1
|
Mittal S, Nisler C, Szostak JW. Simulations predict preferred Mg 2+ coordination in a nonenzymatic primer-extension reaction center. Biophys J 2024; 123:1579-1591. [PMID: 38702884 PMCID: PMC11214020 DOI: 10.1016/j.bpj.2024.04.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/24/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024] Open
Abstract
The mechanism by which genetic information was copied prior to the evolution of ribozymes is of great interest because of its importance to the origin of life. The most effective known process for the nonenzymatic copying of an RNA template is primer extension by a two-step pathway in which 2-aminoimidazole-activated nucleotides first react with each other to form an imidazolium-bridged intermediate that subsequently reacts with the primer. Reaction kinetics, structure-activity relationships, and X-ray crystallography have provided insight into the overall reaction mechanism, but many puzzles remain. In particular, high concentrations of Mg2+ are required for efficient primer extension, but the mechanism by which Mg2+ accelerates primer extension remains unknown. By analogy with the mechanism of DNA and RNA polymerases, a role for Mg2+ in facilitating the deprotonation of the primer 3'-hydroxyl is often assumed, but no catalytic metal ion is seen in crystal structures of the primer-extension complex. To explore the potential effects of Mg2+ binding in the reaction center, we performed atomistic molecular dynamics simulations of a series of modeled complexes in which a Mg2+ ion was placed in the reaction center with inner-sphere coordination with different sets of functional groups. Our simulations suggest that coordination of a Mg2+ ion with both O3' of the terminal primer nucleotide and the pro-Sp nonbridging oxygen of the reactive phosphate of an imidazolium-bridged dinucleotide would help to pre-organize the structure of the primer/template substrate complex to favor the primer-extension reaction. Our results suggest that the catalytic metal ion may play an important role in overcoming electrostatic repulsion between a deprotonated O3' and the reactive phosphate of the bridged dinucleotide and lead to testable predictions of the mode of Mg2+ binding that is most relevant to catalysis of primer extension.
Collapse
Affiliation(s)
- Shriyaa Mittal
- Howard Hughes Medical Institute, Department of Molecular Biology, Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts; Department of Genetics, Harvard Medical School, Boston, Massachusetts
| | - Collin Nisler
- Howard Hughes Medical Institute, Department of Chemistry, University of Chicago, Chicago, Illinois
| | - Jack W Szostak
- Howard Hughes Medical Institute, Department of Molecular Biology, Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts; Department of Genetics, Harvard Medical School, Boston, Massachusetts; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts; Howard Hughes Medical Institute, Department of Chemistry, University of Chicago, Chicago, Illinois.
| |
Collapse
|
2
|
Fang Z, Pazienza LT, Zhang J, Tam CP, Szostak JW. Catalytic Metal Ion-Substrate Coordination during Nonenzymatic RNA Primer Extension. J Am Chem Soc 2024; 146:10632-10639. [PMID: 38579124 PMCID: PMC11027144 DOI: 10.1021/jacs.4c00323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/22/2024] [Accepted: 03/22/2024] [Indexed: 04/07/2024]
Abstract
Nonenzymatic template-directed RNA copying requires catalysis by divalent metal ions. The primer extension reaction involves the attack of the primer 3'-hydroxyl on the adjacent phosphate of a 5'-5'-imidazolium-bridged dinucleotide substrate. However, the nature of the interaction of the catalytic metal ion with the reaction center remains unclear. To explore the coordination of the catalytic metal ion with the imidazolium-bridged dinucleotide substrate, we examined catalysis by oxophilic and thiophilic metal ions with both diastereomers of phosphorothioate-modified substrates. We show that Mg2+ and Cd2+ exhibit opposite preferences for the two phosphorothioate substrate diastereomers, indicating a stereospecific interaction of the divalent cation with one of the nonbridging phosphorus substituents. High-resolution X-ray crystal structures of the products of primer extension with phosphorothioate substrates reveal the absolute stereochemistry of this interaction and indicate that catalysis by Mg2+ involves inner-sphere coordination with the nonbridging phosphate oxygen in the pro-SP position, while thiophilic cadmium ions interact with sulfur in the same position, as in one of the two phosphorothioate substrates. These results collectively suggest that during nonenzymatic RNA primer extension with a 5'-5'-imidazolium-bridged dinucleotide substrate the interaction of the catalytic Mg2+ ion with the pro-SP oxygen of the reactive phosphate plays a crucial role in the metal-catalyzed SN2(P) reaction.
Collapse
Affiliation(s)
- Ziyuan Fang
- Department
of Chemistry, Howard Hughes Medical Institute,
The University of Chicago, Chicago, Illinois 60637, United States
| | - Lydia T. Pazienza
- Department
of Chemistry and Chemical Biology, Harvard
University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
- Department
of Molecular Biology and Center for Computational and Integrative
Biology, Howard Hughes Medical Institute,
Massachusetts General Hospital, 185 Cambridge Street, Boston, Massachusetts 02114, United States
| | - Jian Zhang
- Department
of Chemistry, Howard Hughes Medical Institute,
The University of Chicago, Chicago, Illinois 60637, United States
| | - Chun Pong Tam
- Department
of Chemistry and Chemical Biology, Harvard
University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
- Department
of Molecular Biology and Center for Computational and Integrative
Biology, Howard Hughes Medical Institute,
Massachusetts General Hospital, 185 Cambridge Street, Boston, Massachusetts 02114, United States
| | - Jack W. Szostak
- Department
of Chemistry, Howard Hughes Medical Institute,
The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
3
|
Dantsu Y, Zhang Y, Zhang W. Insight into the structures of unusual base pairs in RNA complexes containing a primer/template/adenosine ligand. RSC Chem Biol 2023; 4:942-951. [PMID: 37920395 PMCID: PMC10619131 DOI: 10.1039/d3cb00137g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 08/29/2023] [Indexed: 11/04/2023] Open
Abstract
In the prebiotic RNA world, the self-replication of RNA without enzymes can be achieved through the utilization of 2-aminoimidazole activated nucleotides as efficient substrates. The mechanism of RNA nonenzymatic polymerization has been extensively investigated biophysically and structurally by using the model of an RNA primer/template complex which is bound by the imidazolium-bridged or triphosphate-bridged diguanosine intermediate. However, beyond the realm of the guanosine substrate, the structural insight into how alternative activated nucleotides bind and interact with the RNA primer/template complex remains unexplored, which is important for understanding the low reactivity of adenosine and uridine substrates in RNA primer extension, as well as its relationship with the structures. Here we use crystallography as a method and determine a series of high-resolution structures of RNA primer/template complexes bound by ApppG, a close analog of the dinucleotide intermediate containing adenosine and guanosine. The structures show that ApppG ligands bind to the RNA template through both Watson-Crick and noncanonical base pairs, with the primer 3'-OH group far from the adjacent phosphorus atom of the incoming substrate. The structures indicate that when adenosine is included in the imidazolium-bridged intermediate, the complexes are likely preorganized in a suboptimal conformation, making it difficult for the primer to in-line attack the substrate. Moreover, by co-crystallizing the RNA primer/template with chemically activated adenosine and guanosine monomers, we successfully observe the slow formation of the imidazolium-bridged intermediate (Ap-AI-pG) and the preorganized structure for RNA primer extension. Overall, our studies offer a structural explanation for the slow rate of RNA primer extension when using adenosine-5'-phosphoro-2-aminoimidazolide as a substrate during nonenzymatic polymerization.
Collapse
Affiliation(s)
- Yuliya Dantsu
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine Indianapolis IN 46202 USA
| | - Ying Zhang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine Indianapolis IN 46202 USA
| | - Wen Zhang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine Indianapolis IN 46202 USA
| |
Collapse
|
4
|
Ding D, Zhang SJ, Szostak JW. Enhanced nonenzymatic RNA copying with in-situ activation of short oligonucleotides. Nucleic Acids Res 2023:7184164. [PMID: 37247941 PMCID: PMC10359593 DOI: 10.1093/nar/gkad439] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 04/28/2023] [Accepted: 05/10/2023] [Indexed: 05/31/2023] Open
Abstract
The nonenzymatic copying of RNA is thought to have been necessary for the transition between prebiotic chemistry and ribozyme-catalyzed RNA replication in the RNA World. We have previously shown that a potentially prebiotic nucleotide activation pathway based on phospho-Passerini chemistry can lead to the efficient synthesis of 2-aminoimidazole activated mononucleotides when carried out under freeze-thaw cycling conditions. Such activated nucleotides react with each other to form 5'-5' 2-aminoimidazolium bridged dinucleotides, enabling template-directed primer extension to occur within the same reaction mixture. However, mononucleotides linked to oligonucleotides by a 5'-5' 2-aminoimidazolium bridge are superior substrates for nonenzymatic primer extension; their higher intrinsic reactivity and their higher template affinity enable faster template copying at lower substrate concentrations. Here we show that eutectic phase phospho-Passerini chemistry efficiently activates short oligonucleotides and promotes the formation of monomer-bridged-oligonucleotide species during freeze-thaw cycles. We then demonstrate that in-situ generated monomer-bridged-oligonucleotides lead to efficient nonenzymatic template copying in the same reaction mixture. Our demonstration that multiple steps in the pathway from activation chemistry to RNA copying can occur together in a single complex environment simplifies this aspect of the origin of life.
Collapse
Affiliation(s)
- Dian Ding
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA02138, USA
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA02114, USA
| | - Stephanie J Zhang
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA02138, USA
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA02114, USA
| | - Jack W Szostak
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA02138, USA
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA02114, USA
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA02115, USA
- Howard Hughes Medical Institute, Department of Chemistry, The University of Chicago, Chicago, IL60637, USA
| |
Collapse
|
5
|
Samokhvalova S, Lutz JF. Macromolecular Information Transfer. Angew Chem Int Ed Engl 2023; 62:e202300014. [PMID: 36696359 DOI: 10.1002/anie.202300014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 01/26/2023]
Abstract
Macromolecular information transfer can be defined as the process by which a coded monomer sequence is communicated from one macromolecule to another. In such a transfer process, the information sequence can be kept identical, transformed into a complementary sequence or even translated into a different molecular language. Such mechanisms are crucial in biology and take place in DNA→DNA replication, DNA→RNA transcription and RNA→protein translation. In fact, there would be no life on Earth without macromolecular information transfer. Mimicking such processes with synthetic macromolecules would also be of major scientific relevance because it would open up new avenues for technological applications (e.g. data storage and processing) but also for the creation of artificial life. In this important context, this minireview summarizes recent research about information transfer in synthetic oligomers and polymers. Medium- and long-term perspectives are also discussed.
