1
|
Ikehata H. Mechanistic considerations on the wavelength-dependent variations of UVR genotoxicity and mutagenesis in skin: the discrimination of UVA-signature from UV-signature mutation. Photochem Photobiol Sci 2018; 17:1861-1871. [PMID: 29850669 DOI: 10.1039/c7pp00360a] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Ultraviolet radiation (UVR) predominantly induces UV-signature mutations, C → T and CC → TT base substitutions at dipyrimidine sites, in the cellular and skin genome. I observed in our in vivo mutation studies of mouse skin that these UVR-specific mutations show a wavelength-dependent variation in their sequence-context preference. The C → T mutation occurs most frequently in the 5'-TCG-3' sequence regardless of the UVR wavelength, but is recovered more preferentially there as the wavelength increases, resulting in prominent occurrences exclusively in the TCG sequence in the UVA wavelength range, which I will designate as a "UVA signature" in this review. The preference of the UVB-induced C → T mutation for the sequence contexts shows a mixed pattern of UVC- and UVA-induced mutations, and a similar pattern is also observed for natural sunlight, in which UVB is the most genotoxic component. In addition, the CC → TT mutation hardly occurs at UVA1 wavelengths, although it is detected rarely but constantly in the UVC and UVB ranges. This wavelength-dependent variation in the sequence-context preference of the UVR-specific mutations could be explained by two different photochemical mechanisms of cyclobutane pyrimidine dimer (CPD) formation. The UV-signature mutations observed in the UVC and UVB ranges are known to be caused mainly by CPDs produced through the conventional singlet/triplet excitation of pyrimidine bases after the direct absorption of the UVC/UVB photon energy in those bases. On the other hand, a novel photochemical mechanism through the direct absorption of the UVR energy to double-stranded DNA, which is called "collective excitation", has been proposed for the UVA-induced CPD formation. The UVA photons directly absorbed by DNA produce CPDs with a sequence context preference different from that observed for CPDs caused by the UVC/UVB-mediated singlet/triplet excitation, causing CPD formation preferentially at thymine-containing dipyrimidine sites and probably also preferably at methyl CpG-associated dipyrimidine sites, which include the TCG sequence. In this review, I present a mechanistic consideration on the wavelength-dependent variation of the sequence context preference of the UVR-specific mutations and rationalize the proposition of the UVA-signature mutation, in addition to the UV-signature mutation.
Collapse
Affiliation(s)
- Hironobu Ikehata
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan.
| |
Collapse
|
2
|
K-ras oncogene mutation in pterygium. Eye (Lond) 2016; 31:491-498. [PMID: 27834959 DOI: 10.1038/eye.2016.254] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 09/09/2016] [Indexed: 01/20/2023] Open
Abstract
PurposePterygium is claimed to be a benign proliferation triggered by prolonged exposure to ultraviolet radiation. The frequency of K-ras oncogene mutation, which is among the initial mutations in tumorigenesis, is evaluated in this study.Patients and methodsIn this prospective randomized clinical, trial pterygium tissues and normal conjunctiva tissue specimens are obtained from the superotemporal quadrant of patients who underwent primary pterygium excision with autograft transplantation. DNA extraction from tissues was performed using the QIAamp DNA FFPE tissue kit. A PCR reaction was performed to amplify sequences containing codons 12, 13, and 61 of the K-ras gene in DNA. These PCR products then underwent the 'pyrosequencing' procedure for mutations at these codons.ResultsPterygium and normal conjunctival tissue samples of 25 patients (10 females, 15 males) were evaluated in the study. The mean age of the patients was 54.54±13.13 years. Genetic analysis revealed no K-ras mutations in normal conjunctival tissues, whereas pterygium tissues of the same cases demonstrated mutation at codon 12 in one case and mutations at codon 61 in seven cases, which was statistically significant (P<0.05). The point missense mutations at codon 61 were glutamine to arginine (Glu61Arg CAA>CGA) in four cases and glutamine to leucine (Glu61Leu CAA>CTA) in three cases.ConclusionThe significantly higher frequency of codon 61 mutation of the ras oncogene in primary and bilateral pterygium specimens compared with normal conjunctiva supports the tumoral origin of pterygium, and thus set the stage for research into a targeted therapy for pterygium with better outcomes than surgical excision.
Collapse
|
3
|
Abstract
Mutations in the lambda repressor gene cI (710 bp) were induced by 60Co-gamma radiation in dissolved lambda phage DNA. After in vitro DNA packaging to lambda phage particles (pack phage) and phenotypic expression of the mutants, DNA was sequenced directly. Two-thirds of mutations were located in the amino terminus region of the gene without any signs of hotspots. Changes consisted of (+1) insertions (25%) and base substitutions (75%). Transitions were exclusively G/C to A/T. Transversions were mostly G/C to C/G and few G/C to T/A. We did not find A/T to T/A transversions, A/T to G/C transitions, deletions and gross rearrangements. In most of the base substitutions a pre-existing base pair had been replaced by an A/T pair; this might come from 'non-instructional sites' like abasic sites. Several mechanisms for base substitutions are considered.
Collapse
Affiliation(s)
- H Bertram
- GSF-Forschungszentrum, Institut für Strahlenbiologie, Neuherberg, Germany
| | | |
Collapse
|
4
|
Hamamoto A, Mori M, Takahashi A, Nakano M, Wakikawa N, Akutagawa M, Ikehara T, Nakaya Y, Kinouchi Y. New water disinfection system using UVA light-emitting diodes. J Appl Microbiol 2007; 103:2291-8. [DOI: 10.1111/j.1365-2672.2007.03464.x] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
Trevithick-Sutton CC, Mikelsons L, Filippenko V, Scaiano JC. Effect of UVC-Induced Damage to DNA on the Intercalation of Thiazole Orange: A Convenient Reporter for DNA Damage†. Photochem Photobiol 2007; 83:556-62. [PMID: 17007562 DOI: 10.1562/2006-07-21-ra-976] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We report a novel method of identifying damage to DNA leading to the loss of intercalation sites. Thiazole orange (TO), an intercalating cyanine dye, fluoresces strongly when intercalated in DNA, but not free in solution. Upon UVC-induced damage to DNA, the change in TO fluorescence is greater than the change in any of the other spectral or biochemical indicators (absorbance, circular dichroism and agarose gel electrophoresis), thus providing a fast screening method to identify damage to DNA. The method is geared toward high levels of damage, such as those that may result during radiation treatment of food products.
Collapse
|
6
|
Yamada M, Udono MU, Hori M, Hirose R, Sato S, Mori T, Nikaido O. Aged human skin removes UVB-induced pyrimidine dimers from the epidermis more slowly than younger adult skin in vivo. Arch Dermatol Res 2005; 297:294-302. [PMID: 16328344 DOI: 10.1007/s00403-005-0618-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2005] [Revised: 08/01/2005] [Accepted: 10/04/2005] [Indexed: 10/25/2022]
Abstract
Although many studies have been reported on the repair of ultraviolet light (UV)-induced cyclobutane-type pyrimidine dimers (CPDs) in DNA, the effects of aging on the removal of UV-induced CPDs from the human skin epidermis in vivo remains uncertain. Therefore, we employed immunoblotting and immunohistochemical methods using monoclonal antibodies (TDM-2) to CPDs to study age-related differences in the time required for the in vivo removal of UVB-induced CPDs. The flexure surfaces of the upper arms of five young men were exposed to UVB light at a fluence of 35 and 700 mJ/cm2, and four older men were also irradiated with the same doses of UVB mentioned above. Each area of skin was biopsied before and immediately after irradiation, and at 4, 24 h, 2 and 4 days after irradiation in the younger group; and before and immediately after irradiation, and at 24 h, 4, 7, and 14 days after irradiation in the older group. A total of 108 DNA samples were taken from the epidermis of 108 biopsied specimens. These samples were immunoblotted using TDM-2 and the intensities of the immunoprecipitates were measured by photodensitometer. Our results show that the CPDs had been removed from the epidermis at 4 days after irradiation at either dose in the younger group, and between 7-14 days after irradiation in the aged group. The results of our immunohistochemical studies were consistent with those of our immunoblotting studies, and indicated that basal cells repair CPDs more quickly than prickle cells in the epidermis except the amounts at 24 h after UVB irradiation, and that the CPDs were removed by epidermal turnover after the nucleotide excision repair (NER). Our results showed age-associated decline in the NER in vivo, indicating high risk of UV-associated skin cancer.
