1
|
Kimmich MJ, Geary MA, Mi-Mi L, Votra SD, Pellenz CD, Sundaramurthy S, Pruyne D. The sole essential low molecular weight tropomyosin isoform of Caenorhabditis elegans is essential for pharyngeal muscle function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.13.628433. [PMID: 39764053 PMCID: PMC11702560 DOI: 10.1101/2024.12.13.628433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Tropomyosin is an actin-binding protein that plays roles ranging from regulating muscle contraction to controlling cytokinesis and cell migration. The simple nematode Caenorhabditis elegans provides a useful model for studying the core functions of tropomyosin in an animal, having a relatively simple anatomy, and a single tropomyosin gene, lev-11, that produces seven isoforms. Three higher molecular weight isoforms (LEV-11A, D, O) regulate contraction of body wall and other muscles, but comparatively less is known of the functions of four lower molecular weight isoforms (LEV-11C, E, T, U). We demonstrate here C. elegans can survive with a single low molecular weight isoform, LEV-11E. Mutants disrupted for LEV-11E die as young larvae, whereas mutants disrupted for all other short isoforms are viable with no overt phenotype. Vertebrate low molecular weight tropomyosins are often considered "nonmuscle" isoforms, but we find LEV-11E localizes to sarcomeric thin filaments in pharyngeal muscle, and co-precipitates from worm extracts with the formin FHOD-1, which is also associated with thin filaments in pharyngeal muscle. Pharyngeal sarcomere organization is grossly normal in larvae lacking LEV-11E, indicating the tropomyosin is not required to stabilize thin filaments, but pharyngeal pumping is absent, suggesting LEV-11E regulates actomyosin activity similar to higher molecular weight sarcomeric tropomyosin isoforms.
Collapse
Affiliation(s)
- Michael J Kimmich
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, 766 Irving Avenue, Syracuse, NY 13210
| | - Meaghan A Geary
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, 766 Irving Avenue, Syracuse, NY 13210
| | - Lei Mi-Mi
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, 766 Irving Avenue, Syracuse, NY 13210
| | - SarahBeth D Votra
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, 766 Irving Avenue, Syracuse, NY 13210
| | - Christopher D Pellenz
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, 766 Irving Avenue, Syracuse, NY 13210
| | - Sumana Sundaramurthy
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, 766 Irving Avenue, Syracuse, NY 13210
| | - David Pruyne
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, 766 Irving Avenue, Syracuse, NY 13210
| |
Collapse
|
2
|
Parry DAD. 50 Years of the steric-blocking mechanism in vertebrate skeletal muscle: a retrospective. J Muscle Res Cell Motil 2023; 44:133-141. [PMID: 35789471 PMCID: PMC10542282 DOI: 10.1007/s10974-022-09619-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 05/12/2022] [Indexed: 11/27/2022]
Abstract
Fifty years have now passed since Parry and Squire proposed a detailed structural model that explained how tropomyosin, mediated by troponin, played a steric-blocking role in the regulation of vertebrate skeletal muscle. In this Special Issue dedicated to the memory of John Squire it is an opportune time to look back on this research and to appreciate John's key contributions. A review is also presented of a selection of the developments and insights into muscle regulation that have occurred in the years since this proposal was formulated.
Collapse
Affiliation(s)
- David A D Parry
- School of Natural Sciences, Massey University, Private Bag 11-222, Palmerston North, 4442, New Zealand.
| |
Collapse
|
3
|
Woolfson DN. Understanding a protein fold: the physics, chemistry, and biology of α-helical coiled coils. J Biol Chem 2023; 299:104579. [PMID: 36871758 PMCID: PMC10124910 DOI: 10.1016/j.jbc.2023.104579] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/25/2023] [Accepted: 02/27/2023] [Indexed: 03/07/2023] Open
Abstract
Protein science is being transformed by powerful computational methods for structure prediction and design: AlphaFold2 can predict many natural protein structures from sequence, and other AI methods are enabling the de novo design of new structures. This raises a question: how much do we understand the underlying sequence-to-structure/function relationships being captured by these methods? This perspective presents our current understanding of one class of protein assembly, the α-helical coiled coils. At first sight, these are straightforward: sequence repeats of hydrophobic (h) and polar (p) residues, (hpphppp)n, direct the folding and assembly of amphipathic α helices into bundles. However, many different bundles are possible: they can have two or more helices (different oligomers); the helices can have parallel, antiparallel or mixed arrangements (different topologies); and the helical sequences can be the same (homomers) or different (heteromers). Thus, sequence-to-structure relationships must be present within the hpphppp repeats to distinguish these states. I discuss the current understanding of this problem at three levels: First, physics gives a parametric framework to generate the many possible coiled-coil backbone structures. Second, chemistry provides a means to explore and deliver sequence-to-structure relationships. Third, biology shows how coiled coils are adapted and functionalized in nature, inspiring applications of coiled coils in synthetic biology. I argue that the chemistry is largely understood; the physics is partly solved, though the considerable challenge of predicting even relative stabilities of different coiled-coil states remains; but there is much more to explore in the biology and synthetic biology of coiled coils.
Collapse
Affiliation(s)
- Derek N Woolfson
- School of Chemistry, University of Bristol, Bristol, United Kingdom; School of Biochemistry, University of Bristol, Medical Sciences Building, University Walk, Bristol, United Kingdom; BrisEngBio, School of Chemistry, University of Bristol, Bristol, United Kingdom; Max Planck-Bristol Centre for Minimal Biology, University of Bristol, Bristol, United Kingdom.
| |
Collapse
|
4
|
Ma W, Irving TC. Small Angle X-ray Diffraction as a Tool for Structural Characterization of Muscle Disease. Int J Mol Sci 2022; 23:3052. [PMID: 35328477 PMCID: PMC8949570 DOI: 10.3390/ijms23063052] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 02/01/2023] Open
Abstract
Small angle X-ray fiber diffraction is the method of choice for obtaining molecular level structural information from striated muscle fibers under hydrated physiological conditions. For many decades this technique had been used primarily for investigating basic biophysical questions regarding muscle contraction and regulation and its use confined to a relatively small group of expert practitioners. Over the last 20 years, however, X-ray diffraction has emerged as an important tool for investigating the structural consequences of cardiac and skeletal myopathies. In this review we show how simple and straightforward measurements, accessible to non-experts, can be used to extract biophysical parameters that can help explain and characterize the physiology and pathology of a given experimental system. We provide a comprehensive guide to the range of the kinds of measurements that can be made and illustrate how they have been used to provide insights into the structural basis of pathology in a comprehensive review of the literature. We also show how these kinds of measurements can inform current controversies and indicate some future directions.
Collapse
Affiliation(s)
- Weikang Ma
- The Biophysics Collaborative Access Team (BioCAT), Center for Synchrotron Radiation Research and Instrumentation (CSSRI), Illinois Institute of Technology, Chicago, IL 60616, USA;
- Department of Biology, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Thomas C. Irving
- The Biophysics Collaborative Access Team (BioCAT), Center for Synchrotron Radiation Research and Instrumentation (CSSRI), Illinois Institute of Technology, Chicago, IL 60616, USA;
- Department of Biology, Illinois Institute of Technology, Chicago, IL 60616, USA
| |
Collapse
|
5
|
Tobacman LS. Troponin Revealed: Uncovering the Structure of the Thin Filament On-Off Switch in Striated Muscle. Biophys J 2021; 120:1-9. [PMID: 33221250 PMCID: PMC7820733 DOI: 10.1016/j.bpj.2020.11.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/06/2020] [Accepted: 11/11/2020] [Indexed: 12/25/2022] Open
Abstract
Recently, our understanding of the structural basis of troponin-tropomyosin's Ca2+-triggered regulation of striated muscle contraction has advanced greatly, particularly via cryo-electron microscopy data. Compelling atomic models of troponin-tropomyosin-actin were published for both apo- and Ca2+-saturated states of the cardiac thin filament. Subsequent electron microscopy and computational analyses have supported and further elaborated the findings. Per cryo-electron microscopy, each troponin is highly extended and contacts both tropomyosin strands, which lie on opposite sides of the actin filament. In the apo-state characteristic of relaxed muscle, troponin and tropomyosin hinder strong myosin-actin binding in several different ways, apparently barricading the actin more substantially than does tropomyosin alone. The troponin core domain, the C-terminal third of TnI, and tropomyosin under the influence of a 64-residue helix of TnT located at the overlap of adjacent tropomyosins are all in positions that would hinder strong myosin binding to actin. In the Ca2+-saturated state, the TnI C-terminus dissociates from actin and binds in part to TnC; the core domain pivots significantly; the N-lobe of TnC binds specifically to actin and tropomyosin; and tropomyosin rotates partially away from myosin's binding site on actin. At the overlap domain, Ca2+ causes much less tropomyosin movement, so a more inhibitory orientation persists. In the myosin-saturated state of the thin filament, there is a large additional shift in tropomyosin, with molecular interactions now identified between tropomyosin and both actin and myosin. A new era has arrived for investigation of the thin filament and for functional understandings that increasingly accommodate the recent structural results.