Collapse
Affiliation(s)
- Svetlana Samokhvalova
- Université de Strasbourg, CNRS, ISIS, 8 allée Gaspard Monge, 67000, Strasbourg, France
| | - Jean-François Lutz
- Université de Strasbourg, CNRS, ISIS, 8 allée Gaspard Monge, 67000, Strasbourg, France
| |
Collapse
|
6
|
Prebiotic Assembly of Cloverleaf tRNA, Its Aminoacylation and the Origin of Coding, Inferred from Acceptor Stem Coding-Triplets. Int J Mol Sci 2022; 23:ijms232415756. [PMID: 36555394 PMCID: PMC9778954 DOI: 10.3390/ijms232415756] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/25/2022] [Accepted: 12/03/2022] [Indexed: 12/14/2022] Open
Abstract
tRNA is a key component in life's most fundamental process, the translation of the instructions contained in mRNA into proteins. Its role had to be executed as soon as the earliest translation emerged, but the questions of the prebiotic tRNA materialization, aminoacylation, and the origin of the coding triplets it carries are still open. Here, these questions are addressed by utilizing a distinct pattern of coding triplets highly conserved in the acceptor stems from the modern bacterial tRNAs of five early-emerging amino acids. Self-assembly of several copies of a short RNA oligonucleotide that carries a related pattern of coding triplets, via a simple and statistically feasible process, is suggested to result in a proto-tRNA model highly compatible with the cloverleaf secondary structure of the modern tRNA. Furthermore, these stem coding triplets evoke the possibility that they were involved in self-aminoacylation of proto-tRNAs prior to the emergence of the earliest synthetases, a process proposed to underlie the formation of the genetic code. Being capable of autonomous materialization and of self-aminoacylation, this verifiable model of the proto-tRNA advent adds principal components to an initial set of molecules and processes that may have led, exclusively through natural means, to the emergence of life.
Collapse
|
7
|
Slootbeek AD, van Haren MHI, Smokers IBA, Spruijt E. Growth, replication and division enable evolution of coacervate protocells. Chem Commun (Camb) 2022; 58:11183-11200. [PMID: 36128910 PMCID: PMC9536485 DOI: 10.1039/d2cc03541c] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 09/13/2022] [Indexed: 11/21/2022]
Abstract
Living and proliferating cells undergo repeated cycles of growth, replication and division, all orchestrated by complex molecular networks. How a minimal cell cycle emerged and helped primitive cells to evolve remains one of the biggest mysteries in modern science, and is an active area of research in chemistry. Protocells are cell-like compartments that recapitulate features of living cells and may be seen as the chemical ancestors of modern life. While compartmentalization is not strictly required for primitive, open-ended evolution of self-replicating systems, it gives such systems a clear identity by setting the boundaries and it can help them overcome three major obstacles of dilution, parasitism and compatibility. Compartmentalization is therefore widely considered to be a central hallmark of primitive life, and various types of protocells are actively investigated, with the ultimate goal of developing a protocell capable of autonomous proliferation by mimicking the well-known cell cycle of growth, replication and division. We and others have found that coacervates are promising protocell candidates in which chemical building blocks required for life are naturally concentrated, and chemical reactions can be selectively enhanced or suppressed. This feature article provides an overview of how growth, replication and division can be realized with coacervates as protocells and what the bottlenecks are. Considerations are given for designing chemical networks in coacervates that can lead to sustained growth, selective replication and controlled division, in a way that they are linked together like in the cell cycle. Ultimately, such a system may undergo evolution by natural selection of certain phenotypes, leading to adaptation and the gain of new functions, and we end with a brief discussion of the opportunities for coacervates to facilitate this.
Collapse
Affiliation(s)
- Annemiek D Slootbeek
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| | - Merlijn H I van Haren
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| | - Iris B A Smokers
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| | - Evan Spruijt
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| |
Collapse
|
8
|
Jia TZ, Nishikawa S, Fujishima K. Sequencing the Origins of Life. BBA ADVANCES 2022; 2:100049. [PMID: 37082609 PMCID: PMC10074849 DOI: 10.1016/j.bbadva.2022.100049] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/27/2022] [Accepted: 03/02/2022] [Indexed: 01/10/2023] Open
Abstract
One goal of origins of life research is to understand how primitive informational and catalytic biopolymers emerged and evolved. Recently, a number of sequencing techniques have been applied to analysis of replicating and evolving primitive biopolymer systems, providing a sequence-specific and high-resolution view of primitive chemical processes. Here, we review application of sequencing techniques to analysis of synthetic and primitive nucleic acids and polypeptides. This includes next-generation sequencing of primitive polymerization and evolution processes, followed by discussion of other novel biochemical techniques that could contribute to sequence analysis of primitive biopolymer driven chemical systems. Further application of sequencing to origins of life research, perhaps as a life detection technology, could provide insight into the origin and evolution of informational and catalytic biopolymers on early Earth or elsewhere.
Collapse
Affiliation(s)
- Tony Z. Jia
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
- Blue Marble Space Institute of Science, 600 1st Ave, Floor 1, Seattle, WA 98104, USA
- Corresponding author
| | - Shota Nishikawa
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8501, Japan
| | - Kosuke Fujishima
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
- Graduate School of Media and Governance, Keio University, 5322 Endo, Fujisawa-shi, Kanagawa 252-0882, Japan
| |
Collapse
|
9
|
Mangalath S, Karunakaran SC, Newnam G, Schuster GB, Hud NV. Supramolecular assembly-enabled homochiral polymerization of short (dA) n oligonucleotides. Chem Commun (Camb) 2021; 57:13602-13605. [PMID: 34852364 DOI: 10.1039/d1cc05420a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A goal of supramolecular chemistry is to create covalent polymers of precise composition and stereochemistry from complex mixtures by the reversible assembly of specific monomers prior to covalent bond formation. We illustrate the power of this approach with short oligomers of deoxyadenosine monophosphate ((dA)n3'p), n ≥ 3, which form supramolecular assemblies with cyanuric acid. The addition of a condensing agent to these assemblies results in their selective, non-enzymatic polymerization to form long polymers (e.g., (dA)1003'p). Significantly, mixtures of D- and L-(dA)53'p form homochiral covalent polymers, which demonstrates self-sorting of racemic monomers and covalent bond formation exclusively in homochiral assemblies.
Collapse
Affiliation(s)
- Sreejith Mangalath
- School of Chemistry and Biochemistry, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, USA.
| | - Suneesh C Karunakaran
- School of Chemistry and Biochemistry, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, USA.
| | - Gary Newnam
- School of Chemistry and Biochemistry, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, USA.
| | - Gary B Schuster
- School of Chemistry and Biochemistry, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, USA.
| | - Nicholas V Hud
- School of Chemistry and Biochemistry, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, USA.
| |
Collapse
|
10
|
Ding D, Zhou L, Giurgiu C, Szostak JW. Kinetic explanations for the sequence biases observed in the nonenzymatic copying of RNA templates. Nucleic Acids Res 2021; 50:35-45. [PMID: 34893864 PMCID: PMC8754633 DOI: 10.1093/nar/gkab1202] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/17/2021] [Accepted: 12/08/2021] [Indexed: 11/15/2022] Open
Abstract
The identification of nonenzymatic pathways for nucleic acid replication is a key challenge in understanding the origin of life. We have previously shown that nonenzymatic RNA primer extension using 2-aminoimidazole (2AI) activated nucleotides occurs primarily through an imidazolium-bridged dinucleotide intermediate. The reactive nature and preorganized structure of the intermediate increase the efficiency of primer extension but remain insufficient to drive extensive copying of RNA templates containing all four canonical nucleotides. To understand the factors that limit RNA copying, we synthesized all ten 2AI-bridged dinucleotide intermediates and measured the kinetics of primer extension in a model system. The affinities of the ten dinucleotides for the primer/template/helper complexes vary by over 7,000-fold, consistent with nearest neighbor energetic predictions. Surprisingly, the reaction rates at saturating intermediate concentrations still vary by over 15-fold, with the most weakly binding dinucleotides exhibiting a lower maximal reaction rate. Certain noncanonical nucleotides can decrease sequence dependent differences in affinity and primer extension rate, while monomers bridged to short oligonucleotides exhibit enhanced binding and reaction rates. We suggest that more uniform binding and reactivity of imidazolium-bridged intermediates may lead to the ability to copy arbitrary template sequences under prebiotically plausible conditions.
Collapse
Affiliation(s)
- Dian Ding
- Howard Hughes Medical Institute, Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, Massachusetts 02114, USA.,Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, USA
| | - Lijun Zhou
- Howard Hughes Medical Institute, Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, Massachusetts 02114, USA.,Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, USA
| | - Constantin Giurgiu
- Howard Hughes Medical Institute, Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, Massachusetts 02114, USA.,Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, USA
| | - Jack W Szostak
- Howard Hughes Medical Institute, Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, Massachusetts 02114, USA.,Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, USA.,Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, USA
| |
Collapse
|
11
|
Song EY, Jiménez EI, Lin H, Le Vay K, Krishnamurthy R, Mutschler H. Prebiotically Plausible RNA Activation Compatible with Ribozyme-Catalyzed Ligation. Angew Chem Int Ed Engl 2021; 60:2952-2957. [PMID: 33128282 PMCID: PMC7898671 DOI: 10.1002/anie.202010918] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/29/2020] [Indexed: 01/04/2023]
Abstract
RNA-catalyzed RNA ligation is widely believed to be a key reaction for primordial biology. However, since typical chemical routes towards activating RNA substrates are incompatible with ribozyme catalysis, it remains unclear how prebiotic systems generated and sustained pools of activated building blocks needed to form increasingly larger and complex RNA. Herein, we demonstrate in situ activation of RNA substrates under reaction conditions amenable to catalysis by the hairpin ribozyme. We found that diamidophosphate (DAP) and imidazole drive the formation of 2',3'-cyclic phosphate RNA mono- and oligonucleotides from monophosphorylated precursors in frozen water-ice. This long-lived activation enables iterative enzymatic assembly of long RNAs. Our results provide a plausible scenario for the generation of higher-energy substrates required to fuel ribozyme-catalyzed RNA synthesis in the absence of a highly evolved metabolism.
