1
|
Desai DA, Baby A, Ananthamohan K, Green LC, Arif M, Duncan BC, Kumar M, Singh RR, Koch SE, Natesan S, Rubinstein J, Jegga AG, Sadayappan S. Roles of cMyBP-C phosphorylation on cardiac contractile dysfunction in db/db mice. JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY PLUS 2024; 8:100075. [PMID: 38957358 PMCID: PMC11218625 DOI: 10.1016/j.jmccpl.2024.100075] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Type 2 diabetes mellitus (T2DM) is a metabolic disease and comorbidity associated with several conditions, including cardiac dysfunction leading to heart failure with preserved ejection fraction (HFpEF), in turn resulting in T2DM-induced cardiomyopathy (T2DM-CM). However, the molecular mechanisms underlying the development of T2DM-CM are poorly understood. It is hypothesized that molecular alterations in myopathic genes induced by diabetes promote the development of HFpEF, whereas cardiac myosin inhibitors can rescue the resultant T2DM-mediated cardiomyopathy. To test this hypothesis, a Leptin receptor-deficient db/db homozygous (Lepr db/db) mouse model was used to define the pathogenesis of T2DM-CM. Echocardiographic studies at 4 and 6 months revealed that Lepr db/db hearts started developing cardiac dysfunction by four months, and left ventricular hypertrophy with diastolic dysfunction was evident at 6 months. RNA-seq data analysis, followed by functional enrichment, revealed the differential regulation of genes related to cardiac dysfunction in Lepr db/db heart tissues. Strikingly, the level of cardiac myosin binding protein-C phosphorylation was significantly increased in Lepr db/db mouse hearts. Finally, using isolated skinned papillary muscles and freshly isolated cardiomyocytes, CAMZYOS ® (mavacamten, MYK-461), a prescription heart medicine used for symptomatic obstructive hypertrophic cardiomyopathy treatment, was tested for its ability to rescue T2DM-CM. Compared with controls, MYK-461 significantly reduced force generation in papillary muscle fibers and cardiomyocyte contractility in the db/db group. This line of evidence shows that 1) T2DM-CM is associated with hyperphosphorylation of cardiac myosin binding protein-C and 2) MYK-461 significantly lessened disease progression in vitro, suggesting its promise as a treatment for HFpEF.
Collapse
Affiliation(s)
- Darshini A. Desai
- Center for Cardiovascular Research, Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Akhil Baby
- Center for Cardiovascular Research, Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai 625021, India
| | - Kalyani Ananthamohan
- Center for Cardiovascular Research, Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Lisa C. Green
- Center for Cardiovascular Research, Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Mohammed Arif
- Center for Cardiovascular Research, Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Brittany C. Duncan
- Center for Cardiovascular Research, Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Mohit Kumar
- Center for Cardiovascular Research, Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Rohit R. Singh
- Center for Cardiovascular Research, Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Sheryl E. Koch
- Center for Cardiovascular Research, Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Sankar Natesan
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai 625021, India
| | - Jack Rubinstein
- Center for Cardiovascular Research, Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Anil G. Jegga
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Sakthivel Sadayappan
- Center for Cardiovascular Research, Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| |
Collapse
|
2
|
Doh CY, Schmidt AV, Chinthalapudi K, Stelzer JE. Bringing into focus the central domains C3-C6 of myosin binding protein C. Front Physiol 2024; 15:1370539. [PMID: 38487262 PMCID: PMC10937550 DOI: 10.3389/fphys.2024.1370539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 02/19/2024] [Indexed: 03/17/2024] Open
Abstract
Myosin binding protein C (MyBPC) is a multi-domain protein with each region having a distinct functional role in muscle contraction. The central domains of MyBPC have often been overlooked due to their unclear roles. However, recent research shows promise in understanding their potential structural and regulatory functions. Understanding the central region of MyBPC is important because it may have specialized function that can be used as drug targets or for disease-specific therapies. In this review, we provide a brief overview of the evolution of our understanding of the central domains of MyBPC in regard to its domain structures, arrangement and dynamics, interaction partners, hypothesized functions, disease-causing mutations, and post-translational modifications. We highlight key research studies that have helped advance our understanding of the central region. Lastly, we discuss gaps in our current understanding and potential avenues to further research and discovery.
Collapse
Affiliation(s)
- Chang Yoon Doh
- Department of Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Alexandra V. Schmidt
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Krishna Chinthalapudi
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart & Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Julian E. Stelzer
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
3
|
Solaro RJ. Widely cited publications of Michael Bárány in 1964 and 1967 as tipping points in understanding myosin molecular motors. Arch Biochem Biophys 2022; 727:109319. [PMID: 35709967 DOI: 10.1016/j.abb.2022.109319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 11/02/2022]
Abstract
In 1964 Michael Bárány and colleagues published a paper ((M. Bárány, E. Gaetjens, K. Bárány, Karp E. Arch Biochem Biophys 106(1964)280-93. http://10.1016/0003-9861(64)90,189-4)) that has been one of the most cited papers in Archives of Biochemistry and Biophysics. This was followed in 1967 by another most cited paper (M. Bárány. J Gen Physiol 50(1967)197-218. https://doi.org/10.1085/jgp.50.6.197). I have commemorated these achievements as tipping points in the understanding of myosin motors in muscle function. Tipping points are generally defined as a temporal point in which a series of progressive advances (in this case the understanding of the relations between myosin ATP hydrolysis and muscle function) inspire more expansive, wide-ranging, significant changes. I first concisely summarize the background against which the papers came to publication as well as the unimaginable personal challenges faced by Michael and Kate Bárány. A final section summarizes the impact of these publications as key steps in the progression of contemporary understanding of diverse control of myosin ATPase activity with focus on the thick filaments in cardiac homeostasis, disorders, and as targets for therapeutic applications in translational investigations.
Collapse
Affiliation(s)
- R John Solaro
- Department of Physiology and Biophysics and the Center for Cardiovascular Research, College of Medicine, University of Illinois at Chicago, 835 South Wolcott Avenue, Chicago, IL, USA.
| |
Collapse
|
4
|
Tallo CA, Duncan LH, Yamamoto AH, Slaydon JD, Arya GH, Turlapati L, Mackay TFC, Carbone MA. Heat shock proteins and small nucleolar RNAs are dysregulated in a Drosophila model for feline hypertrophic cardiomyopathy. G3 (BETHESDA, MD.) 2021; 11:jkaa014. [PMID: 33561224 PMCID: PMC7849908 DOI: 10.1093/g3journal/jkaa014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 11/16/2020] [Indexed: 11/13/2022]
Abstract
In cats, mutations in myosin binding protein C (encoded by the MYBPC3 gene) have been associated with hypertrophic cardiomyopathy (HCM). However, the molecular mechanisms linking these mutations to HCM remain unknown. Here, we establish Drosophila melanogaster as a model to understand this connection by generating flies harboring MYBPC3 missense mutations (A31P and R820W) associated with feline HCM. The A31P and R820W flies displayed cardiovascular defects in their heart rates and exercise endurance. We used RNA-seq to determine which processes are misregulated in the presence of mutant MYBPC3 alleles. Transcriptome analysis revealed significant downregulation of genes encoding small nucleolar RNA (snoRNAs) in exercised female flies harboring the mutant alleles compared to flies that harbor the wild-type allele. Other processes that were affected included the unfolded protein response and immune/defense responses. These data show that mutant MYBPC3 proteins have widespread effects on the transcriptome of co-regulated genes. Transcriptionally differentially expressed genes are also candidate genes for future evaluation as genetic modifiers of HCM as well as candidate genes for genotype by exercise environment interaction effects on the manifestation of HCM; in cats as well as humans.
Collapse
Affiliation(s)
- Christian A Tallo
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695-7614, USA
| | - Laura H Duncan
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695-7614, USA
| | - Akihiko H Yamamoto
- The Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695-7613, USA
| | - Joshua D Slaydon
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695-7614, USA
| | - Gunjan H Arya
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695-7614, USA
| | - Lavanya Turlapati
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695-7614, USA
| | - Trudy F C Mackay
- The Center for Human Genetics and Department of Genetics and Biochemistry, Clemson University, Greenwood, SC 29646, USA
| | - Mary A Carbone
- The Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27695, USA
- The Center for Integrated Fungal Research and Department of Plant and Microbial Biology, North Carolina State University, Raleigh NC 27695-7244, USA
| |
Collapse
|
5
|
Tallo CA, Duncan LH, Yamamoto AH, Slaydon JD, Arya GH, Turlapati L, Mackay TFC, Carbone MA. Heat shock proteins and small nucleolar RNAs are dysregulated in a Drosophila model for feline hypertrophic cardiomyopathy. G3 (BETHESDA, MD.) 2021. [PMID: 33561224 DOI: 10.1093/g3journal/jkaa014.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In cats, mutations in myosin binding protein C (encoded by the MYBPC3 gene) have been associated with hypertrophic cardiomyopathy (HCM). However, the molecular mechanisms linking these mutations to HCM remain unknown. Here, we establish Drosophila melanogaster as a model to understand this connection by generating flies harboring MYBPC3 missense mutations (A31P and R820W) associated with feline HCM. The A31P and R820W flies displayed cardiovascular defects in their heart rates and exercise endurance. We used RNA-seq to determine which processes are misregulated in the presence of mutant MYBPC3 alleles. Transcriptome analysis revealed significant downregulation of genes encoding small nucleolar RNA (snoRNAs) in exercised female flies harboring the mutant alleles compared to flies that harbor the wild-type allele. Other processes that were affected included the unfolded protein response and immune/defense responses. These data show that mutant MYBPC3 proteins have widespread effects on the transcriptome of co-regulated genes. Transcriptionally differentially expressed genes are also candidate genes for future evaluation as genetic modifiers of HCM as well as candidate genes for genotype by exercise environment interaction effects on the manifestation of HCM; in cats as well as humans.
Collapse
Affiliation(s)
- Christian A Tallo
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695-7614, USA
| | - Laura H Duncan
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695-7614, USA
| | - Akihiko H Yamamoto
- The Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695-7613, USA
| | - Joshua D Slaydon
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695-7614, USA
| | - Gunjan H Arya
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695-7614, USA
| | - Lavanya Turlapati
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695-7614, USA
| | - Trudy F C Mackay
- The Center for Human Genetics and Department of Genetics and Biochemistry, Clemson University, Greenwood, SC 29646, USA
| | - Mary A Carbone
- The Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27695, USA.,The Center for Integrated Fungal Research and Department of Plant and Microbial Biology, North Carolina State University, Raleigh NC 27695-7244, USA
| |
Collapse
|
6
|
Wang L, Geist J, Grogan A, Hu LYR, Kontrogianni-Konstantopoulos A. Thick Filament Protein Network, Functions, and Disease Association. Compr Physiol 2018; 8:631-709. [PMID: 29687901 PMCID: PMC6404781 DOI: 10.1002/cphy.c170023] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Sarcomeres consist of highly ordered arrays of thick myosin and thin actin filaments along with accessory proteins. Thick filaments occupy the center of sarcomeres where they partially overlap with thin filaments. The sliding of thick filaments past thin filaments is a highly regulated process that occurs in an ATP-dependent manner driving muscle contraction. In addition to myosin that makes up the backbone of the thick filament, four other proteins which are intimately bound to the thick filament, myosin binding protein-C, titin, myomesin, and obscurin play important structural and regulatory roles. Consistent with this, mutations in the respective genes have been associated with idiopathic and congenital forms of skeletal and cardiac myopathies. In this review, we aim to summarize our current knowledge on the molecular structure, subcellular localization, interacting partners, function, modulation via posttranslational modifications, and disease involvement of these five major proteins that comprise the thick filament of striated muscle cells. © 2018 American Physiological Society. Compr Physiol 8:631-709, 2018.
