculated intracerebrally with Akabane (KM-1 or OBE-1 strains), Aino or Peaton viruses at 3 or 7 days of age. Most inoculated rats developed severe neurological signs and histopathological brain lesions including necrosis, spongy degeneration and non-suppurative inflammation. A rabbit polyclonal antiserum immunolabelled antigen of all three viruses within the lesions, whereas ISH specifically detected RNA of each individual virus. The distribution of viral RNA was comparable to that of viral antigens, but tended to be more widespread, especially in immature nervous tissue. Viral antigen and RNA were detected in skeletal muscle and heart of the rats infected with the KM-1 strain of Akabane virus but not with any of the other viruses. This study demonstrates the value of ISH detection of these viruses in a rat model and may prove useful for clarification of the pathogenesis of post-natal arbovirus infection.
Collapse
Affiliation(s)
- Kumiko Kimura
- Division of Pathology and Pathophysiology, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan.
| | - Tohru Yanase
- Kyushu Research Station, Division of Transboundary Animal Disease, National Institute of Animal Health, National Agriculture and Food Research Organization, Kagoshima, Japan
| | - Tomoko Kato
- Kyushu Research Station, Division of Transboundary Animal Disease, National Institute of Animal Health, National Agriculture and Food Research Organization, Kagoshima, Japan
| |
Collapse
|
3
|
Rhazi H, Safini N, Mikou K, Alhyane M, Lenk M, Tadlaoui KO, Elharrak M. Comparative sensitivity study of primary cells, vero, OA3.Ts and ESH-L cell lines to lumpy skin disease, sheeppox, and goatpox viruses detection and growth. J Virol Methods 2021; 293:114164. [PMID: 33864853 DOI: 10.1016/j.jviromet.2021.114164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/09/2021] [Accepted: 04/10/2021] [Indexed: 10/21/2022]
Abstract
Lumpy skin disease virus (LSDV), sheeppox virus (SPPV) and goatpox (GTPV) virus have been usually grown on primary cells for diagnosis, production and titration purposes. The use of primary cells present several inconvenient, heavy preparation, heterogeneous cell population, non-reproducible viral titration and presence of potential endogenous contaminants. Therefore investigating sensitivity of candidate continuous cell lines is needed. In this study, we compared the above Capripox viruses (CaPVs) sensitivity of primary cells of four origin (heart, skin, testis and kidney), with three cell lines (Vero, OA3.Ts and ESH-L). We tested sensitivity for virus isolation, replication cycle and titration, revealed by cytopathic effect (CPE), immunoenzymatic staining and immunofluorescence. Our results show that ESH-L cells and primary fetal heart cells present the highest sensitivity for CaPVs growth and detection. Vero cells can replicate those viruses but without showing any CPE while the titer obtained on OA3.Ts is lower than primary and ESH-L cells. ESH-L cells are an effective alternative to primary cells use for growing Capripoxviruses and their diagnosis.
Collapse
Affiliation(s)
- Halima Rhazi
- Laboratory of functional and environmental ecology, Faculty of Sciences and Technology Sidi Mohammed Ben Abdellah University, Imouzzer Road, BP 2202 Fez, Morocco; Laboratory of Research and Development virology, MCI Animal Health, Lot. 157, Zone Industrielle Sud-Ouest (ERAC) B.P: 278, 28810 Mohammedia, Morocco.
| | - Najete Safini
- Laboratory of Research and Development virology, MCI Animal Health, Lot. 157, Zone Industrielle Sud-Ouest (ERAC) B.P: 278, 28810 Mohammedia, Morocco
| | - Karima Mikou
- Laboratory of functional and environmental ecology, Faculty of Sciences and Technology Sidi Mohammed Ben Abdellah University, Imouzzer Road, BP 2202 Fez, Morocco
| | - Meryeme Alhyane
- Laboratory of Research and Development virology, MCI Animal Health, Lot. 157, Zone Industrielle Sud-Ouest (ERAC) B.P: 278, 28810 Mohammedia, Morocco
| | - Matthias Lenk
- Departement of Experimental Animal Facilities and Biorisk Management, Collection of Cell Lines in Veterinary Medicine, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, D-17493, Greifswald, Insel Riems, Germany
| | - Khalid Omari Tadlaoui
- Laboratory of Research and Development virology, MCI Animal Health, Lot. 157, Zone Industrielle Sud-Ouest (ERAC) B.P: 278, 28810 Mohammedia, Morocco
| | - Mehdi Elharrak
- Laboratory of Research and Development virology, MCI Animal Health, Lot. 157, Zone Industrielle Sud-Ouest (ERAC) B.P: 278, 28810 Mohammedia, Morocco
| |
Collapse
|
4
|
Oymans J, van Keulen L, Vermeulen GM, Wichgers Schreur PJ, Kortekaas J. Shuni Virus Replicates at the Maternal-Fetal Interface of the Ovine and Human Placenta. Pathogens 2020; 10:pathogens10010017. [PMID: 33383649 PMCID: PMC7823754 DOI: 10.3390/pathogens10010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/18/2020] [Accepted: 12/24/2020] [Indexed: 11/30/2022] Open
Abstract
Shuni virus (SHUV) is a neglected teratogenic and neurotropic orthobunyavirus that was discovered in the 1960s in Nigeria and was subsequently detected in South Africa, Zimbabwe, and Israel. The virus was isolated from field-collected biting midges and mosquitoes and shown to disseminate efficiently in laboratory-reared biting midges, suggesting that members of the families Culicidae and Ceratopogonidae may function as vectors. SHUV infections have been associated with severe neurological disease in horses, a variety of wildlife species, and domesticated ruminants. SHUV infection of ruminants is additionally associated with abortion, stillbirth, and congenital malformations. The detection of antibodies in human sera also suggests that the virus may have zoonotic potential. To understand how SHUV crosses the ruminant placenta, we here infected pregnant ewes and subsequently performed detailed clinical- and histopathological examination of placental tissue. We found that SHUV targets both maternal epithelial cells and fetal trophoblasts, that together form the maternal-fetal interface of the ovine placenta. Experiments with human placental explants, furthermore, revealed replication of SHUV in syncytiotrophoblasts, which are generally highly resistant to virus infections. Our findings provide novel insights into vertical transmission of SHUV in sheep and call for research on the potential risk of SHUV infection during human pregnancies.
Collapse
Affiliation(s)
- Judith Oymans
- Department of Virology, Wageningen Bioveterinary Research, Houtribweg 39, 8221 RA Lelystad, The Netherlands; (J.O.); (L.v.K.); (P.J.W.S.)
- Laboratory of Virology, Wageningen University & Research, P.O. Box 16, 6700 AA Wageningen, The Netherlands
| | - Lucien van Keulen
- Department of Virology, Wageningen Bioveterinary Research, Houtribweg 39, 8221 RA Lelystad, The Netherlands; (J.O.); (L.v.K.); (P.J.W.S.)
| | - Guus M. Vermeulen
- Department of Gynaecology, Isala Hospital, 8025 AB Zwolle, The Netherlands;
| | - Paul J. Wichgers Schreur
- Department of Virology, Wageningen Bioveterinary Research, Houtribweg 39, 8221 RA Lelystad, The Netherlands; (J.O.); (L.v.K.); (P.J.W.S.)
| | - Jeroen Kortekaas
- Department of Virology, Wageningen Bioveterinary Research, Houtribweg 39, 8221 RA Lelystad, The Netherlands; (J.O.); (L.v.K.); (P.J.W.S.)
