1
|
Bi YH, Feng B, Xie WY, Ouyang LL, Ye RX, Zhou ZG. Nuclear-encoded CbbX located in chloroplast is essential for the activity of red-type Rubisco in Saccharina japonica. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:236-245. [PMID: 36731285 DOI: 10.1016/j.plaphy.2023.01.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Saccharina japonica (Laminariales, Phaeophyta) is a brown alga and the major component of algae beds on the northwest coast of the Pacific Ocean. Rubisco, the key enzyme of CO2 fixation in photosynthesis, is inhibited by nonproductive binding of its substrate RuBP and other sugar phosphates. The inhibited Rubisco in eukaryotic phytoplankton of the red plastid lineage was reactivated by CbbXs, the red-type Rubisco activases, through the process of ATP-hydrolysis-powered remodeling. As well documented, CbbXs had two types of subunits encoded by the plastid or nuclear genome respectively. In this study, both proteins of S. japonica (SjCbbX-n and SjCbbX-p) were localized in the chloroplast illustrated by immuno-electron microscopy technique. GST pull-down detection verified SjCbbX-n could interact with SjCbbX-p. Two-dimensional electrophoresis-based Western blot analysis illustrated that the endogenous SjCbbXs could form heterohexamer in the ratio of 1:1. Activase activity assays showed that although both the recombinant proteins of SjCbbXs were functional, SjCbbX-n illustrated the significantly higher activase activity than SjCbbX-p. Notably, when the two proteins were mixed, the highest specific efficiencies of Rubisco were obtained. These results implied SjCbbX-n may be essential for Rubisco activation. Molecular evolutionary analysis of cbbx genes revealed that cbbx-n originated from the duplication of cbbx-p and then evolved independently under the positive selection pressure. This is the first report about the functional relationship between the two types of CbbXs in macroalge with the red-type Rubisco and provides useful information for revealing the mechanism of high photosynthetic efficiency of this important kelp.
Collapse
Affiliation(s)
- Yan-Hui Bi
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources Conferred By Ministry of Education, Shanghai Ocean University, No. 999 Huchenghuan Road, Nanhui New City, Shanghai, 201306, China
| | - Bing Feng
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources Conferred By Ministry of Education, Shanghai Ocean University, No. 999 Huchenghuan Road, Nanhui New City, Shanghai, 201306, China
| | - Wei-Yi Xie
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources Conferred By Ministry of Education, Shanghai Ocean University, No. 999 Huchenghuan Road, Nanhui New City, Shanghai, 201306, China
| | - Long-Ling Ouyang
- Chinese Academy of Fishery Science East China Sea Fisheries Research Institute, No. 300 Jungong Road, Shanghai, 200090, China
| | - Rong-Xue Ye
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources Conferred By Ministry of Education, Shanghai Ocean University, No. 999 Huchenghuan Road, Nanhui New City, Shanghai, 201306, China
| | - Zhi-Gang Zhou
- International Research Center for Marine Biosciences Conferred By Ministry of Science and Technology, Shanghai Ocean University, No. 999 Huchenghuan Road, Nanhui New City, Shanghai, 201306, China.
| |
Collapse
|
2
|
Sun LP, Ouyang LL, Bao H, Liu JG, Sun Z, Zhou ZG. Comparison between two isoforms of glycerol-3-phosphate acyltransferase in microalga Myrmecia incisa: Subcellular localization and role in triacylglycerol synthesis. ALGAL RES 2021. [DOI: 10.1016/j.algal.2020.102172] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
3
|
Miura Y, Seto H, Shibuya M, Hoshino Y. Biopolymer monolith for protein purification. Faraday Discuss 2019; 219:154-167. [PMID: 31313794 DOI: 10.1039/c9fd00018f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Porous glycopolymers, "glycomonoliths", were prepared by radical polymerization based on polymerization-induced phase separation with an acrylamide derivative of α-mannose, acrylamide and cross-linker in order to investigate protein adsorption and separation. The porous structure was induced by a porogenic alcohol. The pore diameter and surface area were controlled by the type of alcohol. The protein adsorption was measured in both batch and continuous flow systems. The glycomonoliths showed specific interaction with the sugar recognition protein of concanavalin A, and non-specific interaction to other proteins was negligible. The amount of protein adsorption to the materials was determined by the sugar density and the composition of the glycomonoliths. Fundamental knowledge regarding the glycomonoliths for protein separation was obtained.
Collapse
Affiliation(s)
- Yoshiko Miura
- Department of Chemical Engineering, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
| | | | | | | |
Collapse
|
4
|
Functional Analyses of Cytokinesis Regulators in Bloodstream Stage Trypanosoma brucei Parasites Identify Functions and Regulations Specific to the Life Cycle Stage. mSphere 2019; 4:4/3/e00199-19. [PMID: 31043517 PMCID: PMC6495339 DOI: 10.1128/msphere.00199-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The early divergent protozoan parasite Trypanosoma brucei is the causative agent of sleeping sickness in humans and nagana in cattle in sub-Saharan Africa. This parasite has a complex life cycle by alternating between the insect vector and the mammalian hosts and proliferates by binary cell fission. The control of cell division in trypanosomes appears to be distinct from that in its human host and differs substantially between two life cycle stages, the procyclic (insect) form and the bloodstream form. Cytokinesis, the final step of binary cell fission, is regulated by a novel signaling cascade consisting of two evolutionarily conserved protein kinases and a cohort of trypanosome-specific regulators in the procyclic form, but whether this signaling pathway operates in a similar manner in the bloodstream form is unclear. In this report, we performed a functional analysis of multiple cytokinesis regulators and discovered their distinct functions and regulations in the bloodstream form. The early divergent protozoan parasite Trypanosoma brucei alternates between the insect vector and the mammalian hosts during its life cycle and proliferates through binary cell fission. The cell cycle control system in T. brucei differs substantially from that in its mammalian hosts and possesses distinct mitosis-cytokinesis checkpoint controls between two life cycle stages, the procyclic form and the bloodstream form. T. brucei undergoes an unusual mode of cytokinesis, which is controlled by a novel signaling cascade consisting of evolutionarily conserved protein kinases and trypanosome-specific regulatory proteins in the procyclic form. However, given the distinct mitosis-cytokinesis checkpoints between the two forms, it is unclear whether the cytokinesis regulatory pathway discovered in the procyclic form also operates in a similar manner in the bloodstream form. Here, we showed that the three regulators of cytokinesis initiation, cytokinesis initiation factor 1 (CIF1), CIF2, and CIF3, are interdependent for subcellular localization but not for protein stability as in the procyclic form. Further, we demonstrated that KLIF, a regulator of cytokinesis completion in the procyclic form, plays limited roles in cytokinesis in the bloodstream form. Finally, we showed that the cleavage furrow-localizing protein FRW1 is required for cytokinesis initiation in the bloodstream form but is nonessential for cytokinesis in the procyclic form. Together, these results identify conserved and life cycle-specific functions of cytokinesis regulators, highlighting the distinction in the regulation of cytokinesis between different life cycle stages of T. brucei. IMPORTANCE The early divergent protozoan parasite Trypanosoma brucei is the causative agent of sleeping sickness in humans and nagana in cattle in sub-Saharan Africa. This parasite has a complex life cycle by alternating between the insect vector and the mammalian hosts and proliferates by binary cell fission. The control of cell division in trypanosomes appears to be distinct from that in its human host and differs substantially between two life cycle stages, the procyclic (insect) form and the bloodstream form. Cytokinesis, the final step of binary cell fission, is regulated by a novel signaling cascade consisting of two evolutionarily conserved protein kinases and a cohort of trypanosome-specific regulators in the procyclic form, but whether this signaling pathway operates in a similar manner in the bloodstream form is unclear. In this report, we performed a functional analysis of multiple cytokinesis regulators and discovered their distinct functions and regulations in the bloodstream form.