Collapse
Affiliation(s)
- Li Wang
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, Maryland, USA
| | - Janelle Geist
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, Maryland, USA
| | - Alyssa Grogan
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, Maryland, USA
| | - Li-Yen R. Hu
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, Maryland, USA
| | | |
Collapse
|
7
|
Muscle Lim Protein and myosin binding protein C form a complex regulating muscle differentiation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:2308-2321. [DOI: 10.1016/j.bbamcr.2017.08.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 08/09/2017] [Accepted: 08/30/2017] [Indexed: 01/10/2023]
|
8
|
Cardiac myosin-binding protein C: A protein once at loose ends finds its regulatory groove. Proc Natl Acad Sci U S A 2016; 113:3133-5. [PMID: 26966230 DOI: 10.1073/pnas.1602568113] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
9
|
Karsai Á, Kellermayer MSZ, Harris SP. Cross-species mechanical fingerprinting of cardiac myosin binding protein-C. Biophys J 2014; 104:2465-75. [PMID: 23746519 DOI: 10.1016/j.bpj.2013.04.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 01/19/2013] [Accepted: 04/08/2013] [Indexed: 01/22/2023] Open
Abstract
Cardiac myosin binding protein-C (cMyBP-C) is a member of the immunoglobulin (Ig) superfamily of proteins and consists of 8 Ig- and 3 fibronectin III (FNIII)-like domains along with a unique regulatory sequence referred to as the MyBP-C motif or M-domain. We previously used atomic force microscopy to investigate the mechanical properties of murine cMyBP-C expressed using a baculovirus/insect cell expression system. Here, we investigate whether the mechanical properties of cMyBP-C are conserved across species by using atomic force microscopy to manipulate recombinant human cMyBP-C and native cMyBP-C purified from bovine heart. Force versus extension data obtained in velocity-clamp experiments showed that the mechanical response of the human recombinant protein was remarkably similar to that of the bovine native cMyBP-C. Ig/Fn-like domain unfolding events occurred in a hierarchical fashion across a threefold range of forces starting at relatively low forces of ~50 pN and ending with the unfolding of the highest stability domains at ~180 pN. Force-extension traces were also frequently marked by the appearance of anomalous force drops suggestive of additional mechanical complexity such as structural coupling among domains. Both recombinant and native cMyBP-C exhibited a prominent segment ~100 nm-long that could be stretched by forces <50 pN before the unfolding of Ig- and FN-like domains. Combined with our previous observations of mouse cMyBP-C, these results establish that although the response of cMyBP-C to mechanical load displays a complex pattern, it is highly conserved across species.
Collapse
Affiliation(s)
- Árpád Karsai
- University of California - Davis, Davis, CA, USA
| | | | | |
Collapse
|
10
|
Cardiac myosin binding protein-C restricts intrafilament torsional dynamics of actin in a phosphorylation-dependent manner. Proc Natl Acad Sci U S A 2012; 109:20437-42. [PMID: 23169656 DOI: 10.1073/pnas.1213027109] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
We have determined the effects of myosin binding protein-C (MyBP-C) and its domains on the microsecond rotational dynamics of actin, detected by time-resolved phosphorescence anisotropy (TPA). MyBP-C is a multidomain modulator of striated muscle contraction, interacting with myosin, titin, and possibly actin. Cardiac and slow skeletal MyBP-C are known substrates for protein kinase-A (PKA), and phosphorylation of the cardiac isoform alters contractile properties and myofilament structure. To determine the effects of MyBP-C on actin structural dynamics, we labeled actin at C374 with a phosphorescent dye and performed TPA experiments. The interaction of all three MyBP-C isoforms with actin increased the final anisotropy of the TPA decay, indicating restriction of the amplitude of actin torsional flexibility by 15-20° at saturation of the TPA effect. PKA phosphorylation of slow skeletal and cardiac MyBP-C relieved the restriction of torsional amplitude but also decreased the rate of torsional motion. In the case of fast skeletal MyBP-C, its effect on actin dynamics was unchanged by phosphorylation. The isolated C-terminal half of cardiac MyBP-C (C5-C10) had effects similar to those of the full-length protein, and it bound actin more tightly than the N-terminal half (C0-C4), which had smaller effects on actin dynamics that were independent of PKA phosphorylation. We propose that these MyBP-C-induced changes in actin dynamics play a role in the functional effects of MyBP-C on the actin-myosin interaction.
Collapse
|
11
|
Yuan C, Solaro RJ. Myofilament proteins: From cardiac disorders to proteomic changes. Proteomics Clin Appl 2012; 2:788-99. [PMID: 21136879 DOI: 10.1002/prca.200780076] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Myofilament proteins of the cardiac sarcomere house the molecular machinery responsible for generating tension and pressure. Release of intracellular Ca(2+) triggers myofilament tension generation and shortening, but the response to Ca(2+) is modulated by changes in key regulatory proteins. We review how these proteomic changes are essential to adaptive physiological regulation of cardiac output and become maladaptive in cardiac disorders. We also review the essentials of proteomic techniques used to study myofilament protein changes, including degradation, isoform expression, phosphorylation and oxidation. Selected proteomic studies illustrate the applications of these approaches.
Collapse
Affiliation(s)
- Chao Yuan
- Department of Physiology and Biophysics and Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, IL, USA
| | | |
Collapse
|
12
|
Pfuhl M, Gautel M. Structure, interactions and function of the N-terminus of cardiac myosin binding protein C (MyBP-C): who does what, with what, and to whom? J Muscle Res Cell Motil 2012; 33:83-94. [PMID: 22527637 DOI: 10.1007/s10974-012-9291-z] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Accepted: 03/24/2012] [Indexed: 02/04/2023]
Abstract
The thick filament protein myosin-binding protein-C shows a highly modular architecture, with the C-terminal region responsible for tethering to the myosin and titin backbone of the thick filament. The N-terminal region shows the most significant differences between cardiac and skeletal muscle isogenes: an entire Ig-domain (C0) is added, together with highly regulated phosphorylation sites between Ig domains C1 and C2. These structural and functional differences at the N-terminus reflect important functions in cardiac muscle regulation in health and disease. Alternative interactions of this part of MyBP-C with the head-tail (S1-S2) junction of myosin or to actin filaments have been proposed, but with conflicting experimental evidence. The regulation of myosin or actin interaction by phosphorylation of the cardiac MyBP-C N-terminus may play an additional role in length-dependent contraction regulation. We discuss here the evidence for these proposed interactions, considering the required properties of MyBP-C, the way in which they may be regulated in muscle contraction and the way they might be related to heart disease. We also attempt to shed some light on experimental pitfalls and future strategies.
Collapse
Affiliation(s)
- Mark Pfuhl
- Randall Division for Cell and Molecular Biophysics and Cardiovascular Division, King's College London BHF Centre of Research Excellence, London, UK.
| | | |
Collapse
|
13
|
Wolfram JA, Lesnefsky EJ, Hoit BD, Smith MA, Lee HG. Therapeutic potential of c-Myc inhibition in the treatment of hypertrophic cardiomyopathy. Ther Adv Chronic Dis 2011; 2:133-44. [PMID: 21858245 DOI: 10.1177/2040622310393059] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Investigating the pathophysiological importance of the molecular and mechanical development of cardiomyopathy is critical to find new and broader means of protection against this disease that is increasing in prevalence and impact. The current available treatment options for cardiomyopathy mainly focus on treating symptoms and strive to make the patient more comfortable while preventing progression of disease and sudden death. The proto-oncogene c-Myc (Myc) has been shown to be increased in many different types of heart disease, including hypertrophic cardiomyopathy, before any signs of the disease are present. As the mechanisms of action and multiple pathways of dependent actions of Myc are being dissected by many research groups, inhibition of Myc is becoming an attractive paradigm for prevention and treatment of cardiomyopathy and heart failure. Elucidating the role Myc plays in the development, propagation and perpetuation of cardiomyopathy and heart failure will one day translate into potential therapeutics for cardiomyopathy.
Collapse
Affiliation(s)
- Julie A Wolfram
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | | | | | | | | |
Collapse
|
14
|
Sadayappan S, Gulick J, Osinska H, Barefield D, Cuello F, Avkiran M, Lasko VM, Lorenz JN, Maillet M, Martin JL, Brown JH, Bers DM, Molkentin JD, James J, Robbins J. A critical function for Ser-282 in cardiac Myosin binding protein-C phosphorylation and cardiac function. Circ Res 2011; 109:141-50. [PMID: 21597010 DOI: 10.1161/circresaha.111.242560] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
RATIONALE Cardiac myosin-binding protein-C (cMyBP-C) phosphorylation at Ser-273, Ser-282, and Ser-302 regulates myocardial contractility. In vitro and in vivo experiments suggest the nonequivalence of these sites and the potential importance of Ser-282 phosphorylation in modulating the protein's overall phosphorylation and myocardial function. OBJECTIVE To determine whether complete cMyBP-C phosphorylation is dependent on Ser-282 phosphorylation and to define its role in myocardial function. We hypothesized that Ser-282 regulates Ser-302 phosphorylation and cardiac function during β-adrenergic stimulation. METHODS AND RESULTS Using recombinant human C1-M-C2 peptides in vitro, we determined that protein kinase A can phosphorylate Ser-273, Ser-282, and Ser-302. Protein kinase C can also phosphorylate Ser-273 and Ser-302. In contrast, Ca(2+)-calmodulin-activated kinase II targets Ser-302 but can also target Ser-282 at nonphysiological calcium concentrations. Strikingly, Ser-302 phosphorylation by Ca(2+)-calmodulin-activated kinase II was abolished by ablating the ability of Ser-282 to be phosphorylated via alanine substitution. To determine the functional roles of the sites in vivo, three transgenic lines, which expressed cMyBP-C containing either Ser-273-Ala-282-Ser-302 (cMyBP-C(SAS)), Ala-273-Asp-282-Ala-302 (cMyBP-C(ADA)), or Asp-273-Ala-282-Asp-302 (cMyBP-C(DAD)), were generated. Mutant protein was completely substituted for endogenous cMyBP-C by breeding each mouse line into a cMyBP-C null (t/t) background. Serine-to-alanine substitutions were used to ablate the abilities of the residues to be phosphorylated, whereas serine-to-aspartate substitutions were used to mimic the charged state conferred by phosphorylation. Compared to control nontransgenic mice, as well as transgenic mice expressing wild-type cMyBP-C, the transgenic cMyBP-C(SAS(t/t)), cMyBP-C(ADA(t/t)), and cMyBP-C(DAD(t/t)) mice showed no increases in morbidity and mortality and partially rescued the cMyBP-C((t/t)) phenotype. The loss of cMyBP-C phosphorylation at Ser-282 led to an altered β-adrenergic response. In vivo hemodynamic studies revealed that contractility was unaffected but that cMyBP-C(SAS(t/t)) hearts showed decreased diastolic function at baseline. However, the normal increases in cardiac function (increased contractility/relaxation) as a result of infusion of β-agonist was significantly decreased in all of the mutants, suggesting that competency for phosphorylation at multiple sites in cMyBP-C is a prerequisite for normal β-adrenergic responsiveness. CONCLUSIONS Ser-282 has a unique regulatory role in that its phosphorylation is critical for the subsequent phosphorylation of Ser-302. However, each residue plays a role in regulating the contractile response to β-agonist stimulation.