Collapse
Affiliation(s)
- Larry S Tobacman
- Departments of Medicine and of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois.
| |
Collapse
|
6
|
Pavadai E, Lehman W, Rynkiewicz MJ. Protein-Protein Docking Reveals Dynamic Interactions of Tropomyosin on Actin Filaments. Biophys J 2020; 119:75-86. [PMID: 32521240 DOI: 10.1016/j.bpj.2020.05.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/01/2020] [Accepted: 05/18/2020] [Indexed: 01/01/2023] Open
Abstract
Experimental approaches such as fiber diffraction and cryo-electron microscopy reconstruction have defined regulatory positions of tropomyosin on actin but have not, as yet, succeeded at determining key atomic-level contacts between these proteins or fully substantiated the dynamics of their interactions at a structural level. To overcome this deficiency, we have previously employed computational approaches to deduce global dynamics of thin filament components by energy landscape determination and molecular dynamics simulations. Still, these approaches remain computationally challenging for any complex and large macromolecular assembly like the thin filament. For example, tropomyosin cable wrapping around actin of thin filaments features both head-to-tail polymeric interactions and local twisting, both of which depart from strict superhelical symmetry. This produces a complex energy surface that is difficult to model and thus to evaluate globally. Therefore, at this stage of our understanding, assessing global molecular dynamics can prove to be inherently impractical. As an alternative, we adopted a "divide and conquer" protocol to investigate actin-tropomyosin interactions at an atomistic level. Here, we first employed unbiased protein-protein docking tools to identify binding specificity of individual tropomyosin pseudorepeat segments over the actin surface. Accordingly, tropomyosin "ligand" segments were rotated and translated over potential "target" binding sites on F-actin where the corresponding interaction energetics of billions of conformational poses were ranked by the programs PIPER and ClusPro. These data were used to assess favorable interactions and then to rebuild models of seamless and continuous tropomyosin cables over the F-actin substrate, which were optimized further by flexible fitting routines and molecular dynamics. The models generated azimuthally distinct regulatory positions for tropomyosin cables along thin filaments on actin dominated by stereo-specific head-to-tail overlap linkage. The outcomes are in good agreement with current cryo-electron microscopy topology and consistent with long-thought residue-to-residue interactions between actin and tropomyosin.
Collapse
Affiliation(s)
- Elumalai Pavadai
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston, Massachusetts
| | - William Lehman
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston, Massachusetts.
| | - Michael J Rynkiewicz
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston, Massachusetts
| |
Collapse
|
7
|
Lehman W, Rynkiewicz MJ, Moore JR. A new twist on tropomyosin binding to actin filaments: perspectives on thin filament function, assembly and biomechanics. J Muscle Res Cell Motil 2020; 41:23-38. [PMID: 30771202 PMCID: PMC6697252 DOI: 10.1007/s10974-019-09501-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 02/07/2019] [Indexed: 02/07/2023]
Abstract
Tropomyosin, best known for its role in the steric regulation of muscle contraction, polymerizes head-to-tail to form cables localized along the length of both muscle and non-muscle actin-based thin filaments. In skeletal and cardiac muscles, tropomyosin, under the control of troponin and myosin, moves in a cooperative manner between blocked, closed and open positions on filaments, thereby masking and exposing actin-binding sites necessary for myosin crossbridge head interactions. While the coiled-coil signature of tropomyosin appears to be simple, closer inspection reveals surprising structural complexity required to perform its role in steric regulation. For example, component α-helices of coiled coils are typically zippered together along a continuous core hydrophobic stripe. Tropomyosin, however, contains a number of anomalous, functionally controversial, core amino acid residues. We argue that the atypical residues at this interface, including clusters of alanines and a charged aspartate, are required for preshaping tropomyosin to readily fit to the surface of the actin filament, but do so without compromising tropomyosin rigidity once the filament is assembled. Indeed, persistence length measurements of tropomyosin are characteristic of a semi-rigid cable, in this case conducive to cooperative movement on thin filaments. In addition, we also maintain that tropomyosin displays largely unrecognized and residue-specific torsional variance, which is involved in optimizing contacts between actin and tropomyosin on the assembled thin filament. Corresponding twist-induced stiffness may also enhance cooperative translocation of tropomyosin across actin filaments. We conclude that anomalous core residues of tropomyosin facilitate thin filament regulatory behavior in a multifaceted way.
Collapse
Affiliation(s)
- William Lehman
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston, Massachusetts, U.S.A
| | - Michael J. Rynkiewicz
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston, Massachusetts, U.S.A
| | - Jeffrey R. Moore
- Department of Biological Sciences, University of Massachusetts-Lowell, Lowell, Massachusetts, U.S.A
| |
Collapse
|
8
|
Arata T. Myosin and Other Energy-Transducing ATPases: Structural Dynamics Studied by Electron Paramagnetic Resonance. Int J Mol Sci 2020; 21:E672. [PMID: 31968570 PMCID: PMC7014194 DOI: 10.3390/ijms21020672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/05/2020] [Accepted: 01/06/2020] [Indexed: 02/07/2023] Open
Abstract
The objective of this article was to document the energy-transducing and regulatory interactions in supramolecular complexes such as motor, pump, and clock ATPases. The dynamics and structural features were characterized by motion and distance measurements using spin-labeling electron paramagnetic resonance (EPR) spectroscopy. In particular, we focused on myosin ATPase with actin-troponin-tropomyosin, neural kinesin ATPase with microtubule, P-type ion-motive ATPase, and cyanobacterial clock ATPase. Finally, we have described the relationships or common principles among the molecular mechanisms of various energy-transducing systems and how the large-scale thermal structural transition of flexible elements from one state to the other precedes the subsequent irreversible chemical reactions.
Collapse
Affiliation(s)
- Toshiaki Arata
- Department of Biology, Graduate School of Science, Osaka City University, Osaka 558-8585, Japan
| |
Collapse
|
9
|
Moving beyond simple answers to complex disorders in sarcomeric cardiomyopathies: the role of integrated systems. Pflugers Arch 2019; 471:661-671. [PMID: 30848350 DOI: 10.1007/s00424-019-02269-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 03/01/2019] [Indexed: 12/26/2022]
Abstract
The classic clinical definition of hypertrophic cardiomyopathy (HCM) as originally described by Teare is deceptively simple, "left ventricular hypertrophy in the absence of any identifiable cause." Longitudinal studies, however, including a seminal study performed by Frank and Braunwald in 1968, clearly described the disorder much as we know it today, a complex, progressive, and highly variable cardiomyopathy affecting ~ 1/500 individuals worldwide. Subsequent genetic linkage studies in the early 1990s identified mutations in virtually all of the protein components of the cardiac sarcomere as the primary molecular cause of HCM. In addition, a substantial proportion of inherited dilated cardiomyopathy (DCM) has also been linked to sarcomeric protein mutations. Despite our deep understanding of the overall function of the sarcomere as the primary driver of cardiac contractility, the ability to use genotype in patient management remains elusive. A persistent challenge in the field from both the biophysical and clinical standpoints is how to rigorously link high-resolution protein dynamics and mechanics to the long-term cardiovascular remodeling process that characterizes these complex disorders. In this review, we will explore the depth of the problem from both the standpoint of a multi-subunit, highly conserved and dynamic "machine" to the resultant clinical and structural human phenotype with an emphasis on new, integrative approaches that can be widely applied to identify both novel disease mechanisms and new therapeutic targets for these primary biophysical disorders of the cardiac sarcomere.
Collapse
|
10
|
Chaudhary R, Gupta A, Kota S, Misra HS. N-terminal domain of DivIVA contributes to its dimerization and interaction with genome segregation proteins in a radioresistant bacterium Deinococcus radiodurans. Int J Biol Macromol 2019; 128:12-21. [PMID: 30682467 DOI: 10.1016/j.ijbiomac.2019.01.085] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 01/13/2019] [Accepted: 01/19/2019] [Indexed: 01/27/2023]
Abstract
Unlike in rod-shaped bacteria, cell polarity is not well defined in cocci and possibly gets marked during molecular events around cytokinesis. DivIVA is a member of Min system that is involved in spatial regulation of septum formation in bacteria. Recently, we showed that DivIVA of Deinococcus radiodurans (drDivIVA) interacts with proteins involved in cell division and genome segregation (segrosome). To map drDivIVA domain (s) that interact with these proteins, the N-terminal (DivIVA-N), C-terminal (DivIVA-C) and a middle (DivIVA-M) region/section of drDivIVA were generated. Circular Dichroism (CD) studies suggested that all three variants of drDivIVA fold properly, but they appeared different under transmission electron microscopy (TEM). Full length drDivIVA showed bundles under TEM whereas variants did not. Both full length drDivIVA and N-terminal domain showed repeats of heptad motifs, a characteristic of alpha-helical coiled-coil proteins. DivIVA-N showed dimerization and interaction with segrosome while DivIVA-M interacted with MinC, a cell division regulatory protein. Further, the C-terminal region seems to be crucial for the structural and functional integrity of drDivIVA. These results suggested that drDivIVA dimerizes through its N-terminal domain while both segrosome and MinC interact through different regions of this protein.
