1
|
Nikulin AD. Characteristic Features of Protein Interaction with Single- and Double-Stranded RNA. BIOCHEMISTRY (MOSCOW) 2021; 86:1025-1040. [PMID: 34488578 DOI: 10.1134/s0006297921080125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The review discusses differences between the specific protein interactions with single- and double-stranded RNA molecules using the data on the structure of RNA-protein complexes. Proteins interacting with the single-stranded RNAs form contacts with RNA bases, which ensures recognition of specific nucleotide sequences. Formation of such contacts with the double-stranded RNAs is hindered, so that the proteins recognize unique conformations of the RNA spatial structure and interact mainly with the RNA sugar-phosphate backbone.
Collapse
Affiliation(s)
- Alexey D Nikulin
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| |
Collapse
|
2
|
Menichelli E, Edgcomb SP, Recht MI, Williamson JR. The structure of Aquifex aeolicus ribosomal protein S8 reveals a unique subdomain that contributes to an extremely tight association with 16S rRNA. J Mol Biol 2011; 415:489-502. [PMID: 22079365 DOI: 10.1016/j.jmb.2011.10.046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 10/14/2011] [Accepted: 10/26/2011] [Indexed: 12/01/2022]
Abstract
The assembly of ribonucleoprotein complexes occurs under a broad range of conditions, but the principles that promote assembly and allow function at high temperature are poorly understood. The ribosomal protein S8 from Aquifex aeolicus (AS8) is unique in that there is a 41-residue insertion in the consensus S8 sequence. In addition, AS8 exhibits an unusually high affinity for the 16S ribosomal RNA, characterized by a picomolar dissociation constant that is approximately 26,000-fold tighter than the equivalent interaction from Escherichia coli. Deletion analysis demonstrated that binding to the minimal site on helix 21 occurred at the same nanomolar affinity found for other bacterial species. The additional affinity required the presence of a three-helix junction between helices 20, 21, and 22. The crystal structure of AS8 was solved, revealing the helix-loop-helix geometry of the unique AS8 insertion region, while the core of the molecule is conserved with known S8 structures. The AS8 structure was modeled onto the structure of the 30S ribosomal subunit from E. coli, suggesting the possibility that the unique subdomain provides additional backbone and side-chain contacts between the protein and an unpaired base within the three-way junction of helices 20, 21, and 22. Point mutations in the protein insertion subdomain resulted in a significantly reduced RNA binding affinity with respect to wild-type AS8. These results indicate that the AS8-specific subdomain provides additional interactions with the three-way junction that contribute to the extremely tight binding to ribosomal RNA.
Collapse
Affiliation(s)
- Elena Menichelli
- Department of Molecular Biology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
3
|
Rocca-Serra P, Bellaousov S, Birmingham A, Chen C, Cordero P, Das R, Davis-Neulander L, Duncan CD, Halvorsen M, Knight R, Leontis NB, Mathews DH, Ritz J, Stombaugh J, Weeks KM, Zirbel CL, Laederach A. Sharing and archiving nucleic acid structure mapping data. RNA (NEW YORK, N.Y.) 2011; 17:1204-12. [PMID: 21610212 PMCID: PMC3138558 DOI: 10.1261/rna.2753211] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Nucleic acids are particularly amenable to structural characterization using chemical and enzymatic probes. Each individual structure mapping experiment reveals specific information about the structure and/or dynamics of the nucleic acid. Currently, there is no simple approach for making these data publically available in a standardized format. We therefore developed a standard for reporting the results of single nucleotide resolution nucleic acid structure mapping experiments, or SNRNASMs. We propose a schema for sharing nucleic acid chemical probing data that uses generic public servers for storing, retrieving, and searching the data. We have also developed a consistent nomenclature (ontology) within the Ontology of Biomedical Investigations (OBI), which provides unique identifiers (termed persistent URLs, or PURLs) for classifying the data. Links to standardized data sets shared using our proposed format along with a tutorial and links to templates can be found at http://snrnasm.bio.unc.edu.
Collapse
Affiliation(s)
| | - Stanislav Bellaousov
- Department of Biochemistry and Biophysics and Center for RNA Biology, University of Rochester, Rochester, New York 14642, USA
| | | | - Chunxia Chen
- Biology Department, University of North Carolina, Chapel Hill, North Carolina 27599-3290, USA
| | - Pablo Cordero
- Biochemistry Department, Stanford University, Stanford, California 94305, USA
| | - Rhiju Das
- Biochemistry Department, Stanford University, Stanford, California 94305, USA
| | - Lauren Davis-Neulander
- Biology Department, University of North Carolina, Chapel Hill, North Carolina 27599-3290, USA
| | - Caia D.S. Duncan
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290, USA
| | - Matthew Halvorsen
- Biology Department, University of North Carolina, Chapel Hill, North Carolina 27599-3290, USA
| | - Rob Knight
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309, USA
- Howard Hughes Medical Institute, Boulder, Colorado 80309, USA
| | - Neocles B. Leontis
- Department of Chemistry, Bowling Green State University, Bowling Green, Ohio 43403, USA
| | - David H. Mathews
- Department of Biochemistry and Biophysics and Center for RNA Biology, University of Rochester, Rochester, New York 14642, USA
| | - Justin Ritz
- Biology Department, University of North Carolina, Chapel Hill, North Carolina 27599-3290, USA
| | - Jesse Stombaugh
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309, USA
| | - Kevin M. Weeks
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290, USA
| | - Craig L. Zirbel
- Department of Mathematics and Statistics, Bowling Green State University, Bowling Green, Ohio 43403, USA
| | - Alain Laederach
- Biology Department, University of North Carolina, Chapel Hill, North Carolina 27599-3290, USA
- Corresponding author.E-mail .