Collapse
Affiliation(s)
- Masao Yamada
- Department of Dermatology, Nagasaki University School of Medicine, 1-7-1, Sakamoto, Nagasaki, 852-8134, Japan
| | | | | | | | | | | | | |
Collapse
|
7
|
Yoon JH, Lee CS, O'Connor TR, Yasui A, Pfeifer GP. The DNA damage spectrum produced by simulated sunlight. J Mol Biol 2000; 299:681-93. [PMID: 10835277 DOI: 10.1006/jmbi.2000.3771] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The mutagenic effects of ultraviolet and solar irradiation are thought to be due to the formation of DNA photoproducts, most notably cyclobutane pyrimidine dimers (CPDs) and pyrimidine (6-4) pyrimidone photoproducts ((6-4)PPs). Experimental systems for determining the levels and sequence dependence of photoproduct formation in DNA have often used high doses of short-wave (UVC) irradiation. We have re-assessed this issue by using DNA sequencing technologies and different doses of UVC as well as more physiologically relevant doses of solar irradiation emitted from a solar UV simulator. It has been questioned whether hot alkali treatment can detect (6-4)PPs at all sequence positions. With high UVC doses, the sequence distribution of (6-4)PPs was virtually identical when hot alkali or UV damage endonuclease (UVDE) were used for detection, which appears to validate both methods. The (6-4)PPs form at 5'-TpC and 5'CpC sequences but very low levels are seen at all other dipyrimidines including 5'-TpT. Contrary to expectation, we find that (6-4) photoproducts form at almost undetectable levels under conditions of irradiation for up to five hours with the solar UV simulator. The same treatment produces high levels of CPDs. In addition, DNA glycosylases, which recognize oxidized and ring-opened bases, did not produce significant cleavage of sunlight-irradiated DNA. From these data, we conclude that cyclobutane pyrimidine dimers are at least 20 to 40 times more frequent than any other DNA photoproduct when DNA or cells are irradiated with simulated sunlight.
Collapse
Affiliation(s)
- J H Yoon
- Department of Biology, Beckman Research Institute of the City of Hope, Duarte, CA, 91010, USA
| | | | | | | | | |
Collapse
|
8
|
Affiliation(s)
- G P Pfeifer
- Department of Biology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA.
| | | | | |
Collapse
|
9
|
Abstract
The occurrence of tumor-specific mutational spectra in the p53 mutation database provides indirect evidence that implicates certain exogenous and possibly endogenous mutagenic events in human carcinogenesis. In some cases, the distribution of DNA damage along the p53 gene caused by environmental carcinogens can be correlated with the mutational spectra, i.e. hotspots and types of mutations of certain cancers, most notably for nonmelanoma skin cancers and lung cancers in smokers. This concept has been validated by experiments with sunlight and cigarette smoke components representing the polycyclic aromatic hydrocarbon class of carcinogens. A disproportionally high number of mutations in p53 (and other genes) are found at methylated CpG dinucleotides. These sequences are particularly prone to mutagenesis involving endogenous events as well as modification by exogenous carcinogens.
Collapse
Affiliation(s)
- G P Pfeifer
- Department of Biology, Beckman Research Institute of the City of Hope, 1450 East Duarte Road, Duarte, CA 91010, USA.
| |
Collapse
|
10
|
Douki T, Court M, Sauvaigo S, Odin F, Cadet J. Formation of the main UV-induced thymine dimeric lesions within isolated and cellular DNA as measured by high performance liquid chromatography-tandem mass spectrometry. J Biol Chem 2000; 275:11678-85. [PMID: 10766787 DOI: 10.1074/jbc.275.16.11678] [Citation(s) in RCA: 178] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
UVB radiation-induced formation of dimeric photoproducts at bipyrimidine sites within DNA has been unambiguously associated with the lethal and mutagenic properties of sunlight. The main lesions include the cyclobutane pyrimidine dimers and the pyrimidine (6-4) pyrimidone adducts. The latter compounds have been shown in model systems to be converted into their Dewar valence isomers upon exposure to UVB light. A new direct assay, based on the use of liquid chromatography coupled to tandem mass spectrometry, is now available to simultaneously detect each of the thymine photoproducts. It was applied to the determination of the yields of formation of the thymine lesions within both isolated and cellular DNA exposed to either UVC or UVB radiation. The cis-syn cyclobutane thymine dimer was found to be the major photoproduct within cellular DNA, whereas the related (6-4) adduct was produced in an approximately 8-fold lower yield. Interestingly, the corresponding Dewar valence isomer could not be detected upon exposure of human cells to biologically relevant doses of UVB radiation.
Collapse
Affiliation(s)
- T Douki
- Commissariat à l'Energic Aromique/Grenoble, DRFMC/Service de Chimie Inorganique et Biologique, Laboratoire Lésions des Acides Nucléiques, 17 Ave. des Martyrs, F-38054 Grenoble, Cedex 9, France
| | | | | | | | | |
Collapse
|
11
|
Abstract
In human skin cancers, more than 30 % of all mutations in the p53 gene are transitions at dipyrimidines within the sequence context CpG, i.e. 5'-TCG and 5'-CCG, found at several mutational hotspots. Since CpGs are methylated along the p53 gene, these mutations may be derived from solar UV-induced pyrimidine dimers forming at sequences that contain 5-methylcytosine. In Xorder to define the contribution of 5-methylcytosine to sunlight-induced mutations, we have used mouse fibroblasts containing the CpG-methylated lacI transgene as a mutational target. We sequenced 182 UVC (254 nm UV)-induced mutations and 170 mutations induced by a solar UV simulator, along with 75 mutations in untreated cells. Only a few of the mutations in untreated cells were transitions at dipyrimidines, but more than 95% of the UVC and solar irradiation-induced mutations were targeted to dipyrimidine sites, the majority being transitions. After UVC irradiation, 6% of the base substitutions were at dipyrimidines containing 5-methylcytosine and only 2.2% of all mutations were transitions within this sequence context. However, 24% of the solar light-induced mutations were at dipyrimidines that contain 5-methylcytosine and most of them were transitions. Two sunlight-induced mutational hotspots at methylated CpGs correlated with sequences that form the highest levels of cyclobutane pyrimidine dimers after irradiation with sunlight but not with UVC. The data indicate that dipyrimidines that contain 5-methylcytosine are preferential targets for sunlight-induced mutagenesis in cultured mammalian cells, thus explaining the large proportion of p53 mutations at such sites in skin tumors in vivo.
Collapse
Affiliation(s)
- Y H You
- Department of Biology, Beckman Research Institute of the City of Hope, Duarte, CA, 91010, USA
| | | | | |
Collapse
|
12
|
Tu Y, Dammann R, Pfeifer GP. Sequence and time-dependent deamination of cytosine bases in UVB-induced cyclobutane pyrimidine dimers in vivo. J Mol Biol 1998; 284:297-311. [PMID: 9813119 DOI: 10.1006/jmbi.1998.2176] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The mutational specificity of UV-light is characterized by an abundance of C to T transition mutations at dipyrimidines containing cytosine or 5-methylcytosine. A significant percentage of these mutations are CC to TT double transitions. Of the major types of UV-induced DNA lesions, the cis-syn cyclobutane pyrimidine dimers (CPDs) are thought to be the most mutagenic lesions, at least in mammalian cells. It has been proposed that the CPDs become mutagenic perhaps only after cytosine bases within these dimers deaminate to uracil and the resulting U-containing photolesions are correctly bypassed by DNA polymerases. In order to assess the significance of this proposed mutagenic mechanism, we have developed two methods to specifically measure deaminated CPDs in UV-irradiated human cells or DNA. The first method is based on enzymatic photoreversal of CPDs, followed by cleavage of the DNA with uracil DNA glycosylase, an AP lyase activity, and ligation-mediated PCR to map the resulting strand breaks. The second method, which can be used to detect double deamination events (CC to UU), is PCR amplification of photolyase-treated DNA using primers complemetary to the deaminated sequences. We have measured deamination events in the human p53 gene, which contains a large percentage of C to T transitions in skin cancers. The deamination reactions are specific for cytosine within CPDs, are negligible immediately after irradiation, and are time-dependent and DNA sequence context-dependent. Twenty four hours after irradiation of human fibroblasts with UVB light, between 10 and 60% of most CPD signals are converted to the deaminated form, depending on the sequence. Significant deamination occurs at skin cancer mutation sites in the p53 gene. Double deamination also occurs and this reaction can involve dimers containing 5-methylcytosine or cytosine. These double events are expected to occur more frequently in cells with a DNA repair defect because there is more time for deamination in unrepaired lesions. This may explain the relatively high frequency of CC to TT mutations in skin cancers from xeroderma pigmentosum patients. In summary, these novel detection techniques demonstrate that deamination of cytosine in pyrimidine dimers is a significant event that most likely contributes to the mutational specificity of UVB irradiation in human cells.