- Laboratory of Virology, Wageningen University & Research, P.O. Box 16, 6700 AA Wageningen, The Netherlands
- Correspondence:
| |
Collapse
|
5
|
Schwarz ER, Oliveira LJ, Bonfante F, Pu R, Pozor MA, Maclachlan NJ, Beachboard S, Barr KL, Long MT. Experimental Infection of Mid-Gestation Pregnant Female and Intact Male Sheep with Zika Virus. Viruses 2020; 12:v12030291. [PMID: 32156037 PMCID: PMC7150993 DOI: 10.3390/v12030291] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/24/2020] [Accepted: 03/06/2020] [Indexed: 12/11/2022] Open
Abstract
Zika virus (ZIKV) is an arbovirus that causes birth defects, persistent male infection, and sexual transmission in humans. The purpose of this study was to continue the development of an ovine ZIKV infection model; thus, two experiments were undertaken. In the first experiment, we built on previous pregnant sheep experiments by developing a mid-gestation model of ZIKV infection. Four pregnant sheep were challenged with ZIKV at 57–64 days gestation; two animals served as controls. After 13–15 days (corresponding with 70–79 days of gestation), one control and two infected animals were euthanized; the remaining animals were euthanized at 20–22 days post-infection (corresponding with 77–86 days of gestation). In the second experiment, six sexually mature, intact, male sheep were challenged with ZIKV and two animals served as controls. Infected animals were serially euthanized on days 2–6 and day 9 post-infection with the goal of isolating ZIKV from the male reproductive tract. In the mid-gestation study, virus was detected in maternal placenta and spleen, and in fetal organs, including the brains, spleens/liver, and umbilicus of infected fetuses. Fetuses from infected animals had visibly misshapen heads and morphometrics revealed significantly smaller head sizes in infected fetuses when compared to controls. Placental pathology was evident in infected dams. In the male experiment, ZIKV was detected in the spleen, liver, testes/epididymides, and accessory sex glands of infected animals. Results from both experiments indicate that mid-gestation ewes can be infected with ZIKV with subsequent disruption of fetal development and that intact male sheep are susceptible to ZIKV infection and viral dissemination and replication occurs in highly vascular tissues (including those of the male reproductive tract).
Collapse
Affiliation(s)
- Erika R. Schwarz
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA; (E.R.S.); (R.P.); (S.B.)
| | - Lilian J. Oliveira
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA;
| | - Francesco Bonfante
- Laboratory of Experimental Animal Models, Division of Comparative Biomedical Sciences, Instituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, Italy;
| | - Ruiyu Pu
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA; (E.R.S.); (R.P.); (S.B.)
| | - Malgorzata A. Pozor
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA;
| | - N. James Maclachlan
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA;
| | - Sarah Beachboard
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA; (E.R.S.); (R.P.); (S.B.)
| | - Kelli L. Barr
- Department of Biology, College of Arts and Sciences, Baylor University, Waco, TX 76798, USA;
| | - Maureen T. Long
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA; (E.R.S.); (R.P.); (S.B.)
- Correspondence:
| |
Collapse
|
6
|
Collins ÁB, Doherty ML, Barrett DJ, Mee JF. Schmallenberg virus: a systematic international literature review (2011-2019) from an Irish perspective. Ir Vet J 2019; 72:9. [PMID: 31624588 PMCID: PMC6785879 DOI: 10.1186/s13620-019-0147-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 09/05/2019] [Indexed: 11/10/2022] Open
Abstract
In Autumn 2011, nonspecific clinical signs of pyrexia, diarrhoea, and drop in milk yield were observed in dairy cattle near the German town of Schmallenberg at the Dutch/German border. Targeted veterinary diagnostic investigations for classical endemic and emerging viruses could not identify a causal agent. Blood samples were collected from animals with clinical signs and subjected to metagenomic analysis; a novel orthobunyavirus was identified and named Schmallenberg virus (SBV). In late 2011/early 2012, an epidemic of abortions and congenital malformations in calves, lambs and goat kids, characterised by arthrogryposis and hydranencephaly were reported in continental Europe. Subsequently, SBV RNA was confirmed in both aborted and congenitally malformed foetuses and also in Culicoides species biting midges. It soon became evident that SBV was an arthropod-borne teratogenic virus affecting domestic ruminants. SBV rapidly achieved a pan-European distribution with most countries confirming SBV infection within a year or two of the initial emergence. The first Irish case of SBV was confirmed in the south of the country in late 2012 in a bovine foetus. Since SBV was first identified in 2011, a considerable body of scientific research has been conducted internationally describing this novel emerging virus. The aim of this systematic review is to provide a comprehensive synopsis of the most up-to-date scientific literature regarding the origin of SBV and the spread of the Schmallenberg epidemic, in addition to describing the species affected, clinical signs, pathogenesis, transmission, risk factors, impact, diagnostics, surveillance methods and control measures. This review also highlights current knowledge gaps in the scientific literature regarding SBV, most notably the requirement for further research to determine if, and to what extent, SBV circulation occurred in Europe and internationally during 2017 and 2018. Moreover, recommendations are also made regarding future arbovirus surveillance in Europe, specifically the establishment of a European-wide sentinel herd surveillance program, which incorporates bovine serology and Culicoides entomology and virology studies, at national and international level to monitor for the emergence and re-emergence of arboviruses such as SBV, bluetongue virus and other novel Culicoides-borne arboviruses.
Collapse
Affiliation(s)
- Áine B Collins
- Animal and Bioscience Research Department, Teagasc, Moorepark, Fermoy, Co, Cork, Ireland.,2School of Veterinary Medicine, University College Dublin, Dublin 4, Ireland
| | - Michael L Doherty
- 2School of Veterinary Medicine, University College Dublin, Dublin 4, Ireland
| | - Damien J Barrett
- Department of Agriculture, Surveillance, Animal By-Products and TSE Division, Food and the Marine, Backweston, Celbridge, Co. Kildare Ireland
| | - John F Mee
- Animal and Bioscience Research Department, Teagasc, Moorepark, Fermoy, Co, Cork, Ireland
| |
Collapse
|
7
|
Schwarz ER, Pozor MA, Pu R, Barr KL, Beachboard SE, MacLachlan NJ, Prakoso D, Long MT. Experimental Infection of Pregnant Female Sheep with Zika Virus During Early Gestation. Viruses 2019; 11:E795. [PMID: 31470560 PMCID: PMC6784126 DOI: 10.3390/v11090795] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 08/22/2019] [Accepted: 08/27/2019] [Indexed: 12/18/2022] Open
Abstract
Zika virus (ZIKV) is a vertically and sexually transmissible virus resulting in severe congenital malformation. The goal of this study was to develop an ovine model of ZIKV infection. Between 28-35 days gestation (DG), four pregnant animals were infected with two doses of 6 × 106 PFU of ZIKV; four control animals received PBS. Animals were evaluated for 45 days (D) post-infection (PI) and necropsies were performed. Viral RNA was detected in infected ewe peripheral blood mononuclear cells (PBMC) during the first week PI; however, all fluids and tissues were negative upon culture. Anti-ZIKV IgM (1:400) and neutralizing antibodies were detected in all infected animals. Clinical disease, virus, or ZIKV antibodies were not detected in control ewes. After two weeks PI, fetal loss occurred in two infected animals, and at necropsy, three infected animals had placental petechiation and ecchymosis and one had hydramnion. Fetal morphometrics revealed smaller cranial circumference to crown-rump length ratios (p < 0.001) and relative brain weights (p = 0.038) in fetuses of infected animals compared with control fetuses. Immunophenotyping indicated an increase in B cells (p = 0.012) in infected sheep. Additionally, in vitro experiments using both adult and fetal cell lines demonstrated that ovine cells are highly permissive to ZIKV infection. In conclusion, ZIKV infection of pregnant sheep results in a change in fetal growth and gestational outcomes.