Collapse
Affiliation(s)
- Reema Chaudhary
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Life Sciences, Homi Bhabha National Institute, Mumbai 400094, India
| | - Alka Gupta
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Swathi Kota
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Life Sciences, Homi Bhabha National Institute, Mumbai 400094, India
| | - H S Misra
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Life Sciences, Homi Bhabha National Institute, Mumbai 400094, India.
| |
Collapse
|
11
|
Hanft LM, McDonald KS. Regulating myofilament power: The determinant of health. Arch Biochem Biophys 2019; 663:160-164. [PMID: 30639328 PMCID: PMC10155509 DOI: 10.1016/j.abb.2019.01.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/27/2018] [Accepted: 01/09/2019] [Indexed: 01/19/2023]
Affiliation(s)
- Laurin M Hanft
- Department of Medical Pharmacology & Physiology, School of Medicine, University of Missouri, Columbia, MO, 65212, USA
| | - Kerry S McDonald
- Department of Medical Pharmacology & Physiology, School of Medicine, University of Missouri, Columbia, MO, 65212, USA.
| |
Collapse
|
12
|
Abstract
This article focuses on three "bins" that comprise sets of biophysical derangements elicited by cardiomyopathy-associated mutations in the myofilament. Current therapies focus on symptom palliation and do not address the disease at its core. We and others have proposed that a more nuanced classification could lead to direct interventions based on early dysregulation changing the trajectory of disease progression in the preclinical cohort. Continued research is necessary to address the complexity of cardiomyopathic progression and develop efficacious therapeutics.
Collapse
Affiliation(s)
- Melissa L Lynn
- Department of Medicine, University of Arizona, Room 317, 1656 East Mabel Street, Tucson, AZ 85724, USA
| | - Sarah J Lehman
- Department of Physiological Sciences, University of Arizona, Room 317, 1656 East Mabel Street, Tucson, AZ 85724, USA
| | - Jil C Tardiff
- Department of Medicine, University of Arizona, Room 312, 1656 East Mabel Street, Tucson, AZ 85724, USA.
| |
Collapse
|
13
|
Ozawa H, Umezawa K, Takano M, Ishizaki S, Watabe S, Ochiai Y. Structural and dynamical characteristics of tropomyosin epitopes as the major allergens in shrimp. Biochem Biophys Res Commun 2018; 498:119-124. [DOI: 10.1016/j.bbrc.2018.02.172] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 02/22/2018] [Indexed: 12/16/2022]
|
14
|
Rynkiewicz MJ, Prum T, Hollenberg S, Kiani FA, Fagnant PM, Marston SB, Trybus KM, Fischer S, Moore JR, Lehman W. Tropomyosin Must Interact Weakly with Actin to Effectively Regulate Thin Filament Function. Biophys J 2018; 113:2444-2451. [PMID: 29211998 DOI: 10.1016/j.bpj.2017.10.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 09/13/2017] [Accepted: 10/05/2017] [Indexed: 10/18/2022] Open
Abstract
Elongated tropomyosin, associated with actin-subunits along the surface of thin filaments, makes electrostatic interactions with clusters of conserved residues, K326, K328, and R147, on actin. The association is weak, permitting low-energy cost regulatory movement of tropomyosin across the filament during muscle activation. Interestingly, acidic D292 on actin, also evolutionarily conserved, lies adjacent to the three-residue cluster of basic amino acids and thus may moderate the combined local positive charge, diminishing tropomyosin-actin interaction and facilitating regulatory-switching. Indeed, charge neutralization of D292 is connected to muscle hypotonia in individuals with D292V actin mutations and linked to congenital fiber-type disproportion. Here, the D292V mutation may predispose tropomyosin-actin positioning to a myosin-blocking state, aberrantly favoring muscle relaxation, thus mimicking the low-Ca2+ effect of troponin even in activated muscles. To test this hypothesis, interaction energetics and in vitro function of wild-type and D292V filaments were measured. Energy landscapes based on F-actin-tropomyosin models show the mutation localizes tropomyosin in a blocked-state position on actin defined by a deeper energy minimum, consistent with augmented steric-interference of actin-myosin binding. In addition, whereas myosin-dependent motility of troponin/tropomyosin-free D292V F-actin is normal, motility is dramatically inhibited after addition of tropomyosin to the mutant actin. Thus, D292V-induced blocked-state stabilization appears to disrupt the delicately poised energy balance governing thin filament regulation. Our results validate the premise that stereospecific but necessarily weak binding of tropomyosin to F-actin is required for effective thin filament function.
Collapse
Affiliation(s)
- Michael J Rynkiewicz
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, Massachusetts
| | - Thavanareth Prum
- Department of Biological Sciences, University of Massachusetts-Lowell, Lowell, Massachusetts
| | - Stephen Hollenberg
- Department of Biological Sciences, University of Massachusetts-Lowell, Lowell, Massachusetts
| | - Farooq A Kiani
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, Massachusetts
| | - Patricia M Fagnant
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont
| | - Steven B Marston
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Kathleen M Trybus
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont
| | - Stefan Fischer
- Computational Biochemistry Group, IWR, Heidelberg University, Heidelberg, Germany
| | - Jeffrey R Moore
- Department of Biological Sciences, University of Massachusetts-Lowell, Lowell, Massachusetts
| | - William Lehman
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, Massachusetts.
| |
Collapse
|
15
|
Lynn ML, Tal Grinspan L, Holeman TA, Jimenez J, Strom J, Tardiff JC. The structural basis of alpha-tropomyosin linked (Asp230Asn) familial dilated cardiomyopathy. J Mol Cell Cardiol 2017; 108:127-137. [PMID: 28600229 DOI: 10.1016/j.yjmcc.2017.06.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 05/31/2017] [Accepted: 06/02/2017] [Indexed: 01/05/2023]
Abstract
Recently, linkage analysis of two large unrelated multigenerational families identified a novel dilated cardiomyopathy (DCM)-linked mutation in the gene coding for alpha-tropomyosin (TPM1) resulting in the substitution of an aspartic acid for an asparagine (at residue 230). To determine how a single amino acid mutation in α-tropomyosin (Tm) can lead to a highly penetrant DCM we generated a novel transgenic mouse model carrying the D230N mutation. The resultant mouse model strongly phenocopied the early onset of cardiomyopathic remodeling observed in patients as significant systolic dysfunction was observed by 2months of age. To determine the precise cellular mechanism(s) leading to the observed cardiac pathology we examined the effect of the mutation on Ca2+ handling in isolated myocytes and myofilament activation in vitro. D230N-Tm filaments exhibited a reduced Ca2+ sensitivity of sliding velocity. This decrease in sensitivity was coupled to increase in the peak amplitude of Ca2+ transients. While significant, and consistent with other DCMs, these measurements are comprised of complex inputs and did not provide sufficient experimental resolution. We then assessed the primary structural effects of D230N-Tm. Measurements of the thermal unfolding of D230N-Tm vs WT-Tm revealed an increase in stability primarily affecting the C-terminus of the Tm coiled-coil. We conclude that the D230N-Tm mutation induces a decrease in flexibility of the C-terminus via propagation through the helical structure of the protein, thus decreasing the flexibility of the Tm overlap and impairing its ability to regulate contraction. Understanding this unique structural mechanism could provide novel targets for eventual therapeutic interventions in patients with Tm-linked cardiomyopathies.
Collapse
Affiliation(s)
- M L Lynn
- Department of Physiological Sciences, University of Arizona, Tucson, AZ 85724, United States
| | - L Tal Grinspan
- Department of Medicine, Columbia University, New York, NY 10032, United States
| | - T A Holeman
- Department of Physiological Sciences, University of Arizona, Tucson, AZ 85724, United States; Department of Chemistry, University of Arizona, Tucson, AZ 85721, United States
| | - J Jimenez
- Department of Medicine, Washington University in Saint Louis, St. Louis, MO 63130, United States
| | - J Strom
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724, United States
| | - J C Tardiff
- Department of Physiological Sciences, University of Arizona, Tucson, AZ 85724, United States; Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724, United States; Department of Medicine, University of Arizona, Tucson, AZ 85724, United States.
| |
Collapse
|
16
|
Lehman W. Switching Muscles On and Off in Steps: The McKillop-Geeves Three-State Model of Muscle Regulation. Biophys J 2017; 112:2459-2466. [PMID: 28552313 DOI: 10.1016/j.bpj.2017.04.053] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 04/14/2017] [Accepted: 04/21/2017] [Indexed: 01/12/2023] Open
Abstract
BJ Classic highlighting the article "Regulation of the interaction between actin and myosin subfragment 1: evidence for three states of the thin filament."
Collapse
Affiliation(s)
- William Lehman
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, Massachusetts.
| |
Collapse
|
17
|
Abstract
In the last decade, improvements in electron microscopy and image processing have permitted significantly higher resolutions to be achieved (sometimes <1 nm) when studying isolated actin and myosin filaments. In the case of actin filaments the changing structure when troponin binds calcium ions can be followed using electron microscopy and single particle analysis to reveal what happens on each of the seven non-equivalent pseudo-repeats of the tropomyosin α-helical coiled-coil. In the case of the known family of myosin filaments not only are the myosin head arrangements under relaxing conditions being defined, but the latest analysis, also using single particle methods, is starting to reveal the way that the α-helical coiled-coil myosin rods are packed to give the filament backbones.
Collapse
Affiliation(s)
- John M Squire
- Muscle Contraction Group, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK.
| | - Danielle M Paul
- Muscle Contraction Group, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK
| | - Edward P Morris
- Division of Structural Biology, The Institute of Cancer Research, London, SW3 6JB, UK
| |
Collapse
|
18
|
Abstract
Tropomyosin is the archetypal-coiled coil, yet studies of its structure and function have proven it to be a dynamic regulator of actin filament function in muscle and non-muscle cells. Here we review aspects of its structure that deviate from canonical leucine zipper coiled coils that allow tropomyosin to bind to actin, regulate myosin, and interact directly and indirectly with actin-binding proteins. Four genes encode tropomyosins in vertebrates, with additional diversity that results from alternate promoters and alternatively spliced exons. At the same time that periodic motifs for binding actin and regulating myosin are conserved, isoform-specific domains allow for specific interaction with myosins and actin filament regulatory proteins, including troponin. Tropomyosin can be viewed as a universal regulator of the actin cytoskeleton that specifies actin filaments for cellular and intracellular functions.