| |
Collapse
|
4
|
Shirokikh NE, Agalarov SC, Spirin AS. Chemical and enzymatic probing of spatial structure of the omega leader of tobacco mosaic virus RNA. BIOCHEMISTRY (MOSCOW) 2010; 75:405-11. [PMID: 20618128 DOI: 10.1134/s0006297910040024] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The 5'-untranslated sequence of tobacco mosaic virus RNA - the so-called omega leader - exhibits features of a translational enhancer of homologous and heterologous mRNAs. The absence of guanylic residues, the presence of multiple trinucleotide CAA repeats in its central region, and the low predictable probability of the formation of an extensive secondary structure of the Watson-Crick type were reported as the peculiarities of the primary structure of the omega leader. In this work we performed chemical and enzymatic probing of the secondary structure of the omega leader. The isolated RNA comprising omega leader sequence was subjected to partial modifications with dimethyl sulfate and diethyl pyrocarbonate and partial hydrolyses with RNase A and RNase V1. The sites and the intensities of the modifications or the cleavages were detected and measured by the primer extension inhibition technique. The data obtained have demonstrated that RNase A, which attacks internucleotide bonds at the 3' side of pyrimidine nucleotides, and diethyl pyrocarbonate, which modifies N7 of adenines not involved in stacking interactions, weakly affected the core region of omega leader sequence enriched with CAA-repeats, this directly indicating the existence of a stable spatial structure. The significant stability of the core region structure to RNase A and diethyl pyrocarbonate was accompanied by its complete resistance against RNase V1, which cleaves a polyribonucleotide chain involved in Watson-Crick double helices and generally all A-form RNA helices, thus being an evidence in favor of a non-Watson-Crick structure. The latter was confirmed by the full susceptibility of all adenines and cytosines of the omega polynucleotide chain to dimethyl sulfate, which exclusively modifies N1 of adenines and N3 of cytosines not involved in Watson-Crick interactions. Thus, our data have confirmed that (1) the regular (CAA)(n) sequence characteristic of the core region of the omega leader does form stable secondary structure, and (2) the structure formed is not the canonical double helix of the Watson-Crick type.
Collapse
Affiliation(s)
- N E Shirokikh
- Laboratory of Mechanisms of Protein Biosynthesis, Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | | | | |
Collapse
|
5
|
Dutcă LM, Jagannathan I, Grondek JF, Culver GM. Temperature-dependent RNP conformational rearrangements: analysis of binary complexes of primary binding proteins with 16 S rRNA. J Mol Biol 2007; 368:853-69. [PMID: 17376481 PMCID: PMC2265208 DOI: 10.1016/j.jmb.2007.02.064] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2006] [Revised: 01/31/2007] [Accepted: 02/17/2007] [Indexed: 11/27/2022]
Abstract
Ribonucleoprotein particles (RNPs) are important components of all living systems, and the assembly of these particles is an intricate, often multistep, process. The 30 S ribosomal subunit is composed of one large RNA (16 S rRNA) and 21 ribosomal proteins (r-proteins). In vitro studies have revealed that assembly of the 30 S subunit is a temperature-dependent process involving sequential binding of r-proteins and conformational changes of 16 S rRNA. Additionally, a temperature-dependent conformational rearrangement was reported for a complex of primary r-protein S4 and 16 S rRNA. Given these observations, a systematic study of the temperature-dependence of 16 S rRNA architecture in individual complexes with the other five primary binding proteins (S7, S8, S15, S17, and S20) was performed. While all primary binding r-proteins bind 16 S rRNA at low temperature, not all r-proteins/16 S rRNA complexes undergo temperature-dependent conformational rearrangements. Some RNPs achieve the same conformation regardless of temperature, others show minor adjustments in 16 S rRNA conformation upon heating and, finally, others undergo significant temperature-dependent changes. Some of the architectures achieved in these rearrangements are consistent with subsequent downstream assembly events such as assembly of the secondary and tertiary binding r-proteins. The differential interaction of 16 S rRNA with r-proteins illustrates a means for controlling the sequential assembly pathway for complex RNPs and may offer insights into aspects of RNP assembly in general.
Collapse
Affiliation(s)
- Laura-M. Dutcă
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011, USA
| | - Indu Jagannathan
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011, USA
| | - Joel F. Grondek
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011, USA
| | - Gloria M. Culver
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011, USA
| |
Collapse
|
6
|
Allen TD, Watkins T, Lindahl L, Zengel JM. Regulation of ribosomal protein synthesis in Vibrio cholerae. J Bacteriol 2004; 186:5933-7. [PMID: 15317799 PMCID: PMC516831 DOI: 10.1128/jb.186.17.5933-5937.2004] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have investigated the regulation of the S10 and spc ribosomal protein (r-protein) operons in Vibrio cholerae. Both operons are under autogenous control; they are mediated by r-proteins L4 and S8, respectively. Our results suggest that Escherichia coli-like strategies for regulating r-protein synthesis extend beyond the enteric members of the gamma subdivision of proteobacteria.
Collapse
Affiliation(s)
- Todd D Allen
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | | | | | | |
Collapse
|
7
|
Santos JLR, Bispo JAC, Landini GF, Bonafe CFS. Proton dependence of tobacco mosaic virus dissociation by pressure. Biophys Chem 2004; 111:53-61. [PMID: 15450375 DOI: 10.1016/j.bpc.2004.04.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 04/15/2004] [Accepted: 04/16/2004] [Indexed: 10/26/2022]
Abstract
Tobacco mosaic virus (TMV) is an intensely studied model of viruses. This paper reports an investigation into the dissociation of TMV by pH and pressure up to 220 MPa. The viral solution (0.25 mg/ml) incubated at 277 K showed a significant decrease in light scattering with increasing pH, suggesting dissociation. This observation was confirmed by HPLC gel filtration and electron microscopy. The calculated volume change of dissociation (DeltaV) decreased (absolute value) from -49.7 ml/mol of subunit at pH 3.8 to -21.7 ml/mol of subunit at pH 9.0. The decrease from pH 9.0 to 3.8 caused a stabilization of 14.1 kJ/mol of TMV subunit. The estimated proton release calculated from pressure-induced dissociation curves was 0.584 mol H(+)/mol of TMV subunit. These results suggest that the degree of virus inactivation by pressure and the immunogenicity of the inactivated structures can be optimized by modulating the surrounding pH.