Collapse
Affiliation(s)
- Erika R Schwarz
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Malgorzata A Pozor
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Ruiyu Pu
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Kelli L Barr
- Department of Biology, Colleges of Arts and Sciences, Baylor University, Waco, TX 76798, USA
| | - Sarah E Beachboard
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - N James MacLachlan
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Dhani Prakoso
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Maureen T Long
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
8
|
Reliable and Standardized Animal Models to Study the Pathogenesis of Bluetongue and Schmallenberg Viruses in Ruminant Natural Host Species with Special Emphasis on Placental Crossing. Viruses 2019; 11:v11080753. [PMID: 31443153 PMCID: PMC6722754 DOI: 10.3390/v11080753] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/19/2019] [Accepted: 08/13/2019] [Indexed: 01/03/2023] Open
Abstract
Starting in 2006, bluetongue virus serotype 8 (BTV8) was responsible for a major epizootic in Western and Northern Europe. The magnitude and spread of the disease were surprisingly high and the control of BTV improved significantly with the marketing of BTV8 inactivated vaccines in 2008. During late summer of 2011, a first cluster of reduced milk yield, fever, and diarrhoea was reported in the Netherlands. Congenital malformations appeared in March 2012 and Schmallenberg virus (SBV) was identified, becoming one of the very few orthobunyaviruses distributed in Europe. At the start of both epizootics, little was known about the pathogenesis and epidemiology of these viruses in the European context and most assumptions were extrapolated based on other related viruses and/or other regions of the World. Standardized and repeatable models potentially mimicking clinical signs observed in the field are required to study the pathogenesis of these infections, and to clarify their ability to cross the placental barrier. This review presents some of the latest experimental designs for infectious disease challenges with BTV or SBV. Infectious doses, routes of infection, inoculum preparation, and origin are discussed. Particular emphasis is given to the placental crossing associated with these two viruses.
Collapse
|
9
|
Abstract
In late 2011, unspecific clinical symptoms such as fever, diarrhea, and decreased milk production were observed in dairy cattle in the Dutch/German border region. After exclusion of classical endemic and emerging viruses by targeted diagnostic systems, blood samples from acutely diseased cows were subjected to metagenomics analysis. An insect-transmitted orthobunyavirus of the Simbu serogroup was identified as the causative agent and named Schmallenberg virus (SBV). It was one of the first detections of the introduction of a novel virus of veterinary importance to Europe using the new technology of next-generation sequencing. The virus was subsequently isolated from identical samples as used for metagenomics analysis in insect and mammalian cell lines and disease symptoms were reproduced in calves experimentally infected with both, this culture-grown virus and blood samples of diseased cattle. Since its emergence, SBV spread very rapidly throughout the European ruminant population causing mild unspecific disease in adult animals, but also premature birth or stillbirth and severe fetal malformation when naive dams were infected during a critical phase of gestation. In the following years, SBV recirculated regularly to a larger extend; in the 2014 and 2016 vector seasons the virus was again repeatedly detected in the blood of adult ruminants, and in the following winter and spring months, a number of malformed calves and lambs was born. The genome of viruses present in viremic adult animals showed a very high sequence stability; in sequences generated between 2012 and 2016, only a few amino acid substitutions in comparison to the initial SBV isolate could be detected. In contrast, a high sequence variability was identified in the aminoterminal part of the glycoprotein Gc-encoding region of viruses present in the brain of malformed newborns. This mutation hotspot is independent of the region or host species from which the samples originated and is potentially involved in immune evasion mechanisms.
Collapse
Affiliation(s)
- Kerstin Wernike
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany.
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| |
Collapse
|
10
|
Collins ÁB, Mee JF, Kirkland PD. Pathogenicity and teratogenicity of Schmallenberg virus and Akabane virus in experimentally infected chicken embryos. Vet Microbiol 2018. [PMID: 29519522 DOI: 10.1016/j.vetmic.2018.01.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Schmallenberg virus (SBV) and Akabane virus (AKAV) are teratogenic Simbu serogroup Orthobunyaviruses. Embryonated chicken egg models (ECE) have been used to study the pathogenicity and teratogenicity of Simbu viruses previously, however to date no such studies have been reported for SBV. Hence, the aims of this study were to investigate if ECE are susceptible to experimental SBV infection, and to evaluate the pathogenicity and teratogenicity of SBV and AKAV in ECE models. Two studies were conducted. In Study A, SBV (106.4 TCID50) was inoculated into the yolk-sac of 6-day-old and 8-day-old ECEs. In Study B, SBV and AKAV were inoculated into 7-day-old ECEs at a range of doses (102.0-106.0 TCID50). ECE were incubated at 37 °C until day 19, when they were submitted for pathological and virological examination. SBV infection in ECE at 6, 7 and 8 days of incubation resulted in stunted growth and musculoskeletal malformations (arthrogryposis, skeletal muscle atrophy, contracted toes, distorted and twisted legs). Mortality was greater in embryos inoculated with SBV (31%) compared to AKAV (19%), (P < 0.01), suggesting that SBV was more embryo-lethal. However, embryos infected with AKAV had a significantly higher prevalence of stunted growth (P < 0.05) and musculoskeletal malformations (P < 0.01), suggesting that AKAV was more teratogenic in this model. These studies demonstrate for the first time that the ECE model is a suitable in vivo small animal model to study SBV. Furthermore, these results are consistent with the clinico-pathological findings of natural SBV and AKAV infection in ruminants.
Collapse
Affiliation(s)
- Áine B Collins
- Animal and Bioscience Research Department, Teagasc, Moorepark, Fermoy, Co. Cork, Ireland; School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - John F Mee
- Animal and Bioscience Research Department, Teagasc, Moorepark, Fermoy, Co. Cork, Ireland
| | - Peter D Kirkland
- Virology Laboratory, Elizabeth MacArthur Agriculture Institute, Department of Primary Industries, NSW, Australia.
| |
Collapse
|
11
|
Akabane, Aino and Schmallenberg virus-where do we stand and what do we know about the role of domestic ruminant hosts and Culicoides vectors in virus transmission and overwintering? Curr Opin Virol 2017; 27:15-30. [PMID: 29096232 DOI: 10.1016/j.coviro.2017.10.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 09/26/2017] [Accepted: 10/11/2017] [Indexed: 11/21/2022]
Abstract
Akabane, Aino and Schmallenberg virus belong to the Simbu serogroup of Orthobunyaviruses and depend on Culicoides vectors for their spread between ruminant hosts. Infections of adults are mostly asymptomatic or associated with only mild symptoms, while transplacental crossing of these viruses to the developing fetus can have important teratogenic effects. Research mainly focused on congenital malformations has established a correlation between the developmental stage at which a fetus is infected and the outcome of an Akabane virus infection. Available data suggest that a similar correlation also applies to Schmallenberg virus infections but is not yet entirely conclusive. Experimental and field data furthermore suggest that Akabane virus is more efficient in inducing congenital malformations than Aino and Schmallenberg virus, certainly in cattle. The mechanism by which these Simbu viruses cross-pass yearly periods of very low vector abundance in temperate climate zones remains undefined. Yearly wind-borne reintroductions of infected midges from tropical endemic regions with year-round vector activity have been proposed, just as overwintering in long-lived adult midges. Experimental and field data however indicate that a role of vertical virus transmission in the ruminant host currently cannot be excluded as an overwintering mechanism. More studies on Culicoides biology and specific groups of transplacentally infected newborn ruminants without gross malformations are needed to shed light on this matter.