Collapse
|
19
|
Zot HG, Hasbun JE. Modeling Ca 2+-Bound Troponin in Excitation Contraction Coupling. Front Physiol 2016; 7:406. [PMID: 27708586 PMCID: PMC5030304 DOI: 10.3389/fphys.2016.00406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Accepted: 08/30/2016] [Indexed: 11/25/2022] Open
Abstract
To explain disparate decay rates of cytosolic Ca2+ and structural changes in the thin filaments during a twitch, we model the time course of Ca2+-bound troponin (Tn) resulting from the free Ca2+ transient of fast skeletal muscle. In fibers stretched beyond overlap, the decay of Ca2+ as measured by a change in fluo-3 fluorescence is significantly slower than the intensity decay of the meridional 1/38.5 nm−1 reflection of Tn; this is not simply explained by considering only the Ca2+ binding properties of Tn alone (Matsuo et al., 2010). We apply a comprehensive model that includes the known Ca2+ binding properties of Tn in the context of the thin filament with and without cycling crossbridges. Calculations based on the model predict that the transient of Ca2+-bound Tn correlates with either the fluo-3 time course in muscle with overlapping thin and thick filaments or the intensity of the meridional 1/38.5 nm−1 reflection in overstretched muscle. Hence, cycling crossbridges delay the dissociation of Ca2+ from Tn. Correlation with the fluo-3 fluorescence change is not causal given that the transient of Ca2+-bound Tn depends on sarcomere length, whereas the fluo-3 fluorescence change does not. Transient positions of tropomyosin calculated from the time course of Ca2+-bound Tn are in reasonable agreement with the transient of measured perturbations of the Tn repeat in overlap and non-overlap muscle preparations.
Collapse
Affiliation(s)
- Henry G Zot
- Department of Biology, University of West Georgia Carrollton, GA, USA
| | - Javier E Hasbun
- Department of Physics, University of West Georgia Carrollton, GA, USA
| |
Collapse
|
20
|
Zheng W, Hitchcock-DeGregori SE, Barua B. Investigating the effects of tropomyosin mutations on its flexibility and interactions with filamentous actin using molecular dynamics simulation. J Muscle Res Cell Motil 2016; 37:131-147. [DOI: 10.1007/s10974-016-9447-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 06/24/2016] [Indexed: 12/15/2022]
|
21
|
Narita A, Usukura E, Yagi A, Tateyama K, Akizuki S, Kikumoto M, Matsumoto T, Maéda Y, Ito S, Usukura J. Direct observation of the actin filament by tip-scan atomic force microscopy. Microscopy (Oxf) 2016; 65:370-7. [PMID: 27242058 PMCID: PMC5895109 DOI: 10.1093/jmicro/dfw017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 04/28/2016] [Indexed: 11/13/2022] Open
Abstract
Actin filaments, the actin–myosin complex and the actin–tropomyosin complex were observed by a tip-scan atomic force microscope (AFM), which was recently developed by Olympus as the AFM part of a correlative microscope. This newly developed AFM uses cantilevers of similar size as stage-scan AFMs to improve substantially the spatial and temporal resolution. Such an approach has previously never been possible by a tip-scan system, in which a cantilever moves in the x, y and z directions. We evaluated the performance of this developed tip-scan AFM by observing the molecular structure of actin filaments and the actin–tropomyosin complex. In the image of the actin filament, the molecular interval of the actin subunits (∼5.5 nm) was clearly observed as stripes. From the shape of the stripes, the polarity of the actin filament was directly determined and the results were consistent with the polarity determined by myosin binding. In the image of the actin–tropomyosin complex, each tropomyosin molecule (∼2 nm in diameter) on the actin filament was directly observed without averaging images of different molecules. Each tropomyosin molecule on the actin filament has never been directly observed by AFM or electron microscopy. Thus, our developed tip-scan AFM offers significant potential in observing purified proteins and cellular structures at nanometer resolution. Current results represent an important step in the development of a new correlative microscope to observe nm-order structures at an acceptable frame rate (∼10 s/frame) by AFM at the position indicated by the fluorescent dye observed under a light microscope.
Collapse
Affiliation(s)
- Akihiro Narita
- Structural Biology Research Center, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan JST PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Eiji Usukura
- Structural Biology Research Center, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Akira Yagi
- R&D Group, Olympus Corporation, 2-3 Kuboyama-cho, Hachioji, Tokyo 192-8512, Japan
| | - Kiyohiko Tateyama
- R&D Group, Olympus Corporation, 2-3 Kuboyama-cho, Hachioji, Tokyo 192-8512, Japan
| | - Shogo Akizuki
- Structural Biology Research Center, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Mahito Kikumoto
- Structural Biology Research Center, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Tomoharu Matsumoto
- Structural Biology Research Center, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Yuichiro Maéda
- Structural Biology Research Center, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Shuichi Ito
- R&D Group, Olympus Corporation, 2-3 Kuboyama-cho, Hachioji, Tokyo 192-8512, Japan
| | - Jiro Usukura
- Structural Biology Research Center, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| |
Collapse
|
22
|
Abstract
By interacting with the troponin-tropomyosin complex on myofibrillar thin filaments, Ca2+ and myosin govern the regulatory switching processes influencing contractile activity of mammalian cardiac and skeletal muscles. A possible explanation of the roles played by Ca2+ and myosin emerged in the early 1970s when a compelling "steric model" began to gain traction as a likely mechanism accounting for muscle regulation. In its most simple form, the model holds that, under the control of Ca2+ binding to troponin and myosin binding to actin, tropomyosin strands running along thin filaments either block myosin-binding sites on actin when muscles are relaxed or move away from them when muscles are activated. Evidence for the steric model was initially based on interpretation of subtle changes observed in X-ray fiber diffraction patterns of intact skeletal muscle preparations. Over the past 25 years, electron microscopy coupled with three-dimensional reconstruction directly resolved thin filament organization under many experimental conditions and at increasingly higher resolution. At low-Ca2+, tropomyosin was shown to occupy a "blocked-state" position on the filament, and switched-on in a two-step process, involving first a movement of tropomyosin away from the majority of the myosin-binding site as Ca2+ binds to troponin and then a further movement to fully expose the site when small numbers of myosin heads bind to actin. In this contribution, basic information on Ca2+-regulation of muscle contraction is provided. A description is then given relating the voyage of discovery taken to arrive at the present understanding of the steric regulatory model.
Collapse
Affiliation(s)
- William Lehman
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston, Massachusetts, U.S.A
| |
Collapse
|
23
|
Fischer S, Rynkiewicz MJ, Moore JR, Lehman W. Tropomyosin diffusion over actin subunits facilitates thin filament assembly. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2016; 3:012002. [PMID: 26798831 PMCID: PMC4714992 DOI: 10.1063/1.4940223] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 01/07/2016] [Indexed: 06/05/2023]
Abstract
Coiled-coil tropomyosin binds to consecutive actin-subunits along actin-containing thin filaments. Tropomyosin molecules then polymerize head-to-tail to form cables that wrap helically around the filaments. Little is known about the assembly process that leads to continuous, gap-free tropomyosin cable formation. We propose that tropomyosin molecules diffuse over the actin-filament surface to connect head-to-tail to partners. This possibility is likely because (1) tropomyosin hovers loosely over the actin-filament, thus binding weakly to F-actin and (2) low energy-barriers provide tropomyosin freedom for 1D axial translation on F-actin. We consider that these unique features of the actin-tropomyosin interaction are the basis of tropomyosin cable formation.
Collapse
Affiliation(s)
- Stefan Fischer
- Computational Biochemistry Group, Interdisciplinary Center for Scientific Computing (IWR), University of Heidelberg , Im Neuenheimer Feld 368, D69120 Heidelberg, Germany
| | - Michael J Rynkiewicz
- Department of Physiology and Biophysics, Boston University School of Medicine , 72 East Concord Street, Boston, Massachusetts 02118, USA
| | - Jeffrey R Moore
- Department of Biological Sciences, University of Massachusetts Lowell , One University Avenue, Lowell, Massachusetts 01854, USA
| | - William Lehman
- Department of Physiology and Biophysics, Boston University School of Medicine , 72 East Concord Street, Boston, Massachusetts 02118, USA
| |
Collapse
|
24
|
Fudge KR, Heeley DH. Biochemical Characterization of the Roles of Glycines 24 and 27 and Threonine 179 in Tropomyosin from the Fast Skeletal Trunk Muscle of the Atlantic Salmon. Biochemistry 2015; 54:2769-76. [DOI: 10.1021/acs.biochem.5b00156] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Korrina R. Fudge
- Department
of Biochemistry, Memorial University of Newfoundland, St. John’s, Newfoundland A1B 3X9, Canada
| | - David H. Heeley
- Department
of Biochemistry, Memorial University of Newfoundland, St. John’s, Newfoundland A1B 3X9, Canada
| |
Collapse
|
25
|
Chang AN, Greenfield NJ, Singh A, Potter JD, Pinto JR. Structural and protein interaction effects of hypertrophic and dilated cardiomyopathic mutations in alpha-tropomyosin. Front Physiol 2014; 5:460. [PMID: 25520664 PMCID: PMC4251307 DOI: 10.3389/fphys.2014.00460] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Accepted: 11/10/2014] [Indexed: 12/16/2022] Open
Abstract
The potential alterations to structure and associations with thin filament proteins caused by the dilated cardiomyopathy (DCM) associated tropomyosin (Tm) mutants E40K and E54K, and the hypertrophic cardiomyopathy (HCM) associated Tm mutants E62Q and L185R, were investigated. In order to ascertain what the cause of the known functional effects may be, structural and protein-protein interaction studies were conducted utilizing actomyosin ATPase activity measurements and spectroscopy. In actomyosin ATPase measurements, both HCM mutants and the DCM mutant E54K caused increases in Ca2+-induced maximal ATPase activities, while E40K caused a decrease. Investigation of Tm's ability to inhibit actomyosin ATPase in the absence of troponin showed that HCM-associated mutant Tms did not inhibit as well as wildtype, whereas the DCM associated mutant E40K inhibited better. E54K did not inhibit the actomyosin ATPase activity at any concentration of Tm tested. Thermal denaturation studies by circular dichroism and molecular modeling of the mutations in Tm showed that in general, the DCM mutants caused localized destabilization of the Tm dimers, while the HCM mutants resulted in increased stability. These findings demonstrate that the structural alterations in Tm observed here may affect the regulatory function of Tm on actin, thereby directly altering the ATPase rates of myosin.