Collapse
Affiliation(s)
- Sakthivel Sadayappan
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, IL, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Kensler RW, Shaffer JF, Harris SP. Binding of the N-terminal fragment C0-C2 of cardiac MyBP-C to cardiac F-actin. J Struct Biol 2011; 174:44-51. [PMID: 21163356 PMCID: PMC3056911 DOI: 10.1016/j.jsb.2010.12.003] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 12/02/2010] [Accepted: 12/08/2010] [Indexed: 11/18/2022]
Abstract
Cardiac myosin-binding protein C (cMyBP-C), a major accessory protein of cardiac thick filaments, is thought to play a key role in the regulation of myocardial contraction. Although current models for the function of the protein focus on its binding to myosin S2, other evidence suggests that it may also bind to F-actin. We have previously shown that the N-terminal fragment C0-C2 of cardiac myosin-binding protein-C (cMyBP-C) bundles actin, providing evidence for interaction of cMyBP-C and actin. In this paper we directly examined the interaction between C0-C2 and F-actin at physiological ionic strength and pH by negative staining and electron microscopy. We incubated C0-C2 (5-30μM, in a buffer containing in mM: 180 KCl, 1 MgCl(2), 1 EDTA, 1 DTT, 20 imidazole, at pH 7.4) with F-actin (5μM) for 30min and examined negatively-stained samples of the solution by electron microscopy (EM). Examination of EM images revealed that C0-C2 bound to F-actin to form long helically-ordered complexes. Fourier transforms indicated that C0-C2 binds with the helical periodicity of actin with strong 1st and 6th layer lines. The results provide direct evidence that the N-terminus of cMyBP-C can bind to F-actin in a periodic complex. This interaction of cMyBP-C with F-actin supports the possibility that binding of cMyBP-C to F-actin may play a role in the regulation of cardiac contraction.
Collapse
Affiliation(s)
- Robert W Kensler
- Department of Anatomy, University of Puerto Rico, San Juan, PR, USA.
| | | | | |
Collapse
|
16
|
Shchepkin DV, Kopylova GV, Nikitina LV, Katsnelson LB, Bershitsky SY. Effects of cardiac myosin binding protein-C on the regulation of interaction of cardiac myosin with thin filament in an in vitro motility assay. Biochem Biophys Res Commun 2010; 401:159-63. [PMID: 20849827 DOI: 10.1016/j.bbrc.2010.09.040] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Accepted: 09/09/2010] [Indexed: 11/24/2022]
Abstract
Modulatory role of whole cardiac myosin binding protein-C (сMyBP-C) in regulation of cardiac muscle contractility was studied in the in vitro motility assay with rabbit cardiac myosin as a motor protein. The effects of cMyBP-C on the interaction of cardiac myosin with regulated thin filament were tested in both in vitro motility and ATPase assays. We demonstrate that the addition of cMyBP-C increases calcium regulated Mg-ATPase activity of cardiac myosin at submaximal calcium. The Hill coefficient for 'pCa-velocity' relation in the in vitro motility assay decreased and the calcium sensitivity increased when сMyBP-C was added. Results of our experiments testifies in favor of the hypothesis that сMyBP-C slows down cross-bridge kinetics when binding to actin.
Collapse
Affiliation(s)
- D V Shchepkin
- Institute of Immunology and Physiology, Russian Academy of Sciences, Yekaterinburg 620041, Russia.
| | | | | | | | | |
Collapse
|
17
|
Saruta K, Obinata T, Sato N. Differential expression of two cardiac myosin-binding protein-C isoforms in developing chicken cardiac and skeletal muscle cells. Zoolog Sci 2010; 27:1-7. [PMID: 20064001 DOI: 10.2108/zsj.27.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Myosin-binding protein-C (MyBP-C), also known as C-protein, is a major myosin-binding protein characteristic of striated muscle, and plays a critical role in myofibril organization, especially in registration of thick filaments in the sarcomeres during myofibrillogenesis. We previously demonstrated that cardiac-type MyBP-C is involved early in the process of myofibrillogenesis in both cardiac and skeletal muscle during chicken muscle development. Two variants (type I and type II) have been detected in chicken cardiac MyBP-C; they differ only in the presence or absence of a sequence of 15 amino acid residues (termed P-seq) that includes a phosphorylation site for cyclic AMP-dependent kinase in the cardiac MyBP-C motif ( Yasuda et al, 1995 ). Therefore, types I and II are regarded as phosphorylatable and non-phosphorylatable isoforms, respectively. In this study, an antibody specific for P-seq was prepared. With this and other monoclonal antibodies to cardiac MyBP-C (C-315), expression and localization of the two MyBP-C isoforms in developing chicken cardiac and skeletal muscle were examined by immunocytochemistry and immunoblotting. The results showed that type I is predominantly expressed in the heart and is localized in myofibrils of both atrial and ventricular muscles through development. In contrast, type II is mainly expressed in embryonic skeletal muscle, although type I is faintly expressed in cultured skeletal muscle. These observations were confirmed by RT-PCR.
Collapse
Affiliation(s)
- Keiko Saruta
- Department of Biology, Faculty of Science, Chiba University, Yayoi-cho, Inage-ku, Chiba, Japan
| | | | | |
Collapse
|
18
|
Decker RS, Rines AK, Nakamura S, Naik TJ, Wassertsrom JA, Ardehali H. Phosphorylation of contractile proteins in response to alpha- and beta-adrenergic stimulation in neonatal cardiomyocytes. Transl Res 2010; 155:27-34. [PMID: 20004359 PMCID: PMC3307141 DOI: 10.1016/j.trsl.2009.09.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Revised: 09/17/2009] [Accepted: 09/19/2009] [Indexed: 10/20/2022]
Abstract
alpha- and beta-Adrenergic receptor agonists induce an inotropic response in the adult heart by promoting the phosphorylation of several regulatory proteins, including myosin-binding protein C (MyBP-C), cardiac troponin I (cTnI), and phospholamban (PLB). However, the adrenergic-induced phosphorylation of these proteins has not been characterized in the developing heart. Accordingly, we evaluated MyBP-C, cTnI, and PLB phosphorylation in cultured neonatal rat cardiomyocytes (NRCMs) after alpha- and beta-receptor activation with phenylephrine and isoproterenol. alpha-Receptor stimulation increased, whereas beta-receptor activation reduced MyBP-C phosphorylation. Isoelectric-focusing experiments indicated that the amount of monophosphorylated MyBP-C was sensitive to alpha-adrenergic activation, but diphosphorylated and triphosphorylated MyBP-C levels were largely unaffected. The phosphorylation of cTnI and PLB was consistent with the mechanism observed in adult hearts: alpha- and beta-Receptor stimulation phosphorylated both proteins. For cTnI, the greatest difference associated with beta-receptor activation was observed in the diphosphorylated state, whereas alpha-receptor activation was associated with a marked increase in the tetraphosphorylated protein and absence of the unphosphorylated state. Despite these apparent changes in cTnI and PLB phosphorylation, beta-receptor activation failed to alter calcium transients in NRCMs. Collectively, these findings suggest that, unlike cTnI and PLB, MyBP-C and inotropy are not coupled to beta-adrenergic stimulation in NRCMs. Therefore, cTnI and PLB probably play a more central role in modulating contractile function in NRCMs in response to catecholamines than does MyBP-C, and MyBP-C may have a structural role in stabilizing thick filament assembly rather than influencing cross-bridge formation in developing hearts.
Collapse
Affiliation(s)
- Robert S Decker
- Feinberg Cardiovascular Research Institute, Northwestern University Medical Center, Chicago, Ill 60611, USA
| | | | | | | | | | | |
Collapse
|
19
|
Machackova J, Barta J, Dhalla NS. Molecular defects in cardiac myofibrillar proteins due to thyroid hormone imbalance and diabetesThis paper is a part of a series in the Journal's "Made in Canada" section. The paper has undergone peer review. Can J Physiol Pharmacol 2005; 83:1071-91. [PMID: 16462907 DOI: 10.1139/y05-121] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The heart very often becomes a victim of endocrine abnormalities such as thyroid hormone imbalance and insulin deficiency, which are manifested in a broad spectrum of cardiac dysfunction from mildly compromised function to severe heart failure. These functional changes in the heart are largely independent of alterations in the coronary arteries and instead reside at the level of cardiomyocytes. The status of cardiac function reflects the net of underlying subcellular modifications induced by an increase or decrease in thyroid hormone and insulin plasma levels. Changes in the contractile and regulatory proteins constitute molecular and structural alterations in myofibrillar assembly, called myofibrillar remodeling. These alterations may be adaptive or maladaptive with respect to the functional and metabolic demands on the heart as a consequence of the altered endocrine status in the body. There is a substantial body of information to indicate alterations in myofibrillar proteins including actin, myosin, tropomyosin, troponin, titin, desmin, and myosin-binding protein C in conditions such as hyperthyroidism, hypothyroidism, and diabetes. The present article is focussed on discussion how myofibrillar proteins are altered in response to thyroid hormone imbalance and lack of insulin or its responsiveness, and how their structural and functional changes explain the contractile defects in the heart.
Collapse
Affiliation(s)
- Jarmila Machackova
- Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, 351 Tache Avenue, Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, MB R2H 2A6, Canada
| | | | | |
Collapse
|
20
|
Kulikovskaya I, McClellan G, Flavigny J, Carrier L, Winegrad S. Effect of MyBP-C binding to actin on contractility in heart muscle. ACTA ACUST UNITED AC 2004; 122:761-74. [PMID: 14638934 PMCID: PMC2229591 DOI: 10.1085/jgp.200308941] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In contrast to skeletal muscle isoforms of myosin binding protein C (MyBP-C), the cardiac isoform has 11 rather than 10 fibronectin or Ig modules (modules are identified as C0 to C10, NH2 to COOH terminus), 3 phosphorylation sites between modules C1 and C2, and 28 additional amino acids rich in proline in C5. Phosphorylation between C1 and C2 increases maximum Ca-activated force (Fmax), alters thick filament structure, and increases the probability of myosin heads on the thick filament binding to actin on the thin filament. Unphosphorylated C1C2 fragment binds to myosin, but phosphorylation inhibits the binding. MyBP-C also binds to actin. Using two types of immunoprecipitation and cosedimentation, we show that fragments of MyBP-C containing C0 bind to actin. In low concentrations C0-containing fragments bind to skinned fibers when the NH2 terminus of endogenous MyBP-C is bound to myosin, but not when MyBP-C is bound to actin. C1C2 fragments bind to skinned fibers when endogenous MyBP-C is bound to actin but not to myosin. Disruption of interactions of endogenous C0 with a high concentration of added C0C2 fragments produces the same effect on contractility as extraction of MyBP-C, namely decrease in Fmax and increase in Ca sensitivity. These results suggest that cardiac contractility can be regulated by shifting the binding of the NH2 terminus of MyBP-C between actin and myosin. This mechanism may have an effect on diastolic filling of the heart.
Collapse
Affiliation(s)
- Irina Kulikovskaya
- Department of Physiology, School of Medicine, University of Pennsylvania Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
21
|
Metzger JM, Westfall MV. Covalent and noncovalent modification of thin filament action: the essential role of troponin in cardiac muscle regulation. Circ Res 2004; 94:146-58. [PMID: 14764650 DOI: 10.1161/01.res.0000110083.17024.60] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Troponin is essential for the regulation of cardiac contraction. Troponin is a sarcomeric molecular switch, directly regulating the contractile event in concert with intracellular calcium signals. Troponin isoform switching, missense mutations, proteolytic cleavage, and posttranslational modifications are known to directly affect sarcomeric regulation. This review focuses on physiologically relevant covalent and noncovalent modifications in troponin as part of a thematic series on cardiac thin filament function in health and disease.