Collapse
Affiliation(s)
- Y Tu
- Department of Biology, Beckman Research Institute of the City of Hope, Duarte, CA, 91010, USA
| | | | | |
Collapse
|
13
|
Pfeifer GP, Denissenko MF. Formation and repair of DNA lesions in the p53 gene: relation to cancer mutations? ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 1998; 31:197-205. [PMID: 9585258 DOI: 10.1002/(sici)1098-2280(1998)31:3<197::aid-em1>3.0.co;2-i] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The number and diversity of mutations in the p53 mutation data base provides indirect evidence that implicates environmental mutagens in human carcinogenesis. The p53 gene has a large mutational target size; more than 280 out of 393 amino acids are found mutated in tumors. We argue that there is possibly a limited involvement of selection for specific mutations in the central domain of the protein, and that the distribution of DNA damage along the p53 gene caused by environmental carcinogens can be correlated with the mutational spectra, i.e., hotspots and types of mutations, of certain cancers. This concept has been validated by experiments with sunlight and the cigarette smoke component benzo[a]pyrene representing the polycyclic aromatic hydrocarbon class of carcinogens. The damage/repair data obtained for these mutagens can predict certain parameters of the mutational spectra including the distribution of hotspots in human nonmelanoma skin cancers and lung cancers from smokers. Future studies with suspected mutagens may help to implicate causative agents involved in other cancers, such as colon and breast cancer, where the exact carcinogen has not yet been identified but an environmental factor is suspected.
Collapse
Affiliation(s)
- G P Pfeifer
- Department of Biology, Beckman Research Institute of the City of Hope, Duarte, California 91010, USA.
| | | |
Collapse
|
14
|
Abstract
G x C-->A x T transitions within T-C or C-C bipyrimidine sequences are by far the most frequent class of mutation induced by 254-nm UV irradiation in most genes and species investigated, but the reason for the high degree of mutability and specificity at these sites is uncertain. Some data implicate the deamination of cytosine to uracil as a possible cause, but other results appear to indicate that the rate of deamination is too low for this to be significant in Escherichia coli. If deamination is not the cause, the high degree of mutability must presumably reflect the inherent properties of T-C and C-C dimers. We investigated this question by transfecting excision-deficient and excision-proficient strains of E. coli with single-stranded vectors that carried a site-specific cis-syn T-C cyclobutane dimer and by analyzing the nucleotide sequences of replicated vector products. We found that replication past the T-C dimer, like replication past its T-T and U-U counterparts, is in fact >95% accurate and that the frequencies of bypass are also very similar for these photoproducts. Since the T-C dimer appears to be only weakly mutagenic, the high frequency of UV-induced mutations at T-C sites presumably depends on some other process, such as deamination, although the mechanism remains to be established.
Collapse
Affiliation(s)
- M J Horsfall
- Department of Biophysics, University of Rochester School of Medicine and Dentistry, New York 14642, USA
| | | | | |
Collapse
|
15
|
Pfeifer GP. Formation and processing of UV photoproducts: effects of DNA sequence and chromatin environment. Photochem Photobiol 1997; 65:270-83. [PMID: 9066304 DOI: 10.1111/j.1751-1097.1997.tb08560.x] [Citation(s) in RCA: 227] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Cyclobutane pyrimidine dimers and (6-4) photoproducts are the two major classes of lesions produced in DNA by UVB and UVC irradiation. Their distribution along genes is nucleotide sequence-dependent. In vivo, the frequency of these lesions at specific sites is modulated by nucleosomes and other DNA binding proteins. Repair of UV photoproducts is dependent on the transcriptional status of the sequences to be repaired and on the chromatin environment. The formation of DNA photolesions by UV light is responsible for the induction of mutations and the development of skin cancer. To understand the mechanisms of UV mutagenesis, it is important to know how these lesions are formed, by which cellular pathways they are repaired and how they are dealt with by DNA polymerases.
Collapse
Affiliation(s)
- G P Pfeifer
- Department of Biology, Beckman Institute of the City of Hope, Duarte, CA 91010, USA.
| |
Collapse
|
16
|
Akiyama N, Alexander D, Aoki Y, Noda M. Characterization of mutations induced by 300 and 320 nm UV radiation in a rat fibroblast cell line. Mutat Res 1996; 372:119-31. [PMID: 9003539 DOI: 10.1016/s0027-5107(96)00179-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The cytotoxic and mutagenic activities of monochromatic ultraviolet light (UV) at four wavelengths (254, 290, 300 and 320 nm) were determined using a rat fibroblast cell line CREF stably infected with a retroviral vector carrying the neo and HSV-tk markers. In this system, mutations can be positively detected as acyclovir-resistant colonies. Although the action spectra for these activities closely fit some of the previously reported spectra for photochemical DNA modifications, erythema, cell killing and mouse skin carcinogenesis, they diverge at 320 nm from the absorption spectrum for DNA and the action spectrum for bacterial inactivation and mutagenesis. Structural comparison of the HSV-tk mutants detected after irradiation with 300 and 320 nm UV revealed (1) CC dimers and C oligomers as predominant targets at both wavelengths; (2) increased incidence of relatively large deletions at 300 nm; and (3) greatly increased frequency of tandem double mutations at both wavelengths and of clustered multiple mutations at 320 nm. These results suggest the involvement of distinct mechanisms specifically operating, or becoming evident, in UV-mediated mutagenesis at these different wavelengths in mammalian cells.
Collapse
Affiliation(s)
- N Akiyama
- Department of Molecular Oncology, Kyoto University Graduate School of Medicine, Japan
| | | | | | | |
Collapse
|
17
|
Murata S, Matsuzaki T, Takai S, Yaoita H, Noda M. A new retroviral vector for detecting mutations and chromosomal instability in mammalian cells. Mutat Res 1995; 334:375-83. [PMID: 7753101 DOI: 10.1016/0165-1161(95)90075-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A retroviral vector carrying both forward (neo) and backward (herpes simplex virus thymidine kinase or HSV-TK gene) selection markers was constructed as a substrate for mutational assay in mammalian cells. The cells infected with this virus are first selected with G418, mutagenized and then selected with the anti-herpes drug acyclovir (ACV). Since HSV-TK, but not the host TK, is capable of converting ACV to a toxic metabolite, cells retaining the intact HSV-TK gene fail to survive, while the cells carrying a mutated HSV-TK gene or which have lost the gene can form colonies in the presence of ACV, making it possible to detect the genetic defects in a positive manner. It is also possible to discriminate between small mutations and large deletions by checking the presence of the linked marker, neo. As a model experiment, we prepared an uncloned pool of rat fibroblast cells (CREF) infected with this virus and irradiated them with increasing doses of ultraviolet light. Dose-dependent increases in the number of ACV-resistant colonies were observed. Structural analysis of the HSV-TK gene in these clones revealed point mutations or small deletions in the majority of the cases. Since it requires no pre-existing genetic markers in the host cells, this system may be used for a wide variety of mammalian cells and provides a useful tool to assess both their susceptibility to various mutagens and their genomic instability.
Collapse
Affiliation(s)
- S Murata
- Department of Dermatology, Jichi Medical School, Tochigi, Japan
| | | | | | | | | |
Collapse
|
18
|
Lebbar S, Karibian D, Deprun C, Caroff M. Distribution of lipid A species between long and short chain lipopolysaccharides isolated from Salmonella, Yersinia, and Escherichia as seen by 252Cf plasma desorption mass spectrometry. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)31777-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
19
|
Vreeswijk M, van Hoffen A, Westland B, Vrieling H, van Zeeland A, Mullenders L. Analysis of repair of cyclobutane pyrimidine dimers and pyrimidine 6-4 pyrimidone photoproducts in transcriptionally active and inactive genes in Chinese hamster cells. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)31774-5] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
20
|
Reid TM, Feig DI, Loeb LA. Mutagenesis by metal-induced oxygen radicals. ENVIRONMENTAL HEALTH PERSPECTIVES 1994; 102 Suppl 3:57-61. [PMID: 7843138 PMCID: PMC1567416 DOI: 10.1289/ehp.94102s357] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
To assess the contribution of reactive oxygen species (ROS) to metal-induced mutagenesis, we have determined the spectrum of mutations in the lacZ alpha gene after exposure of M13mp2 DNA to Fe2+, Cu2+, and Ni2+. With iron and copper ions, mutations are clustered and are predominantly single-base substitutions. Fe, Cu, and phorbol ester-stimulated neutrophils also produced tandem double CC-->TT mutations. This mutation may provide a marker for the role of oxidative damage in carcinogenesis. Mutagenesis by Ni2+ required the complexing of the metal to a tripeptide and the addition of H2O2. To assess the contribution of ROS in mammalian cells, we determined the spectrum of mutations produced when purified DNA polymerases-alpha and -beta synthesized DNA using a template that had been damaged by ROS. The mutation spectra produced by the two polymerases indicates that these enzymes substitute different nucleotides opposite the same lesions.