Collapse
Affiliation(s)
- Audrey N Chang
- Department of Molecular and Cellular Pharmacology, Leonard Miller School of Medicine, University of Miami Miami, FL, USA
| | - Norma J Greenfield
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University New Jersey, NJ, USA
| | - Abhishek Singh
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University New Jersey, NJ, USA ; Department of Cardiology, UCSF Medical Center, University of California, San Francisco San Francisco, CA, USA
| | - James D Potter
- Department of Molecular and Cellular Pharmacology, Leonard Miller School of Medicine, University of Miami Miami, FL, USA
| | - Jose R Pinto
- Department of Biomedical Sciences, Florida State University College of Medicine Tallahassee, FL, USA
| |
Collapse
|
26
|
Walcott S. Muscle activation described with a differential equation model for large ensembles of locally coupled molecular motors. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:042717. [PMID: 25375533 DOI: 10.1103/physreve.90.042717] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Indexed: 06/04/2023]
Abstract
Molecular motors, by turning chemical energy into mechanical work, are responsible for active cellular processes. Often groups of these motors work together to perform their biological role. Motors in an ensemble are coupled and exhibit complex emergent behavior. Although large motor ensembles can be modeled with partial differential equations (PDEs) by assuming that molecules function independently of their neighbors, this assumption is violated when motors are coupled locally. It is therefore unclear how to describe the ensemble behavior of the locally coupled motors responsible for biological processes such as calcium-dependent skeletal muscle activation. Here we develop a theory to describe locally coupled motor ensembles and apply the theory to skeletal muscle activation. The central idea is that a muscle filament can be divided into two phases: an active and an inactive phase. Dynamic changes in the relative size of these phases are described by a set of linear ordinary differential equations (ODEs). As the dynamics of the active phase are described by PDEs, muscle activation is governed by a set of coupled ODEs and PDEs, building on previous PDE models. With comparison to Monte Carlo simulations, we demonstrate that the theory captures the behavior of locally coupled ensembles. The theory also plausibly describes and predicts muscle experiments from molecular to whole muscle scales, suggesting that a micro- to macroscale muscle model is within reach.
Collapse
Affiliation(s)
- Sam Walcott
- Department of Mathematics, University of California, Davis, Davis, California 95616, USA
| |
Collapse
|
27
|
Ueda K, Kimura-Sakiyama C, Aihara T, Miki M, Arata T. Calcium-dependent interaction sites of tropomyosin on reconstituted muscle thin filaments with bound Myosin heads as studied by site-directed spin-labeling. Biophys J 2014; 105:2366-73. [PMID: 24268148 DOI: 10.1016/j.bpj.2013.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2013] [Revised: 09/09/2013] [Accepted: 10/01/2013] [Indexed: 11/29/2022] Open
Abstract
To identify the interaction sites of Tm, we measured the rotational motion of a spin-label covalently bound to the side chain of a cysteine that was genetically incorporated into rabbit skeletal muscle tropomyosin (Tm) at positions 13, 36, 146, 160, 174, 190, 209, 230, 271, or 279. Most of the Tm residues were immobilized on actin filaments with myosin-S1 bound to them. The residues in the mid-portion of Tm, namely, 146, 174, 190, 209, and 230, were mobilized when the troponin (Tn) complex bound to the actin-Tm-S1 filaments. The addition of Ca(2+) ions partially reversed the Tn-induced mobilization. In contrast, residues at the joint region of Tm, 13, 36, 271, and 279 were unchanged or oppositely changed. All of these changes were detected using a maleimide spin label and less obviously using a methanesulfonate label. These results indicated that Tm was fixed on thin filaments with myosin bound to them, although a small change in the flexibility of the side chains of Tm residues, presumably interfaced with Tn, actin and myosin, was induced by the binding of Tn and Ca(2+). These findings suggest that even in the myosin-bound (open) state, Ca(2+) may regulate actomyosin contractile properties via Tm.
Collapse
Affiliation(s)
- Keisuke Ueda
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka, Japan
| | | | | | | | | |
Collapse
|
28
|
Yar S, Monasky MM, Solaro RJ. Maladaptive modifications in myofilament proteins and triggers in the progression to heart failure and sudden death. Pflugers Arch 2014; 466:1189-97. [PMID: 24488009 DOI: 10.1007/s00424-014-1457-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 01/16/2014] [Accepted: 01/19/2014] [Indexed: 12/25/2022]
Abstract
In this review, we address the following question: Are modifications at the level of sarcomeric proteins in acquired heart failure early inducers of altered cardiac dynamics and signaling leading to remodeling and progression to decompensation? There is no doubt that most inherited cardiomyopathies are caused by mutations in proteins of the sarcomere. We think this linkage indicates that early changes at the level of the sarcomeres in acquired cardiac disorders may be significant in triggering the progression to failure. We consider evidence that there are rate-limiting mechanisms downstream of the trigger event of Ca(2+) binding to troponin C, which control cardiac dynamics. We discuss new perspectives on how modifications in these mechanisms may be of relevance to redox signaling in diastolic heart failure, to angiotensin II signaling via β-arrestin, and to remodeling related to altered structural rigidity of tropomyosin. We think that these new perspectives provide a rationale for future studies directed at a more thorough understanding of the question driving our review.
Collapse
Affiliation(s)
- Sumeyye Yar
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, M/C 901, Chicago, IL, 60612, USA
| | | | | |
Collapse
|
29
|
Katrukha IA. Human cardiac troponin complex. Structure and functions. BIOCHEMISTRY (MOSCOW) 2014; 78:1447-65. [DOI: 10.1134/s0006297913130063] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
Kirwan JP, Hodges RS. Transmission of stability information through the N-domain of tropomyosin is interrupted by a stabilizing mutation (A109L) in the hydrophobic core of the stability control region (residues 97-118). J Biol Chem 2013; 289:4356-66. [PMID: 24362038 PMCID: PMC3924298 DOI: 10.1074/jbc.m113.507236] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Tropomyosin (Tm) is an actin-binding, thin filament, two-stranded α-helical coiled-coil critical for muscle contraction and cytoskeletal function. We made the first identification of a stability control region (SCR), residues 97-118, in the Tm sequence that controls overall protein stability but is not required for folding. We also showed that the individual α-helical strands of the coiled-coil are stabilized by Leu-110, whereas the hydrophobic core is destabilized in the SCR by Ala residues at three consecutive d positions. Our hypothesis is that the stabilization of the individual α-helices provides an optimum stability and allows functionally beneficial dynamic motion between the α-helices that is critical for the transmission of stabilizing information along the coiled-coil from the SCR. We prepared three recombinant (rat) Tm(1-131) proteins, including the wild type sequence, a destabilizing mutation L110A, and a stabilizing mutation A109L. These proteins were evaluated by circular dichroism (CD) and differential scanning calorimetry. The single mutation L110A destabilizes the entire Tm(1-131) molecule, showing that the effect of this mutation is transmitted 165 Å along the coiled-coil in the N-terminal direction. The single mutation A109L prevents the SCR from transmitting stabilizing information and separates the coiled-coil into two domains, one that is ∼9 °C more stable than wild type and one that is ∼16 °C less stable. We know of no other example of the substitution of a stabilizing Leu residue in a coiled-coil hydrophobic core position d that causes this dramatic effect. We demonstrate the importance of the SCR in controlling and transmitting the stability signal along this rodlike molecule.