Collapse
|
12
|
Şevik M. Molecular and serological survey of Akabane virus infection in sheep in the Mediterranean Region of Turkey. Small Rumin Res 2017. [DOI: 10.1016/j.smallrumres.2017.07.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
13
|
Laloy E, Bréard E, Trapp S, Pozzi N, Riou M, Barc C, Breton S, Delaunay R, Cordonnier N, Chateau-Joubert S, Crochet D, Gouzil J, Hébert T, Raimbourg M, Viarouge C, Vitour D, Durand B, Ponsart C, Zientara S. Fetopathic effects of experimental Schmallenberg virus infection in pregnant goats. Vet Microbiol 2017; 211:141-149. [PMID: 29102110 DOI: 10.1016/j.vetmic.2017.10.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 10/05/2017] [Accepted: 10/06/2017] [Indexed: 10/18/2022]
Abstract
Schmallenberg virus (SBV) is an emerging virus responsible for congenital malformations in the offspring of domestic ruminants. It is speculated that infection of pregnant dams may also lead to a significant number of unrecognized fetal losses during the early period of gestation. To assess the pathogenic effects of SBV infection of goats in early pregnancy, we inoculated dams at day 28 or 42 of gestation and followed the animals until day 55 of gestation. Viremia in the absence of clinical signs was detected in all virus-inoculated goats. Fetal deaths were observed in several goats infected at day 28 or 42 of gestation and were invariably associated with the presence of viral genomic RNA in the affected fetuses. Among the viable fetuses, two displayed lesions in the central nervous system (porencephaly) in the presence of viral genome and antigen. All fetuses from goats infected at day 42 and the majority of fetuses from goats infected at day 28 of gestation contained viral genomic RNA. Viral genome was widely distributed in these fetuses and their respective placentas, and infectious virus could be isolated from several organs and placentomes of the viable fetuses. Our results show that fetuses of pregnant goats are susceptible to vertical SBV infection during early pregnancy spanning at least the period between day 28 and 42 of gestation. The outcomes of experimental SBV infection assessed at day 55 of gestation include fetal mortalities, viable fetuses displaying lesions of the central nervous system, as well as viable fetuses without any detectable lesion.
Collapse
Affiliation(s)
- Eve Laloy
- Université Paris-Est, Ecole Nationale Vétérinaire d'Alfort, Unité d'anatomie pathologique, 7 avenue du Général de Gaulle, 94704 Maisons-Alfort, France; Université Paris-Est, ANSES, Laboratoire de Santé Animale, UMR 1161 Virologie ANSES-INRA-ENVA, 14 rue Pierre et Marie Curie, 94704 Maisons-Alfort, France.
| | - Emmanuel Bréard
- Université Paris-Est, ANSES, Laboratoire de Santé Animale, UMR 1161 Virologie ANSES-INRA-ENVA, 14 rue Pierre et Marie Curie, 94704 Maisons-Alfort, France
| | - Sascha Trapp
- INRA Centre Val de Loire, UMR 1282 Infectiologie et Santé Publique, 37380 Nouzilly, France; Université François Rabelais de Tours, UMR 1282 Infectiologie et Santé Publique, 37000 Tours, France
| | - Nathalie Pozzi
- LNCR, Laboratoire national de contrôle des reproducteurs, 13, rue Jouët, 94703 Maisons-Alfort, France
| | - Mickaël Riou
- INRA Centre Val de Loire, UE-1277 Plateforme d'Infectiologie Expérimentale, secteur 3, route de Crotelles, 37380 Nouzilly, France
| | - Céline Barc
- INRA Centre Val de Loire, UE-1277 Plateforme d'Infectiologie Expérimentale, secteur 3, route de Crotelles, 37380 Nouzilly, France
| | - Sylvain Breton
- INRA Centre Val de Loire, UE-1277 Plateforme d'Infectiologie Expérimentale, secteur 3, route de Crotelles, 37380 Nouzilly, France
| | - Rémi Delaunay
- INRA Centre Val de Loire, UE-1277 Plateforme d'Infectiologie Expérimentale, secteur 3, route de Crotelles, 37380 Nouzilly, France
| | - Nathalie Cordonnier
- Université Paris-Est, Ecole Nationale Vétérinaire d'Alfort, Unité d'anatomie pathologique, 7 avenue du Général de Gaulle, 94704 Maisons-Alfort, France; Université Paris-Est, ANSES, Laboratoire de Santé Animale, UMR 1161 Virologie ANSES-INRA-ENVA, 14 rue Pierre et Marie Curie, 94704 Maisons-Alfort, France
| | - Sophie Chateau-Joubert
- Université Paris-Est, Ecole Nationale Vétérinaire d'Alfort, Unité d'anatomie pathologique, 7 avenue du Général de Gaulle, 94704 Maisons-Alfort, France
| | - Didier Crochet
- INRA Centre Val de Loire, UE-1277 Plateforme d'Infectiologie Expérimentale, secteur 3, route de Crotelles, 37380 Nouzilly, France
| | - Julie Gouzil
- Université Paris-Est, ANSES, Laboratoire de Santé Animale, UMR 1161 Virologie ANSES-INRA-ENVA, 14 rue Pierre et Marie Curie, 94704 Maisons-Alfort, France
| | - Typhaine Hébert
- Université Paris-Est, Ecole Nationale Vétérinaire d'Alfort, Unité d'anatomie pathologique, 7 avenue du Général de Gaulle, 94704 Maisons-Alfort, France
| | - Maxime Raimbourg
- LNCR, Laboratoire national de contrôle des reproducteurs, 13, rue Jouët, 94703 Maisons-Alfort, France
| | - Cyril Viarouge
- Université Paris-Est, ANSES, Laboratoire de Santé Animale, UMR 1161 Virologie ANSES-INRA-ENVA, 14 rue Pierre et Marie Curie, 94704 Maisons-Alfort, France
| | - Damien Vitour
- Université Paris-Est, ANSES, Laboratoire de Santé Animale, UMR 1161 Virologie ANSES-INRA-ENVA, 14 rue Pierre et Marie Curie, 94704 Maisons-Alfort, France
| | - Benoît Durand
- Université Paris-Est, ANSES, Laboratoire de Santé Animale, 14 rue Pierre et Marie Curie, 94700 Maisons-Alfort, France
| | - Claire Ponsart
- LNCR, Laboratoire national de contrôle des reproducteurs, 13, rue Jouët, 94703 Maisons-Alfort, France
| | - Stéphan Zientara
- Université Paris-Est, ANSES, Laboratoire de Santé Animale, UMR 1161 Virologie ANSES-INRA-ENVA, 14 rue Pierre et Marie Curie, 94704 Maisons-Alfort, France
| |
Collapse
|
14
|
Reconstruction of the Schmallenberg virus epidemic in Belgium: Complementary use of disease surveillance approaches. Vet Microbiol 2016; 183:50-61. [DOI: 10.1016/j.vetmic.2015.11.036] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 11/19/2015] [Accepted: 11/27/2015] [Indexed: 01/06/2023]
|
15
|
Martinelle L, Poskin A, Dal Pozzo F, De Regge N, Cay B, Saegerman C. Experimental Infection of Sheep at 45 and 60 Days of Gestation with Schmallenberg Virus Readily Led to Placental Colonization without Causing Congenital Malformations. PLoS One 2015; 10:e0139375. [PMID: 26418420 PMCID: PMC4587791 DOI: 10.1371/journal.pone.0139375] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 09/11/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Main impact of Schmallenberg virus (SBV) on livestock consists in reproductive disorders, with teratogenic effects, abortions and stillbirths. SBV pathogenesis and viral placental crossing remain currently poorly understood. Therefore, we implemented an experimental infection of ewes, inoculated with SBV at 45 or 60 days of gestation (dg). METHODOLOGY "Mourerous" breed ewes were randomly separated in three groups: eight and nine ewes were subcutaneously inoculated with 1 ml of SBV infectious serum at 45 and 60 dg, respectively (G45 and G60). Six other ewes were inoculated subcutaneously with sterile phosphate buffer saline as control group. All SBV inoculated ewes showed RNAemia consistent with previously published studies, they seroconverted and no clinical sign was reported. Lambs were born at term via caesarian-section, and right after birth they were blood sampled and clinically examined. Then both lambs and ewes were euthanatized and necropsied. PRINCIPAL FINDINGS/SIGNIFICANCE No lambs showed any malformation suggestive of SBV infection and none of them had RNAemia or anti-SBV antibodies prior to colostrum uptake. Positive SBV RNA detection in organs was rare in both G45 and G60 lambs (2/11 and 1/10, respectively). Nevertheless most of the lambs in G45 (9/11) and G60 (9/10) had at least one extraembryonic structure SBV positive by RTqPCR. The number of positive extraembryonic structures was significantly higher in G60 lambs. Time of inoculation (45 or 60 dg) had no impact on the placental colonization success rate but affected the frequency of detecting the virus in the offspring extraembryonic structures by the time of lambing. SBV readily colonized the placenta when ewes were infected at 45 or 60 dg but infection of the fetuses was limited and did not lead to congenital malformations.