Collapse
Affiliation(s)
- T M Reid
- Joseph Gottstein Memorial Cancer Research Laboratory, Department of Pathology, University of Washington School of Medicine, Seattle 98195
| | | | | |
Collapse
|
21
|
Havre PA, Gunther EJ, Gasparro FP, Glazer PM. Targeted mutagenesis of DNA using triple helix-forming oligonucleotides linked to psoralen. Proc Natl Acad Sci U S A 1993; 90:7879-83. [PMID: 8356097 PMCID: PMC47246 DOI: 10.1073/pnas.90.16.7879] [Citation(s) in RCA: 108] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Oligonucleotides can bind as third strands of DNA in a sequence-specific manner in the major groove in homopurine/homopyrimidine stretches in duplex DNA. Here we use a 10-base triplex-forming oligonucleotide linked to a psoralen derivative at its 5' end to achieve site-specific, targeted mutagenesis in an intact, double-stranded lambda phage genome. Site-specific triplex formation delivers the psoralen to the targeted site in the lambda DNA, and photoactivation of the psoralen produces adducts and thereby mutations at that site. Mutations in the targeted gene were at least 100-fold more frequent than those in a nontargeted gene, and sequence analysis of mutations in the targeted gene showed that 96% were in the targeted region and 56% were found to be the same T.A to A.T transversion precisely at the targeted base pair. The ability to reproducibly and predictably target mutations to sites in intact duplex DNA by using modified oligonucleotides may prove useful as a technique for gene therapy, as an approach to antiviral therapeutics, and as a tool for genetic engineering.
Collapse
Affiliation(s)
- P A Havre
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06510
| | | | | | | |
Collapse
|
22
|
Abstract
Ultraviolet irradiation of DNA in vitro results in the production of a wide variety of pyrimidine base alterations, including cytosine hydrates. Enzymes that initiate the repair of monomeric pyrimidine damage have been identified in both bacterial and mammalian systems; however, the in vivo formation and repair of cytosine photohydrates has not been demonstrated in cellular DNA. Using Escherichia coli endonuclease III as a damage-specific probe, we have shown that ring-saturated pyrimidines are formed in cultured human cells by irradiation with broad-spectrum UV light. In addition, these types of base damage are removed from the DNA of human lymphoblasts within 5 h following the irradiation. Analysis of the action spectrum for the formation of cytosine hydrates in DNA reveals that these photoproducts are formed most efficiently by irradiation in the range of 255-265 nm light, coinciding with the wavelengths that are maximally absorbed by the DNA bases.
Collapse
Affiliation(s)
- R B Weiss
- Department of Biology, West Virginia University, Morgantown 26506
| | | |
Collapse
|
23
|
Kamiya H, Murata N, Murata T, Iwai S, Matsukage A, Masutani C, Hanaoka F, Ohtsuka E. Cyclobutane thymine dimers in a ras proto-oncogene hot spot activate the gene by point mutation. Nucleic Acids Res 1993; 21:2355-61. [PMID: 8389438 PMCID: PMC309532 DOI: 10.1093/nar/21.10.2355] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
ras proto-oncogenes with a cyclobutane-type thymine photodimer (cis-syn or trans-syn isomer) were constructed by replacement of a portion of the gene with a chemically synthesized fragment. When the genes were transfected by the calcium phosphate method into mouse NIH3T3 cells, they induced focus-formation, indicating that both photoproducts were mutagenic in mammalian cells. Sequence analysis of the ras gene fragments derived from the transformed cells showed that the genes were activated by a point mutation. The mutations detected most frequently were 3'-T-->A for the cis-syn isomer and 5'-T-->A for the trans-syn isomer. In contrast, a different trend of mutations was observed when a primer on a DNA template with a cis-syn dimer was extended in vitro by either DNA polymerase beta or alpha.
Collapse
Affiliation(s)
- H Kamiya
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Reid TM, Loeb LA. Tandem double CC-->TT mutations are produced by reactive oxygen species. Proc Natl Acad Sci U S A 1993; 90:3904-7. [PMID: 8483909 PMCID: PMC46414 DOI: 10.1073/pnas.90.9.3904] [Citation(s) in RCA: 89] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Oxidative damage to DNA is mutagenic and thus may play a role in carcinogenesis. Because of the large number of different DNA lesions formed by oxidative species, no genetic alteration so far identified is exclusively associated with oxygen damage. Tandem double CC-->TT mutations are known to occur via UV damage to DNA and are thought to be a specific indicator of UV exposure. Using a sensitive reversion assay that can detect both single and double mutations within the same codon of the M13-encoded lacZ alpha gene, we show that treatments that produce reactive oxygen species can also produce tandem double CC-->TT mutations. The frequency at which these mutations occur is less than that for single base mutations by a factor of approximately 30. The induction of these mutations is inhibited by treatment that scavenges hydroxyl radicals. This unique mutation provides a marker of oxygen free radical-induced mutagenesis in cells that are not exposed to UV-irradiation and an indicator for assessing the involvement of oxidative damage to DNA in aging and tumor progression.
Collapse
Affiliation(s)
- T M Reid
- Joseph Gottstein Memorial Cancer Research Laboratory, Department of Pathology, University of Washington School of Medicine, Seattle 98195
| | | |
Collapse
|
25
|
Lawrence CW, Gibbs PE, Borden A, Horsfall MJ, Kilbey BJ. Mutagenesis induced by single UV photoproducts in E. coli and yeast. Mutat Res 1993; 299:157-63. [PMID: 7683084 DOI: 10.1016/0165-1218(93)90093-s] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Data from experiments with single-stranded vectors that carry a site-specific cyclobutane dimer, pyrimidine (6-4) pyrimidone adduct, or abasic lesion, replicated in either E. coli or, in some cases, bakers' yeast, Saccharomyces cerevisiae, are used to examine two questions: (i) what factors are responsible for the lesion's mutagenicity? and (ii) what are the relative contributions of different photoproducts to the spectrum of UV-induced mutations? With respect to the first question, we suggest that the structure of the mutagen-modified template itself largely determines the kinds of mutations induced, but the relative frequencies of these mutations, the error frequency, and the bypass frequency are strongly dependent on the particular organism studied. With respect to the second question, we suggest that cyclobutane dimers may be responsible for most of the mutations in slowly replicating genomes because of the deamination of cytosine, and that the T-T, and to a lesser extent the T-C, (6-4) adducts play a greater role in the UV mutagenesis of quickly replicating viruses, such as M13 and lambda phage.
Collapse
Affiliation(s)
- C W Lawrence
- Department of Biophysics, University of Rochester School of Medicine and Dentistry, NY 14642
| | | | | | | | | |
Collapse
|
26
|
Jiang N, Taylor JS. In vivo evidence that UV-induced C-->T mutations at dipyrimidine sites could result from the replicative bypass of cis-syn cyclobutane dimers or their deamination products. Biochemistry 1993; 32:472-81. [PMID: 8422356 DOI: 10.1021/bi00053a011] [Citation(s) in RCA: 122] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The major mutations induced by UV light are C-->T transitions at dipyrimidines and arise from the incorporation of A opposite the C of dipyrimidine photoproducts. The incorporation of A has most often been explained by the known preference of a polymerase to do so opposite noninstructional DNA damage such as an abasic site (A rule). There are also mechanisms that suppose, however, that cis-syn dipyrimidine photodimers are instructional. In one such mechanism (tautomer bypass), the incorporation of A is directed by the tautomer of a C of a dimer that is equivalent in base-pairing properties to U [Person et al. (1974) Genetics 78, 1035-1049]. In another mechanism (deamination bypass), the incorporation of A is directed by a U of a dimer that results from the deamination of the C of a dimer [Taylor & O'Day (1990) Biochemistry 29, 1624-1632]. The viability of these mechanisms was tested by obtaining the mutation spectrum of a TU dimer in Escherichia coli by application of a standard method for site-directed mutagenesis. To this end, a 41-mer containing a site-specific TU dimer was constructed via ligation of a dimer-containing decamer that was produced by triplet-sensitized irradiation and used to prime DNA synthesis on a uracil-containing (+) strand of an M13 clone containing a double mismatch opposite the dimer. The reaction mixture was used to transfect a uracil glycosylase proficient, photoproduct repair deficient E. coli host, and all progeny phage weakly hybridizing to the parental (+) or (-) strands were sequenced. Under non-SOS conditions the TU dimer almost completely blocked replication, while under SOS conditions it directed the incorporation of two As with much higher specificity (96%) than would an abasic site. The implications of these results to the mechanism of the UV-induced TC-->TT mutation, and by extension to the CT-->TT, CC-->TC, CC-->CT, and the tandem CC-->TT mutations, are discussed.