Collapse
Affiliation(s)
- J Paul Kirwan
- From the Program in Structural Biology and Biophysics, Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, Aurora, Colorado 80045
| | | |
Collapse
|
31
|
Webb M, Jackson DR, Stewart TJ, Dugan SP, Carter MS, Cremo CR, Baker JE. The myosin duty ratio tunes the calcium sensitivity and cooperative activation of the thin filament. Biochemistry 2013; 52:6437-44. [PMID: 23947752 DOI: 10.1021/bi400262h] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In striated muscle, calcium binding to the thin filament (TF) regulatory complex activates actin-myosin ATPase activity, and actin-myosin kinetics in turn regulates TF activation. However, a quantitative description of the effects of actin-myosin kinetics on the calcium sensitivity (pCa50) and cooperativity (nH) of TF activation is lacking. With the assumption that TF structural transitions and TF-myosin binding transitions are inextricably coupled, we advanced the principles established by Kad et al. [Kad, N., et al. (2005) Proc. Natl. Acad. Sci. U.S.A. 102, 16990-16995] and Sich et al. [Sich, N. M., et al. (2011) J. Biol. Chem. 285, 39150-39159] to develop a simple model of TF regulation, which predicts that pCa50 varies linearly with duty ratio and that nH is maximal near physiological duty ratios. Using in vitro motility to determine the calcium sensitivity of TF sliding velocities, we measured pCa50 and nH at different myosin densities and in the presence of ATPase inhibitors. The observed effects of myosin density and actin-myosin duty ratio on pCa50 and nH are consistent with our model predictions. In striated muscle, pCa50 must match cytosolic calcium concentrations and a maximal nH optimizes calcium responsiveness. Our results indicate that pCa50 and nH can be predictably tuned through TF-myosin ATPase kinetics and that drugs and disease states that alter ATPase kinetics can, through their effects on calcium sensitivity, alter the efficiency of muscle contraction.
Collapse
Affiliation(s)
- Milad Webb
- Department of Electrical and Biomedical Engineering, University of Nevada, Reno , Reno, Nevada 89557, United States
| | | | | | | | | | | | | |
Collapse
|
32
|
Mamidi R, Michael JJ, Muthuchamy M, Chandra M. Interplay between the overlapping ends of tropomyosin and the N terminus of cardiac troponin T affects tropomyosin states on actin. FASEB J 2013; 27:3848-59. [PMID: 23748972 DOI: 10.1096/fj.13-232363] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The functional significance of the molecular swivel at the head-to-tail overlapping ends of contiguous tropomyosin (Tm) dimers in striated muscle is unknown. Contractile measurements were made in muscle fibers from transgenic (TG) mouse hearts that expressed a mutant α-Tm (Tm(H276N)). We also reconstituted mouse cardiac troponin T (McTnT) N-terminal deletion mutants, McTnT(1-44Δ) and McTnT(45-74Δ), into muscle fibers from Tm(H276N). For controls, we used the wild-type (WT) McTnT because altered effects could be correlated with the mutant forms of McTnT. Tm(H276N) slowed crossbridge (XB) detachment rate (g) by 19%. McTnT(1-44Δ) attenuated Ca(2+)-activated maximal tension against Tm(WT) (36%) and Tm(H276N) (38%), but sped g only against Tm(H276N) by 35%. The rate of tension redevelopment decreased (17%) only in McTnT(1-44Δ) + Tm(H276N) fibers. McTnT(45-74Δ) attenuated tension (19%) and myofilament Ca(2+) sensitivity (pCa50=5.93 vs. 6.00 in the control fibers) against Tm(H276N), but not against Tm(WT) background. Thus, altered XB cycling kinetics decreased the fraction of strongly bound XBs in McTnT(1-44Δ) + Tm(H276N) fibers, whereas diminished thin-filament cooperativity attenuated tension in McTnT(45-74Δ) + Tm(H276N) fibers. In summary, our study is the first to show that the interplay between the N terminus of cTnT and the overlapping ends of contiguous Tm effectuates different states of Tm on the actin filament.
Collapse
Affiliation(s)
- Ranganath Mamidi
- Department of Integrative Physiology and Neuroscience, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-6520, USA
| | | | | | | |
Collapse
|
33
|
Brown JH. Deriving how far structural information is transmitted through parallel homodimeric coiled-coils: a correlation analysis of helical staggers. Proteins 2013. [PMID: 23180639 DOI: 10.1002/prot.24218] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
How local conformation is affected by local sequence is fairly well understood for alpha-helical coiled-coils, but less is known about how local conformation is influenced by distant features. Here, I describe an approach to detect such an effect, based on computing correlation coefficients of local out-of-register alignments, or so-called "staggers" between the helices, as a function of the axial distance between the staggers. This approach requires parallel homodimers, in which each stagger can occur with two "signs," where either one helix or the other is shifted towards the N terminus. The signs of such staggers separated by up to 12 residues are strongly correlated, indicating that the conformations of the ends of coiled-coils are commonly influenced by attached structures. Thus, the structures of coiled-coil residues aberrantly attached to alternative proteins, such as those resulting from leukemogenic chromosomal rearrangements, may be distinguishable from those in normal tissues, and in turn serve as targets of selective drug design. The signs of helical staggers separated by between 13 and 30 residues are moderately yet significantly correlated, indicating that some of the coiled-coils transmit this conformational feature axially for at least 45 Å. A positive, albeit noisy, correlation also exists among tropomyosin coiled-coils for signed staggers separated by the 40-residue actin repeat distance, consistent with the semi-flexible tropomyosin filament binding F-actin and regulating skeletal muscle contraction in a partially cooperative manner. Communication of the signs of axial staggers is explained in part by minimization of main-chain hydrogen bond deformations.
Collapse
Affiliation(s)
- Jerry H Brown
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts 02454-9110, USA.
| |
Collapse
|
34
|
Ly S, Lehrer SS. Long-range effects of familial hypertrophic cardiomyopathy mutations E180G and D175N on the properties of tropomyosin. Biochemistry 2012; 51:6413-20. [PMID: 22794249 PMCID: PMC3447992 DOI: 10.1021/bi3006835] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cardiac α-tropomyosin (Tm) single-site mutations D175N and E180G cause familial hypertrophic cardiomyopathy (FHC). Previous studies have shown that these mutations increase both Ca(2+) sensitivity and residual contractile activity at low Ca(2+) concentrations, which causes incomplete relaxation during diastole resulting in hypertrophy and sarcomeric disarray. However, the molecular basis for the cause and the difference in the severity of the manifested phenotypes of disease are not known. In this work we have (1) used ATPase studies using reconstituted thin filaments in solution to show that these FHC mutants result in an increase in Ca(2+) sensitivity and an increased residual level of ATPase, (2) shown that both FHC mutants increase the rate of cleavage at R133, ~45 residues N-terminal to the mutations, when free and bound to actin, (3) shown that for Tm-E180G, the increase in the rate of cleavage is greater than that for D175N, and (4) shown that for E180G, cleavage also occurs at a new site 53 residues C-terminal to E180G, in parallel with cleavage at R133. The long-range decreases in dynamic stability due to these two single-site mutations suggest increases in flexibility that may weaken the ability of Tm to inhibit activity at low Ca(2+) concentrations for D175N and to a greater degree for E180G, which may contribute to differences in the severity of FHC.
Collapse
Affiliation(s)
- Socheata Ly
- Cardiovascular Program, Boston Biomedical Research Institute, 64 Grove Street, Watertown, MA 02472
| | | |
Collapse
|
35
|
Loong CKP, Zhou HX, Chase PB. Persistence length of human cardiac α-tropomyosin measured by single molecule direct probe microscopy. PLoS One 2012; 7:e39676. [PMID: 22737252 PMCID: PMC3380901 DOI: 10.1371/journal.pone.0039676] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 05/29/2012] [Indexed: 12/20/2022] Open
Abstract
α-Tropomyosin (αTm) is the predominant tropomyosin isoform in adult human heart and constitutes a major component in Ca²+-regulated systolic contraction of cardiac muscle. We present here the first direct probe images of WT human cardiac αTm by atomic force microscopy, and quantify its mechanical flexibility with three independent analysis methods. Single molecules of bacterially-expressed human cardiac αTm were imaged on poly-lysine coated mica and their contours were analyzed. Analysis of tangent-angle (θ(s)) correlation along molecular contours, second moment of tangent angles (<θ²(s)>), and end-to-end length (L(e-e)) distributions respectively yielded values of persistence length (L(p)) of 41-46 nm, 40-45 nm, and 42-52 nm, corresponding to 1-1.3 molecular contour lengths (L(c)). We also demonstrate that a sufficiently large population, with at least 100 molecules, is required for a reliable L(p) measurement of αTm in single molecule studies. Our estimate that L(p) for αTm is only slightly longer than L(c) is consistent with a previous study showing there is little spread of cooperative activation into near-neighbor regulatory units of cardiac thin filaments. The L(p) determined here for human cardiac αTm perhaps represents an evolutionarily tuned optimum between Ca²+ sensitivity and cooperativity in cardiac thin filaments and likely constitutes an essential parameter for normal function in the human heart.