Collapse
Affiliation(s)
- Jose L R Santos
- Laboratório de Termodinâmica de Proteínas, Departamento de Bioquímica, Instituto de Biologia, Universidade Estadual de Campinas, CP 6109, Campinas, SP, CEP 13083-970, Brazil
| | | | | | | |
Collapse
|
8
|
Tishchenko S, Nikulin A, Fomenkova N, Nevskaya N, Nikonov O, Dumas P, Moine H, Ehresmann B, Ehresmann C, Piendl W, Lamzin V, Garber M, Nikonov S. Detailed analysis of RNA-protein interactions within the ribosomal protein S8-rRNA complex from the archaeon Methanococcus jannaschii. J Mol Biol 2001; 311:311-24. [PMID: 11478863 DOI: 10.1006/jmbi.2001.4877] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The crystal structure of ribosomal protein S8 bound to its target 16 S rRNA from a hyperthermophilic archaeon Methanococcus jannaschii has been determined at 2.6 A resolution. The protein interacts with the minor groove of helix H21 at two sites located one helical turn apart, with S8 forming a bridge over the RNA major groove. The specificity of binding is essentially provided by the C-terminal domain of S8 and the highly conserved nucleotide core, characterized by two dinucleotide platforms, facing each other. The first platform (A595-A596), which is the less phylogenetically and structurally constrained, does not directly contact the protein but has an important shaping role in inducing cross-strand stacking interactions. The second platform (U641-A642) is specifically recognized by the protein. The universally conserved A642 plays a pivotal role by ensuring the cohesion of the complex organization of the core through an array of hydrogen bonds, including the G597-C643-U641 base triple. In addition, A642 provides the unique base-specific interaction with the conserved Ser105, while the Thr106 - Thr107 peptide link is stacked on its purine ring. Noteworthy, the specific recognition of this tripeptide (Thr-Ser-Thr/Ser) is parallel to the recognition of an RNA tetraloop by a dinucleotide platform in the P4-P6 ribozyme domain of group I intron. This suggests a general dual role of dinucleotide platforms in recognition of RNA or peptide motifs. One prominent feature is that conserved side-chain amino acids, as well as conserved bases, are essentially involved in maintaining tertiary folds. The specificity of binding is mainly driven by shape complementarity, which is increased by the hydrophobic part of side-chains. The remarkable similarity of this complex with its homologue in the T. thermophilus 30 S subunit indicates a conserved interaction mode between Archaea and Bacteria.
Collapse
MESH Headings
- Amino Acid Sequence
- Archaeal Proteins/chemistry
- Archaeal Proteins/metabolism
- Bacteria/chemistry
- Bacteria/genetics
- Base Sequence
- Binding Sites
- Conserved Sequence/genetics
- Crystallography, X-Ray
- Evolution, Molecular
- Humans
- Hydrogen Bonding
- Methanococcus/chemistry
- Methanococcus/genetics
- Models, Molecular
- Molecular Sequence Data
- Nucleic Acid Conformation
- Protein Binding
- Protein Structure, Secondary
- RNA, Archaeal/chemistry
- RNA, Archaeal/genetics
- RNA, Archaeal/metabolism
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 16S/metabolism
- RNA-Binding Proteins/chemistry
- RNA-Binding Proteins/metabolism
- Ribosomal Proteins/chemistry
- Ribosomal Proteins/metabolism
- Ribosomes/chemistry
- Ribosomes/genetics
- Ribosomes/metabolism
- Sequence Alignment
- Substrate Specificity
Collapse
Affiliation(s)
- S Tishchenko
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Yusupov MM, Yusupova GZ, Baucom A, Lieberman K, Earnest TN, Cate JH, Noller HF. Crystal structure of the ribosome at 5.5 A resolution. Science 2001; 292:883-96. [PMID: 11283358 DOI: 10.1126/science.1060089] [Citation(s) in RCA: 1417] [Impact Index Per Article: 61.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
We describe the crystal structure of the complete Thermus thermophilus 70S ribosome containing bound messenger RNA and transfer RNAs (tRNAs) at 5.5 angstrom resolution. All of the 16S, 23S, and 5S ribosomal RNA (rRNA) chains, the A-, P-, and E-site tRNAs, and most of the ribosomal proteins can be fitted to the electron density map. The core of the interface between the 30S small subunit and the 50S large subunit, where the tRNA substrates are bound, is dominated by RNA, with proteins located mainly at the periphery, consistent with ribosomal function being based on rRNA. In each of the three tRNA binding sites, the ribosome contacts all of the major elements of tRNA, providing an explanation for the conservation of tRNA structure. The tRNAs are closely juxtaposed with the intersubunit bridges, in a way that suggests coupling of the 20 to 50 angstrom movements associated with tRNA translocation with intersubunit movement.
Collapse
MESH Headings
- Anticodon
- Bacterial Proteins/chemistry
- Bacterial Proteins/metabolism
- Base Sequence
- Binding Sites
- Crystallography, X-Ray
- Models, Molecular
- Molecular Sequence Data
- Nucleic Acid Conformation
- Protein Biosynthesis
- Protein Conformation
- RNA, Bacterial/chemistry
- RNA, Bacterial/metabolism
- RNA, Messenger/chemistry
- RNA, Messenger/metabolism
- RNA, Ribosomal/chemistry
- RNA, Ribosomal/metabolism
- RNA, Transfer/chemistry
- RNA, Transfer/metabolism
- RNA, Transfer, Amino Acid-Specific/chemistry
- RNA, Transfer, Amino Acid-Specific/metabolism
- Ribosomal Proteins/chemistry
- Ribosomal Proteins/metabolism
- Ribosomes/chemistry
- Ribosomes/metabolism
- Ribosomes/ultrastructure
- Thermus thermophilus/chemistry
- Thermus thermophilus/ultrastructure
Collapse
Affiliation(s)
- M M Yusupov
- Center for Molecular Biology of RNA, Sinsheimer Laboratories, University of California at Santa Cruz, Santa Cruz, CA 95064, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Moine H, Squires CL, Ehresmann B, Ehresmann C. In vivo selection of functional ribosomes with variations in the rRNA-binding site of Escherichia coli ribosomal protein S8: evolutionary implications. Proc Natl Acad Sci U S A 2000; 97:605-10. [PMID: 10639126 PMCID: PMC15377 DOI: 10.1073/pnas.97.2.605] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The highly conserved nature of rRNA sequences throughout evolution allows these molecules to be used to build philogenic trees of different species. It is unknown whether the stability of specific interactions and structural features of rRNA reflects an optimal adaptation to a functional task or an evolutionary trap. In the work reported here, we have applied an in vivo selection strategy to demonstrate that unnatural sequences do work as a functional replacement of the highly conserved binding site of ribosomal protein S8. However, growth competition experiments performed between Escherichia coli isolates containing natural and unnatural S8-binding sites showed that the fate of each isolate depended on the growth condition. In exponentially growing cells, one unnatural variant was found to be equivalent to wild type in competition experiments performed in rich media. In culture conditions leading to slow growth, however, cells containing the wild-type sequence were the ultimate winner of the competition, emphasizing that the wild-type sequence is, in fact, the most fit solution for the S8-binding site.