Collapse
Affiliation(s)
- N Jiang
- Department of Chemistry, Washington University, St. Louis, Missouri 63130
| | | |
Collapse
|
27
|
Sage E. Distribution and repair of photolesions in DNA: genetic consequences and the role of sequence context. Photochem Photobiol 1993; 57:163-74. [PMID: 8389052 DOI: 10.1111/j.1751-1097.1993.tb02273.x] [Citation(s) in RCA: 192] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- E Sage
- Institut Curie, Section de Biologie, CNRS URA 1292, Paris, France
| |
Collapse
|
28
|
Livneh Z, Cohen-Fix O, Skaliter R, Elizur T. Replication of damaged DNA and the molecular mechanism of ultraviolet light mutagenesis. Crit Rev Biochem Mol Biol 1993; 28:465-513. [PMID: 8299359 DOI: 10.3109/10409239309085136] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
On UV irradiation of Escherichia coli cells, DNA replication is transiently arrested to allow removal of DNA damage by DNA repair mechanisms. This is followed by a resumption of DNA replication, a major recovery function whose mechanism is poorly understood. During the post-UV irradiation period the SOS stress response is induced, giving rise to a multiplicity of phenomena, including UV mutagenesis. The prevailing model is that UV mutagenesis occurs by the filling in of single-stranded DNA gaps present opposite UV lesions in the irradiated chromosome. These gaps can be formed by the activity of DNA replication or repair on the damaged DNA. The gap filling involves polymerization through UV lesions (also termed bypass synthesis or error-prone repair) by DNA polymerase III. The primary source of mutations is the incorporation of incorrect nucleotides opposite lesions. UV mutagenesis is a genetically regulated process, and it requires the SOS-inducible proteins RecA, UmuD, and UmuC. It may represent a minor repair pathway or a genetic program to accelerate evolution of cells under environmental stress conditions.
Collapse
Affiliation(s)
- Z Livneh
- Department of Biochemistry, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | |
Collapse
|
29
|
Sage E, Cramb E, Glickman BW. The distribution of UV damage in the lacI gene of Escherichia coli: correlation with mutation spectrum. Mutat Res 1992; 269:285-99. [PMID: 1383713 DOI: 10.1016/0027-5107(92)90211-j] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We have determined the UV (254 nm) damage distribution in the transcribed and non-transcribed strands of the i-d region of the Escherichia coli lacI gene. The locations of replication blocking lesions were revealed as termination sites of T7 DNA polymerase and/or T4 DNA polymerase 3'-5' exonuclease. Termination products, i.e. both cyclobutane pyrimidine dimers and 6-4 photoproducts, were resolved and analysed on an automated DNA sequencer. These two major photoproducts are not randomly distributed along the gene, but occur in clusters, in longer runs of pyrimidines. We also have compared the UV damage distribution with the previously reported UV-induced base substitutions in the same region. Mutational hotspots, in both repair-deficient and repair-proficient strains of E. coli, are all located in stretches of pyrimidines, and thus correlate well with the distribution of photolesions. One mutational hotspot in the wild-type strain may reflect the high frequency of closely opposed lesions. To explain the other mutational hotspots, we propose that the repair of UV lesions is impaired due to the local conformation of the DNA, which might deviate from the B-form. This hypothesis is supported by the excess of mutational hotspots in pyrimidine runs in the Uvr+ strain compared to Uvr-. Runs of pyrimidines thus represent both damage- and mutation-prone sequences following UV treatment.
Collapse
Affiliation(s)
- E Sage
- York University, Department of Biology, Ont., Canada
| | | | | |
Collapse
|
30
|
Hori M, Udono MU, Yoshida H, Urata Y, Koike K, Ihara M. Immunochemical detection of unrepaired cyclobutane-type pyrimidine dimers of DNAs extracted from human skin tumours. Arch Dermatol Res 1992; 284:283-9. [PMID: 1444577 DOI: 10.1007/bf00372582] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Unrepaired cyclobutane-type pyrimidine dimers of DNA extracted from human skin tumours were examined by an immunoblotting method using polyclonal antibodies raised against UV-irradiated calf thymus DNA. A total of 40 DNA samples extracted from seven SCC lesions, two AK lesions, two lymphomas, one basal cell epithelioma, one eccrine poroma, one neurofibroma of Recklinghausen's disease, on verruca vulgaris, four femoral normal skins and white blood cells of 21 humans were studied by immunoblotting using this antibody. Two of the 40 DNAs examined, one from facial actinic keratosis (AK) and one from a squamous cell carcinoma (SCC) which developed form facial AK formed immunoprecipitates. It was found, using photoreactivation enzyme plus visible light, that both immunoprecipitates were cyclobutane-type pyrimidine dimers. In addition, immunofluorescent studies on AK tissue were positive in an immunoblotting assay and revealed that the unremoved photodamage in DNA remained in the nucleus of AK cells. These findings indicate that these tumour cells may be deficient in the enzyme function for repairing photoproduct damage. The unrepaired cyclobutane-type pyrimidine dimer in AK cells might reflect the genetic process in multistage carcinogenesis as well as in xeroderma pigmentosum.
Collapse
Affiliation(s)
- M Hori
- Department of Dermatology, Nagasaki University School of Medicine, Japan
| | | | | | | | | | | |
Collapse
|
31
|
Abstract
Although rare, a recessive temperature-sensitive calmodulin mutant has been isolated in Saccharomyces cerevisiae. The mutant carries two mutations in CMD1, isoleucine 100 is changed to asparagine and glutamic acid 104 is changed to valine. Neither mutation alone conferred temperature sensitivity. A single mutation that allowed production of an intact but defective protein was not identified. At the nonpermissive temperature, the temperature-sensitive mutant displayed multiple defects. Bud formation and growth was delayed, but this defect was not responsible for the temperature-sensitive lethality. Cells synchronized in G1 progressed through the cell cycle and retained viability until the movement of the nucleus to the neck between the mother cell and the large bud. After nuclear movement, less than 5% of the cells survived the first mitosis and could form colonies when returned to permissive conditions. The duplicated DNA was dispersed along the spindle, extending from mother to daughter cell. Cells synchronized in G2/M lost viability immediately upon the shift to the nonpermissive temperature. At a semipermissive temperature, the mutant showed approximately a 10-fold increase in the rate of chromosome loss compared to a wild-type strain. The mitotic phenotype is very similar to yeast mutants that are defective in chromosome disjunction. The mutant also showed defects in cytokinesis.
Collapse
Affiliation(s)
- T N Davis
- Department of Biochemistry, University of Washington, Seattle
| |
Collapse
|
32
|
Yagi T, Sato M, Tatsumi-Miyajima J, Takebe H. UV-induced base substitution mutations in a shuttle vector plasmid propagated in group C xeroderma pigmentosum cells. ACTA ACUST UNITED AC 1992; 273:213-20. [PMID: 1372104 DOI: 10.1016/0921-8777(92)90082-e] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
To assess the contribution to mutagenesis of human DNA repair defects, the UV-irradiated shuttle vector plasmid pZ189 was propagated in fibroblasts derived from a xeroderma pigmentosum (XP) patient in DNA repair complementation group C. In comparison to results with DNA repair-proficient human cells (WI-38 VA13), UV-irradiated pZ189 propagated in the XP-C (XP4PA(SV)) cells showed fewer surviving plasmids and a higher frequency of mutated plasmids. Base sequence analysis of 67 mutated plasmids recovered from the XP-C cells revealed similar classes of point mutations and mutation spectrum, and a higher frequency of G:C to A:T transitions along with a lower frequency of transversions among plasmids with single or tandem mutations compared to plasmids recovered from the normal line. Most single-base substitution mutations (83%) occurred at G:C base pairs in which the 5'-adjacent base of the cytosine was thymine or cytosine. These results indicate that the DNA repair defects in XP-C, in comparison to data previously reported for XP-A, XP-D and XP-F, result in different UV survival and mutation frequency but in similar types of base substitution mutations.