Collapse
Affiliation(s)
- Campion K. P. Loong
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
- Department of Physics, Florida State University, Tallahassee, Florida, United States of America
- * E-mail: (PBC) (CKPL)
| | - Huan-Xiang Zhou
- Department of Physics, Florida State University, Tallahassee, Florida, United States of America
- Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida, United States of America
| | - P. Bryant Chase
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
- * E-mail: (PBC) (CKPL)
| |
Collapse
|
36
|
Wilger DJ, Bettis SE, Materese CK, Minakova M, Papoian GA, Papanikolas JM, Waters ML. Tunable Energy Transfer Rates via Control of Primary, Secondary, and Tertiary Structure of a Coiled Coil Peptide Scaffold. Inorg Chem 2012; 51:11324-38. [DOI: 10.1021/ic300669t] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Dale J. Wilger
- Department
of Chemistry, CB
3290, University of North Carolina, Chapel
Hill, North Carolina 27599, United States
| | - Stephanie E. Bettis
- Department
of Chemistry, CB
3290, University of North Carolina, Chapel
Hill, North Carolina 27599, United States
| | - Christopher K. Materese
- Department
of Chemistry, CB
3290, University of North Carolina, Chapel
Hill, North Carolina 27599, United States
| | - Maria Minakova
- Department
of Chemistry, CB
3290, University of North Carolina, Chapel
Hill, North Carolina 27599, United States
| | - Garegin A. Papoian
- Department of Chemistry and
Biochemistry, University of Maryland, College
Park, Maryland 20742, United States
| | - John M. Papanikolas
- Department
of Chemistry, CB
3290, University of North Carolina, Chapel
Hill, North Carolina 27599, United States
| | - Marcey L. Waters
- Department
of Chemistry, CB
3290, University of North Carolina, Chapel
Hill, North Carolina 27599, United States
| |
Collapse
|
37
|
Geeves M, Griffiths H, Mijailovich S, Smith D. Cooperative [Ca²+]-dependent regulation of the rate of myosin binding to actin: solution data and the tropomyosin chain model. Biophys J 2011; 100:2679-87. [PMID: 21641313 DOI: 10.1016/j.bpj.2011.04.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2011] [Revised: 03/26/2011] [Accepted: 04/07/2011] [Indexed: 01/15/2023] Open
Abstract
The regulation of muscle contraction by calcium involves interactions among actin filaments, myosin-S1, tropomyosin (Tm), and troponin (Tn). We have extended our previous model in which the TmTn regulatory units are treated as a continuous flexible chain, and applied it to transient kinetic data. We have measured the time course of myosin-S1 binding to actin-Tm-Tn filaments in solution at various calcium levels with [actin]/[myosin] ratios of 10 and 0.1, which exhibit modest slowing as [Ca(2+)] is reduced and a lag phase at low calcium. These observations can be explained if myosin binds to actin in two steps, where the first step is rate-limiting and blocked by TmTnI at low calcium, and the second step is fast, reversible, and controlled by the neighboring configuration of coupled tropomyosin-troponin units. The model can describe the calcium dependence of the observed myosin binding reactions and predicts cooperative calcium binding to TnC with competition between actin and Ca-TnC for the binding of TnI. Implications for theories of thin-filament regulation in muscle are discussed.
Collapse
Affiliation(s)
- Michael Geeves
- Department of Biosciences, University of Kent, Canterbury, Kent, United Kingdom.
| | | | | | | |
Collapse
|
38
|
Ueda K, Kimura-Sakiyama C, Aihara T, Miki M, Arata T. Interaction sites of tropomyosin in muscle thin filament as identified by site-directed spin-labeling. Biophys J 2011; 100:2432-9. [PMID: 21575577 DOI: 10.1016/j.bpj.2011.03.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Revised: 02/23/2011] [Accepted: 03/16/2011] [Indexed: 11/30/2022] Open
Abstract
To identify interaction sites we measured the rotational motion of a spin label covalently bound to the side chain of a cysteine genetically incorporated into rabbit skeletal muscle tropomyosin (Tm) at positions 13, 36, 146, 160, 174, 190, 209, 230, 271, and 279. Upon the addition of F-actin, the mobility of all the spin labels, especially at position 13, 271, or 279, of Tm was inhibited significantly. Slow spin-label motion at the C-terminus (at the 230th and 271st residues) was observed upon addition of troponin. The binding of myosin-head S1 fragments without troponin immobilized Tm residues at 146, 160, 190, 209, 230, 271, and 279, suggesting that these residues are involved in a direct interaction between Tm and actin in its open state. As immobilization occurred at substoichiometric amounts of S1 binding to actin (a 1:7 molar ratio), the structural changes induced by S1 binding to one actin subunit must have propagated and influenced interaction sites over seven actin subunits.
Collapse
Affiliation(s)
- Keisuke Ueda
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | | | | | | | | |
Collapse
|
39
|
Rayes RF, Kálai T, Hideg K, Geeves MA, Fajer PG. Dynamics of tropomyosin in muscle fibers as monitored by saturation transfer EPR of bi-functional probe. PLoS One 2011; 6:e21277. [PMID: 21701580 PMCID: PMC3118794 DOI: 10.1371/journal.pone.0021277] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 05/24/2011] [Indexed: 11/19/2022] Open
Abstract
The dynamics of four regions of tropomyosin was assessed using saturation transfer electron paramagnetic resonance in the muscle fiber. In order to fully immobilize the spin probe on the surface of tropomyosin, a bi-functional spin label was attached to i,i+4 positions via cysteine mutagenesis. The dynamics of bi-functionally labeled tropomyosin mutants decreased by three orders of magnitude when reconstituted into “ghost muscle fibers”. The rates of motion varied along the length of tropomyosin with the C-terminus position 268/272 being one order of magnitude slower then N-terminal domain or the center of the molecule. Introduction of troponin decreases the dynamics of all four sites in the muscle fiber, but there was no significant effect upon addition of calcium or myosin subfragment-1.
Collapse
Affiliation(s)
- Roni F. Rayes
- Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida, United States of America
- National High Magnetic Field Laboratory, Tallahassee, Florida, United States of America
| | - Tamás Kálai
- Department of Organic and Medicinal Chemistry, University of Pécs, Pécs, Hungary
| | - Kálmán Hideg
- Department of Organic and Medicinal Chemistry, University of Pécs, Pécs, Hungary
| | - Michael A. Geeves
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Piotr G. Fajer
- Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida, United States of America
- National High Magnetic Field Laboratory, Tallahassee, Florida, United States of America
- * E-mail:
| |
Collapse
|
40
|
Ferrante MI, Kiff RM, Goulding DA, Stemple DL. Troponin T is essential for sarcomere assembly in zebrafish skeletal muscle. J Cell Sci 2011; 124:565-77. [PMID: 21245197 DOI: 10.1242/jcs.071274] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
In striated muscle, the basic contractile unit is the sarcomere, which comprises myosin-rich thick filaments intercalated with thin filaments made of actin, tropomyosin and troponin. Troponin is required to regulate Ca(2+)-dependent contraction, and mutant forms of troponins are associated with muscle diseases. We have disrupted several genes simultaneously in zebrafish embryos and have followed the progression of muscle degeneration in the absence of troponin. Complete loss of troponin T activity leads to loss of sarcomere structure, in part owing to the destructive nature of deregulated actin-myosin activity. When troponin T and myosin activity are simultaneously disrupted, immature sarcomeres are rescued. However, tropomyosin fails to localise to sarcomeres, and intercalating thin filaments are missing from electron microscopic cross-sections, indicating that loss of troponin T affects thin filament composition. If troponin activity is only partially disrupted, myofibrils are formed but eventually disintegrate owing to deregulated actin-myosin activity. We conclude that the troponin complex has at least two distinct activities: regulation of actin-myosin activity and, independently, a role in the proper assembly of thin filaments. Our results also indicate that sarcomere assembly can occur in the absence of normal thin filaments.
Collapse
Affiliation(s)
- Maria I Ferrante
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | | | | | | |
Collapse
|
41
|
|
42
|
Lassing I, Hillberg L, Höglund AS, Karlsson R, Schutt C, Lindberg U. Tropomyosin is a tetramer under physiological salt conditions. Cytoskeleton (Hoboken) 2010; 67:599-607. [PMID: 20658558 DOI: 10.1002/cm.20470] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Tropomyosin (TM) is a coiled-coil dimer of alpha-helical peptides, which self associates in a head- to-tail fashion along actin polymers, conferring stability to the microfilaments and serving a regulatory function in acto-myosin driven force generation. While the major amount of TM is associated with filaments also in non-muscle cells, it was recently reported that there are isoform-specific pools of TM multimers (not associated with F-actin), which appear to be utilized during actin polymerization and reformed during depolymerization. To determine the size of these multimers, skeletal muscle TM was studied under different salt conditions using gel-filtration and sucrose gradient sedimentation, and compared with purified non-muscle TM 1 and 5, as well as with TM present in non-muscle cell extracts and skeletal muscle TM added to such extracts. Under physiological salt conditions TM appears as a single homogenous peak with the Stokes radius 8.2 nm and the molecular weight (mw) 130,000. The corresponding values for TM 5 are 7.7 nm and 104,000, respectively. This equals four peptides, implying that native TM is a tetramer in physiological salt. It is therefore concluded that the TM multimers are tetramers.
Collapse
Affiliation(s)
- Ingrid Lassing
- Department of Cell Biology, The Wenner-Gren Institute, Stockholm University, Sweden.
| | | | | | | | | | | |
Collapse
|
43
|
Ali LF, Cohen JM, Tobacman LS. Push and pull of tropomyosin's opposite effects on myosin attachment to actin. A chimeric tropomyosin host-guest study. Biochemistry 2010; 49:10873-80. [PMID: 21114337 DOI: 10.1021/bi101632f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tropomyosin is a ubiquitous actin-binding protein with an extended coiled-coil structure. Tropomyosin-actin interactions are weak and loosely specific, but they potently influence myosin. One such influence is inhibitory and is due to tropomyosin's statistically preferred positions on actin that sterically interfere with actin's strong attachment site for myosin. Contrastingly, tropomyosin's other influence is activating. It increases myosin's overall actin affinity ∼4-fold. Stoichiometric considerations cause this activating effect to equate to an ∼4(7)-fold effect of myosin on the actin affinity of tropomyosin. These positive, mutual, myosin-tropomyosin effects are absent if Saccharomyces cerevisiae tropomyosin replaces mammalian tropomyosin. To investigate these phenomena, chimeric tropomyosins were generated in which 38-residue muscle tropomyosin segments replaced a natural duplication within S. cerevisiae tropomyosin TPM1. Two such chimeric tropomyosins were sufficiently folded coiled coils to allow functional study. The two chimeras differed from TPM1 but in opposite ways. Consistent with steric interference, myosin greatly decreased the actin affinity of chimera 7, which contained muscle tropomyosin residues 228-265. On the other hand, myosin S1 increased by an order of magnitude the actin affinity of chimera 3, which contained muscle tropomyosin residues 74-111. Similarly, myosin S1-ADP binding to actin was strengthened 2-fold by substitution of chimera 3 tropomyosin for wild-type TPM1. Thus, a yeast tropomyosin was induced to mimic the activating behavior of mammalian tropomyosin by inserting a mammalian tropomyosin sequence. The data were not consistent with direct tropomyosin-myosin binding. Rather, they suggest an allosteric mechanism, in which myosin and tropomyosin share an effect on the actin filament.