Collapse
Affiliation(s)
- Ludovic Martinelle
- Research Unit of Epidemiology and Risk Analysis Applied to Veterinary Sciences (UREAR-ULg), Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
- * E-mail:
| | - Antoine Poskin
- Research Unit of Epidemiology and Risk Analysis Applied to Veterinary Sciences (UREAR-ULg), Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
- Operational Directorate Viral Diseases, Veterinary and Agrochemical Research Centre (CODA-CERVA), Brussels, Belgium
| | - Fabiana Dal Pozzo
- Research Unit of Epidemiology and Risk Analysis Applied to Veterinary Sciences (UREAR-ULg), Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Nick De Regge
- Operational Directorate Viral Diseases, Veterinary and Agrochemical Research Centre (CODA-CERVA), Brussels, Belgium
| | - Brigitte Cay
- Operational Directorate Viral Diseases, Veterinary and Agrochemical Research Centre (CODA-CERVA), Brussels, Belgium
| | - Claude Saegerman
- Research Unit of Epidemiology and Risk Analysis Applied to Veterinary Sciences (UREAR-ULg), Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| |
Collapse
|
16
|
Abstract
The objective of this chapter is to provide an updated and concise systematic review on taxonomy, history, arthropod vectors, vertebrate hosts, animal disease, and geographic distribution of all arboviruses known to date to cause disease in homeotherm (endotherm) vertebrates, except those affecting exclusively man. Fifty arboviruses pathogenic for animals have been documented worldwide, belonging to seven families: Togaviridae (mosquito-borne Eastern, Western, and Venezuelan equine encephalilitis viruses; Sindbis, Middelburg, Getah, and Semliki Forest viruses), Flaviviridae (mosquito-borne yellow fever, Japanese encephalitis, Murray Valley encephalitis, West Nile, Usutu, Israel turkey meningoencephalitis, Tembusu and Wesselsbron viruses; tick-borne encephalitis, louping ill, Omsk hemorrhagic fever, Kyasanur Forest disease, and Tyuleniy viruses), Bunyaviridae (tick-borne Nairobi sheep disease, Soldado, and Bhanja viruses; mosquito-borne Rift Valley fever, La Crosse, Snowshoe hare, and Cache Valley viruses; biting midges-borne Main Drain, Akabane, Aino, Shuni, and Schmallenberg viruses), Reoviridae (biting midges-borne African horse sickness, Kasba, bluetongue, epizootic hemorrhagic disease of deer, Ibaraki, equine encephalosis, Peruvian horse sickness, and Yunnan viruses), Rhabdoviridae (sandfly/mosquito-borne bovine ephemeral fever, vesicular stomatitis-Indiana, vesicular stomatitis-New Jersey, vesicular stomatitis-Alagoas, and Coccal viruses), Orthomyxoviridae (tick-borne Thogoto virus), and Asfarviridae (tick-borne African swine fever virus). They are transmitted to animals by five groups of hematophagous arthropods of the subphyllum Chelicerata (order Acarina, families Ixodidae and Argasidae-ticks) or members of the class Insecta: mosquitoes (family Culicidae); biting midges (family Ceratopogonidae); sandflies (subfamily Phlebotominae); and cimicid bugs (family Cimicidae). Arboviral diseases in endotherm animals may therefore be classified as: tick-borne (louping ill and tick-borne encephalitis, Omsk hemorrhagic fever, Kyasanur Forest disease, Tyuleniy fever, Nairobi sheep disease, Soldado fever, Bhanja fever, Thogoto fever, African swine fever), mosquito-borne (Eastern, Western, and Venezuelan equine encephalomyelitides, Highlands J disease, Getah disease, Semliki Forest disease, yellow fever, Japanese encephalitis, Murray Valley encephalitis, West Nile encephalitis, Usutu disease, Israel turkey meningoencephalitis, Tembusu disease/duck egg-drop syndrome, Wesselsbron disease, La Crosse encephalitis, Snowshoe hare encephalitis, Cache Valley disease, Main Drain disease, Rift Valley fever, Peruvian horse sickness, Yunnan disease), sandfly-borne (vesicular stomatitis-Indiana, New Jersey, and Alagoas, Cocal disease), midge-borne (Akabane disease, Aino disease, Schmallenberg disease, Shuni disease, African horse sickness, Kasba disease, bluetongue, epizootic hemorrhagic disease of deer, Ibaraki disease, equine encephalosis, bovine ephemeral fever, Kotonkan disease), and cimicid-borne (Buggy Creek disease). Animals infected with these arboviruses regularly develop a febrile disease accompanied by various nonspecific symptoms; however, additional severe syndromes may occur: neurological diseases (meningitis, encephalitis, encephalomyelitis); hemorrhagic symptoms; abortions and congenital disorders; or vesicular stomatitis. Certain arboviral diseases cause significant economic losses in domestic animals-for example, Eastern, Western and Venezuelan equine encephalitides, West Nile encephalitis, Nairobi sheep disease, Rift Valley fever, Akabane fever, Schmallenberg disease (emerged recently in Europe), African horse sickness, bluetongue, vesicular stomatitis, and African swine fever; all of these (except for Akabane and Schmallenberg diseases) are notifiable to the World Organisation for Animal Health (OIE, 2012).
Collapse
Affiliation(s)
- Zdenek Hubálek
- Medical Zoology Laboratory, Institute of Vertebrate Biology, Academy of Sciences, v.v.i., Brno, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic.