Collapse
Affiliation(s)
- T Yagi
- Department of Experimental Radiology, Faculty of Medicine, Kyoto University, Japan
| | | | | | | |
Collapse
|
33
|
Abstract
The quantum yield for cyclobutyl-pyrimidine dimerization in DNA has been observed to increase approximately linearly with increasing pyrimidine tract length. A model without adjustable parameters for this yield is proposed based on energy delocalization, vibronic symmetry switching, and saturation statistics that describe the average number of (base pairwise) breathing modes in a given tract of pyrimidines. This average number of modes is an approximately linear function of the tract length. Monte Carlo techniques are used to simulate base sequences and photochemical events, and indicate that this model is consistent with experiment for Tetrahymena pyriformis DNA.
Collapse
Affiliation(s)
- J Texter
- Strider Research Corporation, Rochester, New York 14610-3005
| |
Collapse
|
34
|
LeClerc JE, Borden A, Lawrence CW. The thymine-thymine pyrimidine-pyrimidone(6-4) ultraviolet light photoproduct is highly mutagenic and specifically induces 3' thymine-to-cytosine transitions in Escherichia coli. Proc Natl Acad Sci U S A 1991; 88:9685-9. [PMID: 1946387 PMCID: PMC52783 DOI: 10.1073/pnas.88.21.9685] [Citation(s) in RCA: 178] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We have constructed single-stranded, M13-based vectors that contain a specifically located thymine-thymine pyrimidine-pyrimidone(6-4) UV photoproduct and have used these to estimate the frequency and accuracy of DNA replication past this adduct in uvrA6 cells of Escherichia coli. Both the normal and the Dewar valence photoisomer of the (6-4) adduct were studied. In the absence of SOS induction, vectors carrying the photoproducts were rarely replicated; relative to the lesion-free control, 1.9% of vectors carrying the normal (6-4) isomer produced plaques, and with the Dewar valence isomer the proportion was 0.4%. In SOS-induced cells, these frequencies rose to 22.1% and 12.3%, respectively. The error frequency of replication past the normal isomer in SOS-induced cells was high; in a random sample of 185 progeny phage analyzed, 169 (91%) contained mutations, all of which were targeted. Equally striking, a high proportion of the mutations (158/169; 93%) were of only one type, namely 3' T----C transitions. Both the error frequency and the specificity were much reduced with the Dewar valence isomer; overall, 74/140 (53%) of the phage analyzed were mutant, and of these only 34 (46%) entailed the 3' T----C transition. We speculate that the high error frequency and specificity arise from the formation of a stable T-G base pair, involving hydrogen bonds at O-2 and N-3 in the pyrimidone ring. Potential hydrogen bonds at these sites are coplanar in the normal but not in the Dewar isomer, perhaps explaining the reduced specificity of mutagenesis with the latter adduct.
Collapse
Affiliation(s)
- J E LeClerc
- Department of Biochemistry, University of Rochester School of Medicine and Dentistry, NY 14642
| | | | | |
Collapse
|
35
|
Sockett H, Romac S, Hutchinson F. DNA sequence changes in mutations induced by ultraviolet light in the gpt gene on the chromosome of Escherichia coli uvr+ and urvA cells. MOLECULAR & GENERAL GENETICS : MGG 1991; 230:295-301. [PMID: 1836051 DOI: 10.1007/bf00290680] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Sequence changes in mutations induced by ultraviolet light are reported for the chromosomal Escherichia coli gpt gene in almost isogenic E. coli uvr+ and excision-deficient uvrA cells. Differences between the mutagenic spectra are ascribed to preferential removal of photoproducts in the transcribed strand by excision repair in uvr+ cells. This conclusion is confirmed by analysis of published results for genes in both uvr+ and uvr- cells, showing a similar selective removal of mutagenic products from the transcribed strand of the E. coli lacI gene and of the lambda phage cI repressor gene. Comparison of these data with published results for ultraviolet mutagenesis of gpt on a chromosome in Chinese hamster ovary cells showed that a mutagenic hot spot in mammalian cells is not present in E. coli; the possibility is suggested that the hot spot might arise from localized lack of excision repair. Otherwise, mutagenesis in hamster cells appeared similar to that in E. coli uvr+ cells, except there appears to be a smaller fraction of single-base additions and deletions (frameshifts) in mammalian than in bacterial cells. Phenotypes of 6-thioguanine-resistant E. coli showed there is a gene (or genes) other than gpt involved in the utilization of thioguanine by bacteria.
Collapse
Affiliation(s)
- H Sockett
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511
| | | | | |
Collapse
|
36
|
Seetharam S, Kraemer KH, Waters HL, Seidman MM. Ultraviolet mutational spectrum in a shuttle vector propagated in xeroderma pigmentosum lymphoblastoid cells and fibroblasts. Mutat Res 1991; 254:97-105. [PMID: 1986277 DOI: 10.1016/0921-8777(91)90045-q] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In order to examine possible cell-type specificity in mutagenic events, a shuttle-vector plasmid, pZ189, carrying a bacterial suppressor tRNA marker gene, was treated with ultraviolet radiation and propagated in Epstein-Barr virus transformed lymphoblastoid cell lines from a patient, XP12BE, with xeroderma pigmentosum (XP), group A, and a normal control. XP is a skin-cancer-prone disorder with UV hypersensitivity and defective DNA repair. Plasmid survival and mutations inactivating the marker gene were scored by transforming an indicator strain of E. coli. An earlier report on this data [Seetharam et al., (1990) J. Mol. Biol., 212, 433] indicated lower survival and higher mutation frequency with the UV-treated plasmid passed through the XP12Be(EBV) line. In the present report, sequence analysis of 198 mutant plasmids revealed a predominance of G:C----A:T transitions with both lymphoblastoid cell lines. This finding is consistent with the bias of polymerases toward insertion of an adenine opposite non-coding photoproducts (dinucleotides or other lesions). Transversion mutagenesis, non-adjacent double mutations, and triple-base mutations may involve other mechanisms. These results were compared to similar data from a fibroblast line from the same patient [Bredberg et al., (1986) Proc. Natl. Acad. Sci. (U.S.A.), 83, 8273]. The frequency of G:C----A:T transitions was higher, and there were fewer plasmids with multiple-base substitutions and with transversion mutations with both XP lymphoblasts and fibroblasts than with the normal lymphoblasts and fibroblasts. There were no significant differences in classes or types of mutations in the UV-treated plasmid replicated in the XP lymphoblasts and the XP fibroblasts. This suggests that the major features of UV mutagenesis in different cell types from the same individual are similar.
Collapse
Affiliation(s)
- S Seetharam
- Laboratory of Molecular Carcinogenesis, National Cancer Institute, Bethesda, MD 20892
| | | | | | | |
Collapse
|
37
|
Rosenberg M, Echols H. Differential recognition of ultraviolet lesions by RecA protein. Possible mechanism for preferential targeting of SOS mutagenesis to (6-4) dipyrimidine sites. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(17)30551-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
38
|
Hettich RL, Buchanan MV, Ho CH. Characterization of photo-induced pyrimidine cyclobutane dimers by laser desorption Fourier transform mass spectrometry. BIOMEDICAL & ENVIRONMENTAL MASS SPECTROMETRY 1990; 19:55-62. [PMID: 2306549 DOI: 10.1002/bms.1200190202] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Laser desorption Fourier transform mass spectrometry was used to characterize the cis-syn cyclobutane photodimers of uracil-uracil, uracil-thymine and thymine-thymine. This soft ionization technique generated [M-H]- ions as well as some fragment ions. Investigation of the laser desorption process indicated that gas-phase dimerization reactions do not occur for pyrimidine monomers and dimers under these experimental conditions. Collisional dissociation of the [M-H]- ions provided structural information for the pyrimidine rings of the dimers. The fragment ions observed in the collisional dissociation spectra of these cyclobutane dimers suggested rearrangement of the [M-H]- parent ions to a macrocycle prior to dissociation.