Collapse
Affiliation(s)
- Joseph M Metzger
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Mich 48109, USA.
| | | |
Collapse
|
22
|
Sato N, Kawakami T, Nakayama A, Suzuki H, Kasahara H, Obinata T. A novel variant of cardiac myosin-binding protein-C that is unable to assemble into sarcomeres is expressed in the aged mouse atrium. Mol Biol Cell 2003; 14:3180-91. [PMID: 12925755 PMCID: PMC181559 DOI: 10.1091/mbc.e02-10-0685] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Cardiac myosin-binding protein-C (MyBP-C), also known as C-protein, is one of the major myosin-binding proteins localizing at A-bands. MyBP-C has three isoforms encoded by three distinct genes: fast-skeletal, slow-skeletal, and cardiac type. Herein, we are reporting a novel alternative spliced form of cardiac MyBP-C, MyBP-C(+), which includes an extra 30 nucleotides, encoding 10 amino acids in the carboxyl-terminal connectin/titin binding region. This alternative spliced form of MyBP-C(+) has a markedly decreased binding affinity to myosin filaments and connectin/titin in vitro and does not localize to A-bands in cardiac myocytes. When MyBP-C(+) was expressed in chicken cardiac myocytes, sarcomere structure was markedly disorganized, suggesting it has possible dominant negative effects on sarcomere organization. Expression of MyBP-C(+) is hardly detected in ventricles through cardiac development, but its expression gradually increases in atria and becomes the dominant form after 6 mo of age. The present study demonstrates an age-induced new isoform of cardiac MyBP-C harboring possible dominant negative effects on sarcomere assembly.
Collapse
Affiliation(s)
- Naruki Sato
- Department of Biology, Faculty of Science, Chiba University, Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | | | | | | | | | | |
Collapse
|
23
|
Clark KA, McElhinny AS, Beckerle MC, Gregorio CC. Striated muscle cytoarchitecture: an intricate web of form and function. Annu Rev Cell Dev Biol 2003; 18:637-706. [PMID: 12142273 DOI: 10.1146/annurev.cellbio.18.012502.105840] [Citation(s) in RCA: 423] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Striated muscle is an intricate, efficient, and precise machine that contains complex interconnected cytoskeletal networks critical for its contractile activity. The individual units of the sarcomere, the basic contractile unit of myofibrils, include the thin, thick, titin, and nebulin filaments. These filament systems have been investigated intensely for some time, but the details of their functions, as well as how they are connected to other cytoskeletal elements, are just beginning to be elucidated. These investigations have advanced significantly in recent years through the identification of novel sarcomeric and sarcomeric-associated proteins and their subsequent functional analyses in model systems. Mutations in these cytoskeletal components account for a large percentage of human myopathies, and thus insight into the normal functions of these proteins has provided a much needed mechanistic understanding of these disorders. In this review, we highlight the components of striated muscle cytoarchitecture with respect to their interactions, dynamics, links to signaling pathways, and functions. The exciting conclusion is that the striated muscle cytoskeleton, an exquisitely tuned, dynamic molecular machine, is capable of responding to subtle changes in cellular physiology.
Collapse
Affiliation(s)
- Kathleen A Clark
- Department of Cell Biology, University of Arizona, Tucson 85724, USA
| | | | | | | |
Collapse
|
24
|
|
25
|
Sébillon P, Bonne G, Flavigny J, Venin S, Rouche A, Fiszman M, Vikstrom K, Leinwand L, Carrier L, Schwartz K. COOH-terminal truncated human cardiac MyBP-C alters myosin filament organization. COMPTES RENDUS DE L'ACADEMIE DES SCIENCES. SERIE III, SCIENCES DE LA VIE 2001; 324:251-60. [PMID: 11291312 DOI: 10.1016/s0764-4469(00)01292-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Myosin-binding protein C (MyBP-C) is thought to play structural and/or regulatory role in striated muscles. The cardiac isoform of MyBP-C is one of the disease genes associated with familial hypertrophic cardiomyopathy and most of the mutations produce COOH truncated proteins. In order to determine the consequences of these mutations on myosin filament organization, we have characterized the effect of a 52-kDa NH2-terminal peptide of human cardiac MyBP-C on the alpha-myosin heavy chain (alpha-MyHC) filament organization. This peptide lacks the COOH-terminal MyHC-binding site and retains the two MyHC-binding domains located in the N-terminal part of MyBP-C. For this characterization, cDNA constructs (rat alpha-MyHC, full-length and truncated human cardiac MyBP-C) were transiently expressed singly or in pairwise combination in COS cells. In conformity with previous works performed on the skeletal isoform of MyBP-C, we observed that full-length cardiac MyBP-C organizes the MyHC into dense structures of uniform width. While the truncated protein is stable and can interact with MyHC in COS cells, it does not result in the same organization of sarcomeric MyHC that is seen with the full-length MyBP-C. These results suggest that the presence of truncated cardiac MyBP-C could, at least partly, disorganize the sarcomeric structure in patients with familial hypertrophic cardiomyopathy.
Collapse
Affiliation(s)
- P Sébillon
- Inserm Unit 523, institut de myologie, hôpital Salpêtrière, bâtiment Babinski, 47, boulevard de l'Hôpital, 75651 Paris, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Ca(2+) regulation of contraction in vertebrate striated muscle is exerted primarily through effects on the thin filament, which regulate strong cross-bridge binding to actin. Structural and biochemical studies suggest that the position of tropomyosin (Tm) and troponin (Tn) on the thin filament determines the interaction of myosin with the binding sites on actin. These binding sites can be characterized as blocked (unable to bind to cross bridges), closed (able to weakly bind cross bridges), or open (able to bind cross bridges so that they subsequently isomerize to become strongly bound and release ATP hydrolysis products). Flexibility of the Tm may allow variability in actin (A) affinity for myosin along the thin filament other than through a single 7 actin:1 tropomyosin:1 troponin (A(7)TmTn) regulatory unit. Tm position on the actin filament is regulated by the occupancy of NH-terminal Ca(2+) binding sites on TnC, conformational changes resulting from Ca(2+) binding, and changes in the interactions among Tn, Tm, and actin and as well as by strong S1 binding to actin. Ca(2+) binding to TnC enhances TnC-TnI interaction, weakens TnI attachment to its binding sites on 1-2 actins of the regulatory unit, increases Tm movement over the actin surface, and exposes myosin-binding sites on actin previously blocked by Tm. Adjacent Tm are coupled in their overlap regions where Tm movement is also controlled by interactions with TnT. TnT also interacts with TnC-TnI in a Ca(2+)-dependent manner. All these interactions may vary with the different protein isoforms. The movement of Tm over the actin surface increases the "open" probability of myosin binding sites on actins so that some are in the open configuration available for myosin binding and cross-bridge isomerization to strong binding, force-producing states. In skeletal muscle, strong binding of cycling cross bridges promotes additional Tm movement. This movement effectively stabilizes Tm in the open position and allows cooperative activation of additional actins in that and possibly neighboring A(7)TmTn regulatory units. The structural and biochemical findings support the physiological observations of steady-state and transient mechanical behavior. Physiological studies suggest the following. 1) Ca(2+) binding to Tn/Tm exposes sites on actin to which myosin can bind. 2) Ca(2+) regulates the strong binding of M.ADP.P(i) to actin, which precedes the production of force (and/or shortening) and release of hydrolysis products. 3) The initial rate of force development depends mostly on the extent of Ca(2+) activation of the thin filament and myosin kinetic properties but depends little on the initial force level. 4) A small number of strongly attached cross bridges within an A(7)TmTn regulatory unit can activate the actins in one unit and perhaps those in neighboring units. This results in additional myosin binding and isomerization to strongly bound states and force production. 5) The rates of the product release steps per se (as indicated by the unloaded shortening velocity) early in shortening are largely independent of the extent of thin filament activation ([Ca(2+)]) beyond a given baseline level. However, with a greater extent of shortening, the rates depend on the activation level. 6) The cooperativity between neighboring regulatory units contributes to the activation by strong cross bridges of steady-state force but does not affect the rate of force development. 7) Strongly attached, cycling cross bridges can delay relaxation in skeletal muscle in a cooperative manner. 8) Strongly attached and cycling cross bridges can enhance Ca(2+) binding to cardiac TnC, but influence skeletal TnC to a lesser extent. 9) Different Tn subunit isoforms can modulate the cross-bridge detachment rate as shown by studies with mutant regulatory proteins in myotubes and in in vitro motility assays. (ABSTRACT TRUNCATED)
Collapse
Affiliation(s)
- A M Gordon
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington 98195-7290, USA.
| | | | | |
Collapse
|
27
|
Moolman JA, Reith S, Uhl K, Bailey S, Gautel M, Jeschke B, Fischer C, Ochs J, McKenna WJ, Klues H, Vosberg HP. A newly created splice donor site in exon 25 of the MyBP-C gene is responsible for inherited hypertrophic cardiomyopathy with incomplete disease penetrance. Circulation 2000; 101:1396-402. [PMID: 10736283 DOI: 10.1161/01.cir.101.12.1396] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Hypertrophic cardiomyopathy is a myocardial disorder resulting from inherited sarcomeric dysfunction. We report a mutation in the myosin-binding protein-C (MyBP-C) gene, its clinical consequences in a large family, and myocardial tissue findings that may provide insight into the mechanism of disease. METHODS AND RESULTS History and clinical status (examination, ECG, and echocardiography) were assessed in 49 members of a multigeneration family. Linkage analysis implicated the MyBP-C gene on chromosome 11. Myocardial mRNA, genomic MyBP-C DNA, and the myocardial proteins of patients and healthy relatives were analyzed. A single guanine nucleotide insertion in exon 25 of the MyBP-C gene resulted in the loss of 40 bases in abnormally processed mRNA. A 30-kDa truncation at the C-terminus of the protein was predicted, but a polypeptide of the expected size ( approximately 95 kDa) was not detected by immunoblot testing. The disease phenotype in this family was characterized in detail: only 10 of 27 gene carriers fulfilled diagnostic criteria. Five carriers showed borderline hypertrophic cardiomyopathy, and 12 carriers were asymptomatic, with normal ECG and echocardiograms. The age of onset in symptomatic patients was late (29 to 68 years). In 2 patients, outflow obstruction required surgery. Two family members experienced premature sudden cardiac death, but survival at 50 years was 95%. CONCLUSIONS Penetrance of this mutation was incomplete and age-dependent. The large number of asymptomatic carriers and the good prognosis support the interpretation of benign disease.
Collapse
Affiliation(s)
- J A Moolman
- Department of Experimental Cardiology, Max-Planck-Institute for Physiological and Clinical Research, Bad Nauheim, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
McConnell BK, Jones KA, Fatkin D, Arroyo LH, Lee RT, Aristizabal O, Turnbull DH, Georgakopoulos D, Kass D, Bond M, Niimura H, Schoen FJ, Conner D, Fischman DA, Seidman CE, Seidman JG, Fischman DH. Dilated cardiomyopathy in homozygous myosin-binding protein-C mutant mice. J Clin Invest 1999; 104:1235-44. [PMID: 10545522 PMCID: PMC409819 DOI: 10.1172/jci7377] [Citation(s) in RCA: 180] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
To elucidate the role of cardiac myosin-binding protein-C (MyBP-C) in myocardial structure and function, we have produced mice expressing altered forms of this sarcomere protein. The engineered mutations encode truncated forms of MyBP-C in which the cardiac myosin heavy chain-binding and titin-binding domain has been replaced with novel amino acid residues. Analogous heterozygous defects in humans cause hypertrophic cardiomyopathy. Mice that are homozygous for the mutated MyBP-C alleles express less than 10% of truncated protein in M-bands of otherwise normal sarcomeres. Homozygous mice bearing mutated MyBP-C alleles are viable but exhibit neonatal onset of a progressive dilated cardiomyopathy with prominent histopathology of myocyte hypertrophy, myofibrillar disarray, fibrosis, and dystrophic calcification. Echocardiography of homozygous mutant mice showed left ventricular dilation and reduced contractile function at birth; myocardial hypertrophy increased as the animals matured. Left-ventricular pressure-volume analyses in adult homozygous mutant mice demonstrated depressed systolic contractility with diastolic dysfunction. These data revise our understanding of the role that MyBP-C plays in myofibrillogenesis during cardiac development and indicate the importance of this protein for long-term sarcomere function and normal cardiac morphology. We also propose that mice bearing homozygous familial hypertrophic cardiomyopathy-causing mutations may provide useful tools for predicting the severity of disease that these mutations will cause in humans.