Collapse
|
5
|
Zhang Y, Huang Y, Srivathsan A, Lim TK, Lin Q, He CY. The unusual flagellar-targeting mechanism and functions of the trypanosome ortholog of the ciliary GTPase Arl13b. J Cell Sci 2018; 131:jcs.219071. [PMID: 30097558 PMCID: PMC6140319 DOI: 10.1242/jcs.219071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 07/28/2018] [Indexed: 12/11/2022] Open
Abstract
The small GTPase Arl13b is one of the most conserved and ancient ciliary proteins. In human and animals, Arl13b is primarily associated with the ciliary membrane, where it acts as a guanine-nucleotide-exchange factor (GEF) for Arl3 and is implicated in a variety of ciliary and cellular functions. We have identified and characterized Trypanosoma brucei (Tb)Arl13, the sole Arl13b homolog in this evolutionarily divergent, protozoan parasite. TbArl13 has conserved flagellar functions and exhibits catalytic activity towards two different TbArl3 homologs. However, TbArl13 is distinctly associated with the axoneme through a dimerization/docking (D/D) domain. Replacing the D/D domain with a sequence encoding a flagellar membrane protein created a viable alternative to the wild-type TbArl13 in our RNA interference (RNAi)-based rescue assay. Therefore, flagellar enrichment is crucial for TbArl13, but mechanisms to achieve this could be flexible. Our findings thus extend the understanding of the roles of Arl13b and Arl13b–Arl3 pathway in a divergent flagellate of medical importance. This article has an associated First Person interview with the first author of the paper. Highlighted Article: All roads lead to cilia – how the essential flagellar enrichment of Arl13 is achieved in trypanosome cells using a fundamentally different strategy compared with that of animal cells.
Collapse
Affiliation(s)
- Yiliu Zhang
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 14 Science Drive 4, Singapore 117543
| | - Yameng Huang
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 14 Science Drive 4, Singapore 117543
| | - Amrita Srivathsan
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 14 Science Drive 4, Singapore 117543
| | - Teck Kwang Lim
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 14 Science Drive 4, Singapore 117543
| | - Qingsong Lin
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 14 Science Drive 4, Singapore 117543
| | - Cynthia Y He
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 14 Science Drive 4, Singapore 117543
| |
Collapse
|
6
|
Li Y, Liu W, Sun LP, Zhou ZG. Evidence for PII with NAGK interaction that regulates Arg synthesis in the microalga Myrmecia incisa in response to nitrogen starvation. Sci Rep 2017; 7:16291. [PMID: 29176648 PMCID: PMC5701185 DOI: 10.1038/s41598-017-16644-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 11/15/2017] [Indexed: 11/12/2022] Open
Abstract
To understand why most eukaryotic microalgae accumulate lipids during nitrogen starvation stress, a gene, MiglnB, encoding PII, a signal transduction protein, was cloned from the arachidonic acid-rich microalga Myrmecia incisa Reisigl. Similarly to its homologues, MiPII contains three conserved T-, B-, and C-loops. In the presence of abundant Mg2+, ATP, and Gln, MiPII upregulates Arg biosynthesis by interacting with the rate-limiting enzyme, MiNAGK, as evidenced by yeast two-hybrid, co-immunoprecipitation assays, and kinetics analysis of enzyme-catalyzed reactions. However, this interaction of MiPII with MiNAGK is reversed by addition of 2-oxoglutarate (2-OG). Moreover, this interaction is present in the chloroplasts of M. incisa, as illustrated cytologically by both immunoelectron microscopy and agroinfiltration of Nicotiana benthamiana leaves to determine the subcellular localization of MiPII with MiNAGK. During the process of nitrogen starvation, soluble Arg levels in M. incisa are modulated by a change in MiNAGK enzymatic activity, both of which are significantly correlated (r = 0.854). A model for the manipulation of Arg biosynthesis via MiPII in M. incisa chloroplasts in response to nitrogen starvation is proposed. The ATP and 2-OG saved from Arg biosynthesis is thus suggested to facilitate the accumulation of fatty acids and triacylglycerol in M. incisa during exposure to nitrogen starvation.
Collapse
Affiliation(s)
- Yan Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources Conferred by Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Wei Liu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources Conferred by Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Li-Ping Sun
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources Conferred by Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Zhi-Gang Zhou
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources Conferred by Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China. .,National Demonstration Center for the Experimental Teaching of Fisheries Science, Shanghai Ocean University, Shanghai, 201306, China. .,International Research Center for Marine Biosciences Conferred by Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
7
|
Seto H, Shibuya M, Matsumoto H, Hoshino Y, Miura Y. Glycopolymer monoliths for affinity bioseparation of proteins in a continuous-flow system: glycomonoliths. J Mater Chem B 2017; 5:1148-1154. [DOI: 10.1039/c6tb02930b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Macroporous materials, called glycomonoliths, were prepared from saccharide-containing monomers, and applied for affinity bioseparation of proteins in a continuous-flow system.