Collapse
MESH Headings
- Base Sequence
- Binding Sites/genetics
- Binding, Competitive
- Cell Division/genetics
- Cloning, Molecular
- Drug Resistance, Microbial
- Escherichia coli/drug effects
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Evolution, Molecular
- Genetic Variation
- Protein Binding
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 16S/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Ribosomal Proteins/genetics
- Ribosomal Proteins/metabolism
- Ribosomes/genetics
- Ribosomes/metabolism
- Spectinomycin/pharmacology
Collapse
Affiliation(s)
- H Moine
- UPR 9002 du Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire et Cellulaire, 67084 Strasbourg, France.
| | | | | | | |
Collapse
|
11
|
Nevskaya N, Tishchenko S, Nikulin A, al-Karadaghi S, Liljas A, Ehresmann B, Ehresmann C, Garber M, Nikonov S. Crystal structure of ribosomal protein S8 from Thermus thermophilus reveals a high degree of structural conservation of a specific RNA binding site. J Mol Biol 1998; 279:233-44. [PMID: 9636713 DOI: 10.1006/jmbi.1998.1758] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
S8 is one of the core ribosomal proteins. It binds to 16 S RNA with high affinity and independently of other ribosomal proteins. It also acts as a translational repressor in Escherichia coli by binding to its own mRNA. The structure of Thermus thermophilus S8 has been determined by the method of multiple isomorphous replacement at 2.9 A resolution and refined to a crystallographic R-factor of 16.2% (Rfree 27.5%). The two domains of the structure have an alpha/beta fold and are connected by a long protruding loop. The two molecules in the asymmetric unit of the crystal interact through an extensive hydrophobic core and form a tightly associated dimer, while symmetry-related molecules form a joint beta-sheet of mixed type. This type of protein-protein interaction could be realized within the ribosomal assembly. A comparison of the structures of T. thermophilus and Bacillus stearothermophilus S8 shows that the interdomain loop is eight residues longer in the former and reveals high structural conservation of an extensive region, located in the C-terminal domain. From mutational studies this region was proposed earlier to be involved in specific interaction with RNA. On the basis of these data and on the comparison of the two structures of S8, it is proposed that the three-dimensional structure of specific RNA binding sites in ribosomal proteins is highly conserved among different species.
Collapse
Affiliation(s)
- N Nevskaya
- Institute of Protein Research, Russian Academy of Sciences, Moscow Region, Russia
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Kalurachchi K, Uma K, Zimmermann RA, Nikonowicz EP. Structural features of the binding site for ribosomal protein S8 in Escherichia coli 16S rRNA defined using NMR spectroscopy. Proc Natl Acad Sci U S A 1997; 94:2139-44. [PMID: 9122161 PMCID: PMC20054 DOI: 10.1073/pnas.94.6.2139] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Ribosomal protein S8 of Escherichia coli plays a key role in 30S ribosomal subunit assembly through its interaction with 16S rRNA. S8 also participates in the translational regulation of ribosomal protein expression through its interaction with spc operon mRNA. The binding site for protein S8 within the 16S rRNA encompasses nucleotides G588 to G604 and C634 to C651 and is composed of two base paired helical regions that flank a phylogenetically conserved core element containing nine residues. We have investigated the structure of the rRNA binding site for S8 both in the free state and in the presence of protein using NMR spectroscopy. The integrity of the two helical segments has been verified, and the presence of G597 x C643 and A596 x U644 base pairs within the conserved core, predicted from comparative analysis, have been confirmed. In addition, we have identified a base triple within the core that is composed of residues A595 x (A596 x U644). The NMR data suggest that S8-RNA interaction is accomplished without significant changes in the RNA. Nonetheless, S8 binding promotes formation of the U598 x A640 base pair and appears to stabilize the G597 x C643 and A596 x U644 base pairs.
Collapse
Affiliation(s)
- K Kalurachchi
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77005, USA
| | | | | | | |
Collapse
|
13
|
Teunissen SW, van Gelder CW, van Venrooij WJ. Probing the 3' UTR structure of U1A mRNA and footprinting analysis of its complex with U1A protein. Biochemistry 1997; 36:1782-9. [PMID: 9048562 DOI: 10.1021/bi9623237] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The structure of the conserved region of the U1A pre-mRNA (AgRNA) and its complex with U1A protein was investigated. The previously proposed secondary structure of Ag RNA, derived from enzymatic probing and analysis of the structure and function of mutant mRNAs, is now confirmed by chemical probing data and further refined in the regions where the enzymatic data were not conclusive. The two unpaired nucleotides in the internal loops opposite of the Box sequences as well as the tetraloop could not be cleaved by ribonucleases, but are accessible to chemical probes. Concerning the RNA-protein complex, the protection experiments showed that the Box regions are largely protected when the U1A protein is present. All stem regions in the 5' part of the structure seem protected against ribonucleases. Unexpectedly, the nucleotides of the tetraloop become accessible to ribonucleases in the RNA-protein complex. This result indicates that the tetraloop undergoes a conformational change upon U1A protein binding. The 3' part of the Ag RNA sequence, containing the polyadenylation signal in a hairpin structure, showed hardly any protection, a finding that agrees with the fact that U1A does not interfere with the binding of the cleavage polyadenylation specificity factor (CPSF) to the polyadenylation signal.