Collapse
Affiliation(s)
- R L Hettich
- Analytical Chemistry Division, Oak Ridge National Laboratory, Tennessee 37831-6120
| | | | | |
Collapse
|
39
|
Mitchell DL, Adair GM, Nairn RS. Inhibition of transient gene expression in Chinese hamster ovary cells by triplet-sensitized UV-B irradiation of transfected DNA. Photochem Photobiol 1989; 50:639-46. [PMID: 2560214 DOI: 10.1111/j.1751-1097.1989.tb04320.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The biological effectiveness of thymine-thymine cyclobutane dimers specifically induced by photosensitized ultraviolet-B irradiation was analyzed by host-cell reactivation of triplet-sensitized, UV-B irradiated plasmid pRSV beta gal DNA transfected into normal and repair-deficient Chinese hamster ovary cells. For comparison, pRSV beta gal DNA was also UV-C irradiated and transfected into the same cell lines. Ultraviolet endonuclease-sensitive site induction was determined after UV-C irradiation or acetophenone-sensitized UV-B irradiation of plasmid pRSV beta gal DNA. These data were used to calculate the number of cyclobutane pyrimidine dimers required to inactivate expression of the lacZ reporter gene in each irradiation condition. Transfection with UV-C-irradiated plasmid DNA resulted in a significantly greater reduction of reporter gene expression than did transfection with acetophenone-sensitized UV-B-irradiated pRSV beta gal DNA at equivalent induction of enzyme-sensitive sites. Since only a fraction of the inhibition could be accounted for by noncyclobutane dimer photoproducts, these results suggest that cytosine-containing pyrimidine cyclobutane dimers may be more effective than thymine-thymine dimers in inhibiting transient gene expression as measured in such host-cell reactivation experiments in mammalian cells.
Collapse
|
40
|
Romac S, Leong P, Sockett H, Hutchinson F. DNA base sequence changes induced by ultraviolet light mutagenesis of a gene on a chromosome in Chinese hamster ovary cells. J Mol Biol 1989; 209:195-204. [PMID: 2685319 DOI: 10.1016/0022-2836(89)90272-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The DNA base sequence changes induced by mutagenesis with ultraviolet light have been determined in a gene on a chromosome of cultured Chinese hamster ovary (CHO) cells. The gene was the Escherichia coli gpt gene, of which a single copy was stably incorporated and expressed in the CHO cell genome. The cells were irradiated with ultraviolet light and gpt- colonies were selected by resistance to 6-thioguanine. The gpt gene was amplified from chromosomal DNA by use of the polymerase chain reaction (PCR), and the amplified DNA sequenced directly by the dideoxy method. Of the 58 sequenced mutants of independent origin 53 were base change mutations. Forty-one base substitutions were single base changes, ten had two adjacent (or tandem) base changes, and one had two base changes separated by a single base-pair. Only one mutant had a multiple base change mutation with two or more well separated base changes. In contrast much higher levels of such mutations were reported in ultraviolet mutagenesis of genes on a shuttle vector in primate cells. Two deletions of a single base-pair were observed and three deletions ranging from 6 to 37 base-pairs. The mutation spectrum in the gpt gene had similarities to the ultraviolet mutation spectra for several genes in prokaryotes, which suggests similarities in mutational mechanisms in prokaryotes and eukaryotes.
Collapse
Affiliation(s)
- S Romac
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511
| | | | | | | |
Collapse
|
41
|
Cupples CG, Miller JH. A set of lacZ mutations in Escherichia coli that allow rapid detection of each of the six base substitutions. Proc Natl Acad Sci U S A 1989; 86:5345-9. [PMID: 2501784 PMCID: PMC297618 DOI: 10.1073/pnas.86.14.5345] [Citation(s) in RCA: 371] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
We describe the construction of six strains of Escherichia coli with different mutations at the same coding position in the lacZ gene, which specifies the active site glutamic acid residue at position 461 in beta'-galactosidase. Each strain is Lac- and reverts to Lac+ only by restoring the glutamic acid codon. The strains have been designed so that each reverts via one of the six base substitutions. The set of strains allows detection of each transition and transversion simply by monitoring the Lac- to Lac+ frequency, as demonstrated here with characterized mutagens and mutator alleles. These strains are useful for rapidly determining the mutagenic specificity of mutagens at a single site, for detecting low levels of stimulation of certain base substitutions, for monitoring specific base changes in response to various experimental conditions or strain backgrounds, and for isolating new mutator strains.
Collapse
Affiliation(s)
- C G Cupples
- Molecular Biology Institute, University of California, Los Angeles 90024
| | | |
Collapse
|
42
|
Single adduct mutagenesis: strong effect of the position of a single acetylaminofluorene adduct within a mutation hot spot. Proc Natl Acad Sci U S A 1989; 86:4147-51. [PMID: 2657743 PMCID: PMC287406 DOI: 10.1073/pnas.86.11.4147] [Citation(s) in RCA: 109] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
2-Acetylaminofluorene (AAF), a potent rat liver carcinogen that binds covalently to the C-8 position of guanine residues in DNA, is an effective frameshift mutagen. The mutations are distributed nonrandomly, in that most are located at a few specific DNA sequences (i.e., mutation hot spots). Among these hot spots, the Nar I sequence (GGCGCC) is especially susceptible to the induction of -2 frameshift mutations (GGCGCC----GGCC). Due to the nature of the Nar I sequence, G1G2CG3CC, three different molecular events, each involving the deletion of two contiguous base pairs (i.e., G2C, CG3, G3C), can give rise to the observed end point (GGCC). To compare the potential role of each of the three possible guanine-AAF adducts in the Nar I site to induce the -2 frameshift mutation, we constructed double-stranded plasmid molecules containing a single-AAF adduct bound to one of the three guanine positions. Using these plasmids, we found that only the adduct in the G3 position induces the -2 frameshift mutation. This strong effect of the position of the -AAF adduct within the Nar I site is discussed in relation to the possible involvement of an unusual DNA conformation in the mutagenic processing.
Collapse
|
43
|
Abstract
phi X174 replicative form (RF) I transfecting DNA containing thymine glycols (5,6-dihydroxy-5,6-dihydrothymine), urea glycosides or apurinic (AP) sites was used to study SOS processing of unique DNA damages in Escherichia coli. All three lesions can be found in DNA damaged by chemical oxidants or radiation and are representative of several common structural modifications of DNA bases. When phi X DNA containing thymine glycols was transfected into host cells that were ultraviolet-irradiated to induce the SOS response, a substantial increase in survival was observed compared to transfection into uninduced hosts. Studies with mutants demonstrated that both the activated form of RecA and UmuDC proteins were required for this reactivation. In contrast, no increase in survival was observed when DNA containing urea glycosides or AP sites was transfected into ultraviolet-induced hosts. These data suggest that SOS-induced reactivation does not reflect a generalized repair system for all replication-blocking, lethal lesions but rather that the efficiency of reactivation is damage dependent. Further, we found that a significant fraction of potentially lethal thymine glycols could be ultraviolet-reactivated in an umuC lexA recA-independent manner, suggesting the existence of an as yet uncharacterized damage-inducible SOS-independent mode of thymine glycol repair.
Collapse
Affiliation(s)
- M F Laspia
- Department of Microbiology and Immunology, New York Medical College, Valhalla 10595
| | | |
Collapse
|
44
|
Abstract
The most important reason for determining the changes in base sequence in the processing of DNA damage is to determine mechanisms. Currently, much more is known about these mechanisms in prokaryotes, partly because the experiments are easier and quicker to do in bacteria, and partly because of the wealth of well characterized bacterial mutants deficient in various DNA repair pathways. This paper summarizes some information on the mechanisms in bacteria that are involved in the induction by various agents of base change mutations, 1- and 2-base deletions or additions that cause frameshifts, and more complicated insertions and deletions that involve up to tens of base pairs. For gross DNA rearrangements such as large deletions involving hundreds or thousands of base pairs, there is actually more information available in mammalian cells than in bacterial cells. It is suggested that deletions of several kilobases or more in bacteria are not easy to detect because they have a high probability of deleting both the gene under study and an adjacent essential gene, forming a nonviable cell. In mammalian cells, the large size (30-40-kb pairs) of the average gene, including both introns and exons, means that a large deletion is more likely to be confined to a single gene and less likely to lead to a nonviable cell.