Collapse
Affiliation(s)
- B K McConnell
- Department of Genetics, Howard Hughes Medical Institute and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Gautel M, Mues A, Young P. Control of sarcomeric assembly: the flow of information on titin. Rev Physiol Biochem Pharmacol 1999; 138:97-137. [PMID: 10396139 DOI: 10.1007/bfb0119625] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Affiliation(s)
- M Gautel
- European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | |
Collapse
|
30
|
Abstract
Myosin binding protein C (MyBP-C) is one of a group of myosin binding proteins that are present in the myofibrils of all striated muscle. The protein is found at 43-nm repeats along 7 to 9 transverse lines in a portion of the A band where crossbridges are found (C zone). MyBP-C contains myosin and titin binding sites at the C terminus of the molecule in all 3 of the isoforms (slow skeletal, fast skeletal, and cardiac). The cardiac isoform also includes a series of residues that contain 3 phosphorylatable sites and an additional immunoglobulin module at the N terminus that are not present in skeletal isoforms. The following 2 major functions of MyBP-C have been suggested: (1) a role in the formation of the sarcomeric myofibril as a result of binding to myosin and titin and (2) in the case of the cardiac isoform, regulation of contraction through phosphorylation. The first is supported by the demonstrated effect of MyBP-C on the packing of myosin in the thick filament, the coincidence of appearance of sarcomeres and MyBP-C during myofibrillogenesis, and the defective formation of sarcomeres when the titin and/or myosin binding sites of MyBP-C are missing. The second is supported by the specific phosphorylation sites in cardiac MyBP-C, the presence in the thick filament of an enzyme specific for MyBP-C phosphorylation, the alteration of thick filament structure by MyBP-C phosphorylation, and the accompaniment of MyBP-C phosphorylation with all major physiological mechanisms of modulation of inotropy in the heart.
Collapse
Affiliation(s)
- S Winegrad
- Department of Physiology, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6085, USA.
| |
Collapse
|
31
|
Kurasawa M, Sato N, Matsuda A, Koshida S, Totsuka T, Obinata T. Differential expression of C-protein isoforms in developing and degenerating mouse striated muscles. Muscle Nerve 1999; 22:196-207. [PMID: 10024132 DOI: 10.1002/(sici)1097-4598(199902)22:2<196::aid-mus7>3.0.co;2-e] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
With the aim of clarifying the roles of C-protein isoforms in developing mammalian skeletal muscle, we cloned the complementary DNA (cDNAs) encoding mouse fast (F) and slow (S) skeletal muscle C-proteins and determined their entire sequences. Northern blotting with these cDNAs together with mouse cardiac (C) C-protein cDNA was performed. It revealed that in adult mice, C, F, and S isoforms are expressed in a tissue-specific fashion, although the messages for both F and S isoforms are transcribed in extensor digitorum longus muscle, which has been categorized as a fast muscle. In addition, although C isoform is expressed first and transiently during development of chicken skeletal muscles, C isoform is not expressed in mouse skeletal muscles at all through the developmental stages; S isoform is first expressed, followed by the appearance of F isoform. Finally, in dystrophic mouse skeletal muscles, the expression of S isoform is increased as it is in dystrophic chicken muscle. These observations suggest that mutations in C isoform (MyBP-C) do not lead to any disturbance in skeletal muscle, although they may lead to familial hypertrophic cardiomyopathy. We also suggest that the expression of S isoform may be stimulated in degenerating human dystrophic muscles.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Blotting, Northern
- Carrier Proteins
- Cloning, Molecular
- DNA, Complementary/analysis
- Gene Expression Regulation, Developmental
- Humans
- Laminin/genetics
- Mice
- Mice, Inbred C57BL
- Mice, Inbred ICR
- Mice, Knockout
- Molecular Sequence Data
- Muscle Development
- Muscle Fibers, Fast-Twitch/metabolism
- Muscle Fibers, Slow-Twitch/metabolism
- Muscle Proteins/genetics
- Muscle, Skeletal/growth & development
- Muscle, Skeletal/metabolism
- Muscular Dystrophy, Animal/genetics
- Muscular Dystrophy, Animal/metabolism
- Myocardium/metabolism
- Protein Isoforms/genetics
- RNA, Messenger/biosynthesis
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- M Kurasawa
- Department of Biology, Faculty of Science, Chiba University, Japan
| | | | | | | | | | | |
Collapse
|
32
|
Gautel M, Mues A, Young P. Control of sarcomeric assembly: The flow of information on titin. Rev Physiol Biochem Pharmacol 1999. [DOI: 10.1007/bf02346661] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
33
|
Gilbert R, Cohen JA, Pardo S, Basu A, Fischman DA. Identification of the A-band localization domain of myosin binding proteins C and H (MyBP-C, MyBP-H) in skeletal muscle. J Cell Sci 1999; 112 ( Pt 1):69-79. [PMID: 9841905 DOI: 10.1242/jcs.112.1.69] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although major constituents of the thick filaments of vertebrate striated muscles, the myosin binding proteins (MyBP-C and MyBP-H) are still of uncertain function. Distributed in the cross-bridge bearing zone of the A-bands of myofibrils, in a series of transverse 43 nm stripes, the proteins are constructed of a tandem series of small globular domains, each composed of approximately 90–100 amino acids, which have sequence similarities to either the C2-set of immunoglobulins (IgC2) and the fibronectin type III (FnIII) motifs. MyBP-C is composed of ten globular domains (approximately 130 kDa) whereas MyBP-H is smaller (approximately 58 kDa) and consists of a unique N-terminal segment followed by four globular domains, the order of which is identical to that of MyBP-C (FnIII-IgC2-FnIII-IgC2). To improve our understanding of this protein family we have characterized the domains in each of these two proteins which are required for targeting the proteins to their native site(s) in the sarcomere during myogenesis. Cultures of skeletal muscle myoblasts were transfected with expression plasmids encoding mutant constructs of the MyBPs bearing an N-terminal myc epitope, and their localization to the A-band examined by immunofluorescence microscopy. Based on the clarity and intensity of the myc A-band signals we concluded that constructs encoding the four C-terminal motifs of MyBP-C and MyBP-H (approximately 360 amino acids) were all that was necessary to efficiently localize each of these peptides to the A-band. Truncation mutants lacking one of these 4 domains were less efficiently targeted to the C-zone of the sarcomere. Deletion of the last C-terminal motif of MyBP-H, its myosin binding domain, abolished all localization to the A-band. A chimeric construct, HU-3C10, in which the C-terminal motif of MyBP-H was replaced by the myosin binding domain of MyBP-C, efficiently localized to the A-band. Taken together, these observations indicate that MyBP-C and MyBP-H are localized to the A-band by the same C-terminal domain, composed of two IgC2 and two FnIII motifs. A model has been proposed for the interaction and positioning of the MyBPs in the thick filament through a ternary complex of the four C-terminal motifs with the myosin rods and titin.
Collapse
Affiliation(s)
- R Gilbert
- Department of Cell Biology, Cornell University Medical College, New York, NY 10021, USA.
| | | | | | | | | |
Collapse
|
34
|
Chu G, Ferguson DG, Edes I, Kiss E, Sato Y, Kranias EG. Phospholamban ablation and compensatory responses in the mammalian heart. Ann N Y Acad Sci 1998; 853:49-62. [PMID: 10603936 DOI: 10.1111/j.1749-6632.1998.tb08256.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Phospholamban is a low molecular weight phosphoprotein in cardiac sarcoplasmic reticulum. The regulatory role of phospholamban in vivo has recently been elucidated by targeting the gene of this protein in embryonic stem cells and generating phospholamban-deficient mice. The phospholamban knockout hearts exhibited significantly enhanced contractile parameters and attenuated responses to beta-agonists. The hyperdynamic cardiac function of the phospholamban knockout mice was not accompanied by any cytoarchitectural abnormalities or alterations in the expression levels of the cardiac sarcoplasmic reticulum Ca(2+)-ATPase, calsequestrin, Na(+)-Ca2+ exchanger, or the contractile proteins. Furthermore, the attenuation of the cardiac responses to beta-agonists was not due to alterations in the phosphorylation levels of the other key cardiac phosphoproteins in the phospholamban knockout hearts. However, ablation of phospholamban was associated with down-regulation of the ryanodine receptor, which suggests that a cross-talk between cardiac sarcoplasmic reticulum Ca2+ uptake and Ca2+ release occurred in an attempt to maintain Ca2+ homeostasis in these hyperdynamic phospholamban knockout hearts.
Collapse
Affiliation(s)
- G Chu
- Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Ohio 45267-0575, USA
| | | | | | | | | | | |
Collapse
|
35
|
Abstract
Cardiac myofilaments contain proteins that regulate the interaction between actin and myosin. In the thick filament, there are several proteins that may contribute to the regulation of the contraction. The myosin binding protein C, or C protein, has 4 sites that can be phosphorylated by a Ca2+-calmodulin-controlled kinase, protein kinase A or protein kinase C. Using electron microscopy and optical diffraction, we examined the structure of thick filaments isolated from rat ventricles with either the alpha or beta isoform of myosin heavy chain (MHC) and the effect of specific phosphorylation of C protein on the structure. In thick filaments with alpha-MHC, crossbridges were clearly visible. Phosphorylation of C protein by protein kinase A extended the crossbridges from the backbone of the filament, changed their orientation, increased the degree of order of the crossbridges, and decreased the flexibility of the crossbridges. Crossbridges in filaments with beta-MHC were less ordered and apparently more flexible. Phosphorylation of C protein in beta-MHC-containing filaments did not extend the crossbridges and did not alter degree of order or flexibility. The relative flexibility of the crossbridges inferred from the optical diffraction pattern correlated well with the rate of ATP hydrolysis by actomyosin. These results suggest that (1) crossbridge flexibility is an important parameter in setting the rate of crossbridge cycling, and (2) C protein-mediated control of the position and flexibility of crossbridges may regulate actomyosin ATPase activity by modifying the kinetics of crossbridge cycling.
Collapse
Affiliation(s)
- A Weisberg
- Department of Physiology, School of Medicine, University of Pennsylvania, Philadelphia 19104-6085, USA
| | | |
Collapse
|
36
|
|
37
|
Niimura H, Bachinski LL, Sangwatanaroj S, Watkins H, Chudley AE, McKenna W, Kristinsson A, Roberts R, Sole M, Maron BJ, Seidman JG, Seidman CE. Mutations in the gene for cardiac myosin-binding protein C and late-onset familial hypertrophic cardiomyopathy. N Engl J Med 1998; 338:1248-57. [PMID: 9562578 DOI: 10.1056/nejm199804303381802] [Citation(s) in RCA: 491] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Mutations in the gene for cardiac myosin-binding protein C account for approximately 15 percent of cases of familial hypertrophic cardiomyopathy. The spectrum of disease-causing mutations and the associated clinical features of these gene defects are unknown. METHODS DNA sequences encoding cardiac myosin-binding protein C were determined in unrelated patients with familial hypertrophic cardiomyopathy. Mutations were found in 16 probands, who had 574 family members at risk of inheriting these defects. The genotypes of these family members were determined, and the clinical status of 212 family members with mutations in the gene for cardiac myosin-binding protein C was assessed. RESULTS Twelve novel mutations were identified in probands from 16 families. Four were missense mutations; eight defects (insertions, deletions, and splice mutations) were predicted to truncate cardiac myosin-binding protein C. The clinical expression of either missense or truncation mutations was similar to that observed for other genetic causes of hypertrophic cardiomyopathy, but the age at onset of the disease differed markedly. Only 58 percent of adults under the age of 50 years who had a mutation in the cardiac myosin-binding protein C gene (68 of 117 patients) had cardiac hypertrophy; disease penetrance remained incomplete through the age of 60 years. Survival was generally better than that observed among patients with hypertrophic cardiomyopathy caused by other mutations in the genes for sarcomere proteins. Most deaths due to cardiac causes in these families occurred suddenly. CONCLUSIONS The clinical expression of mutations in the gene for cardiac myosin-binding protein C is often delayed until middle age or old age. Delayed expression of cardiac hypertrophy and a favorable clinical course may hinder recognition of the heritable nature of mutations in the cardiac myosin-binding protein C gene. Clinical screening in adult life may be warranted for members of families characterized by hypertrophic cardiomyopathy.