Collapse
Affiliation(s)
- S W Teunissen
- Department of Biochemistry, University of Nijmegen, The Netherlands
| | | | | |
Collapse
|
14
|
Uchiumi T, Kominami R. Binding of mammalian ribosomal protein complex P0.P1.P2 and protein L12 to the GTPase-associated domain of 28 S ribosomal RNA and effect on the accessibility to anti-28 S RNA autoantibody. J Biol Chem 1997; 272:3302-8. [PMID: 9013569 DOI: 10.1074/jbc.272.6.3302] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We have investigated binding of rat ribosomal proteins to the "GTPase domain" of 28 S rRNA and its effect on accessibility to the anti-28 S autoantibody, which recognizes a unique tertiary structure of this RNA domain. Ribosomal protein L12 and P protein complex (P complex) consisting of P0, P1, and P2 both bound to the GTPase domain of rat 28 S rRNA in a buffer containing Mg2. Chemical footprinting analysis of their binding sites revealed that the P complex mainly protected a conserved internal loop region comprising residues 1855-1861 and 1920-1922, whereas L12 protected an adjacent helix region encompassing residues 1867-1878 and 1887-1899. These sites are close to but distinct from the binding site for anti-28 S antibody determined previously. The bindings of P complex and L12 increased the anti-28 S accessibility, as revealed by gel retardation and quantitative immunoprecipitation analyses. In a Mg2+-eliminated condition, the RNA failed to bind to either anti-28 S or L12 but assembled into a complex under their coexistence. However, the RNA retained a property of binding to the P complex even in the absence of Mg2+, and this binding conferred high anti-28 S accessibility. These results indicated that the bindings of the P complex and L12 to their respective sites influenced the GTPase domain to increase the accessibility to anti-28 S. A possible RNA conformation adjusted by the protein bindings is discussed.
Collapse
Affiliation(s)
- T Uchiumi
- Department of Biochemistry, Niigata University School of Medicine, Niigata 951 Japan
| | | |
Collapse
|
15
|
Tishchenko S, Vysotskaya V, Fomenkova N, Nikonov S, Ehresmann B, Garber M. Crystallization and preliminary crystallographic analysis of ribosomal protein S8 fromThermus thermophilus. Proteins 1997. [DOI: 10.1002/(sici)1097-0134(199702)27:2<309::aid-prot15>3.0.co;2-q] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
16
|
Davies C, Ramakrishnan V, White SW. Structural evidence for specific S8-RNA and S8-protein interactions within the 30S ribosomal subunit: ribosomal protein S8 from Bacillus stearothermophilus at 1.9 A resolution. Structure 1996; 4:1093-104. [PMID: 8805594 DOI: 10.1016/s0969-2126(96)00115-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND Prokaryotic ribosomal protein S8 is an important RNA-binding protein that occupies a central position within the small ribosomal subunit. It interacts extensively with 16S rRNA and is crucial for the correct folding of the central domain of the rRNA. S8 also controls the synthesis of several ribosomal proteins by binding to mRNA. It binds specifically to very similar sites in the two RNA molecules. RESULTS S8 is divided into two tightly associated domains and contains three regions that are proposed to interact with other ribosomal components: two potential RNA-binding sites, and a hydrophobic patch that may interact with a complementary hydrophobic region of S5. The N-terminal domain fold is found in several proteins including two that bind double-stranded DNA. CONCLUSIONS These multiple RNA-binding sites are consistent with the role of S8 in organizing the central domain and agree with the latest models of the 16S RNA which show that the S8 location coincides with a region of complicated nucleic-acid structure. The presence in a wide variety of proteins of a region homologous to the N-terminal domain supports the idea that ribosomal proteins must represent some of the earliest protein molecules.
Collapse
Affiliation(s)
- C Davies
- Department of Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
17
|
Howard BA, Thom G, Jeffrey I, Colthurst D, Knowles D, Prescott C. Fragmentation of the ribosome to investigate RNA-ligand interactions. Biochem Cell Biol 1995; 73:1161-6. [PMID: 8722033 DOI: 10.1139/o95-125] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
RNA molecules perform a variety of important and diverse functions and, therefore, an understanding of their structure and interaction with proteins and ligands is essential. Large RNA molecules (for example, the ribosomal RNAs) are complex and hence reports describing their fragmentation into functional subdomains has provided a means for their detailed analysis. We present here an in vivo approach to study RNA-ligand interactions. This is based on the concept that an RNA fragment could mimic a drug-binding site present on the intact molecule. Overexpression of the fragment would sequester the drug thereby permitting the continued functioning of the ribosome and, thus, ensuring cell viability. Accordingly, a fragment of 16S rRNA encompassing the spectinomycin-binding domain in helix 34 (nucleotides 1046-1065 and 1191-1211) was cloned and in vivo expression resulted in drug resistance. Furthermore, an RNA fragment lacking flanking sequences to helix 34 was also selected from among a pool of random rRNA fragments and shown to confer spectinomycin resistance. A similar in vitro approach is also described for the analysis of rRNA molecules that interact with the yeast elongation factor 3 (EF-3).
Collapse
Affiliation(s)
- B A Howard
- SmithKline Beecham Pharmaceuticals, Betchworth, Surrey
| | | | | | | | | | | |
Collapse
|
18
|
Abstract
Two new enzymatic probes have been used for structural investigations of native and unmodified transcript tRNA molecules. Both probes were single-strand-specific nucleases isolated from higher plants. The results obtained after enzymatic hydrolysis of tRNAs support the earlier hypothesis that posttranscriptional modifications in tRNA help to stabilize its structure and make it more rigid.