Collapse
Affiliation(s)
- Emilie Yeonwha Song
- Max Planck Institute of BiochemistryAm Klopferspitz 1882152MartinsriedGermany
| | - Eddy Ivanhoe Jiménez
- Department of ChemistryThe Scripps Research Institute10550 North Torrey Pines RoadLa JollaCA92037USA
| | - Huacan Lin
- Department of ChemistryThe Scripps Research Institute10550 North Torrey Pines RoadLa JollaCA92037USA
| | - Kristian Le Vay
- Max Planck Institute of BiochemistryAm Klopferspitz 1882152MartinsriedGermany
| | | | - Hannes Mutschler
- Max Planck Institute of BiochemistryAm Klopferspitz 1882152MartinsriedGermany
- Technical University DortmundOtto-Hahn-Strasse 4a44227DortmundGermany
| |
Collapse
|
12
|
Song EY, Jiménez EI, Lin H, Le Vay K, Krishnamurthy R, Mutschler H. Präbiotisch plausible RNA‐Aktivierung kompatibel mit ribozymkatalysierter Ligation. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010918] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Emilie Yeonwha Song
- Max Planck Institute of Biochemistry Am Klopferspitz 18 82152 Martinsried Deutschland
| | - Eddy Ivanhoe Jiménez
- Department of Chemistry The Scripps Research Institute 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Huacan Lin
- Department of Chemistry The Scripps Research Institute 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Kristian Le Vay
- Max Planck Institute of Biochemistry Am Klopferspitz 18 82152 Martinsried Deutschland
| | | | - Hannes Mutschler
- Max Planck Institute of Biochemistry Am Klopferspitz 18 82152 Martinsried Deutschland
- TU Dortmund University Otto-Hahn-Straße 4a 44227 Dortmund Deutschland
| |
Collapse
|
13
|
Kunnev D. Origin of Life: The Point of No Return. Life (Basel) 2020; 10:life10110269. [PMID: 33153087 PMCID: PMC7693465 DOI: 10.3390/life10110269] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/01/2020] [Accepted: 11/01/2020] [Indexed: 12/13/2022] Open
Abstract
Origin of life research is one of the greatest scientific frontiers of mankind. Many hypotheses have been proposed to explain how life began. Although different hypotheses emphasize different initial phenomena, all of them agree around one important concept: at some point, along with the chain of events toward life, Darwinian evolution emerged. There is no consensus, however, how this occurred. Frequently, the mechanism leading to Darwinian evolution is not addressed and it is assumed that this problem could be solved later, with experimental proof of the hypothesis. Here, the author first defines the minimum components required for Darwinian evolution and then from this standpoint, analyzes some of the hypotheses for the origin of life. Distinctive features of Darwinian evolution and life rooted in the interaction between information and its corresponding structure/function are then reviewed. Due to the obligatory dependency of the information and structure subject to Darwinian evolution, these components must be locked in their origin. One of the most distinctive characteristics of Darwinian evolution in comparison with all other processes is the establishment of a fundamentally new level of matter capable of evolving and adapting. Therefore, the initiation of Darwinian evolution is the "point of no return" after which life begins. In summary: a definition and a mechanism for Darwinian evolution are provided together with a critical analysis of some of the hypotheses for the origin of life.
Collapse
Affiliation(s)
- Dimiter Kunnev
- Department of Oral Biology, University at Buffalo, Buffalo, NY 14263, USA
| |
Collapse
|
14
|
Zhou L, O'Flaherty DK, Szostak JW. Template-Directed Copying of RNA by Non-enzymatic Ligation. Angew Chem Int Ed Engl 2020; 59:15682-15687. [PMID: 32558121 PMCID: PMC7496532 DOI: 10.1002/anie.202004934] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 06/04/2020] [Indexed: 12/12/2022]
Abstract
The non-enzymatic replication of the primordial genetic material is thought to have enabled the evolution of early forms of RNA-based life. However, the replication of oligonucleotides long enough to encode catalytic functions is problematic due to the low efficiency of template copying with mononucleotides. We show that template-directed ligation can assemble long RNAs from shorter oligonucleotides, which would be easier to replicate. The rate of ligation can be greatly enhanced by employing a 3'-amino group at the 3'-end of each oligonucleotide, in combination with an N-alkyl imidazole organocatalyst. These modifications enable the copying of RNA templates by the multistep ligation of tetranucleotide building blocks, as well as the assembly of long oligonucleotides using short splint oligonucleotides. We also demonstrate the formation of long oligonucleotides inside model prebiotic vesicles, which suggests a potential route to the assembly of artificial cells capable of evolution.
Collapse
Affiliation(s)
- Lijun Zhou
- Howard Hughes Medical InstituteDepartment of Molecular BiologyCenter for Computational and Integrative BiologyMassachusetts General HospitalBostonMA02114 (USA), E
| | - Derek K. O'Flaherty
- Howard Hughes Medical InstituteDepartment of Molecular BiologyCenter for Computational and Integrative BiologyMassachusetts General HospitalBostonMA02114 (USA), E
- Present address: Alnylam PharmaceuticalsCambridgeMA02142USA
| | - Jack W. Szostak
- Howard Hughes Medical InstituteDepartment of Molecular BiologyCenter for Computational and Integrative BiologyMassachusetts General HospitalBostonMA02114 (USA), E
| |
Collapse
|
15
|
Zhou L, O'Flaherty DK, Szostak JW. Template‐Directed Copying of RNA by Non‐enzymatic Ligation. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004934] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Lijun Zhou
- Howard Hughes Medical Institute Department of Molecular Biology Center for Computational and Integrative Biology Massachusetts General Hospital Boston MA 02114 (USA), E
| | - Derek K. O'Flaherty
- Howard Hughes Medical Institute Department of Molecular Biology Center for Computational and Integrative Biology Massachusetts General Hospital Boston MA 02114 (USA), E
- Present address: Alnylam Pharmaceuticals Cambridge MA 02142 USA
| | - Jack W. Szostak
- Howard Hughes Medical Institute Department of Molecular Biology Center for Computational and Integrative Biology Massachusetts General Hospital Boston MA 02114 (USA), E
| |
Collapse
|
16
|
Walton T, Zhang W, Li L, Tam CP, Szostak JW. The Mechanism of Nonenzymatic Template Copying with Imidazole-Activated Nucleotides. Angew Chem Int Ed Engl 2019; 58:10812-10819. [PMID: 30908802 DOI: 10.1002/anie.201902050] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Indexed: 11/10/2022]
Abstract
The emergence of the replication of RNA oligonucleotides was a critical step in the origin of life. An important model for the study of nonenzymatic template copying, which would be a key part of any such pathway, involves the reaction of ribonucleoside-5'-phosphorimidazolides with an RNA primer/template complex. The mechanism by which the primer becomes extended by one nucleotide was assumed to be a classical in-line nucleophilic-substitution reaction in which the 3'-hydroxyl of the primer attacks the phosphate of the incoming activated monomer with displacement of the imidazole leaving group. Surprisingly, this simple model has turned out to be incorrect, and the dominant pathway has now been shown to involve the reaction of two activated nucleotides with each other to form a 5'-5'-imidazolium bridged dinucleotide intermediate. Here we review the discovery of this unexpected intermediate, and the chemical, kinetic, and structural evidence for its role in template copying chemistry.
Collapse
Affiliation(s)
- Travis Walton
- Howard Hughes Medical Institute and Dept. of Molecular Biology, Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Wen Zhang
- Howard Hughes Medical Institute and Dept. of Molecular Biology, Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Li Li
- Howard Hughes Medical Institute and Dept. of Molecular Biology, Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Chun Pong Tam
- Howard Hughes Medical Institute and Dept. of Molecular Biology, Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, 02114, USA.,Dept. of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA.,Present address: Moderna Inc., Cambridge, MA, 02139, USA
| | - Jack W Szostak
- Howard Hughes Medical Institute and Dept. of Molecular Biology, Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, 02114, USA.,Dept. of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
| |
Collapse
|
17
|
Walton T, Zhang W, Li L, Tam CP, Szostak JW. The Mechanism of Nonenzymatic Template Copying with Imidazole‐Activated Nucleotides. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201902050] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Travis Walton
- Howard Hughes Medical Institute and Dept. of Molecular Biology Center for Computational and Integrative Biology Massachusetts General Hospital Boston MA 02114 USA
| | - Wen Zhang
- Howard Hughes Medical Institute and Dept. of Molecular Biology Center for Computational and Integrative Biology Massachusetts General Hospital Boston MA 02114 USA
| | - Li Li
- Howard Hughes Medical Institute and Dept. of Molecular Biology Center for Computational and Integrative Biology Massachusetts General Hospital Boston MA 02114 USA
| | - Chun Pong Tam
- Howard Hughes Medical Institute and Dept. of Molecular Biology Center for Computational and Integrative Biology Massachusetts General Hospital Boston MA 02114 USA
- Dept. of Chemistry and Chemical Biology Harvard University Cambridge MA 02138 USA
- Present address: Moderna Inc. Cambridge MA 02139 USA
| | - Jack W. Szostak
- Howard Hughes Medical Institute and Dept. of Molecular Biology Center for Computational and Integrative Biology Massachusetts General Hospital Boston MA 02114 USA
- Dept. of Chemistry and Chemical Biology Harvard University Cambridge MA 02138 USA
| |
Collapse
|
18
|
Sosson M, Pfeffer D, Richert C. Enzyme-free ligation of dimers and trimers to RNA primers. Nucleic Acids Res 2019; 47:3836-3845. [PMID: 30869145 PMCID: PMC6486630 DOI: 10.1093/nar/gkz160] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 02/25/2019] [Accepted: 02/28/2019] [Indexed: 01/19/2023] Open
Abstract
The template-directed formation of phosphodiester bonds between two nucleic acid components is a pivotal process in biology. To induce such a reaction in the absence of enzymes is a challenge. This challenge has been met for the extension of a primer with mononucleotides, but the ligation of short oligonucleotides (dimers or trimers) has proven difficult. Here we report a method for ligating dimers and trimers of ribonucleotides using in situ activation in aqueous buffer. All 16 different dimers and two trimers were tested. Binding studies by NMR showed low millimolar dissociation constants for complexes between representative dimers and hairpins mimicking primer-template duplexes, confirming that a weak template effect is not the cause of the poor ligating properties of these short oligomers. Rather, cyclization was found to compete with ligation, with up to 90% of dimer being converted to the cyclic form during the course of an assay. This side reaction is strongly sequence dependent and more pronounced for dimers than for trimers. Under optimized reaction conditions, high yields were observed with strongly pairing purines at the 3'-terminus. These results show that short oligomers of ribonucleotides are competent reactants in enzyme-free copying.