Collapse
Affiliation(s)
- H Niimura
- Howard Hughes Medical Institute, Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Redaelli G, Malhotra A, Li B, Li P, Sonnenblick EH, Hofmann PA, Anversa P. Effects of constitutive overexpression of insulin-like growth factor-1 on the mechanical characteristics and molecular properties of ventricular myocytes. Circ Res 1998; 82:594-603. [PMID: 9529164 DOI: 10.1161/01.res.82.5.594] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Recently, insulin-like growth factor-1 (IGF-1) has been claimed to positively influence the cardiac performance of the decompensated heart. On this basis, the effects of constitutive overexpression of IGF-1 on the mechanical behavior of myocytes were examined in transgenic mice in which the cDNA for the human IGF-1B was placed under the control of a rat alpha-myosin heavy chain promoter. In mice heterozygous for the transgene and in nontransgenic littermates at 2.5 months of age, the alterations in Ca2+ sensitivity of tension development, unloaded shortening velocity, and sarcomere compliance were measured in skinned myocytes. The quantities and state of phosphorylation of myofilament proteins in these enzymatically dissociated ventricular myocytes were also examined. The overexpression of IGF-1 was characterized by a nearly 15% reduction in myofilament isometric tension at submaximum Ca2+ levels in the physiological range, whereas developed tension at maximum activation was unchanged. In contrast, unloaded velocity of shortening was increased 39% in myocytes from transgenic mice. Moreover, resting tension in these cells was reduced by 24% to 33%. Myocytes from nontransgenic mice pretreated with IGF-1 failed to reveal changes in myofilament Ca2+ sensitivity and unloaded velocity of shortening. The quantities of C protein, troponin I, and myosin light chain-2 were comparable in transgenic and nontransgenic mice, but their endogenous state of phosphorylation increased 117%, 100%, and 100%, respectively. Troponin T content was not altered, and myosin isozymes were essentially 100% V1 in both groups of mice. In conclusion, constitutive overexpression of IGF-1 may influence positively the performance of myocytes by enhancing shortening velocity and cellular compliance.
Collapse
Affiliation(s)
- G Redaelli
- Department of Medicine, New York Medical College, Valhalla 10595, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Fougerousse F, Delezoide AL, Fiszman MY, Schwartz K, Beckmann JS, Carrier L. Cardiac myosin binding protein C gene is specifically expressed in heart during murine and human development. Circ Res 1998; 82:130-3. [PMID: 9440712 DOI: 10.1161/01.res.82.1.130] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cardiac myosin binding protein C (MyBP-C) is a substantial component of the sarcomere, with both structural and regulatory roles. The gene encoding cardiac MyBP-C in humans is located on chromosome 11p11.2, and mutations that are most predicted to produce truncated proteins have been identified in this gene in unrelated families with familial hypertrophic cardiomyopathy (FHC). To understand better the pathophysiology of FHC and with a view to the development of animal models for this disease, we have investigated by in situ hybridization the pattern of expression of the cardiac MyBP-C gene during human and mouse development using species-specific oligonucleotide probes. From 4 weeks of human development, a strong labeling of cardiac MyBP-C mRNAs was unambiguously detected in all heart compartments, and no signal could be visualized in somites. In murine embryos, from embryonic day 9.5 until birth, a strong signal was detected exclusively in the heart. Our results showed that during both human and murine development, in contrast to chicken development, the cardiac MyBP-C gene is abundantly and specifically expressed in the heart.
Collapse
Affiliation(s)
- F Fougerousse
- Laboratoire d'Histo-Embryologie et de Cytogénétique, Faculté Cochin Port-Royal, Paris, France
| | | | | | | | | | | |
Collapse
|
40
|
Carrier L, Bonne G, Bahrend E, Yu B, Richard P, Niel F, Hainque B, Cruaud C, Gary F, Labeit S, Bouhour JB, Dubourg O, Desnos M, Hagege AA, Trent RJ, Komajda M, Fiszman M, Schwartz K. Organization and Sequence of Human Cardiac Myosin Binding Protein C Gene (MYBPC3) and Identification of Mutations Predicted to Produce Truncated Proteins in Familial Hypertrophic Cardiomyopathy. Circ Res 1997. [DOI: 10.1161/01.res.0000435859.24609.b3] [Citation(s) in RCA: 189] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Lucie Carrier
- From the Unite de Recherches 153 de l'INSERM (L.C., G.B., E.B., M.F., K.S.), the Service de Biochimie (P.R., F.N., B.H.), the Service de Cardiologie (M.K.), the IFR de Physiopathologie et Genetique Cardiovasculaire (L.C., G.B., P.R., B.H., M.K., M.F., K.S.), and the Groupe Hospitalier Pitie-Salpetriere, Paris, France; the Service de Cardiologie (J.-B.B.), Hopital de Nantes, (France); the Service de Cardiologie (O.D.), Hopital Ambroise Pare, Boulogne, France; the Service de Cardiologie (M.D., A.A.H.)
| | - Gisele Bonne
- From the Unite de Recherches 153 de l'INSERM (L.C., G.B., E.B., M.F., K.S.), the Service de Biochimie (P.R., F.N., B.H.), the Service de Cardiologie (M.K.), the IFR de Physiopathologie et Genetique Cardiovasculaire (L.C., G.B., P.R., B.H., M.K., M.F., K.S.), and the Groupe Hospitalier Pitie-Salpetriere, Paris, France; the Service de Cardiologie (J.-B.B.), Hopital de Nantes, (France); the Service de Cardiologie (O.D.), Hopital Ambroise Pare, Boulogne, France; the Service de Cardiologie (M.D., A.A.H.)
| | - Ellen Bahrend
- From the Unite de Recherches 153 de l'INSERM (L.C., G.B., E.B., M.F., K.S.), the Service de Biochimie (P.R., F.N., B.H.), the Service de Cardiologie (M.K.), the IFR de Physiopathologie et Genetique Cardiovasculaire (L.C., G.B., P.R., B.H., M.K., M.F., K.S.), and the Groupe Hospitalier Pitie-Salpetriere, Paris, France; the Service de Cardiologie (J.-B.B.), Hopital de Nantes, (France); the Service de Cardiologie (O.D.), Hopital Ambroise Pare, Boulogne, France; the Service de Cardiologie (M.D., A.A.H.)
| | - Bing Yu
- From the Unite de Recherches 153 de l'INSERM (L.C., G.B., E.B., M.F., K.S.), the Service de Biochimie (P.R., F.N., B.H.), the Service de Cardiologie (M.K.), the IFR de Physiopathologie et Genetique Cardiovasculaire (L.C., G.B., P.R., B.H., M.K., M.F., K.S.), and the Groupe Hospitalier Pitie-Salpetriere, Paris, France; the Service de Cardiologie (J.-B.B.), Hopital de Nantes, (France); the Service de Cardiologie (O.D.), Hopital Ambroise Pare, Boulogne, France; the Service de Cardiologie (M.D., A.A.H.)
| | - Pascale Richard
- From the Unite de Recherches 153 de l'INSERM (L.C., G.B., E.B., M.F., K.S.), the Service de Biochimie (P.R., F.N., B.H.), the Service de Cardiologie (M.K.), the IFR de Physiopathologie et Genetique Cardiovasculaire (L.C., G.B., P.R., B.H., M.K., M.F., K.S.), and the Groupe Hospitalier Pitie-Salpetriere, Paris, France; the Service de Cardiologie (J.-B.B.), Hopital de Nantes, (France); the Service de Cardiologie (O.D.), Hopital Ambroise Pare, Boulogne, France; the Service de Cardiologie (M.D., A.A.H.)
| | - Florence Niel
- From the Unite de Recherches 153 de l'INSERM (L.C., G.B., E.B., M.F., K.S.), the Service de Biochimie (P.R., F.N., B.H.), the Service de Cardiologie (M.K.), the IFR de Physiopathologie et Genetique Cardiovasculaire (L.C., G.B., P.R., B.H., M.K., M.F., K.S.), and the Groupe Hospitalier Pitie-Salpetriere, Paris, France; the Service de Cardiologie (J.-B.B.), Hopital de Nantes, (France); the Service de Cardiologie (O.D.), Hopital Ambroise Pare, Boulogne, France; the Service de Cardiologie (M.D., A.A.H.)
| | - Bernard Hainque
- From the Unite de Recherches 153 de l'INSERM (L.C., G.B., E.B., M.F., K.S.), the Service de Biochimie (P.R., F.N., B.H.), the Service de Cardiologie (M.K.), the IFR de Physiopathologie et Genetique Cardiovasculaire (L.C., G.B., P.R., B.H., M.K., M.F., K.S.), and the Groupe Hospitalier Pitie-Salpetriere, Paris, France; the Service de Cardiologie (J.-B.B.), Hopital de Nantes, (France); the Service de Cardiologie (O.D.), Hopital Ambroise Pare, Boulogne, France; the Service de Cardiologie (M.D., A.A.H.)
| | - Corinne Cruaud
- From the Unite de Recherches 153 de l'INSERM (L.C., G.B., E.B., M.F., K.S.), the Service de Biochimie (P.R., F.N., B.H.), the Service de Cardiologie (M.K.), the IFR de Physiopathologie et Genetique Cardiovasculaire (L.C., G.B., P.R., B.H., M.K., M.F., K.S.), and the Groupe Hospitalier Pitie-Salpetriere, Paris, France; the Service de Cardiologie (J.-B.B.), Hopital de Nantes, (France); the Service de Cardiologie (O.D.), Hopital Ambroise Pare, Boulogne, France; the Service de Cardiologie (M.D., A.A.H.)
| | - Francoise Gary
- From the Unite de Recherches 153 de l'INSERM (L.C., G.B., E.B., M.F., K.S.), the Service de Biochimie (P.R., F.N., B.H.), the Service de Cardiologie (M.K.), the IFR de Physiopathologie et Genetique Cardiovasculaire (L.C., G.B., P.R., B.H., M.K., M.F., K.S.), and the Groupe Hospitalier Pitie-Salpetriere, Paris, France; the Service de Cardiologie (J.-B.B.), Hopital de Nantes, (France); the Service de Cardiologie (O.D.), Hopital Ambroise Pare, Boulogne, France; the Service de Cardiologie (M.D., A.A.H.)
| | - Siegfried Labeit
- From the Unite de Recherches 153 de l'INSERM (L.C., G.B., E.B., M.F., K.S.), the Service de Biochimie (P.R., F.N., B.H.), the Service de Cardiologie (M.K.), the IFR de Physiopathologie et Genetique Cardiovasculaire (L.C., G.B., P.R., B.H., M.K., M.F., K.S.), and the Groupe Hospitalier Pitie-Salpetriere, Paris, France; the Service de Cardiologie (J.-B.B.), Hopital de Nantes, (France); the Service de Cardiologie (O.D.), Hopital Ambroise Pare, Boulogne, France; the Service de Cardiologie (M.D., A.A.H.)
| | - Jean-Brieuc Bouhour
- From the Unite de Recherches 153 de l'INSERM (L.C., G.B., E.B., M.F., K.S.), the Service de Biochimie (P.R., F.N., B.H.), the Service de Cardiologie (M.K.), the IFR de Physiopathologie et Genetique Cardiovasculaire (L.C., G.B., P.R., B.H., M.K., M.F., K.S.), and the Groupe Hospitalier Pitie-Salpetriere, Paris, France; the Service de Cardiologie (J.-B.B.), Hopital de Nantes, (France); the Service de Cardiologie (O.D.), Hopital Ambroise Pare, Boulogne, France; the Service de Cardiologie (M.D., A.A.H.)