Collapse
Affiliation(s)
- F Hutchinson
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511
| |
Collapse
|
45
|
Sharma ND, Davies RJ, Phillips DR, McCloskey JA. A novel photoproduct of 2'-deoxyguanosine induced by acetone photosensitization: 8-(2,3,4-trihydroxybutyl)guanine. Nucleic Acids Res 1989; 17:955-67. [PMID: 2922279 PMCID: PMC331715 DOI: 10.1093/nar/17.3.955] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Acetone photosensitisation of 2'-deoxyguanosine in deaerated aqueous solution gives 8-(2,3,4-trihydroxybutyl)guanine as a major photoproduct. Its structure and that of its tetraacetate have been determined primarily by high resolution 1H NMR and mass spectrometry; a di-isopropylidene derivative has also been prepared. Mechanistic aspects of this novel photochemical transformation are discussed, particularly in relation to the alkaline cleavage of acetone photosensitised DNA at the sites of guanine bases.
Collapse
Affiliation(s)
- N D Sharma
- Biochemistry Department, Queen's University, Belfast, Northern Ireland
| | | | | | | |
Collapse
|
46
|
Ikehata H, Kimura H, Kato T. Shuttle vector system for the analysis of mutational events in mammalian chromosomal DNA. Mutat Res 1989; 210:237-47. [PMID: 2911254 DOI: 10.1016/0027-5107(89)90084-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
cDNA of the human hprt gene was introduced into the BamHI cloning site of the retroviral shuttle vector pZipNeoSV(X)1. The mouse cell line 2TGOR, a hypoxanthine phosphoribosyltransferase-deficient derivative of Balb/c 3T3, was transformed with the vector and some stably transformed HATrNEOr clones were established. One of the clones, VH-12, contained a single copy of the vector integrated stably into a chromosome in a proviral form. From this clone, we were able to recover efficiently the vector sequence preserving its intact structure by use of COS cell fusion. The relatively small size of the hprt cDNA (657 base pairs for the coding region) allowed quick determination of the entire DNA sequence. It was also notable that use of 6TG NEO double selection for mutant isolation could eliminate the 6TGr derivatives of VH-12 cells which arose from loss of the total vector sequence or from some epigenetic event, because such alterations would lead to inactivation of the neo gene as well as the hprt cDNA. The properties of our shuttle vector system were particularly useful for analysis of the molecular mechanisms of mutational events in chromosomal DNA of mammalian cells.
Collapse
Affiliation(s)
- H Ikehata
- Department of Fundamental Radiology, Osaka University, Medical School, Japan
| | | | | |
Collapse
|
47
|
Hsia HC, Lebkowski JS, Leong PM, Calos MP, Miller JH. Comparison of ultraviolet irradiation-induced mutagenesis of the lacI gene in Escherichia coli and in human 293 cells. J Mol Biol 1989; 205:103-13. [PMID: 2647996 DOI: 10.1016/0022-2836(89)90368-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We report the sequence changes in the Escherichia coli lacI gene in 133 mutants detected after passage of an ultraviolet-irradiated shuttle vector human 293 cells. The results are compared with our previous studies of the lacI gene after ultraviolet light treatment in E. coli. In human cells, base substitutions predominate, and frameshifts are found much less frequently than in bacteria. The most frequent base change is the G.C to A.T transition. Overall, 110 to 112 transitions were G.C to A.T. Some of the hotspots seen in lacI in bacteria are prominent also in human 293 cells, suggesting that the same lesions are targeting mutations in both systems. Transitions are found almost exclusively at sequences at which pyrimidine-pyrimidine photoproducts can form. The data are consistent with the notion that a significant fraction of ultraviolet irradiation-induced mutagenesis in mammalian systems occurs by adding an A across from a photolesion. Double mutations are significantly more frequent in human cells than in bacteria. Reasons for this difference are discussed.
Collapse
Affiliation(s)
- H C Hsia
- Department of Biology, University of California, Los Angeles 90024
| | | | | | | | | |
Collapse
|
48
|
Eisenstadt E, Miller JK, Kahng LS, Barnes WM. Influence of uvrB and pKM101 on the spectrum of spontaneous, UV- and gamma-ray-induced base substitutions that revert hisG46 in Salmonella typhimurium. Mutat Res 1989; 210:113-25. [PMID: 2642598 DOI: 10.1016/0027-5107(89)90050-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Oligonucleotide probes were used to identify base substitutions in 1089 revertants of hisG46 in Salmonella typhimurium that arose spontaneously or following irradiation with UV- or gamma-rays. The hisG46 allele, carrying a mutant CCC codon (Pro) in place of the wild-type codon CTC (Leu69) reverted via 6 distinguishable mutational events--C to T transitions at codon sites 1 or 2, C to A or C to G transversions at codon site 1, C to A at codon site 2, and an extragenic suppressor mutation. The distribution of hisG46 revertants differed among treatments and was influenced by the DNA-repair capacity of the bacteria. Plasmid pKM101 enhanced the frequencies of both spontaneous and induced mutations; transversion events were enhanced more efficiently by pKM101 than were transition events. Compared to Uvr+ bacteria, Uvr- bacteria had higher frequencies of spontaneous and induced mutations; transition mutations were enhanced more efficiently than were transversion mutations. The influence of DNA-repair activities on the mutational spectra provides some insights on the origins of spontaneous and UV-induced mutations.
Collapse
Affiliation(s)
- E Eisenstadt
- Department of Cancer Biology, Harvard School of Public Health, Boston, MA 02115
| | | | | | | |
Collapse
|
49
|
Banerjee SK, Christensen RB, Lawrence CW, LeClerc JE. Frequency and spectrum of mutations produced by a single cis-syn thymine-thymine cyclobutane dimer in a single-stranded vector. Proc Natl Acad Sci U S A 1988; 85:8141-5. [PMID: 3054882 PMCID: PMC282379 DOI: 10.1073/pnas.85.21.8141] [Citation(s) in RCA: 147] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
We have constructed a single-stranded vector that contains a uniquely located cis-syn T-T cyclobutane dimer by ligating a synthetic oligomer containing this UV photoproduct into M13mp7 viral DNA linearized with EcoRI. In the absence of SOS induction, transfection of a uvrA6 mutant of Escherichia coli with this vector gave very few progeny plaques, and the data imply that a single dimer blocks replication in at least 99.5% of the molecules. In vitro photoreactivation completely abolished this inhibition. Transfection of cells irradiated with UV at 4 J.m-2 to induce the SOS response gave 27% of the number of plaques found with a dimer-free control. Nucleotide sequence analysis of 529 progeny phage showed that translesion synthesis was usually accurate: the normal sequence was found in 93% of them. Where mutations occurred, all were targeted single-nucleotide substitutions, with approximately 90% being targeted at the 3' nucleotide of the lesion: of a total of 26 mutations, 15 were 3' T----A, 8 were 3' T----C, and 3 were 5' T----C. No T----G mutations were found. In addition to these results with the normal construct, data were also obtained from vectors in which the M13mp7 cloning site, which forms a hairpin in single-stranded DNA, was present 4 nucleotides on the 3' side of the T-T dimer. These hairpin-containing vectors gave a very similar mutation frequency (8% versus 7%) but altered mutation spectrum: all 12 mutations detected were 3' T----A transversions, a difference from the previous set of data that is significant (P = 0.03).
Collapse
Affiliation(s)
- S K Banerjee
- Department of Biophysics, University of Rochester School of Medicine and Dentistry, NY 14642
| | | | | | | |
Collapse
|
50
|
Lee GS, Savage EA, Ritzel RG, von Borstel RC. The base-alteration spectrum of spontaneous and ultraviolet radiation-induced forward mutations in the URA3 locus of Saccharomyces cerevisiae. MOLECULAR & GENERAL GENETICS : MGG 1988; 214:396-404. [PMID: 3063945 DOI: 10.1007/bf00330472] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A forward mutation system has been developed to obtain rapidly clonable mutants at the URA3 locus in yeast by means of selection for 5-fluoroorotic acid resistance. We have used this system to determine base changes in 35 spontaneous and 34 ultraviolet radiation-induced ura3 base substitution mutants. Other mutants (frameshift, deletion, duplication, replacement) were detected as well. Evidence is reported which suggests cyclobutane dimers are the principal mutagenic lesions induced by UV radiation in stationary phase cells of the yeast Saccharomyces cerevisiae. Since most of the induced lesions are at 5'-TT-3' sites, the results suggest that the "A-rule", preferential insertion of adenine residues opposite poorly pairing sites in DNA, does not apply for yeast cells irradiated in stationary phase, whereas the spontaneous mutation data indicate that the A-rule applies for cells in logarithmic phase. Most of the spontaneous mutations are transversions. UV-induced transitions and transversions occur at approximately equal frequencies.
Collapse
Affiliation(s)
- G S Lee
- Department of Genetics, University of Alberta, Edmonton, Canada
| | | | | | | |
Collapse
|