Collapse
Affiliation(s)
- Hirokazu Seto
- Department of Chemical Engineering
- Kyushu University
- Fukuoka 819-0395
- Japan
- Department of Chemical Engineering
| | - Makoto Shibuya
- Department of Chemical Engineering
- Kyushu University
- Fukuoka 819-0395
- Japan
| | - Hikaru Matsumoto
- Department of Chemical Engineering
- Kyushu University
- Fukuoka 819-0395
- Japan
| | - Yu Hoshino
- Department of Chemical Engineering
- Kyushu University
- Fukuoka 819-0395
- Japan
| | - Yoshiko Miura
- Department of Chemical Engineering
- Kyushu University
- Fukuoka 819-0395
- Japan
| |
Collapse
|
8
|
Wong PY, Ma HT, Lee HJ, Poon RYC. MASTL(Greatwall) regulates DNA damage responses by coordinating mitotic entry after checkpoint recovery and APC/C activation. Sci Rep 2016; 6:22230. [PMID: 26923777 PMCID: PMC4770598 DOI: 10.1038/srep22230] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 02/08/2016] [Indexed: 11/09/2022] Open
Abstract
The G2 DNA damage checkpoint is one of the most important mechanisms controlling G2-mitosis transition. The kinase Greatwall (MASTL in human) promotes normal G2-mitosis transition by inhibiting PP2A via ARPP19 and ENSA. In this study, we demonstrate that MASTL is critical for maintaining genome integrity after DNA damage. Although MASTL did not affect the activation of DNA damage responses and subsequent repair, it determined the timing of entry into mitosis and the subsequent fate of the recovering cells. Constitutively active MASTL promoted dephosphorylation of CDK1(Tyr15) and accelerated mitotic entry after DNA damage. Conversely, downregulation of MASTL or ARPP19/ENSA delayed mitotic entry. Remarkably, APC/C was activated precociously, resulting in the damaged cells progressing from G2 directly to G1 and skipping mitosis all together. Collectively, these results established that precise control of MASTL is essential to couple DNA damage to mitosis through the rate of mitotic entry and APC/C activation.
Collapse
Affiliation(s)
- Po Yee Wong
- Division of Life Science, Center for Cancer Research, and State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Hoi Tang Ma
- Division of Life Science, Center for Cancer Research, and State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Hyun-jung Lee
- Division of Life Science, Center for Cancer Research, and State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Randy Y C Poon
- Division of Life Science, Center for Cancer Research, and State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| |
Collapse
|
9
|
Kasperova A, Cahlikova R, Kunert J, Sebela M, Novak Z, Raska M. Exposition of dermatophyteTrichophyton mentagrophytesto L-cystine induces expression and activation of cysteine dioxygenase. Mycoses 2014; 57:672-8. [DOI: 10.1111/myc.12220] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Revised: 05/06/2014] [Accepted: 06/22/2014] [Indexed: 11/30/2022]
Affiliation(s)
- Alena Kasperova
- Department of Immunology; Faculty of Medicine and Dentistry; Palacky University in Olomouc; Olomouc Czech Republic
| | - Romana Cahlikova
- Department of Immunology; Faculty of Medicine and Dentistry; Palacky University in Olomouc; Olomouc Czech Republic
| | - Jiri Kunert
- Department of Biology; Faculty of Medicine and Dentistry; Palacky University in Olomouc; Olomouc Czech Republic
| | - Marek Sebela
- Department of Protein Biochemistry and Proteomics; Centre of the Region Hana for Biotechnological and Agricultural Research; Faculty of Science; Palacky University in Olomouc; Olomouc Czech Republic
| | - Zdenek Novak
- Department of Surgery; University of Alabama at Birmingham; Birmingham AL USA
| | - Milan Raska
- Department of Immunology; Faculty of Medicine and Dentistry; Palacky University in Olomouc; Olomouc Czech Republic
| |
Collapse
|
10
|
Aistleitner K, Heinz C, Hörmann A, Heinz E, Montanaro J, Schulz F, Maier E, Pichler P, Benz R, Horn M. Identification and characterization of a novel porin family highlights a major difference in the outer membrane of chlamydial symbionts and pathogens. PLoS One 2013; 8:e55010. [PMID: 23383036 PMCID: PMC3561449 DOI: 10.1371/journal.pone.0055010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 12/18/2012] [Indexed: 11/24/2022] Open
Abstract
The Chlamydiae constitute an evolutionary well separated group of intracellular bacteria comprising important pathogens of humans as well as symbionts of protozoa. The amoeba symbiont Protochlamydia amoebophila lacks a homologue of the most abundant outer membrane protein of the Chlamydiaceae, the major outer membrane protein MOMP, highlighting a major difference between environmental chlamydiae and their pathogenic counterparts. We recently identified a novel family of putative porins encoded in the genome of P. amoebophila by in silico analysis. Two of these Protochlamydiaouter membrane proteins, PomS (pc1489) and PomT (pc1077), are highly abundant in outer membrane preparations of this organism. Here we show that all four members of this putative porin family are toxic when expressed in the heterologous host Escherichia coli. Immunofluorescence analysis using antibodies against heterologously expressed PomT and PomS purified directly from elementary bodies, respectively, demonstrated the location of both proteins in the outer membrane of P. amoebophila. The location of the most abundant protein PomS was further confirmed by immuno-transmission electron microscopy. We could show that pomS is transcribed, and the corresponding protein is present in the outer membrane throughout the complete developmental cycle, suggesting an essential role for P. amoebophila. Lipid bilayer measurements demonstrated that PomS functions as a porin with anion-selectivity and a pore size similar to the Chlamydiaceae MOMP. Taken together, our results suggest that PomS, possibly in concert with PomT and other members of this porin family, is the functional equivalent of MOMP in P. amoebophila. This work contributes to our understanding of the adaptations of symbiotic and pathogenic chlamydiae to their different eukaryotic hosts.