Collapse
MESH Headings
- Base Sequence
- Fungi/chemistry
- Molecular Sequence Data
- Nucleic Acid Conformation
- Plants/enzymology
- RNA Processing, Post-Transcriptional
- RNA, Transfer/chemistry
- RNA, Transfer/metabolism
- RNA, Transfer, Asp/chemistry
- RNA, Transfer, Asp/metabolism
- RNA, Transfer, Phe/chemistry
- RNA, Transfer, Phe/metabolism
- Ribonucleosides/chemistry
- Single-Strand Specific DNA and RNA Endonucleases/metabolism
Collapse
Affiliation(s)
- A Przykorska
- Institute of Biochemistry and Biophysics, PAN, Warshaw, Poland
| |
Collapse
|
19
|
Allmang C, Mougel M, Westhof E, Ehresmann B, Ehresmann C. Role of conserved nucleotides in building the 16S rRNA binding site of E. coli ribosomal protein S8. Nucleic Acids Res 1994; 22:3708-14. [PMID: 7937081 PMCID: PMC308351 DOI: 10.1093/nar/22.18.3708] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Ribosomal protein S8 specifically recognizes a helical and irregular region of 16S rRNA that is highly evolutionary constrained. Despite its restricted size, the precise conformation of this region remains a question of debate. Here, we used chemical probing to analyze the structural consequences of mutations in this RNA region. These data, combined with computer modelling and previously published data on protein binding were used to investigate the conformation of the RNA binding site. The experimental data confirm the model in which adenines A595, A640 and A642 bulge out in the deep groove. In addition to the already proposed non canonical U598-U641 interaction, the structure is stabilized by stacking interactions (between A595 and A640) and an array of hydrogen bonds involving bases and the sugar phosphate backbone. Mutations that alter the ability to form these interdependent interactions result in a local destabilization or reorganization. The specificity of recognition by protein S8 is provided by the irregular and distorted backbone and the two bulged adenines 640 and 642 in the deep groove. The third adenine (A595) is not a direct recognition site but must adopt a bulged position. The U598-U641 pair should not be directly in contact with the protein.
Collapse
Affiliation(s)
- C Allmang
- UPR 9002 du CNRS, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | | | | | | | | |
Collapse
|
20
|
Vysotskaya V, Tischenko S, Garber M, Kern D, Mougel M, Ehresmann C, Ehresmann B. The ribosomal protein S8 from Thermus thermophilus VK1. Sequencing of the gene, overexpression of the protein in Escherichia coli and interaction with rRNA. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 223:437-45. [PMID: 7519982 DOI: 10.1111/j.1432-1033.1994.tb19011.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The gene of the ribosomal protein S8 from Thermus thermophilus VK1 has been isolated from a genomic library by hybridization of an oligonucleotide coding for the N-terminal amino acid sequence of the protein, amplified by PCR and sequenced. Nucleotide sequence reveals an open reading frame coding for a protein of 138 amino acid residues (M(r) 15,839). The codon usage shows that 94% of the codons possess G or C in the third position, and agrees with the preferential usage of codons of high G+C content in the bacteria of the genus Thermus. The amino acid sequence of the protein shows 48% identity with the protein from Escherichia coli. Ribosomal protein S8 from T. thermophilus has been expressed in E. coli under the control of the T7 promoter and purified to homogeneity by heat treatment of the extract followed by cation-exchange chromatography. Conditions were defined in which T. thermophilus protein S8 binds specifically an homologous 16S rRNA fragment containing the putative S8 binding site with an apparent association constant of 5 x 10(7) M-1. The overexpressed protein binds the rRNA with the same affinity as that extracted from T. thermophilus, indicating that the thermophilic protein is correctly folded in E. coli. The specificity of this binding is dependent on the ionic strength. The protein S8 from T. thermophilus recognizes the E. coli rRNA binding sites as efficiently as the S8 protein from E. coli. This result agrees with sequence comparisons of the S8 binding site on the small subunit rRNA from E. coli and from T. thermophilus, showing strong similarities in the regions involved in the interaction. It suggests that the structural features responsible for the recognition are conserved in the mesophilic and thermophilic eubacteria, despite structural peculiarities in the thermophilic partners conferring thermostability.
Collapse
MESH Headings
- Amino Acid Sequence
- Base Sequence
- Blotting, Southern
- Cloning, Molecular
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Bacterial/isolation & purification
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Gene Expression
- Genes, Bacterial
- Molecular Sequence Data
- Molecular Weight
- Nucleic Acid Hybridization
- Polymerase Chain Reaction
- Promoter Regions, Genetic
- Protein Binding
- Protein Structure, Secondary
- RNA, Bacterial/metabolism
- RNA, Ribosomal, 16S/metabolism
- Recombinant Proteins/metabolism
- Ribosomal Proteins/chemistry
- Ribosomal Proteins/genetics
- Ribosomal Proteins/isolation & purification
- Ribosomal Proteins/metabolism
- Sequence Alignment
- Thermus thermophilus/genetics
- Transcription, Genetic
Collapse
Affiliation(s)
- V Vysotskaya
- Department of Structure and Function of Ribosomes, Russian Academy of Sciences, Moscow Region
| | | | | | | | | | | | | |
Collapse
|
21
|
Wu H, Jiang L, Zimmermann RA. The binding site for ribosomal protein S8 in 16S rRNA and spc mRNA from Escherichia coli: minimum structural requirements and the effects of single bulged bases on S8-RNA interaction. Nucleic Acids Res 1994; 22:1687-95. [PMID: 7515489 PMCID: PMC308050 DOI: 10.1093/nar/22.9.1687] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Through specific interactions with rRNA and mRNA, ribosomal protein S8 of Escherichia coli plays a central role in both assembly of the 30S ribosomal subunit and translational regulation of spc operon expression. To better understand S8-RNA association, we have measured the affinity of S8 for a number of variants of its rRNA and mRNA binding sites prepared by in vitro transcription or chemical synthesis. With the aid of site-directed deletions, we demonstrate that an imperfect, 33-nucleotide helical stem encompassing nucleotides 588-603 and 635-651 possesses all of the structural information necessary for specific binding of S8 to the 16S rRNA. This segment consists of two short duplexes that enclose a conserved, asymmetric internal loop which contains features crucial for protein recognition. The S8 binding site in spc operon mRNA is very similar in both primary and secondary structure to that in 16S rRNA except for the presence of two single bulged bases in one of the duplex segments. In addition, the apparent association constant for the S8-mRNA interaction is approximately fivefold less than that for the S8-rRNA interaction. We show that the difference in affinity can be attributed to the effects of the bulged bases. Deletion of the bulged bases from the mRNA site increases its affinity for S8 to a level similar to that of the rRNA, whereas insertion of single-base bulges at equivalent positions within the rRNA site reduces its affinity for S8 to a value typical of the mRNA. Single-base bulges in the proximity of essential recognition features are therefore capable of modulating the strength of protein-RNA interactions.