| | - Ivo Rudolf
- Medical Zoology Laboratory, Institute of Vertebrate Biology, Academy of Sciences, v.v.i., Brno, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Norbert Nowotny
- Viral Zoonoses, Emerging and Vector-Borne Infections Group, Institute of Virology, University of Veterinary Medicine, Vienna, Austria; Department of Microbiology and Immunology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| |
Collapse
|
17
|
Rodríguez-Prieto V, Kukielka D, Mouriño M, Paradell H, Plaja L, Urniza A, Sánchez-Vizcaíno JM. Natural Immunity of Sheep and Lambs Against the Schmallenberg Virus Infection. Transbound Emerg Dis 2014; 63:e220-8. [PMID: 25100663 DOI: 10.1111/tbed.12256] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Indexed: 01/23/2023]
Abstract
Since the first reports of the Schmallenberg disease (SBD) outbreaks in late 2011, the disease has spread across Europe, affecting cattle and sheep farms. While Schmallenberg virus (SBV) causes a mild clinical disease in adults, infection of pregnant females may lead to the production of typical congenital malformations (CMFs) in their offspring. It is speculated that the immunity acquired after a SBV infection is effective in preventing further infections. However, this has not been proven in naturally infected sheep, especially if they are pregnant when reinfected. The aim of this study was to monitor the natural immunity in SBV-infected sheep. Twenty-four ewes from the only Spanish farm with a SBV OIE-notified outbreak were sampled. Subsequently, nine pregnant ewes were inoculated with SBV infectious plasma under controlled conditions. Six of them were euthanized before delivery, and their fetuses were inspected for lesions indicative for the SBV infection. The three remaining ewes were allowed to deliver one lamb each. Inoculation of the lambs was scheduled at approx. 3 months after birth. All samples were analyzed for viral RNA by RT-PCR, and for antibodies by an indirect ELISA and a virus neutralization test (VNT). The majority of the 24 ewes showed a serological reaction against SBV. The three ewes that were allowed to lamb down demonstrated variable degrees of seroconversion which corresponded to the levels of immune reaction observed in their lambs. Moreover, no viral RNA was detected, no lesions were observed in the fetuses, and no clinical signs were detected in the inoculated animals. These findings suggest that the immunity acquired by sheep following a natural SBV infection could be sufficient to stop SBV reinfection. However, vaccination could be a valuable tool to control SBV infections and associated economic losses as it affords a more uniform and predictable protection at the flock/herd level.
Collapse
Affiliation(s)
- V Rodríguez-Prieto
- VISAVET Health Surveillance Centre, Complutense University of Madrid, Madrid, Spain
| | - D Kukielka
- VISAVET Health Surveillance Centre, Complutense University of Madrid, Madrid, Spain
| | - M Mouriño
- Zoetis Manufacturing & Research Spain, S.L., Olot, Girona, Spain
| | - H Paradell
- Zoetis Manufacturing & Research Spain, S.L., Olot, Girona, Spain
| | - L Plaja
- Zoetis Manufacturing & Research Spain, S.L., Olot, Girona, Spain
| | - A Urniza
- Zoetis Manufacturing & Research Spain, S.L., Olot, Girona, Spain
| | | |
Collapse
|
18
|
Ponsart C, Pozzi N, Bréard E, Catinot V, Viard G, Sailleau C, Viarouge C, Gouzil J, Beer M, Zientara S, Vitour D. Evidence of excretion of Schmallenberg virus in bull semen. Vet Res 2014; 45:37. [PMID: 24708245 PMCID: PMC3994198 DOI: 10.1186/1297-9716-45-37] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 03/10/2014] [Indexed: 12/25/2022] Open
Abstract
Schmallenberg virus (SBV) is a novel orthobunyavirus, discovered in Germany in late 2011. It mainly infects cattle, sheep and goats and could lead to congenital infection, causing abortion and fetal abnormalities. SBV is transmitted by biting midges from the Culicoides genus and there is no evidence that natural infection occurs directly between ruminants. Here, we could detect SBV RNA in infected bull semen using qRT-PCR (three bulls out of seven tested positive; 29 positive semen batches out of 136). We also found that highly positive semen batches from SBV infected bulls can provoke an acute infection in IFNAR-/- mice, suggesting the potential presence of infectious virus in the semen of SBV infected bulls.
Collapse
Affiliation(s)
- Claire Ponsart
- LNCR - Laboratoire National de Contrôle des Reproducteurs, 13 rue Jouet, 94704 Maisons-Alfort, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Schmallenberg virus-two years of experiences. Prev Vet Med 2014; 116:423-34. [PMID: 24768435 DOI: 10.1016/j.prevetmed.2014.03.021] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 03/14/2014] [Accepted: 03/23/2014] [Indexed: 10/25/2022]
Abstract
In autumn 2011, a novel species of the genus Orthobunyavirus of the Simbu serogroup was discovered close to the German/Dutch border and named Schmallenberg virus (SBV). Since then, SBV has caused a large epidemic in European livestock. Like other viruses of the Simbu serogroup, SBV is transmitted by insect vectors. Adult ruminants may show a mild transient disease, while an infection during a critical period of pregnancy can lead to severe congenital malformation, premature birth or stillbirth. The current knowledge about the virus, its diagnosis, the spread of the epidemic, the impact and the possibilities for preventing infections with SBV is described and discussed.
Collapse
|
20
|
Dynamics of Schmallenberg virus infection within a cattle herd in Germany, 2011. Epidemiol Infect 2013; 142:1501-4. [PMID: 24128891 DOI: 10.1017/s0950268813002525] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
In late 2011, the insect-transmitted Schmallenberg virus (SBV) emerged in Europe. In this study, a cattle farm located in the core region of the epidemic was closely monitored between May 2011 and January 2012. Up to the end of September every tested serum sample was negative by an SBV-specific antibody ELISA, suggesting the absence of an infection before autumn 2011. Around the end of September/beginning of October SBV genome was detected in blood samples of some animals, and a few cows exhibited fever during that period. Starting at the end of September the first cows seroconverted; the within-herd prevalence reached 100% within barely 1 month. Consequently, SBV spread rapidly in the tested herd during the vector season of 2011.
Collapse
|
21
|
Herder V, Hansmann F, Wohlsein P, Peters M, Varela M, Palmarini M, Baumgärtner W. Immunophenotyping of inflammatory cells associated with Schmallenberg virus infection of the central nervous system of ruminants. PLoS One 2013; 8:e62939. [PMID: 23667545 PMCID: PMC3646890 DOI: 10.1371/journal.pone.0062939] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 03/26/2013] [Indexed: 12/17/2022] Open
Abstract
Schmallenberg virus (SBV) is a recently discovered Bunyavirus associated mainly with abortions, stillbirths and malformations of the skeletal and central nervous system (CNS) in newborn ruminants. In this study, a detailed immunophenotyping of the inflammatory cells of the CNS of affected animals was carried out in order to increase our understanding of SBV pathogenesis. A total of 82 SBV-polymerase chain reaction (PCR) positive neonatal ruminants (46 sheep lambs, 34 calves and 2 goat kids) were investigated for the presence of inflammation in the brain and spinal cord. The study focused on 15 out of 82 animals (18.3%) showing inflammation in the CNS. All 15 neonates displayed lymphohistiocytic meningoencephalomyelitis affecting most frequently the mesencephalon and the parietal and temporal lobes. The majority of infiltrating cells were CD3-positive T cells, followed by CD79α-positive B cells and CD68-positive microglia/macrophages. Malformations like por- and hydranencephaly, frequently found in the temporal lobe, showed associated demyelination and axonal loss. SBV antigen was detected in 37 out of 82 (45.1%) neonatal brains by immunohistochemistry. In particular, SBV antigen was found in 93.3% (14 out of 15 ruminants) and 32.8% (22 out of 67 ruminants) of animals with and without encephalitis, respectively. Highest amounts of virus-protein expression levels were found in the temporal lobe. Our findings suggest that: (i) different brain regions display differential susceptibility to SBV infection; (ii) inflammatory cells in the CNS are found only in a minority of virus infected animals; (iii) malformations occur in association with and without inflammation in the CNS; and (iv) viral antigen is strongly associated with the presence of inflammation in naturally infected animals. Further studies are required to explore the cell tropism and pathogenesis of SBV infection in ruminants.