Collapse
Affiliation(s)
- Marilyne Sosson
- Institute of Organic Chemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Daniel Pfeffer
- Institute of Organic Chemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Clemens Richert
- Institute of Organic Chemistry, University of Stuttgart, 70569 Stuttgart, Germany
| |
Collapse
|
19
|
Le Vay K, Weise LI, Libicher K, Mascarenhas J, Mutschler H. Templated Self‐Replication in Biomimetic Systems. ACTA ACUST UNITED AC 2019; 3:e1800313. [DOI: 10.1002/adbi.201800313] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 02/06/2019] [Indexed: 12/27/2022]
Affiliation(s)
- Kristian Le Vay
- Biomimetic SystemsMax Planck Institute of Biochemistry Martinsried Germany
| | - Laura Isabel Weise
- Biomimetic SystemsMax Planck Institute of Biochemistry Martinsried Germany
| | - Kai Libicher
- Biomimetic SystemsMax Planck Institute of Biochemistry Martinsried Germany
| | - Judita Mascarenhas
- Department of Systems and Synthetic MicrobiologyMax Planck Institute for Terrestrial Microbiology Marburg Germany
| | - Hannes Mutschler
- Biomimetic SystemsMax Planck Institute of Biochemistry Martinsried Germany
| |
Collapse
|
20
|
Abstract
Central to the “RNA world” hypothesis of the origin of life is the emergence of an RNA catalyst capable of RNA replication. However, possible replicase ribozymes are quite complex and were likely predated by simpler non-enzymatic replication reactions. The templated polymerisation of phosphorimidazolide (Imp) activated ribonucleotides currently appears as the most tractable route to both generate and replicate short RNA oligomer pools from which a replicase could emerge. Herein we demonstrate the rapid assembly of complex ribozymes from such Imp-activated RNA fragment pools. Specifically, we show assembly of a newly selected minimal RNA polymerase ribozyme variant (150 nt) by RNA templated ligation of 5’-2-methylimidazole-activated RNA oligomers <30 nucleotides long. Our results provide support for the possibility that complex RNA structures could have emerged from pools of activated RNA oligomers and outlines a path for the transition from non-enzymatic/chemical to enzymatic RNA replication.
Collapse
Affiliation(s)
- Falk Wachowius
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH (UK)
| | - Philipp Holliger
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH (UK)
| |
Collapse
|
21
|
Kanavarioti A. HPLC methods for purity evaluation of man-made single-stranded RNAs. Sci Rep 2019; 9:1019. [PMID: 30705318 PMCID: PMC6356003 DOI: 10.1038/s41598-018-37642-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 12/11/2018] [Indexed: 02/08/2023] Open
Abstract
Synthetic RNA oligos exhibit purity decreasing as a function of length, because the efficiency of the total synthesis is the numerical product of the individual step efficiencies, typically below 98%. Analytical methods for RNAs up to the 60 nucleotides (nt) have been reported, but they fall short for purity evaluation of 100nt long, used as single guide RNA (sgRNA) in CRISPR technology, and promoted as pharmaceuticals. In an attempt to exploit a single HPLC method and obtain both identity as well as purity, ion-pair reversed-phase chromatography (IP-RP) at high temperature in the presence of an organic cosolvent is the current analytical strategy. Here we report that IP-RP is less suitable compared to the conventional ion-exchange (IEX) for analysis of 100nt RNAs. We demonstrate the relative stability of RNA in the denaturing/basic IEX mobile phase, lay out a protocol to determine the on-the-column stability of any RNA, and establish the applicability of this method for quality testing of sgRNA, tRNA, and mRNA. Unless well resolving HPLC methods are used for batch-to-batch evaluation of man-made RNAs, process development will remain shortsighted, and observed off-target effects in-vitro or in-vivo may be partially related to low purity and the presence of shorter sequences.
Collapse
Affiliation(s)
- Anastassia Kanavarioti
- Yenos Analytical LLC, 4659 Golden Foothill Pkwy, Suite 101, El Dorado Hills, CA, 95762, USA.
| |
Collapse
|
22
|
Mariani A, Bonfio C, Johnson CM, Sutherland JD. pH-Driven RNA Strand Separation under Prebiotically Plausible Conditions. Biochemistry 2018; 57:6382-6386. [PMID: 30383375 PMCID: PMC6340128 DOI: 10.1021/acs.biochem.8b01080] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Replication of nucleic acids in the absence of genetically encoded enzymes represents a critical process for the emergence of cellular life. Repeated separation of complementary RNA strands is required to achieve multiple cycles of chemical replication, yet thermal denaturation under plausible prebiotic conditions is impaired by the high temperatures required to separate long RNA strands and by concurrent degradation pathways, the latter accelerated by divalent metal ions. Here we show how the melting temperature of oligoribonucleotide duplexes can be tuned by changes in pH, enabling the separation of RNA strands at moderate temperatures. At the same time, the risk of phosphodiester bond cleavage is reduced under the acid denaturation conditions herein described, both in the presence and in the absence of divalent metal ions. Through a combination of ultraviolet and circular dichroism thermal studies and gel electrophoresis, we demonstrate the relevance of geological pH oscillations in the context of the RNA strand separation problem. Our results reveal new insights in the field of prebiotic chemistry, supporting plausible geochemical scenarios in which non-enzymatic RNA replication might have taken place.
Collapse
Affiliation(s)
- Angelica Mariani
- MRC Laboratory of Molecular Biology , Francis Crick Avenue, Cambridge Biomedical Campus , Cambridge CB2 0QH , U.K
| | - Claudia Bonfio
- MRC Laboratory of Molecular Biology , Francis Crick Avenue, Cambridge Biomedical Campus , Cambridge CB2 0QH , U.K
| | - Christopher M Johnson
- MRC Laboratory of Molecular Biology , Francis Crick Avenue, Cambridge Biomedical Campus , Cambridge CB2 0QH , U.K
| | - John D Sutherland
- MRC Laboratory of Molecular Biology , Francis Crick Avenue, Cambridge Biomedical Campus , Cambridge CB2 0QH , U.K
| |
Collapse
|
23
|
Yarus M. Eighty routes to a ribonucleotide world; dispersion and stringency in the decisive selection. RNA (NEW YORK, N.Y.) 2018; 24:1041-1055. [PMID: 29785967 PMCID: PMC6049501 DOI: 10.1261/rna.066761.118] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 05/10/2018] [Indexed: 06/08/2023]
Abstract
We examine the initial emergence of genetics; that is, of an inherited chemical capability. The crucial actors are ribonucleotides, occasionally meeting in a prebiotic landscape. Previous work identified six influential variables during such random ribonucleotide pooling. Geochemical pools can be in periodic danger (e.g., from tides) or constant danger (e.g., from unfavorable weather). Such pools receive Gaussian nucleotide amounts sporadically, at random times, or get varying substrates simultaneously. Pools use cross-templated RNA synthesis (5'-5' product from 5'-3' template) or para-templated (5'-5' product from 5'-5' template) synthesis. Pools can undergo mild or strong selection, and be recently initiated (early) or late in age. Considering >80 combinations of these variables, selection calculations identify a superior route. Most likely, an early, sporadically fed, cross-templating pool in constant danger, receiving ≥1 mM nucleotides while under strong selection for a coenzyme-like product, will host selection of the first encoded biochemical functions. Predominantly templated products emerge from a critical event, the starting bloc selection, which exploits inevitable differences among early pools. Favorable selection has a simple rationale; it is increased by product dispersion (SD/mean), by selection intensity (mild or strong), or by combining these factors as stringency, reciprocal fraction of pools selected (1/sfsel). To summarize: chance utility, acting via a preference for disperse, templated coenzyme-like dinucleotides, uses stringent starting bloc selection to quickly establish majority encoded/genetic expression. Despite its computational origin, starting bloc selection is largely independent of specialized assumptions. This ribodinucleotide route to inheritance may also have facilitated 5'-3' chemical RNA replication.
Collapse
Affiliation(s)
- Michael Yarus
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, Colorado 80309-0347, USA
| |
Collapse
|
24
|
Liu Z, Mariani A, Wu L, Ritson D, Folli A, Murphy D, Sutherland J. Tuning the reactivity of nitriles using Cu(ii) catalysis - potentially prebiotic activation of nucleotides. Chem Sci 2018; 9:7053-7057. [PMID: 30310625 PMCID: PMC6137443 DOI: 10.1039/c8sc02513d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 07/23/2018] [Indexed: 11/30/2022] Open
Abstract
A synergistic system was established involving activating nucleotides with nitriles using Cu(ii) and protecting RNA degradation by byproducts of alpha-aminonitriles.
During the transition from prebiotic chemistry to biology, a period of solution-phase, non-enzymatic activation of (oligo)nucleotides must have occurred, and accordingly, a mechanism for phosphate activation must have existed. Herein, we detail results of an investigation into prebiotic phosphate activation chemistry using simple, prebiotically available nitriles whose reactivity is increased by Cu2+ ions. Furthermore, although Cu2+ ions are known to catalyse the hydrolysis of phosphodiester bonds, we found this deleterious activity to be almost completely suppressed by inclusion of amino acids or dipeptides, which may suggest a productive relationship between protein and RNA from the outset.
Collapse
Affiliation(s)
- Ziwei Liu
- MRC Laboratory of Molecular Biology , Francis Crick Avenue, Cambridge Biomedical Campus , CB2 0QH , UK .
| | - Angelica Mariani
- MRC Laboratory of Molecular Biology , Francis Crick Avenue, Cambridge Biomedical Campus , CB2 0QH , UK .
| | - Longfei Wu
- MRC Laboratory of Molecular Biology , Francis Crick Avenue, Cambridge Biomedical Campus , CB2 0QH , UK .
| | - Dougal Ritson
- MRC Laboratory of Molecular Biology , Francis Crick Avenue, Cambridge Biomedical Campus , CB2 0QH , UK .
| | - Andrea Folli
- School of Chemistry , Cardiff University , Park Place , Cardiff CF10 3AT , UK
| | - Damien Murphy
- School of Chemistry , Cardiff University , Park Place , Cardiff CF10 3AT , UK
| | - John Sutherland
- MRC Laboratory of Molecular Biology , Francis Crick Avenue, Cambridge Biomedical Campus , CB2 0QH , UK .
| |
Collapse
|
25
|
Anderson BA, Krishnamurthy R. Heterogeneous Pyrophosphate-Linked DNA-Oligonucleotides: Aversion to DNA but Affinity for RNA. Chemistry 2018. [PMID: 29532524 DOI: 10.1002/chem.201800538] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Pyrophosphate linkages are important in extant biology and are hypothesized to have played a role in prebiotic chemistry and in the origination of oligonucleotides. Inspired by pyrophosphate as backbones of primordial oligomers, DNA oligomers with varying amounts of pyrophosphate inserts (ppDNA) were synthesized and investigated for their base-pairing properties. As expected, pyrophosphate inserts into the backbone compromised the thermal stability of ppDNA-DNA duplexes. In contrast, the ppDNA-RNA duplex exhibited, remarkably, duplex stability, even with accumulation of pyrophosphate linkages. This seems to be a consequence of an increase in the diameter of the double-helix with eight-bond-repeat units, and higher inclination of the base-pair axis with respect to the backbone in RNA (A-form), compared with that in DNA (B-form). These results suggest that pyrophosphate-linked oligonucleotides could harbor functional capabilities with implications for their roles in the origins of life and chemical biology.