Collapse
Affiliation(s)
- Karin Aistleitner
- Department of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Christian Heinz
- Department of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Alexandra Hörmann
- Department of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Eva Heinz
- Department of Microbial Ecology, University of Vienna, Vienna, Austria
| | | | - Frederik Schulz
- Department of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Elke Maier
- Rudolf-Virchow-Center, Deutsche Forschungsgemeinschaft - Research Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | - Peter Pichler
- Christian Doppler Laboratory for Mass Spectrometry, Vienna, Austria
| | - Roland Benz
- Rudolf-Virchow-Center, Deutsche Forschungsgemeinschaft - Research Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
- School of Engineering and Science, Jacobs University Bremen, Bremen, Germany
| | - Matthias Horn
- Department of Microbial Ecology, University of Vienna, Vienna, Austria
- * E-mail:
| |
Collapse
|
11
|
Seto H, Ogata Y, Murakami T, Hoshino Y, Miura Y. Selective protein separation using siliceous materials with a trimethoxysilane-containing glycopolymer. ACS APPLIED MATERIALS & INTERFACES 2012; 4:411-7. [PMID: 22148732 DOI: 10.1021/am2014713] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A copolymer with α-D-mannose (Man) and trimethoxysilane (TMS) units was synthesized for immobilization on siliceous matrices such as a sensor cell and membrane. Immobilization of the trimethoxysilane-containing copolymer on the matrices was readily performed by incubation at high heat. The recognition of lectin by poly(Man-r-TMS) was evaluated by measurement with a quartz crystal microbalance (QCM) and adsorption on an affinity membrane, QCM results showed that the mannose-binding protein, concanavalin A, was specifically bound on a poly(Man-r-TMS)-immobilized cell with a higher binding constant than bovine serum albumin. The amount of concanavalin A adsorbed during permeation through a poly(Man-r-TMS)-immobilized membrane was higher than that through an unmodified membrane. Moreover, the concanavalin A adsorbed onto the poly(Man-r-TMS)-immobilized membrane was recoverable by permeation of a mannose derivative at high concentration.
Collapse
Affiliation(s)
- Hirokazu Seto
- Department of Chemical Engineering, Graduate School of Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| | | | | | | | | |
Collapse
|
12
|
Chen W, Yu XH, Zhang K, Shi J, De Oliveira S, Schreiber L, Shanklin J, Zhang D. Male Sterile2 encodes a plastid-localized fatty acyl carrier protein reductase required for pollen exine development in Arabidopsis. PLANT PHYSIOLOGY 2011; 157:842-53. [PMID: 21813653 PMCID: PMC3192575 DOI: 10.1104/pp.111.181693] [Citation(s) in RCA: 172] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 07/29/2011] [Indexed: 05/18/2023]
Abstract
Male Sterile2 (MS2) is predicted to encode a fatty acid reductase required for pollen wall development in Arabidopsis (Arabidopsis thaliana). Transient expression of MS2 in tobacco (Nicotiana benthamiana) leaves resulted in the accumulation of significant levels of C16 and C18 fatty alcohols. Expression of MS2 fused with green fluorescent protein revealed that an amino-terminal transit peptide targets the MS2 to plastids. The plastidial localization of MS2 is biologically important because genetic complementation of MS2 in ms2 homozygous plants was dependent on the presence of its amino-terminal transit peptide or that of the Rubisco small subunit protein amino-terminal transit peptide. In addition, two domains, NAD(P)H-binding domain and sterile domain, conserved in MS2 and its homologs were also shown to be essential for MS2 function in pollen exine development by genetic complementation testing. Direct biochemical analysis revealed that purified recombinant MS2 enzyme is able to convert palmitoyl-Acyl Carrier Protein to the corresponding C16:0 alcohol with NAD(P)H as the preferred electron donor. Using optimized reaction conditions (i.e. at pH 6.0 and 30°C), MS2 exhibits a K(m) for 16:0-Acyl Carrier Protein of 23.3 ± 4.0 μm, a V(max) of 38.3 ± 4.5 nmol mg⁻¹ min⁻¹, and a catalytic efficiency/K(m) of 1,873 M⁻¹ s⁻¹. Based on the high homology of MS2 to other characterized fatty acid reductases, it was surprising that MS2 showed no activity against palmitoyl- or other acyl-coenzyme A; however, this is consistent with its plastidial localization. In summary, genetic and biochemical evidence demonstrate an MS2-mediated conserved plastidial pathway for the production of fatty alcohols that are essential for pollen wall biosynthesis in Arabidopsis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Dabing Zhang
- Institute of Plant Science, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (W.C., K.Z., J. Shi, D.Z.); Department of Biology, Brookhaven National Laboratory, Upton, New York 11973 (X.-H.Y., J. Shanklin); Institute of Cellular and Molecular Botany, University of Bonn, D–53115 Bonn, Germany (S.D.O., L.S.)
| |
Collapse
|
13
|
Shi J, Tan H, Yu XH, Liu Y, Liang W, Ranathunge K, Franke RB, Schreiber L, Wang Y, Kai G, Shanklin J, Ma H, Zhang D. Defective pollen wall is required for anther and microspore development in rice and encodes a fatty acyl carrier protein reductase. THE PLANT CELL 2011; 23:2225-46. [PMID: 21705642 PMCID: PMC3160036 DOI: 10.1105/tpc.111.087528] [Citation(s) in RCA: 200] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 05/19/2011] [Accepted: 06/06/2011] [Indexed: 05/18/2023]
Abstract
Aliphatic alcohols naturally exist in many organisms as important cellular components; however, their roles in extracellular polymer biosynthesis are poorly defined. We report here the isolation and characterization of a rice (Oryza sativa) male-sterile mutant, defective pollen wall (dpw), which displays defective anther development and degenerated pollen grains with an irregular exine. Chemical analysis revealed that dpw anthers had a dramatic reduction in cutin monomers and an altered composition of cuticular wax, as well as soluble fatty acids and alcohols. Using map-based cloning, we identified the DPW gene, which is expressed in both tapetal cells and microspores during anther development. Biochemical analysis of the recombinant DPW enzyme shows that it is a novel fatty acid reductase that produces 1-hexadecanol and exhibits >270-fold higher specificity for palmiltoyl-acyl carrier protein than for C16:0 CoA substrates. DPW was predominantly targeted to plastids mediated by its N-terminal transit peptide. Moreover, we demonstrate that the monocot DPW from rice complements the dicot Arabidopsis thaliana male sterile2 (ms2) mutant and is the probable ortholog of MS2. These data suggest that DPWs participate in a conserved step in primary fatty alcohol synthesis for anther cuticle and pollen sporopollenin biosynthesis in monocots and dicots.