| | - Olivier Dubourg
- From the Unite de Recherches 153 de l'INSERM (L.C., G.B., E.B., M.F., K.S.), the Service de Biochimie (P.R., F.N., B.H.), the Service de Cardiologie (M.K.), the IFR de Physiopathologie et Genetique Cardiovasculaire (L.C., G.B., P.R., B.H., M.K., M.F., K.S.), and the Groupe Hospitalier Pitie-Salpetriere, Paris, France; the Service de Cardiologie (J.-B.B.), Hopital de Nantes, (France); the Service de Cardiologie (O.D.), Hopital Ambroise Pare, Boulogne, France; the Service de Cardiologie (M.D., A.A.H.)
| | - Michel Desnos
- From the Unite de Recherches 153 de l'INSERM (L.C., G.B., E.B., M.F., K.S.), the Service de Biochimie (P.R., F.N., B.H.), the Service de Cardiologie (M.K.), the IFR de Physiopathologie et Genetique Cardiovasculaire (L.C., G.B., P.R., B.H., M.K., M.F., K.S.), and the Groupe Hospitalier Pitie-Salpetriere, Paris, France; the Service de Cardiologie (J.-B.B.), Hopital de Nantes, (France); the Service de Cardiologie (O.D.), Hopital Ambroise Pare, Boulogne, France; the Service de Cardiologie (M.D., A.A.H.)
| | - Albert A. Hagege
- From the Unite de Recherches 153 de l'INSERM (L.C., G.B., E.B., M.F., K.S.), the Service de Biochimie (P.R., F.N., B.H.), the Service de Cardiologie (M.K.), the IFR de Physiopathologie et Genetique Cardiovasculaire (L.C., G.B., P.R., B.H., M.K., M.F., K.S.), and the Groupe Hospitalier Pitie-Salpetriere, Paris, France; the Service de Cardiologie (J.-B.B.), Hopital de Nantes, (France); the Service de Cardiologie (O.D.), Hopital Ambroise Pare, Boulogne, France; the Service de Cardiologie (M.D., A.A.H.)
| | - Ronald J. Trent
- From the Unite de Recherches 153 de l'INSERM (L.C., G.B., E.B., M.F., K.S.), the Service de Biochimie (P.R., F.N., B.H.), the Service de Cardiologie (M.K.), the IFR de Physiopathologie et Genetique Cardiovasculaire (L.C., G.B., P.R., B.H., M.K., M.F., K.S.), and the Groupe Hospitalier Pitie-Salpetriere, Paris, France; the Service de Cardiologie (J.-B.B.), Hopital de Nantes, (France); the Service de Cardiologie (O.D.), Hopital Ambroise Pare, Boulogne, France; the Service de Cardiologie (M.D., A.A.H.)
| | - Michel Komajda
- From the Unite de Recherches 153 de l'INSERM (L.C., G.B., E.B., M.F., K.S.), the Service de Biochimie (P.R., F.N., B.H.), the Service de Cardiologie (M.K.), the IFR de Physiopathologie et Genetique Cardiovasculaire (L.C., G.B., P.R., B.H., M.K., M.F., K.S.), and the Groupe Hospitalier Pitie-Salpetriere, Paris, France; the Service de Cardiologie (J.-B.B.), Hopital de Nantes, (France); the Service de Cardiologie (O.D.), Hopital Ambroise Pare, Boulogne, France; the Service de Cardiologie (M.D., A.A.H.)
| | - Marc Fiszman
- From the Unite de Recherches 153 de l'INSERM (L.C., G.B., E.B., M.F., K.S.), the Service de Biochimie (P.R., F.N., B.H.), the Service de Cardiologie (M.K.), the IFR de Physiopathologie et Genetique Cardiovasculaire (L.C., G.B., P.R., B.H., M.K., M.F., K.S.), and the Groupe Hospitalier Pitie-Salpetriere, Paris, France; the Service de Cardiologie (J.-B.B.), Hopital de Nantes, (France); the Service de Cardiologie (O.D.), Hopital Ambroise Pare, Boulogne, France; the Service de Cardiologie (M.D., A.A.H.)
| | - Ketty Schwartz
- From the Unite de Recherches 153 de l'INSERM (L.C., G.B., E.B., M.F., K.S.), the Service de Biochimie (P.R., F.N., B.H.), the Service de Cardiologie (M.K.), the IFR de Physiopathologie et Genetique Cardiovasculaire (L.C., G.B., P.R., B.H., M.K., M.F., K.S.), and the Groupe Hospitalier Pitie-Salpetriere, Paris, France; the Service de Cardiologie (J.-B.B.), Hopital de Nantes, (France); the Service de Cardiologie (O.D.), Hopital Ambroise Pare, Boulogne, France; the Service de Cardiologie (M.D., A.A.H.)
| |
Collapse
|
41
|
Weisberg A, Winegrad S. Alteration of myosin cross bridges by phosphorylation of myosin-binding protein C in cardiac muscle. Proc Natl Acad Sci U S A 1996; 93:8999-9003. [PMID: 8799143 PMCID: PMC38584 DOI: 10.1073/pnas.93.17.8999] [Citation(s) in RCA: 157] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
In addition to the contractile proteins actin and myosin, contractile filaments of striated muscle contain other proteins that are important for regulating the structure and the interaction of the two force-generating proteins. In the thin filaments, troponin and tropomyosin form a Ca-sensitive trigger that activates normal contraction when intracellular Ca is elevated. In the thick filament, there are several myosin-binding proteins whose functions are unclear. Among these is the myosin-binding protein C (MBP-C). The cardiac isoform contains four phosphorylation sites under the control of cAMP and calmodulin-regulated kinases, whereas the skeletal isoform contains only one such site, suggesting that phosphorylation in cardiac muscle has a specific regulatory function. We isolated natural thick filaments from cardiac muscle and, using electron microscopy and optical diffraction, determined the effect of phosphorylation of MBP-C on cross bridges. The thickness of the filaments that had been treated with protein kinase A was increased where cross bridges were present. No change occurred in the central bare zone that is devoid of cross bridges. The intensity of the reflections along the 43-nm layer line, which is primarily due to the helical array of cross bridges, was increased, and the distance of the first peak reflection from the meridian along the 43-nm layer line was decreased. The results indicate that phosphorylation of MBP-C (i) extends the cross bridges from the backbone of the filament and (ii) increases their degree of order and/or alters their orientation. These changes could alter rate constants for attachment to and detachment from the thin filament and thereby modify force production in activated cardiac muscle.
Collapse
Affiliation(s)
- A Weisberg
- Department of Physiology, School of Medicine, University of Pennsylvania, Philadelphia 19104-6085, USA
| | | |
Collapse
|
42
|
Yasuda M, Koshida S, Sato N, Obinata T. Complete primary structure of chicken cardiac C-protein (MyBP-C) and its expression in developing striated muscles. J Mol Cell Cardiol 1995; 27:2275-86. [PMID: 8576942 DOI: 10.1016/s0022-2828(95)91731-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
C-protein (MyBP-C) is a myosin binding protein of about 140 kDa which is known to modulate myosin assembly in striated muscles. A cardiac-type isoform of C-protein appears not only in cardiac muscle but also in skeletal muscle before skeletal muscle-type isoforms become detectable during myogenesis, suggesting that the cardiac isoform is involved in the early phase of myofibrillogenesis (Bähler et al., 1985; Kawashima et al., 1986). In this study, in order to understand the structure and functional domains of the cardiac-type C-protein, we cloned and sequenced full-length cDNAs encoding chicken cardiac C-protein from lambda gt11 cDNA libraries which were prepared with poly (A)+ RNA from embryonic chicken cardiac muscle as well as embryonic chicken skeletal muscle by using antibodies specific for cardiac C-protein. Two cDNA variants, probably generated by alternative RNA splicing and encoding different C-protein isoforms, were detected. As judged by the cDNA sequences determined, overall homology of the peptide sequence between cardiac and skeletal muscle C-proteins (Einheber et al., 1990; Fürst et al., 1992, Weber et al., 1994) was about 50-55%. Like other myosin binding proteins, skeletal C-proteins, 86 kDa protein and M-protein, cardiac C-protein contains several copies of fibronectin type III motifs and immunoglobulin C2 motifs in the molecule, but their number and arrangements differed somewhat from those in the other proteins. Northern blot analysis with the cloned cDNA as a probe demonstrated that mRNA of 5.0 kb is transcribed in both cardiac and embryonic skeletal muscle, and that it is specifically expressed in cardiac muscle among adult tissues.
Collapse
Affiliation(s)
- M Yasuda
- Department of Biology, Faculty of Science, Chiba University, Japan
| | | | | | | |
Collapse
|
43
|
Strang KT, Moss RL. Alpha 1-adrenergic receptor stimulation decreases maximum shortening velocity of skinned single ventricular myocytes from rats. Circ Res 1995; 77:114-20. [PMID: 7788869 DOI: 10.1161/01.res.77.1.114] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
alpha 1-Adrenergic agonists have negative inotropic effects on mammalian myocardium under some conditions, and biochemical experiments measuring the Ca(2+)-activated actomyosin ATPase activity of myofibrillar preparations suggest that this may result from a decrease in cross-bridge cycling rate caused by phosphorylation of myofilament proteins. Experiments with intact ventricular preparations, however, have failed to demonstrate a mechanical manifestation of a decrease in cycling rate. The present study examined the effect of alpha 1-adrenergic receptor stimulation on maximum shortening velocity in skinned single ventricular myocytes from rats. Enzymatically isolated myocytes were incubated with the beta-receptor antagonist propranolol in the presence or absence of the alpha 1-adrenergic receptor agonist phenylephrine and were then rapidly skinned to preserve the phosphorylation state of myofilament proteins. The velocity of unloaded shortening (Vo) was determined by use of the slack-test method and compared between skinned control and phenylephrine-treated cells. The relationship between isometric tension and [Ca2+] was also assessed for each myocyte. Vo was significantly lower in the alpha 1-adrenergic receptor agonist-treated cells than in the control cells, but there was no effect on Ca2+ sensitivity of isometric tension. In addition, the myosin heavy chain isoform composition accounted for a significant amount of the variation in Vo within the treatment groups. On the basis of these and previous results we propose that alpha 1-adrenergic receptor stimulation inhibits cross-bridge cycling rate at the level of myofilament proteins by a mechanism that may involve phosphorylation of troponin I by protein kinase C.
Collapse
Affiliation(s)
- K T Strang
- Department of Physiology, School of Medicine, University of Wisconsin, Madison, USA
| | | |
Collapse
|
44
|
Zhang R, Zhao J, Mandveno A, Potter JD. Cardiac troponin I phosphorylation increases the rate of cardiac muscle relaxation. Circ Res 1995; 76:1028-35. [PMID: 7758157 DOI: 10.1161/01.res.76.6.1028] [Citation(s) in RCA: 218] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Cardiac troponin (Tn) I (CTnI), compared with skeletal TnI, contains extra amino acids (32 to 33) at its amino terminus, including two adjacent serine residues. These two serine residues are believed to be phosphorylated by protein kinase A (PKA) upon stimulation of the heart by beta-agonists. In this study, we found that phosphorylation of a cardiac skinned muscle preparation by PKA, mainly at CTnI, results in a decrease in the Ca2+ sensitivity of muscle contraction. The pCa50 decreased by approximately 0.27 +/- 0.06 pCa units upon phosphorylation. To study cardiac muscle relaxation, we used diazo-2, a photolabile Ca2+ chelator with a low Ca2+ affinity in its intact form that is converted to a high-affinity form after photolysis. We found that the rate of cardiac muscle relaxation increased from a time of half-relaxation (t1/2) = 110 +/- 10 milliseconds to t1/2 = 70 +/- 8 milliseconds after CTnI phosphorylation. This result demonstrates that CTnI phosphorylation can be linked with the increased rate of muscle relaxation in a relatively intact muscle preparation. Since CTnI phosphorylation has been shown previously to affect the Ca2+ affinity and Ca2+ off-rate of CTnC in vitro, it is likely that the faster relaxation seen here reflects faster dissociation of Ca2+ from cardiac TnC (CTnC). Model calculations show that increased dissociation of Ca2+ from CTnC, coupled with the faster uptake of Ca2+ by the sarcoplasmic reticulum stimulated by PKA phosphorylation of phospholamban, can account for the faster relaxation seen in the inotropic response of the heart to catecholamines.