Collapse
Affiliation(s)
- Brooke A Anderson
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Ramanarayanan Krishnamurthy
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| |
Collapse
|
26
|
Abstract
The emergence of functional cooperation between the three main classes of biomolecules - nucleic acids, peptides and lipids - defines life at the molecular level. However, how such mutually interdependent molecular systems emerged from prebiotic chemistry remains a mystery. A key hypothesis, formulated by Crick, Orgel and Woese over 40 year ago, posits that early life must have been simpler. Specifically, it proposed that an early primordial biology lacked proteins and DNA but instead relied on RNA as the key biopolymer responsible not just for genetic information storage and propagation, but also for catalysis, i.e. metabolism. Indeed, there is compelling evidence for such an 'RNA world', notably in the structure of the ribosome as a likely molecular fossil from that time. Nevertheless, one might justifiably ask whether RNA alone would be up to the task. From a purely chemical perspective, RNA is a molecule of rather uniform composition with all four bases comprising organic heterocycles of similar size and comparable polarity and pK a values. Thus, RNA molecules cover a much narrower range of steric, electronic and physicochemical properties than, e.g. the 20 amino acid side-chains of proteins. Herein we will examine the functional potential of RNA (and other nucleic acids) with respect to self-replication, catalysis and assembly into simple protocellular entities.
Collapse
|
27
|
Sosson M, Richert C. Enzyme-free genetic copying of DNA and RNA sequences. Beilstein J Org Chem 2018; 14:603-617. [PMID: 29623122 PMCID: PMC5870163 DOI: 10.3762/bjoc.14.47] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 02/20/2018] [Indexed: 11/23/2022] Open
Abstract
The copying of short DNA or RNA sequences in the absence of enzymes is a fascinating reaction that has been studied in the context of prebiotic chemistry. It involves the incorporation of nucleotides at the terminus of a primer and is directed by base pairing. The reaction occurs in aqueous medium and leads to phosphodiester formation after attack of a nucleophilic group of the primer. Two aspects of this reaction will be discussed in this review. One is the activation of the phosphate that drives what is otherwise an endergonic reaction. The other is the improved mechanistic understanding of enzyme-free primer extension that has led to a quantitative kinetic model predicting the yield of the reaction over the time course of an assay. For a successful modeling of the reaction, the strength of the template effect, the inhibitory effect of spent monomers, and the rate constants of the chemical steps have to be determined experimentally. While challenges remain for the high fidelity copying of long stretches of DNA or RNA, the available data suggest that enzyme-free primer extension is a more powerful reaction than previously thought.
Collapse
Affiliation(s)
- Marilyne Sosson
- Institute of Organic Chemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Clemens Richert
- Institute of Organic Chemistry, University of Stuttgart, 70569 Stuttgart, Germany
| |
Collapse
|
28
|
Akoopie A, Müller UF. Lower temperature optimum of a smaller, fragmented triphosphorylation ribozyme. Phys Chem Chem Phys 2018; 18:20118-25. [PMID: 27053323 DOI: 10.1039/c6cp00672h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The RNA world hypothesis describes a stage in the early evolution of life in which catalytic RNAs mediated the replication of RNA world organisms. One challenge to this hypothesis is that most existing ribozymes are much longer than what may be expected to originate from prebiotically plausible methods, or from the polymerization by currently existing polymerase ribozymes. We previously developed a 96-nucleotide long ribozyme, which generates a chemically activated 5'-phosphate (a 5'-triphosphate) from a prebiotically plausible molecule, trimetaphosphate, and an RNA 5'-hydroxyl group. Analogous ribozymes may have been important in the RNA world to access an energy source for the earliest life forms. Here we reduce the length of this ribozyme by fragmenting the ribozyme into multiple RNA strands, and by successively removing its longest double strand. The resulting ribozyme is composed of RNA fragments with none longer than 34 nucleotides. The temperature optimum was ∼20 °C, compared to ∼40 °C for the parent ribozyme. This shift in temperature dependence may be a more general phenomenon for fragmented ribozymes, and may have helped RNA world organisms to emerge at low temperature.
Collapse
Affiliation(s)
- Arvin Akoopie
- Department of Chemistry & Biochemistry, University of California, San Diego, USA.
| | - Ulrich F Müller
- Department of Chemistry & Biochemistry, University of California, San Diego, USA.
| |
Collapse
|
29
|
Tam CP, Zhou L, Fahrenbach AC, Zhang W, Walton T, Szostak JW. Synthesis of a Nonhydrolyzable Nucleotide Phosphoroimidazolide Analogue That Catalyzes Nonenzymatic RNA Primer Extension. J Am Chem Soc 2018; 140:783-792. [PMID: 29251930 PMCID: PMC6326531 DOI: 10.1021/jacs.7b11623] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
We
report the synthesis of guanosine 5′-(4-methylimidazolyl)phosphonate
(ICG), the third member of a series of nonhydrolyzable nucleoside
5′-phosphoro-2-methylimidazolide (2-MeImpN) analogues designed
for mechanistic studies of nonenzymatic RNA primer extension. The
addition of a 2-MeImpN monomer to a primer is catalyzed by the presence
of a downstream activated monomer, yet the three nonhydrolyzable analogues
do not show catalytic effects under standard mildly basic primer extension
conditions. Surprisingly, ICG, which has a pKa similar to that of 2-MeImpG, is a modest catalyst of nonenzymatic
primer extension at acidic pH. Here we show that ICG reacts with 2-MeImpC
to form a stable 5′–5′-imidazole-bridged guanosine-cytosine
dinucleotide, with both a labile nitrogen–phosphorus and a
stable carbon–phosphorus linkage flanking the central imidazole
bridge. Cognate RNA primer–template complexes react with this
GC-dinucleotide by attack of the primer 3′-hydroxyl on the
activated N–P side of the 5′-5′-imidazole bridge.
These observations support the hypothesis that 5′–5′-imidazole-bridged
dinucleotides can bind to cognate RNA primer–template duplexes
and adopt appropriate conformations for subsequent phosphodiester
bond formation, consistent with our recent mechanistic proposal that
the formation of activated 5′–5′-imidazolium-bridged
dinucleotides is responsible for 2-MeImpN-driven primer extension.
Collapse
Affiliation(s)
- Chun Pong Tam
- Howard Hughes Medical Institute, Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital , 185 Cambridge Street, Boston, Massachusetts 02114, United States.,Department of Chemistry and Chemical Biology, Harvard University , 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Lijun Zhou
- Howard Hughes Medical Institute, Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital , 185 Cambridge Street, Boston, Massachusetts 02114, United States.,Department of Genetics, Harvard Medical School , 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Albert C Fahrenbach
- Howard Hughes Medical Institute, Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital , 185 Cambridge Street, Boston, Massachusetts 02114, United States.,Department of Genetics, Harvard Medical School , 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States.,Earth-Life Science Institute, Tokyo Institute of Technology , 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Wen Zhang
- Howard Hughes Medical Institute, Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital , 185 Cambridge Street, Boston, Massachusetts 02114, United States.,Department of Genetics, Harvard Medical School , 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Travis Walton
- Howard Hughes Medical Institute, Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital , 185 Cambridge Street, Boston, Massachusetts 02114, United States.,Program of Biological and Biomedical Sciences, Harvard Medical School , 25 Shattuck Street, Gordon Hall, Boston, Massachusetts 02115, United States
| | - Jack W Szostak
- Howard Hughes Medical Institute, Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital , 185 Cambridge Street, Boston, Massachusetts 02114, United States.,Department of Chemistry and Chemical Biology, Harvard University , 12 Oxford Street, Cambridge, Massachusetts 02138, United States.,Department of Genetics, Harvard Medical School , 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States.,Earth-Life Science Institute, Tokyo Institute of Technology , 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| |
Collapse
|
30
|
Szostak JW. The Origin of Life on Earth and the Design of Alternative Life Forms. MOLECULAR FRONTIERS JOURNAL 2017. [DOI: 10.1142/s2529732517400132] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To understand the origin of life on Earth, and to evaluate the potential for life on exoplanets, we must understand the pathways that lead from chemistry to biology. Recent experiments suggest that a chemically rich environment that provides the building blocks of membranes, nucleic acids and peptides, along with sources of chemical energy, could result in the emergence of replicating, evolving cells. The broad scope of synthetic chemistry suggests that it may be possible to design and construct artificial life forms based upon a very different biochemistry than that of existing biology.
Collapse
|
31
|
Giurgiu C, Li L, O’Flaherty DK, Tam CP, Szostak JW. A Mechanistic Explanation for the Regioselectivity of Nonenzymatic RNA Primer Extension. J Am Chem Soc 2017; 139:16741-16747. [PMID: 29112424 PMCID: PMC6326530 DOI: 10.1021/jacs.7b08784] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Indexed: 11/28/2022]
Abstract
A working model of nonenzymatic RNA primer extension could illuminate how prebiotic chemistry transitioned to biology. All currently known experimental reconstructions of nonenzymatic RNA primer extension yield a mixture of 2'-5' and 3'-5' internucleotide linkages. Although long seen as a major problem, the causes of the poor regioselectivity of the reaction are unknown. We used a combination of different leaving groups, nucleobases, and templating sequences to uncover the factors that yield selective formation of 3'-5' internucleotide linkages. We found that fast and high yielding reactions selectively form 3'-5' linkages. Additionally, in all cases with high 3'-5' regioselectivity, Watson-Crick base pairing between the RNA monomers and the template is observed at the extension site and at the adjacent downstream position. Mismatched base-pairs and other factors that would perturb the geometry of the imidazolium bridged intermediate lower both the rate and regioselectivity of the reaction.