Collapse
Affiliation(s)
- Jing Shi
- Institute of Plant Science, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- College of Life Science, Ning Xia University, Ning Xia 750021, China
| | - Hexin Tan
- Institute of Plant Science, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiao-Hong Yu
- Department of Biology, Brookhaven National Laboratory, Upton, New York 11973
| | - Yuanyun Liu
- Institute of Plant Science, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 201418, China
| | - Wanqi Liang
- Institute of Plant Science, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kosala Ranathunge
- Institute of Cellular and Molecular Botany, University of Bonn, D-53115 Bonn, Germany
| | - Rochus Benni Franke
- Institute of Cellular and Molecular Botany, University of Bonn, D-53115 Bonn, Germany
| | - Lukas Schreiber
- Institute of Cellular and Molecular Botany, University of Bonn, D-53115 Bonn, Germany
| | - Yujiong Wang
- College of Life Science, Ning Xia University, Ning Xia 750021, China
| | - Guoying Kai
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 201418, China
| | - John Shanklin
- Department of Biology, Brookhaven National Laboratory, Upton, New York 11973
| | - Hong Ma
- State Key Laboratory of Genetic Engineering and Institute of Plant Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
- Department of Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16082
| | - Dabing Zhang
- Institute of Plant Science, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
14
|
Zhang Z, Zhang Y, Tan H, Wang Y, Li G, Liang W, Yuan Z, Hu J, Ren H, Zhang D. RICE MORPHOLOGY DETERMINANT encodes the type II formin FH5 and regulates rice morphogenesis. THE PLANT CELL 2011; 23:681-700. [PMID: 21307283 PMCID: PMC3077795 DOI: 10.1105/tpc.110.081349] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Revised: 01/01/2011] [Accepted: 01/18/2011] [Indexed: 05/19/2023]
Abstract
Multicellular organisms contain a large number of formins; however, their physiological roles in plants remain poorly understood. Here, we reveal that formin homology 5 (FH5), a type II formin mutated in rice morphology determinant (rmd), plays a crucial role in determining rice (Oryza sativa) morphology. FH5/RMD encodes a formin-like protein consisting of an N-terminal phosphatase tensin (PTEN)-like domain, an FH1 domain, and an FH2 domain. The rmd mutants display a bending growth pattern in seedlings, are stunted as adult plants, and have aberrant inflorescence (panicle) and seed shape. Cytological analysis showed that rmd mutants have severe cell elongation defects and abnormal microtubule and microfilament arrays. FH5/RMD is ubiquitously expressed in rice tissues, and its protein localization to the chloroplast surface is mediated by the PTEN domain. Biochemical assays demonstrated that recombinant FH5 protein can nucleate actin polymerization from monomeric G-actin or actin/profilin complexes, cap the barbed end of actin filaments, and bundle actin filaments in vitro. Moreover, FH5 can directly bind to and bundle microtubules through its FH2 domain in vitro. Our findings suggest that the rice formin protein FH5 plays a critical role in determining plant morphology by regulating actin dynamics and proper spatial organization of microtubules and microfilaments.
Collapse
Affiliation(s)
- Zheng Zhang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yi Zhang
- Key Laboratory of Cell Proliferation and Regulation Biology of the Ministry of Education, College of Life Science, Beijing Normal University, Beijing 100875, China
| | - Hexin Tan
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ying Wang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Gang Li
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wanqi Liang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zheng Yuan
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jianping Hu
- Michigan State University–Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
| | - Haiyun Ren
- Key Laboratory of Cell Proliferation and Regulation Biology of the Ministry of Education, College of Life Science, Beijing Normal University, Beijing 100875, China
| | - Dabing Zhang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Bio-X Center, Key Laboratory of Genetics and Development and Neuropsychiatric Diseases, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
- Address correspondence to
| |
Collapse
|
15
|
A foreign protein incorporated on the Tip of T3 pili in Lactococcus lactis elicits systemic and mucosal immunity. Infect Immun 2009; 78:1294-303. [PMID: 20028807 DOI: 10.1128/iai.01037-09] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The use of Lactococcus lactis to deliver a chosen antigen to the mucosal surface has been shown to elicit an immune response in mice and is a possible method of vaccination in humans. The recent discovery on Gram-positive bacteria of pili that are covalently attached to the bacterial surface and the elucidation of the residues linking the major and minor subunits of such pili suggests that the presentation of an antigen on the tip of pili external to the surface of L. lactis might constitute a successful vaccine strategy. As a proof of principle, we have fused a foreign protein (the Escherichia coli maltose-binding protein) to the C-terminal region of the native tip protein (Cpa) of the T3 pilus derived from Streptococcus pyogenes and expressed this fusion protein (MBP*) in L. lactis. We find that MBP* is incorporated into pili in this foreign host, as shown by Western blot analyses of cell wall proteins and by immunogold electron microscopy. Furthermore, since the MBP* on these pili retains its native biological activity, it appears to retain its native structure. Mucosal immunization of mice with this L. lactis strain expressing pilus-linked MBP* results in production of both a systemic and a mucosal response (IgG and IgA antibodies) against the MBP antigen. We suggest that this type of mucosal vaccine delivery system, which we term UPTOP (for unhindered presentation on tips of pili), may provide an inexpensive and stable alternative to current mechanisms of immunization for many serious human pathogens.
Collapse
|
16
|
Chiang KP, Niessen S, Saghatelian A, Cravatt BF. An enzyme that regulates ether lipid signaling pathways in cancer annotated by multidimensional profiling. ACTA ACUST UNITED AC 2006; 13:1041-50. [PMID: 17052608 DOI: 10.1016/j.chembiol.2006.08.008] [Citation(s) in RCA: 157] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2006] [Accepted: 08/22/2006] [Indexed: 12/21/2022]
Abstract
Hundreds, if not thousands, of uncharacterized enzymes currently populate the human proteome. Assembly of these proteins into the metabolic and signaling pathways that govern cell physiology and pathology constitutes a grand experimental challenge. Here, we address this problem by using a multidimensional profiling strategy that combines activity-based proteomics and metabolomics. This approach determined that KIAA1363, an uncharacterized enzyme highly elevated in aggressive cancer cells, serves as a central node in an ether lipid signaling network that bridges platelet-activating factor and lysophosphatidic acid. Biochemical studies confirmed that KIAA1363 regulates this pathway by hydrolyzing the metabolic intermediate 2-acetyl monoalkylglycerol. Inactivation of KIAA1363 disrupted ether lipid metabolism in cancer cells and impaired cell migration and tumor growth in vivo. The integrated molecular profiling method described herein should facilitate the functional annotation of metabolic enzymes in any living system.