Collapse
Affiliation(s)
- H Wu
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst 01003
| | | | | |
Collapse
|
22
|
Kumar PK, Taira K, Nishikawa S. Chemical probing studies of variants of the genomic hepatitis delta virus ribozyme by primer extension analysis. Biochemistry 1994; 33:583-92. [PMID: 8286389 DOI: 10.1021/bi00168a025] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We have investigated in detail the higher order structure of the genomic hepatitis delta virus (HDV) ribozyme using various base-specific chemical probes under native, semi-denaturing, and denaturing conditions. The bases of the HDV ribozyme were probed by treatment with dimethyl sulfate [which reacts with A (at N1) and C (at N3)] and a carbodiimide [which reacts with U (at N3) and G (at N1)]. In addition, for probing G residues (at N7), RNA samples were treated with NaBH4 and aniline after modification by treatment with dimethyl sulfate. The sites of modified positions were identified by primer extension analysis with reverse transcriptase. In general, our results are consistent with the proposed pseudoknot model of secondary structure, a model that is based on data from ribonucleolytic cleavage experiments. Our results provide clues to the identification of interacting bases in the HDV ribozyme. Furthermore, using this method we identified local conformational changes in several stem variants.
Collapse
Affiliation(s)
- P K Kumar
- National Institute of Bioscience and Human Technology, Agency of Industrial Science and Technology, Ibaraki, Japan
| | | | | |
Collapse
|
23
|
Zengel JM, Lindahl L. Diverse mechanisms for regulating ribosomal protein synthesis in Escherichia coli. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1994; 47:331-70. [PMID: 7517053 DOI: 10.1016/s0079-6603(08)60256-1] [Citation(s) in RCA: 201] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- J M Zengel
- Department of Biology, University of Rochester, New York 14627
| | | |
Collapse
|
24
|
Mougel M, Allmang C, Eyermann F, Cachia C, Ehresmann B, Ehresmann C. Minimal 16S rRNA binding site and role of conserved nucleotides in Escherichia coli ribosomal protein S8 recognition. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 215:787-92. [PMID: 7689052 DOI: 10.1111/j.1432-1033.1993.tb18093.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Escherichia coli ribosomal protein S8 was previously shown to bind a 16S rRNA fragment (nucleotides 584-756) with the same affinity as the complete 16S rRNA, and to shield an irregular helical region (region C) [Mougel, M., Eyermann, F., Westhof, E., Romby, P., Expert-Bezançon, Ebel, J. P., Ehresmann, B. & Ehresmann, C. (1987). J. Mol. Biol. 198, 91-107]. Region C was postulated to display characteristic features: three bulged adenines (A595, A640 and A642), a non-canonical U598-U641 pair surrounded by two G.C pairs. In order to delineate the minimal RNA binding site, deletions were introduced by site-directed mutagenesis and short RNA fragments were synthesized. Their ability to bind S8 was assayed by filter binding. Our results show that the RNA binding site can be restricted to a short helical stem (588-605/633-651) containing region C. The second part of the work focused on region C and on the role of conserved nucleotides as potential determinants of S8 recognition. Single and double mutations were introduced by site-directed mutagenesis in fragment 584-756, and their effect on S8 binding was measured. It was found that the three bulged positions are essential and that adenines are required at positions 640 and 642. U598 is also crucial and the highly conserved G597.C643 pair cannot be inverted. These conserved nucleotides are either directly involved in the recognition process as direct contacts or required to maintain a specific conformation. The strong evolutionary pressure and the small number of positive mutants stress the high stringency of the recognition process.
Collapse
Affiliation(s)
- M Mougel
- UPR 9002 du CNRS, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | | | | | | | | | | |
Collapse
|
25
|
Critchley AD, Haneef I, Cousens DJ, Stockley PG. Modeling and solution structure probing of the HIV-1 TAR stem-loop. JOURNAL OF MOLECULAR GRAPHICS 1993; 11:92-7, 124. [PMID: 8347568 DOI: 10.1016/0263-7855(93)87002-m] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We present a model for the three-dimensional structure of the HIV TAR stem-loop, based on a modeling algorithm which makes use of the known X-ray coordinates of tRNAs to generate a model structure, which has then been tested experimentally in solution by enzymatic and chemical structure probing of ribo-oligonucleotides encompassing the TAR sequence. The modeling suggested that the structure of TAR was similar to that of the anti-codon loop of tRNA(Asp), having a loop of just three single-stranded residues with a mismatched adenine excluded from the helical stem on the 3' side of the loop. The structural probing is consistent with such a structure for the loop, and reveals an unusual structure around the 5' uridine-rich bulge, which is the binding target for the transactivator protein Tat. These data may be useful in understanding the interaction of TAR with the Tat protein and may aid in the design of anti-AIDS drugs. The coordinates of the model are available on request.
Collapse
|
26
|
Reinbolt J, Eliseikina I, Sedelnilkova S, Garber M, Ehresmann C, Ehresmann B. The complete amino acid sequence of ribosomal protein S8 from Thermus thermophilus. JOURNAL OF PROTEIN CHEMISTRY 1993; 12:79-83. [PMID: 8427638 DOI: 10.1007/bf01024918] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Protein S8 from Thermus thermophilus consists of 138 amino acids of M(r) 15,840. Its primary structure was established using peptide sequences from two different digests. Protein S8 from T. thermophilus shares a high percentage of identity with protein S8 from Thermus aquaticus. There are some consensus sequences between proteins S8 from eubacteria, archebacteria, chloroplasts, and cyanelles.