Collapse
Affiliation(s)
- Constantin Giurgiu
- Howard Hughes Medical Institute, Department
of Molecular Biology, and Center for Computational and Integrative
Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Li Li
- Howard Hughes Medical Institute, Department
of Molecular Biology, and Center for Computational and Integrative
Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Derek K. O’Flaherty
- Howard Hughes Medical Institute, Department
of Molecular Biology, and Center for Computational and Integrative
Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Chun Pong Tam
- Howard Hughes Medical Institute, Department
of Molecular Biology, and Center for Computational and Integrative
Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Jack W. Szostak
- Howard Hughes Medical Institute, Department
of Molecular Biology, and Center for Computational and Integrative
Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| |
Collapse
|
32
|
Tupper AS, Shi K, Higgs PG. The Role of Templating in the Emergence of RNA from the Prebiotic Chemical Mixture. Life (Basel) 2017; 7:life7040041. [PMID: 29088116 PMCID: PMC5745554 DOI: 10.3390/life7040041] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/25/2017] [Accepted: 10/26/2017] [Indexed: 01/11/2023] Open
Abstract
Biological RNA is a uniform polymer in three senses: it uses nucleotides of a single chirality; it uses only ribose sugars and four nucleobases rather than a mixture of other sugars and bases; and it uses only 3'-5' bonds rather than a mixture of different bond types. We suppose that prebiotic chemistry would generate a diverse mixture of potential monomers, and that random polymerization would generate non-uniform strands of mixed chirality, monomer composition, and bond type. We ask what factors lead to the emergence of RNA from this mixture. We show that template-directed replication can lead to the emergence of all the uniform properties of RNA by the same mechanism. We study a computational model in which nucleotides react via polymerization, hydrolysis, and template-directed ligation. Uniform strands act as templates for ligation of shorter oligomers of the same type, whereas mixed strands do not act as templates. The three uniform properties emerge naturally when the ligation rate is high. If there is an exact symmetry, as with the chase of chirality, the uniform property arises via a symmetry-breaking phase transition. If there is no exact symmetry, as with monomer selection and backbone regioselectivity, the uniform property emerges gradually as the rate of template-directed ligation is increased.
Collapse
Affiliation(s)
- Andrew S Tupper
- Origins Institute and Department of Biochemistry and Biomedical Science, McMaster University, Hamilton, ON L8S 4L8, Canada.
| | - Kevin Shi
- Origins Institute and Department of Physics and Astronomy, McMaster University, Hamilton, ON L8S 4K1, Canada.
| | - Paul G Higgs
- Origins Institute and Department of Physics and Astronomy, McMaster University, Hamilton, ON L8S 4K1, Canada.
| |
Collapse
|
33
|
Kawamura K. Hydrothermal Microflow Technology as a Research Tool for Origin-of-Life Studies in Extreme Earth Environments. Life (Basel) 2017; 7:E37. [PMID: 28974048 PMCID: PMC5745550 DOI: 10.3390/life7040037] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 09/25/2017] [Accepted: 09/30/2017] [Indexed: 11/16/2022] Open
Abstract
Although studies about the origin of life are a frontier in science and a number of effective approaches have been developed, drawbacks still exist. Examples include: (1) simulation of chemical evolution experiments (which were demonstrated for the first time by Stanley Miller); (2) approaches tracing back the most primitive life-like systems (on the basis of investigations of present organisms); and (3) constructive approaches for making life-like systems (on the basis of molecular biology), such as in vitro construction of the RNA world. Naturally, simulation experiments of chemical evolution under plausible ancient Earth environments have been recognized as a potentially fruitful approach. Nevertheless, simulation experiments seem not to be sufficient for identifying the scenario from molecules to life. This is because primitive Earth environments are still not clearly defined and a number of possibilities should be taken into account. In addition, such environments frequently comprise extreme conditions when compared to the environments of present organisms. Therefore, we need to realize the importance of accurate and convenient experimental approaches that use practical research tools, which are resistant to high temperature and pressure, to facilitate chemical evolution studies. This review summarizes improvements made in such experimental approaches over the last two decades, focusing primarily on our hydrothermal microflow reactor technology. Microflow reactor systems are a powerful tool for performing simulation experiments in diverse simulated hydrothermal Earth conditions in order to measure the kinetics of formation and degradation and the interactions of biopolymers.
Collapse
Affiliation(s)
- Kunio Kawamura
- Department of Human Environmental Studies, Hiroshima Shudo University, Ozuka-higashi, Asaminami-ku, Hiroshima 731-3195, Japan.
| |
Collapse
|
34
|
Shen F, Luo Z, Liu H, Wang R, Zhang S, Gan J, Sheng J. Structural insights into RNA duplexes with multiple 2΄-5΄-linkages. Nucleic Acids Res 2017; 45:3537-3546. [PMID: 28034958 PMCID: PMC5389462 DOI: 10.1093/nar/gkw1307] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 12/20/2016] [Indexed: 01/15/2023] Open
Abstract
2΄-5΄-linked RNAs play important roles in many biological systems. In addition, the mixture of 2΄-5΄ and 3΄-5΄ phosphodiester bonds have emerged as a plausible structural element in prebiotic RNAs. Toward our mechanistic studies of RNA folding and structures with heterogeneous backbones, we recently reported two crystal structures of a decamer RNA duplex containing two and six 2΄-5΄-linkages, showing how RNA duplexes adjust the structures to accommodate these non-canonical linkages (Proc. Natl. Acad. Sci. USA, 2014, 111, 3050-3055). Herein, we present two additional high-resolution crystal structures of the same RNA duplex containing four and eight 2΄-5΄-linkages at different positions, providing new insights into the effects of these modifications and a dynamic view of RNA structure changes with increased numbers of 2΄-5΄-linkages in the same duplex. Our results show that the local structural perturbations caused by 2΄-5΄ linkages can be distributed to nearly all the nucleotides with big ranges of changes in different geometry parameters. In addition, hydration pattern and solvation energy analysis indicate less favorable solvent interactions of 2΄-5΄-linkages comparing to the native 3΄-5΄-linkages. This study not only promotes our understanding of RNA backbone flexibility, but also provides a knowledge base for studying the biochemical and prebiotic significance of RNA 2΄-5΄-linkages.
Collapse
Affiliation(s)
- Fusheng Shen
- Department of Chemistry, University at Albany, State University of New York, Albany, NY 12222, USA.,The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Zhipu Luo
- Synchrotron Radiation Research Section, MCL National Cancer Institute, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Hehua Liu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Rui Wang
- Department of Chemistry, University at Albany, State University of New York, Albany, NY 12222, USA.,The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Shenglong Zhang
- Department of Life Sciences, New York Institute of Technology, New York, NY 10023, USA
| | - Jianhua Gan
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Jia Sheng
- Department of Chemistry, University at Albany, State University of New York, Albany, NY 12222, USA.,The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
| |
Collapse
|
35
|
Szostak JW. Der schmale Pfad tief in die Vergangenheit: auf der Suche nach der Chemie der Anfänge des Lebens. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201704048] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jack W. Szostak
- Howard Hughes Medical Institute; Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital; Boston MA 02114 USA
| |
Collapse
|
36
|
Szostak JW. The Narrow Road to the Deep Past: In Search of the Chemistry of the Origin of Life. Angew Chem Int Ed Engl 2017; 56:11037-11043. [PMID: 28514493 DOI: 10.1002/anie.201704048] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Indexed: 11/10/2022]
Abstract
The sequence of events that gave rise to the first life on our planet took place in the Earth's deep past, seemingly forever beyond our reach. Perhaps for that very reason the idea of reconstructing our ancient story is tantalizing, almost irresistible. Understanding the processes that led to synthesis of the chemical building blocks of biology and the ways in which these molecules self-assembled into cells that could grow, divide and evolve, nurtured by a rich and complex environment, seems at times insurmountably difficult. And yet, to my own surprise, simple experiments have revealed robust processes that could have driven the growth and division of primitive cell membranes. The nonenzymatic replication of RNA is more complicated and less well understood, but here too significant progress has come from surprising developments. Even our efforts to combine replicating compartments and genetic materials into a full protocell model have moved forward in unexpected ways. Fortunately, many challenges remain before we will be close to a full understanding of the origin of life, so the future of research in this field is brighter than ever!
Collapse
Affiliation(s)
- Jack W Szostak
- Howard Hughes Medical Institute, Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, 02114, USA
| |
Collapse
|
37
|
Mariani A, Sutherland JD. Non-Enzymatic RNA Backbone Proofreading through Energy-Dissipative Recycling. Angew Chem Int Ed Engl 2017; 56:6563-6566. [PMID: 28467695 PMCID: PMC5488188 DOI: 10.1002/anie.201703169] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Indexed: 11/12/2022]
Abstract
Non-enzymatic oligomerization of activated ribonucleotides leads to ribonucleic acids that contain a mixture of 2',5'- and 3',5'-linkages, and overcoming this backbone heterogeneity has long been considered a major limitation to the prebiotic emergence of RNA. Herein, we demonstrate non-enzymatic chemistry that progressively converts 2',5'-linkages into 3',5'-linkages through iterative degradation and repair. The energetic costs of this proofreading are met by the hydrolytic turnover of a phosphate activating agent and an acylating agent. With multiple rounds of this energy-dissipative recycling, we show that all-3',5'-linked duplex RNA can emerge from a backbone heterogeneous mixture, thereby delineating a route that could have driven RNA evolution on the early earth.
Collapse
Affiliation(s)
- Angelica Mariani
- PNACMRC Laboratory of Molecular BiologyFrancis Crick Avenue, Cambridge Biomedical CampusCambridgeCB2 0QHUK
| | - John D. Sutherland
- PNACMRC Laboratory of Molecular BiologyFrancis Crick Avenue, Cambridge Biomedical CampusCambridgeCB2 0QHUK
| |
Collapse
|
38
|
Mariani A, Sutherland JD. Non-Enzymatic RNA Backbone Proofreading through Energy-Dissipative Recycling. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201703169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Angelica Mariani
- PNAC; MRC Laboratory of Molecular Biology; Francis Crick Avenue, Cambridge Biomedical Campus Cambridge CB2 0QH UK
| | - John D. Sutherland
- PNAC; MRC Laboratory of Molecular Biology; Francis Crick Avenue, Cambridge Biomedical Campus Cambridge CB2 0QH UK
| |
Collapse
|
39
|
Zhang W, Tam CP, Wang J, Szostak JW. Unusual Base-Pairing Interactions in Monomer-Template Complexes. ACS CENTRAL SCIENCE 2016; 2:916-926. [PMID: 28058281 PMCID: PMC5200924 DOI: 10.1021/acscentsci.6b00278] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Indexed: 06/06/2023]
Abstract
Many high-resolution crystal structures have contributed to our understanding of the reaction pathway for catalysis by DNA and RNA polymerases, but the structural basis of nonenzymatic template-directed RNA replication has not been studied in comparable detail. Here we present crystallographic studies of the binding of ribonucleotide monomers to RNA primer-template complexes, with the goal of improving our understanding of the mechanism of nonenzymatic RNA copying, and of catalysis by polymerases. To explore how activated ribonucleotides recognize and bind to RNA templates, we synthesized an unreactive phosphonate-linked pyrazole analogue of guanosine 5'-phosphoro-2-methylimidazolide (2-MeImpG), a highly activated nucleotide that has been used extensively to study nonenzymatic primer extension. We cocrystallized this analogue with structurally rigidified RNA primer-template complexes carrying single or multiple monomer binding sites, and obtained high-resolution X-ray structures of these complexes. In addition to Watson-Crick base pairing, we repeatedly observed noncanonical guanine:cytidine base pairs in our crystal structures. In most structures, the phosphate and leaving group moieties of the monomers were highly disordered, while in others the distance from O3' of the primer to the phosphorus of the incoming monomer was too great to allow for reaction. We suggest that these effects significantly influence the rate and fidelity of nonenzymatic RNA replication, and that even primitive ribozyme polymerases could enhance RNA replication by enforcing Watson-Crick base pairing between monomers and primer-template complexes, and by bringing the reactive functional groups into closer proximity.