Collapse
Affiliation(s)
- Kyle P Chiang
- The Skaggs Institute for Chemical Biology and Departments of Cell Biology and Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
17
|
Mills E, Price HP, Johner A, Emerson JE, Smith DF. Kinetoplastid PPEF phosphatases: dual acylated proteins expressed in the endomembrane system of Leishmania. Mol Biochem Parasitol 2006; 152:22-34. [PMID: 17169445 PMCID: PMC1885993 DOI: 10.1016/j.molbiopara.2006.11.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2006] [Revised: 11/02/2006] [Accepted: 11/14/2006] [Indexed: 12/02/2022]
Abstract
Bioinformatic analyses have been used to identify potential downstream targets of the essential enzyme N-myristoyl transferase in the TriTryp species, Leishmania major, Trypanosoma brucei and Trypanosoma cruzi. These database searches predict ∼60 putative N-myristoylated proteins with high confidence, including both previously characterised and novel molecules. One of the latter is an N-myristoylated protein phosphatase which has high sequence similarity to the Protein Phosphatase with EF-Hand (PPEF) proteins identified in sensory cells of higher eukaryotes. In L. major and T. brucei, the PPEF-like phosphatases are encoded by single-copy genes and are constitutively expressed in all parasite life cycle stages. The N-terminus of LmPPEF is a substrate for N-myristoyl transferase and is also palmitoylated in vivo. The wild type protein has been localised to the endocytic system by immunofluorescence. The catalytic and fused C-terminal domains of the kinetoplastid and other eukaryotic PPEFs share high sequence similarity, but unlike their higher eukaryotic relatives, the C-terminal parasite EF-hand domains are degenerate and do not bind calcium.
Collapse
Affiliation(s)
- Elena Mills
- Wellcome Trust Laboratories for Molecular Parasitology, Centre for Molecular Microbiology and Infection, Imperial College London, London SW7 2AZ, UK
| | - Helen P. Price
- Wellcome Trust Laboratories for Molecular Parasitology, Centre for Molecular Microbiology and Infection, Imperial College London, London SW7 2AZ, UK
- Immunology and Infection Unit, Department of Biology, University of York, Heslington, York YO10 5YW, UK
| | - Andrea Johner
- Immunology and Infection Unit, Department of Biology, University of York, Heslington, York YO10 5YW, UK
| | - Jenny E. Emerson
- Wellcome Trust Laboratories for Molecular Parasitology, Centre for Molecular Microbiology and Infection, Imperial College London, London SW7 2AZ, UK
| | - Deborah F. Smith
- Wellcome Trust Laboratories for Molecular Parasitology, Centre for Molecular Microbiology and Infection, Imperial College London, London SW7 2AZ, UK
- Immunology and Infection Unit, Department of Biology, University of York, Heslington, York YO10 5YW, UK
- Corresponding author at: Immunology and Infection Unit, Department of Biology, University of York, Heslington, York YO10 5YW, UK. Tel.: +44 1904 328843; fax: +44 1904 328844.
| |
Collapse
|
18
|
Xiang Y, Sekine T, Nakamura H, Imajoh-Ohmi S, Fukuda H, Yudoh K, Masuko-Hongo K, Nishioka K, Kato T. Fibulin-4 is a target of autoimmunity predominantly in patients with osteoarthritis. THE JOURNAL OF IMMUNOLOGY 2006; 176:3196-204. [PMID: 16493080 DOI: 10.4049/jimmunol.176.5.3196] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Autoimmunity to chondrocyte-producing proteins has been reported in patients with osteoarthritis (OA) as well as in those with rheumatoid arthritis (RA). To answer whether or not OA-specific autoimmunity exist, we performed screening of chondrocyte-producing autoantigens by two-dimensional electrophoresis and Western blotting with each of 20 OA and 20 RA serum samples. We identified an apparently OA-specific autoantigen spot with a molecular mass of 52 kDa and a Isoelectric point of 4.1 as fibulin-4 by mass fingerprinting. By preparing recombinant proteins of fibulin-4, we determined prevalence of the autoantibodies to fibulin-4 in 92 patients with OA, 67 patients with RA, 40 patients with systemic lupus erythematosus, and 43 patients with systemic scleroderma. As a result, the IgG type anti-fibulin-4 autoantibodies were detected in 23.9% of sera from patients with OA, in 8.9% of sera from patients with RA, in 2.5% of sera from patients with systemic lupus erythematosus, and in 9.3% of sera from patients with systemic scleroderma. Furthermore, we immunized DBA/1J, ICR, BALB/c, and C57BL/6 mice with the recombinant fibulin-4 proteins to investigate arthritogenecity of fibulin-4. As a result, mild synovitis was detected in all of the four strains. In addition, we demonstrated expression of fibulin-4 in chondrocytes at both mRNA and protein levels in vivo and in vitro by RT-PCR, Western blotting, and immunohistochemistry. Taken together, fibulin-4, expressed in chondrocytes and recognized as an autoantigen mainly in OA rather than in RA, may play pathogenic roles in OA.
Collapse
Affiliation(s)
- Yang Xiang
- Department of Bioregulation and Proteomics, Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki, Kanagawa, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Arica MY, Yalçin E, Bayramoğlu G. Preparation and characterisation of surfaces properties of poly(hydroxyethylmethacrylate-co-methacrylolyamido-histidine) membranes: application for purification of human immunoglobulin G. J Chromatogr B Analyt Technol Biomed Life Sci 2004; 807:315-25. [PMID: 15203046 DOI: 10.1016/j.jchromb.2004.04.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2004] [Revised: 04/20/2004] [Accepted: 04/26/2004] [Indexed: 10/26/2022]
Abstract
In this study, an affinity membrane containing L-histidine as an amino acid ligand was used in separation and purification of human immunoglobulin G (HIgG) from solution and human serum. The polarities and the surface free energies of the affinity membranes were determined by contact angle measurements. HIgG adsorption and purification onto the affinity membranes from aqueous solution and human serum were investigated in a batch and a continuous system. Effect of different system parameters such as ligand density, adsorbent dosage, pH, temperature, ionic strength and HIgG initial concentration on HIgG adsorption were investigated. The maximum adsorption capacity of p(HEMA-MAAH-4) membranes for HIgG was 13.06 mgml(-1). The reversible HIgG adsorption on the affinity membrane obeyed both the Langmuir and Freundlich isotherm models. The adsorption data was analysed using the first- and second-order kinetic model and the experimental data was well described by the first-order equations. In the continuous system, the purity of the eluted HIgG, as determined by HPLC, was 93% with recovery 58% for p(HEMA-MAAH-4) membrane. The affinity membranes are stable when subjected to sanitization with sodium hydroxide after repeated adsorption-elution cycles.