Collapse
Affiliation(s)
- R Zhang
- Department of Molecular and Cellular Pharmacology, University of Miami School of Medicine, FL 33101, USA
| | | | | | | |
Collapse
|
45
|
Neumann J, Bokník P, Kaspareit G, Bartel S, Krause EG, Pask HT, Schmitz W, Scholz H. Effects of the phosphatase inhibitor calyculin A on the phosphorylation of C-protein in mammalian ventricular cardiomyocytes. Biochem Pharmacol 1995; 49:1583-8. [PMID: 7786299 DOI: 10.1016/0006-2952(95)00101-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The effects of inhibitors of protein phosphatase activity on C-protein phosphorylation were studied in preparations from mammalian ventricles. Calyculin A (CyA), an inhibitor of type 1 and 2A protein phosphatases, was studied. CyA concentration- and time-dependency increased the phosphorylation state of C-protein in isolated 32P-labelled guinea pig ventricular cardiomyocytes. C-protein was identified by its reaction with a polyclonal antibody and immunoprecipitation. It is concluded that C-protein in intact cardiomyocytes could be a substrate for type 1 and 2A protein phosphatases.
Collapse
Affiliation(s)
- J Neumann
- Abteilung Allgemeine Pharmakologie, Universitäts-Krankenhaus Eppendorf, Hamburg
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Noland TA, Kuo JF. Protein kinase C phosphorylation of cardiac troponin T decreases Ca(2+)-dependent actomyosin MgATPase activity and troponin T binding to tropomyosin-F-actin complex. Biochem J 1992; 288 ( Pt 1):123-9. [PMID: 1445257 PMCID: PMC1132088 DOI: 10.1042/bj2880123] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Effects of phosphorylation of bovine cardiac troponin T (TnT) by protein kinase C on the Ca(2+)-stimulated MgATPase activity of reconstituted actomyosin complex and the binding of TnT to tropomyosin(Tm)-F-actin were investigated. The Ca(2+)-stimulated MgATPase of actomyosin containing phosphorylated TnT (1.8 mol of P/mol), compared with that containing unphosphorylated TnT, was decreased by up to 48%. Phosphorylation of TnT also decreased (up to 48%) its maximum binding to Tm-F-actin, which was accompanied by a decrease (up to 3.5-fold) in its apparent binding affinity. The findings indicate that the effects of phosphorylated TnT in decreasing actomyosin MgATPase might be secondary to its decreased interactions with the other components of the thin filament, representing a new mechanism underlying the negative inotropic responses of various cardiac preparations to protein kinase C-activating phorbol esters.
Collapse
Affiliation(s)
- T A Noland
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322
| | | |
Collapse
|
47
|
Lin LE, McClellan G, Weisberg A, Winegrad S. A physiological basis for variation in the contractile properties of isolated rat heart. J Physiol 1991; 441:73-94. [PMID: 1667804 PMCID: PMC1180186 DOI: 10.1113/jphysiol.1991.sp018739] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
1. The maximum Ca(2+)-activated force, maximum velocity of unloaded shortening and both Ca(2+)- and actin-activated ATPase activities of myosin have been measured in detergent-skinned preparations of isolated bundles of rat right ventricle after exposure of the intact tissue to different conditions of superfusion, mechanical activity and temperature. 2. Maximum Ca(2+)-activated force per unit cross-sectional area decreases with increasing cross-sectional area, and, in the absence of electrical stimulation, with the duration of superfusion. Maximum velocity of unloaded shortening is not influenced by these differences. 3. Actin-activated ATPase activity of myosin decreases as cross-sectional area increases and duration of superfusion increases, but the extent of the decrease in enzymatic activity is less than that of developed force. Ca(2+)-activated ATPase activity is independent of these differences. 4. Actin-activated ATPase activity in cryostatic sections of quickly frozen tissue is not uniform across the transverse section. In thin bundles, it is highest in the centre and lowest at the edge of the section, which correspond, respectively, to the centre and the surface of the tissue bundle. Exposure of the tissue section to 1 microM-cyclic AMP increases the actin-activated ATPase activity of myosin with the largest increase in activity occurring at or near the surface of the bundle. 5. Ca(2+)-activated ATPase activity of myosin is uniform across the transverse section and is not changed by cyclic AMP. 6. Electrical stimulation, elevated Ca2+ concentration in the superfusion medium, or isoprenaline partially or completely reverse the decline in maximum Ca(2+)-activated force produced by prolonged superfusion of the bundle before its skinning. 7. These observations are similar in many ways to those made on frog skeletal muscles by Elzinga, Howarth, Rull, Wilson & Woledge (1989a). An explanation based on the existence of a physiological mechanism for regulating the properties of force generators is proposed. Regulation of the attachment of the cross-bridge to an actin filament may be the basis for the regulatory mechanism.
Collapse
Affiliation(s)
- L E Lin
- Department of Physiology, School of Medicine, University of Pennsylvania, Philadelphia 19104-6085
| | | | | | | |
Collapse
|
48
|
Hofmann PA, Hartzell HC, Moss RL. Alterations in Ca2+ sensitive tension due to partial extraction of C-protein from rat skinned cardiac myocytes and rabbit skeletal muscle fibers. J Gen Physiol 1991; 97:1141-63. [PMID: 1678777 PMCID: PMC2216516 DOI: 10.1085/jgp.97.6.1141] [Citation(s) in RCA: 153] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
C-protein, a substantial component of muscle thick filaments, has been postulated to have various functions, based mainly on results from biochemical studies. In the present study, effects on Ca(2+)-activated tension due to partial removal of C-protein were investigated in skinned single myocytes from rat ventricle and rabbit psoas muscle. Isometric tension was measured at pCa values of 7.0 to 4.5: (a) in untreated myocytes, (b) in the same myocytes after partial extraction of C-protein, and (c) in some myocytes, after readdition of C-protein. The solution for extracting C-protein contained 10 mM EDTA, 31 mM Na2HPO2, 124 mM NaH2PO4, pH 5.9 (Offer et al., 1973; Hartzell and Glass, 1984). In addition, the extracting solution contained 0.2 mg/ml troponin and, for skeletal muscle, 0.2 mg/ml myosin light chain-2 in order to minimize loss of these proteins during the extraction procedure. Between 60 and 70% of endogenous C-protein was extracted from cardiac myocytes by a 1-h soak in extracting solution at 20-23 degrees C; a similar amount was extracted from psoas fibers during a 3-h soak at 25 degrees C. For both cardiac myocytes and skeletal muscle fibers, partial extraction of C-protein resulted in increased active tension at submaximal concentrations of Ca2+, but had little effect upon maximum tension. C-protein extraction also reduced the slope of the tension-pCa relationships, suggesting that the cooperativity of Ca2+ activation of tension was decreased. Readdition of C-protein to previously extracted myocytes resulted in recovery of both tension and slope to near their control values. The effects on tension did not appear to be due to disruption of cooperative activation of the thin filament, since C-protein extraction from cardiac myocytes that were 40-60% troponin-C (TnC) deficient produced effects similar to those observed in cells that were TnC replete. Measurements of the tension-pCa relationship in skeletal muscle fibers were also made at a sarcomere length of 3.5 microns which, because of the distribution of C-protein on the thick filament, should eliminate any interaction between C-protein and actin. The effects of C-protein extraction were similar at long and short sarcomere lengths. These data are consistent with a model in which C-protein modulates the range of movement of myosin, such that the probability of myosin binding to actin is increased after its extraction.
Collapse
Affiliation(s)
- P A Hofmann
- Department of Physiology, University of Wisconsin School of Medicine, Madison 53706
| | | | | |
Collapse
|
49
|
Andres J, Moczarska A, Stepkowski D, Kakol I. Contractile proteins in globally "stunned" rabbit myocardium. Basic Res Cardiol 1991; 86:219-26. [PMID: 1837710 DOI: 10.1007/bf02190601] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The isolated working rabbit heart preparation was used to study whether the "contractile machinery" remains unchanged in globally stunned myocardium. The function of the heart has been measured in nonischemic and postischemic conditions. The effect of isoprenaline or calcium chloride administration in both conditions was also studied. Myocardial contractile function was significantly depressed after 20-min global ischemia and returned to normal after CaCl2 and supranormal values after isoprenaline administration. From hearts used in experiments myofibrils were prepared and their ATPase activity was determined. It was observed that myofibrils prepared from "stunned" myocardium showed about 50% increase in ATPase activity in the presence of CaCl2. Subjection of the heart to ischemia caused a decrease in calcium sensitivity of the myofibrillar ATPase. Myofibrils obtained from ischemic hearts but subjected to isoprenaline or CaCl2 administration exhibited increased calcium sensitivity over that of control heart. These effects were accompanied by changes in the extent of phosphorylation of troponin I (TNI) and myosin light chains. The modification of contractile apparatus in the postischemic period described in this paper may contribute to the overall mechanism of myocardial stunning.
Collapse
Affiliation(s)
- J Andres
- University School of Medicine, Department of Anaesthesiology and Intensive Therapy, Kraków, Poland
| | | | | | | |
Collapse
|
50
|
Hoh JF, Rossmanith GH, Hamilton AM. Effects of dibutyryl cyclic AMP, ouabain, and xanthine derivatives on crossbridge kinetics in rat cardiac muscle. Circ Res 1991; 68:702-13. [PMID: 1720712 DOI: 10.1161/01.res.68.3.702] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In a previous communication, we showed that beta-adrenergic stimulation of cardiac muscles was associated with an increase in the rate of cycling of crossbridges as measured by perturbation analysis in the frequency domain. In this analysis, the frequency at which dynamic stiffness is a minimum (fmin) is taken as a measure of the rate of crossbridge cycling. In this paper, we test the hypothesis that the beta-adrenergic receptor-induced increase in crossbridge cycling rate is mediated by elevation of the intracellular level of cyclic AMP. The approach taken is to compare the effects on fmin in rat papillary muscles during Ba(2+)-activated contractures of 1) an agonist of cyclic AMP that can easily penetrate the cell, namely, dibutyryl cyclic AMP, 2) agents that block cyclic AMP phosphodiesterase, namely, the xanthine derivatives isobutylmethylxanthine and caffeine, and 3) an inotropic agent that does not affect the intracellular level of cyclic AMP, namely, ouabain. Our results showed that dibutyryl cyclic AMP at a dose of 5 mM has the same actions as beta-adrenergic stimulation: it potentiated the isometric twitch force, reduced the time to peak tension and time to half relaxation, and shifted fmin by a factor of 1.8 +/- 0.1 (n = 5). Isobutylmethylxanthine at up to 1.1 mM also acted in the same manner, increasing fmin by a factor of 1.8 +/- 0.2 (n = 6), but ouabain, at a dose (0.03 mM) sufficient to potentiate twitch force by 40 +/- 2% (n = 4), was without effect on the time course of the twitch nor was fmin changed (n = 4). Our findings support the hypothesis that a beta-adrenergic receptor-mediated increase in crossbridge cycling rate is due to an increase in intracellular cyclic AMP level and illustrate the usefulness of the frequency domain analysis approach in the analysis of the mechanism of action of inotropic agents.
Collapse
Affiliation(s)
- J F Hoh
- Department of Physiology, University of Sydney, New South Wales, Australia
| | | | | |
Collapse
|