Collapse
Affiliation(s)
- Wen Zhang
- Howard Hughes Medical Institute, Department
of Molecular Biology and Center for Computational and Integrative
Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, Massachusetts 02114, United States
- Department
of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Chun Pong Tam
- Howard Hughes Medical Institute, Department
of Molecular Biology and Center for Computational and Integrative
Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, Massachusetts 02114, United States
- Department
of Chemistry and Chemical Biology, Harvard
University, 12 Oxford
Street, Cambridge, Massachusetts 02138, United States
| | - Jiawei Wang
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jack W. Szostak
- Howard Hughes Medical Institute, Department
of Molecular Biology and Center for Computational and Integrative
Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, Massachusetts 02114, United States
- Department
of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
- Department
of Chemistry and Chemical Biology, Harvard
University, 12 Oxford
Street, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
40
|
Taming Prebiotic Chemistry: The Role of Heterogeneous and Interfacial Catalysis in the Emergence of a Prebiotic Catalytic/Information Polymer System. Life (Basel) 2016; 6:life6040040. [PMID: 27827919 PMCID: PMC5198075 DOI: 10.3390/life6040040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 10/31/2016] [Accepted: 11/01/2016] [Indexed: 01/10/2023] Open
Abstract
Cellular life is based on interacting polymer networks that serve as catalysts, genetic information and structural molecules. The complexity of the DNA, RNA and protein biochemistry suggests that it must have been preceded by simpler systems. The RNA world hypothesis proposes RNA as the prime candidate for such a primal system. Even though this proposition has gained currency, its investigations have highlighted several challenges with respect to bulk aqueous media: (1) the synthesis of RNA monomers is difficult; (2) efficient pathways for monomer polymerization into functional RNAs and their subsequent, sequence-specific replication remain elusive; and (3) the evolution of the RNA function towards cellular metabolism in isolation is questionable in view of the chemical mixtures expected on the early Earth. This review will address the question of the possible roles of heterogeneous media and catalysis as drivers for the emergence of RNA-based polymer networks. We will show that this approach to non-enzymatic polymerizations of RNA from monomers and RNA evolution cannot only solve some issues encountered during reactions in bulk aqueous solutions, but may also explain the co-emergence of the various polymers indispensable for life in complex mixtures and their organization into primitive networks.
Collapse
|
41
|
Walton T, Szostak JW. A Highly Reactive Imidazolium-Bridged Dinucleotide Intermediate in Nonenzymatic RNA Primer Extension. J Am Chem Soc 2016; 138:11996-2002. [PMID: 27552367 PMCID: PMC6326528 DOI: 10.1021/jacs.6b07977] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Because
of its importance for the origin of life, the nonenzymatic
copying of RNA templates has been the subject of intense study for
several decades. Previous characterizations of template-directed primer
extension using 5′-phosphoryl-2-methylimidazole-activated nucleotides
(2-MeImpNs) as substrates have assumed a classical in-line nucleophilic
substitution mechanism, in which the 3′-hydroxyl of the primer
attacks the phosphate of the incoming monomer, displacing the 2-methylimidazole
leaving group. However, we have found that the initial rate of primer
extension depends on the pH and concentration at which the activated
monomer is maintained prior to the primer extension reaction. These
and other results suggest an alternative mechanism, in which two monomers
react with each other to form an imidazolium-bridged dinucleotide
intermediate, which then binds to the template. Subsequent attack
of the 3′-hydroxyl of the primer displaces an activated nucleotide
as the leaving group and results in extension of the primer by one
nucleotide. Analysis of monomer solutions by NMR indicates formation
of the proposed imidazolium-bridged dinucleotide in the expected pH-dependent
manner. We have used synthetic methods to prepare material that is
enriched in this proposed intermediate and show that it is a highly
reactive substrate for primer extension. The formation of an imidazolium-bridged
dinucleotide intermediate provides a mechanistic interpretation of
previously observed catalysis by an activated nucleotide located downstream
from the site of primer extension.
Collapse
Affiliation(s)
- Travis Walton
- Howard Hughes Medical Institute, Department of Molecular Biology, and Center for Computational and Integrative Biology, Massachusetts General Hospital , Boston, Massachusetts 02114, United States
| | - Jack W Szostak
- Howard Hughes Medical Institute, Department of Molecular Biology, and Center for Computational and Integrative Biology, Massachusetts General Hospital , Boston, Massachusetts 02114, United States
| |
Collapse
|
42
|
Kervio E, Sosson M, Richert C. The effect of leaving groups on binding and reactivity in enzyme-free copying of DNA and RNA. Nucleic Acids Res 2016; 44:5504-14. [PMID: 27235418 PMCID: PMC4937335 DOI: 10.1093/nar/gkw476] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 05/06/2016] [Accepted: 05/09/2016] [Indexed: 01/29/2023] Open
Abstract
The template-directed incorporation of nucleotides at the terminus of a growing primer is the basis of the transmission of genetic information. Nature uses polymerases-catalyzed reactions, but enzyme-free versions exist that employ nucleotides with organic leaving groups. The leaving group affects yields, but it was not clear whether inefficient extensions are due to poor binding, low reactivity toward the primer, or rapid hydrolysis. We have measured the binding of a total of 15 different activated nucleotides to DNA or RNA sequences. Further, we determined rate constants for the chemical step of primer extension involving methylimidazolides or oxyazabenzotriazolides of deoxynucleotides or ribonucleotides. Binding constants range from 10 to >500 mM and rate constants from 0.1 to 370 M(-1) h(-1) For aminoterminal primers, a fast covalent step and slow hydrolysis are the main factors leading to high yields. For monomers with weakly pairing bases, the leaving group can improve binding significantly. A detailed mechanistic picture emerges that explains why some enzyme-free primer extensions occur in high yield, while others remain recalcitrant to copying without enzymatic catalysis. A combination of tight binding and rapid extension, coupled with slow hydrolysis induces efficient enzyme-free copying.
Collapse
Affiliation(s)
- Eric Kervio
- Institute of Organic Chemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Marilyne Sosson
- Institute of Organic Chemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Clemens Richert
- Institute of Organic Chemistry, University of Stuttgart, 70569 Stuttgart, Germany
| |
Collapse
|
43
|
Pal A, Das RS, Zhang W, Lang M, McLaughlin LW, Szostak JW. Effect of terminal 3′-hydroxymethyl modification of an RNA primer on nonenzymatic primer extension. Chem Commun (Camb) 2016; 52:11905-11907. [DOI: 10.1039/c6cc06925h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Displacing the hydroxyl nucleophile at the 3′-end of a primer by a single methylene group drastically decreases the rate of primer extension, illustrating the importance of the precise position of the hydroxyl nucleophile.
Collapse
Affiliation(s)
- Ayan Pal
- Howard Hughes Medical Institute
- Department of Molecular Biology and Center for Computational and Integrative Biology
- Massachusetts General Hospital
- Boston
- USA
| | - Rajat S. Das
- Boston College
- Department of Chemistry
- Merkert Chemistry Center
- Chestnut Hill
- USA
| | - Weicheng Zhang
- Howard Hughes Medical Institute
- Department of Molecular Biology and Center for Computational and Integrative Biology
- Massachusetts General Hospital
- Boston
- USA
| | - Megan Lang
- Boston College
- Department of Chemistry
- Merkert Chemistry Center
- Chestnut Hill
- USA
| | - Larry W. McLaughlin
- Boston College
- Department of Chemistry
- Merkert Chemistry Center
- Chestnut Hill
- USA
| | - Jack W. Szostak
- Howard Hughes Medical Institute
- Department of Molecular Biology and Center for Computational and Integrative Biology
- Massachusetts General Hospital
- Boston
- USA
| |
Collapse
|
44
|
Xu L, Wang W, Chong J, Shin JH, Xu J, Wang D. RNA polymerase II transcriptional fidelity control and its functional interplay with DNA modifications. Crit Rev Biochem Mol Biol 2015; 50:503-19. [PMID: 26392149 DOI: 10.3109/10409238.2015.1087960] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Accurate genetic information transfer is essential for life. As a key enzyme involved in the first step of gene expression, RNA polymerase II (Pol II) must maintain high transcriptional fidelity while it reads along DNA template and synthesizes RNA transcript in a stepwise manner during transcription elongation. DNA lesions or modifications may lead to significant changes in transcriptional fidelity or transcription elongation dynamics. In this review, we will summarize recent progress toward understanding the molecular basis of RNA Pol II transcriptional fidelity control and impacts of DNA lesions and modifications on Pol II transcription elongation.
Collapse
Affiliation(s)
- Liang Xu
- a Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of California San Diego , La Jolla , CA , USA
| | - Wei Wang
- a Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of California San Diego , La Jolla , CA , USA
| | - Jenny Chong
- a Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of California San Diego , La Jolla , CA , USA
| | - Ji Hyun Shin
- a Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of California San Diego , La Jolla , CA , USA
| | - Jun Xu
- a Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of California San Diego , La Jolla , CA , USA
| | - Dong Wang
- a Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of California San Diego , La Jolla , CA , USA
| |
Collapse
|
45
|
Kawamura K, Da Silva L, Ogawa M, Konagaya N, Maurel MC. Verification of chemical evolution of RNA under hydrothermal environments on the primitive Earth. BIO WEB OF CONFERENCES 2015. [DOI: 10.1051/bioconf/20150400011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
46
|
Damer B, Deamer D. Coupled phases and combinatorial selection in fluctuating hydrothermal pools: a scenario to guide experimental approaches to the origin of cellular life. Life (Basel) 2015; 5:872-87. [PMID: 25780958 PMCID: PMC4390883 DOI: 10.3390/life5010872] [Citation(s) in RCA: 156] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Revised: 02/17/2015] [Accepted: 03/06/2015] [Indexed: 11/16/2022] Open
Abstract
Hydrothermal fields on the prebiotic Earth are candidate environments for biogenesis. We propose a model in which molecular systems driven by cycles of hydration and dehydration in such sites undergo chemical evolution in dehydrated films on mineral surfaces followed by encapsulation and combinatorial selection in a hydrated bulk phase. The dehydrated phase can consist of concentrated eutectic mixtures or multilamellar liquid crystalline matrices. Both conditions organize and concentrate potential monomers and thereby promote polymerization reactions that are driven by reduced water activity in the dehydrated phase. In the case of multilamellar lipid matrices, polymers that have been synthesized are captured in lipid vesicles upon rehydration to produce a variety of molecular systems. Each vesicle represents a protocell, an “experiment” in a natural version of combinatorial chemistry. Two kinds of selective processes can then occur. The first is a physical process in which relatively stable molecular systems will be preferentially selected. The second is a chemical process in which rare combinations of encapsulated polymers form systems capable of capturing energy and nutrients to undergo growth by catalyzed polymerization. Given continued cycling over extended time spans, such combinatorial processes will give rise to molecular systems having the fundamental properties of life.