Collapse
Affiliation(s)
- M Yakup Arica
- Biochemical Processing and Biomaterial Research Laboratory, Faculty of Science, Kirikkale University, Yahşihan-Kirikkale, 71450, Turkey.
| | | | | |
Collapse
|
20
|
Xiang Y, Sekine T, Nakamura H, Imajoh-Ohmi S, Fukuda H, Nishioka K, Kato T. Proteomic surveillance of autoimmunity in osteoarthritis: identification of triosephosphate isomerase as an autoantigen in patients with osteoarthritis. ACTA ACUST UNITED AC 2004; 50:1511-21. [PMID: 15146421 DOI: 10.1002/art.20189] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Autoimmunity to proteins, such as type II collagen and cartilage intermediate layer protein, that are produced by chondrocytes has been reported in patients with osteoarthritis (OA) as well as in patients with rheumatoid arthritis (RA). However, it remains to be determined whether the overall specificities of the autoimmunity differ between OA and RA patients. This study sought to clarify the differences by applying proteomic surveillance for the detection of autoantigens comprehensively. METHODS Serum samples were obtained from 20 patients with OA, 20 patients with RA, and 20 healthy volunteers. Human chondrocyte proteins were separated from the sera by 2-dimensional electrophoresis, and antigenic protein spots were detected by Western blotting. The antigenic proteins were then identified by mass fingerprinting. The antigenicity of the identified proteins was confirmed and the prevalence of the autoantibodies in the OA, RA, and other disease groups was determined with the use of recombinant proteins. In addition, autoepitopes were mapped on the antigens. RESULTS Nineteen protein spots were recognized only by the OA sera, but not by the RA sera. One of these proteins was identified as triosephosphate isomerase (TPI). IgG-type anti-TPI autoantibodies were detected in 24.7% of the serum samples and 24.1% of the synovial fluid samples from the patients with OA, whereas <6% of the RA and systemic lupus erythematosus samples were positive for anti-TPI. In addition, multiple autoepitopes were identified on TPI. CONCLUSION The overall profile of autoimmunity in OA differs from that in RA, which may reflect the OA-specific pathologic role of autoimmunity. The autoantibody to TPI, detected predominantly in the OA samples and produced by the antigen-driven mechanism, has the potential to be used as a diagnostic marker for OA.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Antibody Specificity
- Arthritis, Rheumatoid/enzymology
- Arthritis, Rheumatoid/epidemiology
- Arthritis, Rheumatoid/immunology
- Autoantibodies/blood
- Autoantigens/blood
- Autoantigens/genetics
- Autoantigens/immunology
- Biomarkers
- Blotting, Western
- Chondrocytes/enzymology
- Chondrocytes/immunology
- Electrophoresis, Gel, Two-Dimensional
- Female
- Humans
- Lupus Erythematosus, Systemic/enzymology
- Lupus Erythematosus, Systemic/epidemiology
- Lupus Erythematosus, Systemic/immunology
- Male
- Middle Aged
- Osteoarthritis/enzymology
- Osteoarthritis/epidemiology
- Osteoarthritis/immunology
- Peptide Mapping
- Proteomics
- Recombinant Proteins/genetics
- Seroepidemiologic Studies
- Triose-Phosphate Isomerase/blood
- Triose-Phosphate Isomerase/genetics
- Triose-Phosphate Isomerase/immunology
Collapse
Affiliation(s)
- Yang Xiang
- Division of Immunoregulation, Department of Bioregulation, Institute of Medical Science, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa 216-8512, Japan
| | | | | | | | | | | | | |
Collapse
|
21
|
Hata K, Araki M, Yamamori T. Ciliary neurotrophic factor inhibits differentiation of photoreceptor-like cells in rat pineal glands in vitro. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2003; 143:179-87. [PMID: 12855189 DOI: 10.1016/s0165-3806(03)00128-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Ciliary neurotrophic factor (CNTF) is a unique member of the interleukin-6 (IL-6) family, whose receptor subunit for ligand binding is exclusively expressed in the nervous system and muscle. The role of CNTF in mammalian development remains unknown. We recently reported the specific expression of CNTF in the pineal gland and eyes. To further examine the expression pattern and role of CNTF in development, we prepared a polyclonal antibody against rat CNTF, performed western blotting with this antibody, and confirmed a strong and specific expression of the CNTF protein in pineal glands and a moderate expression in the eyes among the various tissues examined in newborn rats. In pineal organ cultures of newborn rats, exogenously added recombinant rat CNTF potently inhibited the differentiation of photoreceptor-like cells in a dose-dependent manner, while CNTF did not influence the survival of pineal cells. Among several cell growth factors known to have a similar effect in retinal cultures examined, strong inhibitory effects were seen only with CNTF and the leukemia inhibitory factor (LIF), both of which belong to the IL-6 cytokine family. This inhibitory effect was the strongest during three to 6 days of culture when CNTF was added to these cultures. These results suggest that CNTF plays an inhibitory role in the development of photoreceptor-like cells in early postnatal rat pineal glands.
Collapse
Affiliation(s)
- Katsusuke Hata
- Laboratory for Speciation Mechanisms, National Institute for Basic Biology, Okazaki 444-8585, Japan
| | | | | |
Collapse
|
22
|
Abstract
Some of the problems associated with packed bed chromatography can be overcome by using synthetic macroporous and microporous membranes as chromatographic media. This paper reviews the current state of development in the area of membrane chromatographic separation of proteins. The transport phenomenon of membrane chromatography is briefly discussed and work done in this area is reviewed. The various separation chemistries which have been utilised for protein separation, along with different applications, are also reviewed. The technical challenges facing membrane chromatography are highlighted and the scope for future work is discussed.
Collapse
Affiliation(s)
- Raja Ghosh
- Department of Engineering Science, University of Oxford, UK.
| |
Collapse
|
23
|
Zou H, Luo Q, Zhou D. Affinity membrane chromatography for the analysis and purification of proteins. JOURNAL OF BIOCHEMICAL AND BIOPHYSICAL METHODS 2001; 49:199-240. [PMID: 11694281 DOI: 10.1016/s0165-022x(01)00200-7] [Citation(s) in RCA: 147] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Affinity chromatography is unique among separation methods as it is the only technique that permits the purification of proteins based on biological functions rather than individual physical or chemical properties. The high specificity of affinity chromatography is due to the strong interaction between the ligand and the proteins of interest. Membrane separation allows the processing of a large amount of sample in a relatively short time owing to its structure, which provides a system with rapid reaction kinetics. The integration of membrane and affinity chromatography provides a number of advantages over traditional affinity chromatography with porous-bead packed columns, especially with regard to time and recovery of activity. This review gives detailed descriptions of materials used as membrane substrates, preparation of basic membranes, coupling of affinity ligands to membrane supports, and categories of affinity membrane cartridges. It also summarizes the applications of cellulose/glycidyl methacrylate composite membranes for proteins separation developed in our laboratory.