Collapse
Affiliation(s)
- Laith F Ali
- Department of Medicine, University of Illinois at Chicago,Chicago, Illinois 60612, United States
| | | | | |
Collapse
|
44
|
Sich NM, O'Donnell TJ, Coulter SA, John OA, Carter MS, Cremo CR, Baker JE. Effects of actin-myosin kinetics on the calcium sensitivity of regulated thin filaments. J Biol Chem 2010; 285:39150-9. [PMID: 20889979 DOI: 10.1074/jbc.m110.142232] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Activation of thin filaments in striated muscle occurs when tropomyosin exposes myosin binding sites on actin either through calcium-troponin (Ca-Tn) binding or by actin-myosin (A-M) strong binding. However, the extent to which these binding events contributes to thin filament activation remains unclear. Here we propose a simple analytical model in which strong A-M binding and Ca-Tn binding independently activates the rate of A-M weak-to-strong binding. The model predicts how the level of activation varies with pCa as well as A-M attachment, N·k(att), and detachment, k(det), kinetics. To test the model, we use an in vitro motility assay to measure the myosin-based sliding velocities of thin filaments at different pCa, N·k(att), and k(det) values. We observe that the combined effects of varying pCa, N·k(att), and k(det) are accurately fit by the analytical model. The model and supporting data imply that changes in attachment and detachment kinetics predictably affect the calcium sensitivity of striated muscle mechanics, providing a novel A-M kinetic-based interpretation for perturbations (e.g. disease-related mutations) that alter calcium sensitivity.
Collapse
Affiliation(s)
- Nicholas M Sich
- Department of Biochemistry, University of Nevada School of Medicine, Reno, Nevada 89557, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Brown JH. How sequence directs bending in tropomyosin and other two-stranded alpha-helical coiled coils. Protein Sci 2010; 19:1366-75. [PMID: 20506487 PMCID: PMC2974828 DOI: 10.1002/pro.415] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 04/15/2010] [Accepted: 05/02/2010] [Indexed: 12/31/2022]
Abstract
A quantitative analysis of the direction of bending of two-stranded alpha-helical coiled coils in crystal structures has been carried out to help determine how the amino acid sequence of the coiled coil influences its shape and function. Change in the axial staggering of the coiled coil, occurring at the boundaries of either clusters of core alanines in tropomyosin or of clusters of core bulky residues in the myosin rod, causes bending within the plane of the local dimer. The results also reveal that large gaps in the core of the coiled coil, which are seen for small core residues near large core residues or for unbranched core residues near canonical branched core residues, are correlated with bending out of the local dimeric plane. Comparison of tropomyosin structures determined in independent crystal environments provides further evidence for the concept that sequence directs the bending of the coiled coil, but that crystal environment is at least as important as sequence for determining the magnitude of bending. Tropomyosin thus appears to consist of more directionally restrained hinge-like joints rather than directionally variable universal joints, which helps account for and predicts the geometric and dynamic nature of its binding to F-actin.
Collapse
Affiliation(s)
- Jerry H Brown
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts 02454-9110, USA.
| |
Collapse
|
46
|
Frye J, Klenchin VA, Rayment I. Structure of the tropomyosin overlap complex from chicken smooth muscle: insight into the diversity of N-terminal recognition. Biochemistry 2010; 49:4908-20. [PMID: 20465283 PMCID: PMC2883815 DOI: 10.1021/bi100349a] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Tropomyosin is a stereotypical alpha-helical coiled coil that polymerizes to form a filamentous macromolecular assembly that lies on the surface of F-actin. The interaction between the C-terminal and N-terminal segments on adjacent molecules is known as the overlap region. We report here two X-ray structures of the chicken smooth muscle tropomyosin overlap complex. A novel approach was used to stabilize the C-terminal and N-terminal fragments. Globular domains from both the human DNA ligase binding protein XRCC4 and bacteriophage varphi29 scaffolding protein Gp7 were fused to 37 and 28 C-terminal amino acid residues of tropomyosin, respectively, whereas the 29 N-terminal amino acids of tropomyosin were fused to the C-terminal helix bundle of microtubule binding protein EB1. The structures of both the XRCC4 and Gp7 fusion proteins complexed with the N-terminal EB1 fusion contain a very similar helix bundle in the overlap region that encompasses approximately 15 residues. The C-terminal coiled coil opens to allow formation of the helix bundle, which is stabilized by hydrophobic interactions. These structures are similar to that observed in the NMR structure of the rat skeletal overlap complex [Greenfield, N. J., et al. (2006) J. Mol. Biol. 364, 80-96]. The interactions between the N- and C-terminal coiled coils of smooth muscle tropomyosin show significant curvature, which differs somewhat between the two structures and implies flexibility in the overlap complex, at least in solution. This is likely an important attribute that allows tropomyosin to assemble around the actin filaments. These structures provide a molecular explanation for the role of N-acetylation in the assembly of native tropomyosin.
Collapse
Affiliation(s)
- Jeremiah Frye
- Department of Biochemistry, University of Wisconsin, Madison, U.S.A
| | | | - Ivan Rayment
- Department of Biochemistry, University of Wisconsin, Madison, U.S.A
| |
Collapse
|
47
|
|
48
|
Matsuo T, Ueno Y, Takezawa Y, Sugimoto Y, Oda T, Wakabayashi K. X-ray fiber diffraction modeling of structural changes of the thin filament upon activation of live vertebrate skeletal muscles. Biophysics (Nagoya-shi) 2010; 6:13-26. [PMID: 27857582 PMCID: PMC5036664 DOI: 10.2142/biophysics.6.13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2010] [Accepted: 01/29/2010] [Indexed: 12/01/2022] Open
Abstract
In order to clarify the structural changes of the thin filaments related to the regulation mechanism in skeletal muscle contraction, the intensities of thin filament-based reflections in the X-ray fiber diffraction patterns from live frog skeletal muscles at non-filament overlap length were investigated in the relaxed state and upon activation. Modeling the structural changes of the whole thin filament due to Ca2+-activation was systematically performed using the crystallographic data of constituent molecules (actin, tropomyosin and troponin core domain) as starting points in order to determine the structural changes of the regulatory proteins and actin. The results showed that the globular core domain of troponin moved toward the filament axis by ∼6 Å and rotated by ∼16° anticlockwise (viewed from the pointed end) around the filament axis by Ca2+-binding to troponin C, and that tropomyosin together with the tail of troponin T moved azimuthally toward the inner domains of actin by ∼12° and radially by ∼7 Å from the relaxed position possibly to partially open the myosin binding region of actin. The domain structure of the actin molecule in F-actin we obtained for frog muscle thin filament was slightly different from that of the Holmes F-actin model in the relaxed state, and upon activation, all subdomains of actin moved in the direction to closing the nucleotide-binding pocket, making the actin molecule more compact. We suggest that the troponin movements and the structural changes within actin molecule upon activation are also crucial components of the regulation mechanism in addition to the steric blocking movement of tropomyosin.
Collapse
Affiliation(s)
- Tatsuhito Matsuo
- Division of Biophysical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Yutaka Ueno
- Neuroscience Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8568, Japan
| | - Yasunori Takezawa
- Division of Biophysical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Yasunobu Sugimoto
- Division of Biophysical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Toshiro Oda
- RIKEN, SPring-8 Center, RIKEN Harima Institute, Sayo, Hyogo 679-5146, Japan
| | - Katsuzo Wakabayashi
- Division of Biophysical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
49
|
Ozawa H, Watabe S, Ochiai Y. Thermostability of striated and smooth adductor muscle tropomyosins from Yesso scallop Mizuhopecten yessoensis. J Biochem 2010; 147:823-32. [DOI: 10.1093/jb/mvq018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
50
|
Wang CLA, Coluccio LM. New insights into the regulation of the actin cytoskeleton by tropomyosin. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 281:91-128. [PMID: 20460184 PMCID: PMC2923581 DOI: 10.1016/s1937-6448(10)81003-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The actin cytoskeleton is regulated by a variety of actin-binding proteins including those constituting the tropomyosin family. Tropomyosins are coiled-coil dimers that bind along the length of actin filaments. In muscles, tropomyosin regulates the interaction of actin-containing thin filaments with myosin-containing thick filaments to allow contraction. In nonmuscle cells where multiple tropomyosin isoforms are expressed, tropomyosins participate in a number of cellular events involving the cytoskeleton. This chapter reviews the current state of the literature regarding tropomyosin structure and function and discusses the evidence that tropomyosins play a role in regulating actin assembly.
Collapse
|