Collapse
Affiliation(s)
- Bruce Damer
- Department of Biomolecular Engineering.
- DigitalSpace Research, Boulder Creek, CA 95006, USA.
| | | |
Collapse
|
47
|
Xu L, Wang W, Zhang L, Chong J, Huang X, Wang D. Impact of template backbone heterogeneity on RNA polymerase II transcription. Nucleic Acids Res 2015; 43:2232-41. [PMID: 25662224 PMCID: PMC4344504 DOI: 10.1093/nar/gkv059] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 01/15/2015] [Accepted: 01/16/2015] [Indexed: 02/03/2023] Open
Abstract
Variations in the sugar component (ribose or deoxyribose) and the nature of the phosphodiester linkage (3'-5' or 2'-5' orientation) have been a challenge for genetic information transfer from the very beginning of evolution. RNA polymerase II (pol II) governs the transcription of DNA into precursor mRNA in all eukaryotic cells. How pol II recognizes DNA template backbone (phosphodiester linkage and sugar) and whether it tolerates the backbone heterogeneity remain elusive. Such knowledge is not only important for elucidating the chemical basis of transcriptional fidelity but also provides new insights into molecular evolution. In this study, we systematically and quantitatively investigated pol II transcriptional behaviors through different template backbone variants. We revealed that pol II can well tolerate and bypass sugar heterogeneity sites at the template but stalls at phosphodiester linkage heterogeneity sites. The distinct impacts of these two backbone components on pol II transcription reveal the molecular basis of template recognition during pol II transcription and provide the evolutionary insight from the RNA world to the contemporary 'imperfect' DNA world. In addition, our results also reveal the transcriptional consequences from ribose-containing genomic DNA.
Collapse
Affiliation(s)
- Liang Xu
- Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of California San Diego, La Jolla, CA 92093-0625, USA
| | - Wei Wang
- Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of California San Diego, La Jolla, CA 92093-0625, USA
| | - Lu Zhang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Jenny Chong
- Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of California San Diego, La Jolla, CA 92093-0625, USA
| | - Xuhui Huang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Dong Wang
- Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of California San Diego, La Jolla, CA 92093-0625, USA
| |
Collapse
|
48
|
Martin LL, Unrau PJ, Müller UF. RNA synthesis by in vitro selected ribozymes for recreating an RNA world. Life (Basel) 2015; 5:247-68. [PMID: 25610978 PMCID: PMC4390851 DOI: 10.3390/life5010247] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 12/22/2014] [Accepted: 01/13/2015] [Indexed: 01/20/2023] Open
Abstract
The RNA world hypothesis states that during an early stage of life, RNA molecules functioned as genome and as the only genome-encoded catalyst. This hypothesis is supported by several lines of evidence, one of which is the in vitro selection of catalytic RNAs (ribozymes) in the laboratory for a wide range of reactions that might have been used by RNA world organisms. This review focuses on three types of ribozymes that could have been involved in the synthesis of RNA, the core activity in the self-replication of RNA world organisms. These ribozyme classes catalyze nucleoside synthesis, triphosphorylation, and the polymerization of nucleoside triphosphates. The strengths and weaknesses regarding each ribozyme’s possible function in a self-replicating RNA network are described, together with the obstacles that need to be overcome before an RNA world organism can be generated in the laboratory.
Collapse
Affiliation(s)
- Lyssa L Martin
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada.
| | - Peter J Unrau
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada.
| | - Ulrich F Müller
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0356, USA.
| |
Collapse
|
49
|
Adamala K, Engelhart AE, Szostak JW. Generation of functional RNAs from inactive oligonucleotide complexes by non-enzymatic primer extension. J Am Chem Soc 2014; 137:483-9. [PMID: 25521912 PMCID: PMC4984999 DOI: 10.1021/ja511564d] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The earliest genomic RNAs had to
be short enough for efficient
replication, while simultaneously serving as unfolded templates and
effective ribozymes. A partial solution to this paradox may lie in
the fact that many functional RNAs can self-assemble from multiple
fragments. Therefore, in early evolution, genomic RNA fragments could
have been significantly shorter than unimolecular functional RNAs.
Here, we show that unstable, nonfunctional complexes assembled from
even shorter 3′-truncated oligonucleotides can be stabilized
and gain function via non-enzymatic primer extension. Such short RNAs
could act as good templates due to their minimal length and complex-forming
capacity, while their minimal length would facilitate replication
by relatively inefficient polymerization reactions. These RNAs could
also assemble into nascent functional RNAs and undergo conversion
to catalytically active forms, by the same polymerization chemistry
used for replication that generated the original short RNAs. Such
phenomena could have substantially relaxed requirements for copying
efficiency in early nonenzymatic replication systems.
Collapse
Affiliation(s)
- Katarzyna Adamala
- Howard Hughes Medical Institute and Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital , 185 Cambridge Street, Boston, Massachusetts 02114, United States
| | | | | |
Collapse
|
50
|
Gangadhara KL, Srivastava P, Rozenski J, Mattelaer HP, Leen V, Dehaen W, Hofkens J, Lescrinier E, Herdewijn P. Design and synthesis of nucleolipids as possible activated precursors for oligomer formation via intramolecular catalysis: stability study and supramolecular organization. ACTA ACUST UNITED AC 2014; 5:5. [PMID: 25558290 PMCID: PMC4279058 DOI: 10.1186/s13322-014-0005-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 10/06/2014] [Indexed: 01/15/2023]
Abstract
BACKGROUND Fatty acid vesicles are an important part of protocell models currently studied. As protocells can be considered as pre-biological precursors of cells, the models try to contribute to a better understanding of the (cellular) origin of life and emphasize on 2 major aspects: compartmentalization and replication. It has been demonstrated that lipid-based membranes are amenable to growth and division (shell replication). Furthermore compartmentalization creates a unique micro-environment in which biomolecules can accumulate and reactions can occur. Pioneering research by Sugawara, Deamer, Luisi, Szostak and Rasmussen gave more insight in obtaining autocatalytic, self-replicating vesicles capable of containing and reproducing nucleic acid sequences (core replication). Linking both core and shell replication is a challenging feat requiring thorough understanding of membrane dynamics and (auto)catalytic systems. A possible solution may lie in a class of compounds called nucleolipids, who combine a nucleoside, nucleotide or nucleobase with a lipophilic moiety. Early contributions by the group of Yanagawa mentions the prebiotic significance (as a primitive helical template) arising from the supramolecular organization of these compounds. Further contributions, exploring the supramolecular scope regarding phospoliponucleosides (e.g. 5'-dioleylphosphatidyl derivatives of adenosine, uridine and cytidine) can be accounted to Baglioni, Luisi and Berti. This emerging field of amphiphiles is being investigated for surface behavior, supramolecular assembly and even drug ability. RESULTS A series of α/β-hydroxy fatty acids and α-amino fatty acids, covalently bound to nucleoside-5'-monophosphates via a hydroxyl or amino group on the fatty acid was examined for spontaneous self-assembly in spherical aggregates and their stability towards intramolecular cleavage. Staining the resulting hydrophobic aggregates with BODIPY-dyes followed by fluorescent microscopy gave several distinct images of vesicles varying from small, isolated spheres to higher order aggregates and large, multimicrometer sized particles. Other observations include rod-like vesicle precursors. NMR was used to assess the stability of a representative sample of nucleolipids. 1D 31P NMR revealed that β-hydroxy fatty acids containing nucleotides were pH-stable while the α-analogs are acid labile. Degradation products identified by [1H-31P] heteroTOCSY revealed that phosphoesters are cleaved between sugar and phosphate, while phosphoramidates are also cleaved at the lipid-phosphate bond. For the latter compounds, the ratio between both degradation pathways is influenced by the nucleobase moiety. However no oligomerization of nucleotides was observed; nor the formation of 3'-5'-cyclic nucleotides, possible intermediates for oligonucleotide synthesis. CONCLUSIONS The nucleolipids with a deoxyribose sugar moiety form small or large vesicles, rod-like structures, vesicle aggregates or large vesicles. Some of these aggregates can be considered as intermediate forms in vesicle formation or division. However, we could not observe nucleotide polymerization or cyclic nucleotide function of these nucleolipids, regardless of the sugar moiety that is investigated (deoxyribose, ribose, xylose). To unravel this observation, the chemical stability of the constructs was studied. While the nucleolipids containing β-hydroxy fatty acids are stable as well in base as in acid circumstances, others degraded in acidic conditions. Phosphoramidate nucleolipids hydrolyzed by P-N as well as P-O bond cleavage where the ratio between both pathways depends on the nucleobase. Diester constructs with an α-hydroxy stearic acid degraded exclusively by hydrolysis of the 5'-O-nucleoside ester bond. As the compounds are too stable and harsh conditions would destruct the material itself, more reactive species such as lipid imidazolates of nucleotides need to be synthesized to further analyze the potential polymerization process. Graphical AbstractVesicle information of a nucleolipid consisting of a nucleoside 5'-monophosphate and a α-hydroxy fatty acid.
Collapse
Affiliation(s)
- Kishore Lingam Gangadhara
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Leuven, Minderbroederstraat-10, 3000 Leuven, Belgium
| | - Puneet Srivastava
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Leuven, Minderbroederstraat-10, 3000 Leuven, Belgium
| | - Jef Rozenski
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Leuven, Minderbroederstraat-10, 3000 Leuven, Belgium
| | - Henri-Philippe Mattelaer
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Leuven, Minderbroederstraat-10, 3000 Leuven, Belgium ; Department of Chemistry, Molecular Design and Synthesis, KU Leuven, Leuven, Belgium
| | - Volker Leen
- Department of Chemistry, Molecular Design and Synthesis, KU Leuven, Leuven, Belgium
| | - Wim Dehaen
- Department of Chemistry, Molecular Design and Synthesis, KU Leuven, Leuven, Belgium
| | - Johan Hofkens
- Department of Chemistry, Molecular Imaging and Photonics, KU Leuven, Leuven, Belgium
| | - Eveline Lescrinier
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Leuven, Minderbroederstraat-10, 3000 Leuven, Belgium
| | - Piet Herdewijn
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Leuven, Minderbroederstraat-10, 3000 Leuven, Belgium
| |
Collapse
|