Collapse
Affiliation(s)
- Vanessa Herder
- Department of Pathology, University of Veterinary Medicine, Hannover, Lower Saxony, Germany
| | - Florian Hansmann
- Department of Pathology, University of Veterinary Medicine, Hannover, Lower Saxony, Germany
| | - Peter Wohlsein
- Department of Pathology, University of Veterinary Medicine, Hannover, Lower Saxony, Germany
| | - Martin Peters
- Staatliches Veterinäruntersuchungsamt, Arnsberg, North-Rhine Westphalia, Germany
| | - Mariana Varela
- MRC Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Massimo Palmarini
- MRC Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine, Hannover, Lower Saxony, Germany
- Center for Systems Neuroscience, Hannover, Germany
- * E-mail:
| |
Collapse
|
22
|
Bouwstra RJ, Kooi EA, de Kluijver EP, Verstraten ERAM, Bongers JH, van Maanen C, Wellenberg GJ, van der Spek AN, van der Poel WHM. Schmallenberg virus outbreak in the Netherlands: routine diagnostics and test results. Vet Microbiol 2013; 165:102-8. [PMID: 23528650 DOI: 10.1016/j.vetmic.2013.03.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Revised: 02/28/2013] [Accepted: 03/04/2013] [Indexed: 11/16/2022]
Abstract
At the end of 2011, a new Orthobunyavirus was discovered in Germany and named Schmallenberg virus (SBV). In the Netherlands malformations in new-born ruminants were made notifiable from the 20th of December 2011. After a notification, malformed new-borns were necropsied and brain tissue was sampled for reverse transcription-polymerase chain reaction (RT-PCR). In addition, blood samples from mothers of affected new-borns were tested for antibodies in a virus neutralization test (VNT). The aim of this study was to summarize and evaluate the diagnostic data obtained and to gain insight into the possible regional differences. In total 2166 brains were tested: 800 from lambs, 1301 from calves and 65 from goat kids. Furthermore 1394 blood samples were tested: 458 from ewes, 899 from cows and 37 from goats. Results showed that 29% of the lamb brains, 14% of the calf brains, and 9% of the goat kid brains were RT-PCR positive. The number of malformed and RT-PCR positive lambs decreased over time while the number of malformed and RT-PCR positive calves increased. In the VNT 92% of the ewes, 96% of the cows and 43% of the goats tested positive. Combining RT-PCR and VNT results, 18% of all farms tested positive in both the RT-PCR and VNT. The relative sensitivity and specificity of the RT-PCR are 19% and 97% respectively, and of the VNT 99% and 6%. The results show a widespread exposure to SBV and the regional evaluation seems to indicate an introduction of SBV in the central/eastern part.
Collapse
Affiliation(s)
- R J Bouwstra
- Central Veterinary Institute, Wageningen University and Research Centre (CVI-Lelystad), P.O. Box 65, 8200 AB Lelystad, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Conraths FJ, Peters M, Beer M. Schmallenberg virus, a novel orthobunyavirus infection in ruminants in Europe: potential global impact and preventive measures. N Z Vet J 2012; 61:63-7. [PMID: 23215779 DOI: 10.1080/00480169.2012.738403] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In autumn 2011, Schmallenberg virus was the first orthobunyavirus detected in Europe. The virus belongs to the Simbu serogroup. Like other orthobunyaviruses, it is apparently transmitted by arthropod vectors, primarily by biting midges (Culicoides spp.). Ruminants and new-world camelids (alpacas) are susceptible to infection. Adult animals may develop mild disease, if any. However, transplacental infection can lead to severe congenital malformations such asarthrogryposis, malformation of the vertebral column (kyphosis, lordosis, scoliosis, torticollis) and of the skull (macrocephaly, brachygnathia inferior) as well as variable malformations of the brain (hydranencephaly, porencephaly, cerebellar hypoplasia, hypoplasia of the brain stem) and of the spinal cord in lambs, goat kids and calves. The infection spread rapidly over large parts of North-Western Europe. Belgium, Denmark, Germany, France, Italy, Luxembourg, the Netherlands, Spain and the United Kingdom were affected in the transmission season 2011/2012. The disease has re-emerged, at least in France, Germany and the United Kingdom during the vector-active season in 2012 and recently spread to Austria, Finland, Poland, Switzerland and Sweden. It remains to be seen whether the infection will establish permanently in the affected area. Measures have been proposed by the World Organisation for Animal Health (OIE) to help countries free from Schmallenberg virus to avoid the introduction of the infection without imposing inappropriate trade barriers. The aim of this article is to provide a state-of-the-art review on Schmallenberg virus 1 year after its first detection.
Collapse
Affiliation(s)
- F J Conraths
- Federal Research Institute for Animal Health, Institute of Epidemiology, Wusterhausen, Germany.
| | | | | |
Collapse
|
24
|
Tarlinton R, Daly J, Dunham S, Kydd J. The challenge of Schmallenberg virus emergence in Europe. Vet J 2012; 194:10-8. [PMID: 23026716 DOI: 10.1016/j.tvjl.2012.08.017] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 08/21/2012] [Accepted: 08/27/2012] [Indexed: 11/30/2022]
Abstract
The large-scale outbreak of disease across Northern Europe caused by a new orthobunyavirus known as Schmallenberg virus has caused considerable disruption to lambing and calving. Although advances in technology and collaboration between veterinary diagnostic and research institutes have enabled rapid identification of the causative agent and the development and deployment of tests, much remains unknown about this virus and its epidemiology that make predictions of its future impact difficult to assess. This review outlines current knowledge of the virus, drawing comparisons with related viruses, then explores possible scenarios of its impact in the near future, and highlights some of the urgent research questions that need to be addressed to allow the development of appropriate control strategies.
Collapse
Affiliation(s)
- Rachael Tarlinton
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK.
| | | | | | | |
Collapse
|
25
|
Garigliany MM, Bayrou C, Kleijnen D, Cassart D, Jolly S, Linden A, Desmecht D. Schmallenberg virus: a new Shamonda/Sathuperi-like virus on the rise in Europe. Antiviral Res 2012; 95:82-7. [PMID: 22684044 DOI: 10.1016/j.antiviral.2012.05.014] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2012] [Revised: 05/21/2012] [Accepted: 05/25/2012] [Indexed: 12/27/2022]
Abstract
In the summer-fall of 2011, a nonspecific febrile syndrome characterized by hyperthermia, drop in milk production and watery diarrhea was reported in adult dairy cows from a series of farms located in North-West Europe. Further, in November 2011, an enzootic outbreak of abortion, stillbirth and birth at term of lambs, kids and calves with neurologic signs and/or head, spine or limb malformations emerged throughout several European countries. Both syndromes were associated with the presence in the blood (adults) or in the central nervous system (newborns) of the genome of a new Shamonda-Sathuperi reassortant orthobunyavirus provisionally named Schmallenberg virus after the place where the first positive samples were collected. The clinical, pathological, virological and epidemiological facts that were made publicly available during the first 6 months after the emergence are presented here. Current knowledge of the epidemiology of the phylogenetically closest relatives of the newcomer (Shamonda, Sathuperi, Aino and Akabane viruses) is not exhaustive enough to predict whether the current outbreak of Schmallenberg virus is the prelude to endemicity or to a 2 years long outbreak before the infection burns out when serologically naïve animals are no longer available. In the future, cyclic epizootic reemergences are a possibility too, either synchronized with a global decrease of herd immunity or due to antigenic variants escaping the immunity acquired against their predecessors. The latter hypothesis seems unlikely because of the wide array of biologic constraints acting on the genome of viruses whose life cycle requires transmission by a vector, which represses genetic drift. The remarkable stability of the Shamonda virus genome over the last forty years is reassuring in this regard.