Collapse
Affiliation(s)
- H Zou
- National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116011, China.
| | | | | |
Collapse
|
24
|
Adsorptive membranes for bioseparations. ACTA ACUST UNITED AC 2000. [DOI: 10.1016/s0149-6395(00)80059-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
25
|
Ritter K, Kühl RJ, Semrau F, Eiffert H, Kratzin HD, Thomssen R. Manganese superoxide dismutase as a target of autoantibodies in acute Epstein-Barr virus infection. J Exp Med 1994; 180:1995-8. [PMID: 7964476 PMCID: PMC2191756 DOI: 10.1084/jem.180.5.1995] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Antibodies directed against the autoantigen p26 were detected in sera from 32 patients with acute Epstein-Barr virus (EBV) infection and clinical symptoms of infectious mononucleosis. P26 has now been identified as the enzyme manganese superoxide dismutase (MnSOD) by comparison of the NH2-terminal amino acid sequence. Antibodies against MnSOD belong to the immunoglobulin class M. They are not detectable in sera of patients with other herpesvirus infections. In the 32 patients investigated, the rise and fall of the autoantibodies coincides with the clinical symptoms. In vitro, the autoantibodies were shown to inhibit the dismutation of superoxide radicals by blocking MnSOD. As presented in the discussion this effect may contribute to the pathogenesis of acute EBV infection.
Collapse
Affiliation(s)
- K Ritter
- Department of Medical Microbiology, University Göttingen, Germany
| | | | | | | | | | | |
Collapse
|
26
|
Li X, Abdi K, Herren T, Faller DV, Mentzer SJ. Affinity membrane identification of immunoglobulin subclass in hybridoma screening. Hybridoma (Larchmt) 1994; 13:431-5. [PMID: 7860099 DOI: 10.1089/hyb.1994.13.431] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Monoclonal hybridomas secrete immunoglobulins with a single antigen specificity and distinct class/subclass structure. Hybridoma management has commonly incorporated tests of antigen specificity into early screening procedures, but has not typically utilized assays of immunoglobulin structure. In this article, we describe a technique of class/subclass typing using polyvinylidene difluoride affinity membranes and a colorigenic enzymatic amplification system. The typing of monoclonal antibody structure was sufficiently sensitive to permit its routine use within several weeks of hybridoma fusion. The information obtained from early and routine class/subclass determinations included a semiquantitative assessment of monoclonal antibody concentration. In addition, the detection of a single immunoglobulin class/subclass in a microtiter well supernatant supported the possibility that the colony was monotypic. The application of class/subclass typing and Poisson statistics to hybridoma fusions provided a numerical estimate of the probability of colony monotypia.
Collapse
Affiliation(s)
- X Li
- Department of Surgery, Harvard Medical School, Boston, Massachusetts
| | | | | | | | | |
Collapse
|
27
|
Parizade M, Arnon R, Lachmann PJ, Fishelson Z. Functional and antigenic similarities between a 94-kD protein of Schistosoma mansoni (SCIP-1) and human CD59. J Exp Med 1994; 179:1625-36. [PMID: 7513011 PMCID: PMC2191495 DOI: 10.1084/jem.179.5.1625] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Schistosomiasis is a parasitic disease affecting approximately 200 million people, primarily in the third world. Schistosoma mansoni, one of the causative agents of this disease, parasitize the human mesenteric and portal blood systems while successfully evading host immune responses. During parasite penetration into the mammalian host and shortly afterwards, the larvae rapidly convert from being sensitive to being resistant to C-mediated killing. Treatment of the C-resistant parasitic forms with trypsin renders the parasite susceptible to C attack, thus indicating the presence of C inhibitory protein(s) on the parasite surface. We describe here an intrinsic schistosome C inhibitory protein (SCIP-1) that exhibits antigenic and functional similarities with the human C-inhibitor CD59. Like CD59, SCIP-1 is capable of inhibiting formation of the C membrane attack complex (MAC), probably by binding to C8 and C9 of the C terminal pathway. In addition, SCIP-1 is apparently also membrane-anchored via glycosyl phosphatidylinositol as it can be specifically released with phosphatidylinositol-specific phospholipase C. Soluble SCIP-1, partially purified from Nonidet P-40 extracts of schistosome tegument is capable of inhibiting hemolysis of sensitized sheep erythrocytes and of rabbit erythrocytes by human C. Anti-human CD59 antibodies block this activity of SCIP-1 and in addition, upon binding to intact parasites, render them vulnerable to killing by human and guinea pig C. SCIP-1 is located on the surface of C-resistant forms of the parasite, i.e., 24-h cultured mechanical schistosomula and in vivo-derived adult worms as revealed by immunofluorescence and immunogold electron microscopy studies. These results identify one of the mechanisms schistosomes use to escape immune attack.
Collapse
Affiliation(s)
- M Parizade
- Department of Chemical Immunology, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | |
Collapse
|
28
|
Ritter K, Kuhlencord A, Thomssen R, Bommer W. Prolonged haemolytic anaemia in malaria and autoantibodies against triosephosphate isomerase. Lancet 1993; 342:1333-4. [PMID: 7901638 DOI: 10.1016/0140-6736(93)92248-r] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Prolonged haemolysis may accompany infection with Plasmodium falciparum. We observed prolonged haemolysis in 4 of 10 patients with this type of malaria after parasitological cure. IgM antibodies specific for the glycolytic enzyme triosephosphate isomerase were detected in these patients' sera. Clinical recovery and a decrease in haemolysis coincided with a fall in these autoantibodies. In vitro, affinity purified autoantibodies isolated from the sera directed against triosephosphate isomerase induced lysis of erythrocytes and activation of complement as shown by the 51Cr release assay. We assume that autoantibodies against triosephosphate isomerase contribute to the development of prolonged haemolysis and anaemia in P falciparum malaria.
Collapse
Affiliation(s)
- K Ritter
- Department of Medical Microbiology, Georg-August University, Göttingen, Germany
| | | | | | | |
Collapse
|