Collapse
|
26
|
Identification of the target cells and sequence of infection during experimental infection of ovine fetuses with Cache Valley virus. J Virol 2012; 86:4793-800. [PMID: 22379096 DOI: 10.1128/jvi.06858-11] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cache Valley virus-induced malformations have been previously reproduced in ovine fetuses; however, no studies have established the course of infection of cells and tissues with Cache Valley virus. To address these questions, ovine fetuses at 35 days of gestation were inoculated in utero with Cache Valley virus and euthanized at 7, 10, 14, 21, and 28 days postinfection. On postmortem examination, arthrogryposis and oligohydramnios were observed in some infected fetuses. Morphological studies showed necrosis in the central nervous system and skeletal muscle of infected fetuses evaluated after 7 to 14 days postinfection, and hydrocephalus, micromyelia, and muscular loss were observed in infected fetuses after 21 to 28 days postinfection. Using immunohistochemistry and in situ hybridization, intense Cache Valley virus antigen and RNA staining was detected in the brain, spinal cord, skeletal muscle, and, to a lesser degree, in fetal membranes and other tissues of infected fetuses. Viral antigen and RNA staining decreased in targeted and infected tissues with the progression of the infection.
Collapse
|
27
|
Noda Y, Yokoyama H, Katsuki T, Kurashige S, Uchinuno Y, Narita M. Demonstration of Akabane virus antigen using immunohistochemistry in naturally infected newborn calves. Vet Pathol 2001; 38:216-8. [PMID: 11280378 DOI: 10.1354/vp.38-2-216] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Eight newborn calves showing ataxia were necropsied and examined histologically. Six of seven cerebrospinal fluid samples collected from these animals had neutralizing antibody for Akabane virus (AKV). All examined calves had nonsuppurative encephalomyelitis, localized mainly in the midbrain and spinal cord. Corresponding to the encephalitic lesion, AKV antigen was demonstrated in neuroglial cells in the brain stem and neuronal cells in the ventral horn of the spinal cord. This is the first study to demonstrate AKV antigen by immunohistochemistry in naturally infected newborn calves.
Collapse
Affiliation(s)
- Y Noda
- Byochika Livestock Hygiene Service Center, Fukuoka, Japan
| | | | | | | | | | | |
Collapse
|
28
|
Kitani H, Yamakawa M, Ikeda H. Preferential infection of neuronal and astroglia cells by Akabane virus in primary cultures of fetal bovine brain. Vet Microbiol 2000; 73:269-79. [PMID: 10781726 DOI: 10.1016/s0378-1135(00)00158-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Akabane virus is a member of the genus Bunyavirus; it is pathogenic for ruminants and transmitted by arthropod vectors. Infection of adult cattle and sheep causes a transient viremia without obvious clinical signs, while infection of pregnant animals often causes fetal abnormalities including hydranencephaly, poliomyelitis and arthrogryposis. Infectious virus or viral antigens is present in the brain, spinal cord and skeletal muscle of infected fetuses. To understand the interaction between Akabane virus and bovine brain cells, we investigated the viral tropism using primary cultures of fetal bovine brain. The cultured neuronal cells, astroglia cells and microglia cells were distinguished by cell type specific antisera. Akabane virus was found to infect neuronal cells and astroglia cells, which led to degenerative death. No microglia cells were found infected. In some brain cultures, we observed different sensitivities of the cells to two Akabane virus strains: an attenuated strain infected and spread more readily than wild type virus. This difference was not observed in a hamster fibroblast cell line. Both viral and host determinants might be involved in the different susceptibility of brain cells to Akabane virus infection.
Collapse
Affiliation(s)
- H Kitani
- Laboratory of Immunogenetics, National Institute of Animal Health, Tsukuba, Ibaraki-ken, Japan
| | | | | |
Collapse
|
29
|
Abstract
Akabane virus, an arthropod-borne Bunyavirus, is the major cause of epizootics of congenital malformations in ruminants in Australia, Japan, Korea, and Israel, and is suspected to be a cause of sporadic outbreaks elsewhere. Blood-sucking insects, such as biting midges, transmit the virus horizontally to vertebrates. Climatic factors influence the seasonal activity and geographic range of the vector population and, therefore, occurrence of related disease. Inoculated ruminants seroconvert rapidly after a short subclinical viremia. Infection is of consequence only if ruminants are pregnant and not protected by adequate specific neutralizing antibodies. In naive pregnant animals, virus may spread hematogenously to replicate and persist in trophoblastic cells of placental cotyledons and subsequently invade the fetus. A distinct tropism for immature rapidly dividing cells of the fetal central nervous system and skeletal muscle results in direct virus-induced necrotizing encephalomyelitis and polymyositis. If fetuses survive, such injury may manifest as arthrogryposis, hydranencephaly, porencephaly, microencephaly, hydrocephalus, or encephalomyelitis at term. The earlier in gestation that fetal infection occurs, the more severe the lesions, reflecting the large population of vulnerable cells and lack of fetal immunocompetency at earlier stages of pregnancy. Injury during the period of critical cell migration and differentiation in organogenesis may substantially disrupt structural development in target organs. Late gestational infections cause nonsuppurative inflammation in the brain and spinal cord, premature birth, or fetal death with stillbirth or abortion. Affected neonates are nonviable. Control is by vaccination but is not always justified economically. Akabane viral infections must be differentiated from infections with other teratogenic viruses (including related Bunyaviruses), inherited conditions, and maternal intoxications. Diagnosis is made by serology and viral isolation.
Collapse
Affiliation(s)
- J A Charles
- Veterinary Pathology Services Pty Ltd, Sydney, Australia
| |
Collapse
|
30
|
Abstract
Cache Valley Virus (CVV) is a causative agent of a mosquito-borne disease syndrome of sheep and, possibly, of all ruminants, characterized by embryonic and fetal death, stillbirths, and multiple congenital malformations. CVV is endemic in Canada, Mexico, and the United States. Several related Bunyaviruses also may play a role in syndromes of congenital malformations and embryonic losses in North America.
Collapse
Affiliation(s)
- J F Edwards
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station
| |
Collapse
|
31
|
Hewicker-Trautwein M, Liess B, Frey HR, Trautwein G. Virological and pathological findings in sheep fetuses following experimental infection of pregnant ewes with cytopathogenic-bovine-virus diarrhoea virus. ZENTRALBLATT FUR VETERINARMEDIZIN. REIHE B. JOURNAL OF VETERINARY MEDICINE. SERIES B 1994; 41:264-76. [PMID: 7839747 DOI: 10.1111/j.1439-0450.1994.tb00227.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Eighteen pregnant Merino ewes were inoculated intravenously between days 65 and 68 of gestation with the unpurified cytopathogenic (cp) bovine virus diarrhoea virus (BVDV) strain Indiana (experiment I). In experiment II, three ewes were inoculated with the same virus after two successive plaque isolations in order to compare its pathogenicity for the fetus with special regard to lesions in the fetal brain. In experiment I, fetal blood and tissue samples, allantoic fluids and placentomes were collected sequentially between 10 and 80 days post-inoculation (p.i.). BVDV was recovered from 6 of 19 fetuses examined during the first 3 weeks after inoculation. From fetuses sampled between 30 and 50 days p.i. virus was isolated from three cases only, and from 60 days p.i. onwards virus was no longer recovered. BVDV was longer detected in the allantoic fluid than in fetal tissues and continued to be present until 80 days post-inoculation. From tissue samples of two fetuses of experiment I, only non-cytopathogenic BVDV was isolated, whilst samples from seven fetuses contained the cp BVDV biotype as revealed by an immunoplaque assay. The cp biotype was also isolated from placentomes. In experiment II, virus was not isolated from any of the tissue samples of two living fetuses collected at 67 days post-inoculation. In both experiments, cp BVDV was recovered from allantoic fluid samples. In contrast to the developing fetal brain, other tissues or organs seemed to be less vulnerable to the cp BVDV strain Indiana. The partial purification of this virus strain did not affect its pathogenicity for the brains of the developing fetuses.
Collapse
|