Collapse
Affiliation(s)
- J Reinbolt
- Unité Propre de Recherche No. 9002, Institut de Biologie Moléculaire et Cellulaire du Centre National de la Recherche Scientifique, Strasbourg, France
| | | | | | | | | | | |
Collapse
|
27
|
Zhang GY, Beltchev B, Fournier A, Zhang YH, Malassiné A, Bisbal C, Ehresmann B, Ehresmann C, Darlix JL, Thang MN. High levels of 2',5'-oligoadenylate synthetase and 2',5'-oligoadenylate-dependent endonuclease in human trophoblast. AIDS Res Hum Retroviruses 1993; 9:189-96. [PMID: 8457385 DOI: 10.1089/aid.1993.9.189] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Human placenta contains a high level of 2',5'-oligoadenylate (2-5A) synthetase activity of the 100-kD form of the enzyme. About 20% of the placental 2-5A synthetase activity was found to be cytosolic, whereas the remaining 80% was released by 0.5 M KCl in the presence of detergent. Most of the enzyme activity was localized in trophoblast cells, which also contain a high level of 2-5A-dependent RNase L activity. The purified trophoblast 100-kD 2-5A synthetase was shown to be activated by human immunodeficiency virus type 1 (HIV-1) 5' RNA 1-311 and 1-707, which both contain the TAR and primer binding site (PBS) structured regions. These two HIV-1 RNAs activated human trophoblast 2-5A synthetase at the same level as poly(I).poly (C), a standard highly efficient activator of the enzyme, and at the same optimal concentration. On the contrary, HIV-1 RNA 311-618, a poorly structured region missing TAR and PBS, was shown to be a poor activator of the enzyme. The specific cellular location of the 2-5A synthetase and its efficient activation by HIV 5' RNA favors the idea that the trophoblast 2-5A system negatively controls HIV replication in trophoblasts.
Collapse
|
28
|
Affiliation(s)
- J F Senecoff
- Department of Genetics, University of Georgia, Athens 30602
| | | |
Collapse
|
29
|
Yeh LC, Lee JC. Structure analysis of the 5' external transcribed spacer of the precursor ribosomal RNA from Saccharomyces cerevisiae. J Mol Biol 1992; 228:827-39. [PMID: 1469716 DOI: 10.1016/0022-2836(92)90867-j] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Full-length precursor ribosomal RNA molecules were produced in vitro using as a template, a plasmid containing the yeast 35 S pre-rRNA gene under the control of the phage T3 promoter. The higher-order structure of the 5'-external transcribed spacer (5' ETS) sequence in the 35S pre-rRNA molecule was studied using dimethylsulfate, 1-cyclohexyl-3-(2-morpholinoethyl)-carbodiimide metho-p-toluenesulfonate, RNase T1 and RNase V1 as structure-sensitive probes. Modified residues were detected by primer extension. Data produced were used to evaluate several theoretical structure models predicted by minimum free-energy calculations. A model for the entire 5'ETS region is proposed that accommodates 82% of the residues experimentally shown to be in either base-paired or single-stranded structure in the correct configuration. The model contains a high degree of secondary structure with ten stable hairpins of varying lengths and stabilities. The hairpins are composed of the Watson-Crick A.T and G.C pairs plus the non-canonical G.U pairs. Based on a comparative analysis of the 5' ETS sequence from Saccharomyces cerevisiae and Schizosaccharomyces pombe, most of the base-paired regions in the proposed model appear to be phylogenetically supported. The two sites previously shown to be crosslinked to U3 snRNA as well as the previously proposed recognition site for processing and one of the early processing site (based on sequence homology to the vertebrate ETS cleavage site) are located in single-stranded regions in the model. The present folding model for the 5' ETS in the 35 S pre-rRNA molecule should be useful in the investigations of the structure, function and processing of pre-rRNA.
Collapse
MESH Headings
- Base Sequence
- CME-Carbodiimide/analogs & derivatives
- Carbodiimides/pharmacology
- Cross-Linking Reagents
- DNA, Recombinant
- Models, Molecular
- Molecular Sequence Data
- Nucleic Acid Conformation
- Phylogeny
- RNA Precursors/drug effects
- RNA Precursors/genetics
- RNA Processing, Post-Transcriptional
- RNA, Fungal/chemistry
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- RNA, Ribosomal, 18S/genetics
- RNA, Ribosomal, 5.8S/genetics
- Ribonucleases/pharmacology
- Saccharomyces cerevisiae/genetics
- Sequence Analysis, RNA
- Sulfuric Acid Esters/pharmacology
- Transcription, Genetic
Collapse
Affiliation(s)
- L C Yeh
- Department of Biochemistry, University of Texas Health Science Center, San Antonio 78284-7760
| | | |
Collapse
|
30
|
Lesage P, Chiaruttini C, Graffe M, Dondon J, Milet M, Springer M. Messenger RNA secondary structure and translational coupling in the Escherichia coli operon encoding translation initiation factor IF3 and the ribosomal proteins, L35 and L20. J Mol Biol 1992; 228:366-86. [PMID: 1453449 DOI: 10.1016/0022-2836(92)90827-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The Escherichia coli infC-rpmI-rplT operon encodes translation initiation factor IF3 and the ribosomal proteins, L35 and L20, respectively. The expression of the last cistron (rplT) has been shown to be negatively regulated at a post-transcriptional level by its own product, L20, which acts at an internal operator located within infC. The present work shows that L20 directly represses the expression of rpmI, and indirectly that of rplT, via translational coupling with rpmI. Deletions and an inversion of the coding region of rpmI, suggest an mRNA secondary structure forming between sequences within rpmI and the translation initiation site of rplT. To verify the existence of this structure, detailed analyses were performed using chemical and enzymatic probes. Also, mutants that uncoupled rplT expression from that of rpmI, were isolated. The mutations fall at positions that would base-pair in the secondary structure. Our model is that L20 binds to its operator within infC and represses the translation of rpmI. When the rpmI mRNA is not translated, it can base-pair with the ribosomal binding site of rplT, sequestering it, and abolishing rplT expression. If the rpmI mRNA is translated, i.e. covered by ribosomes, the inhibitory structure cannot form leaving the translation initiation site of rplT free for ribosomal binding and for full expression. Although translational coupling in ribosomal protein operons has been suspected to be due to the formation of secondary structures that sequester internal ribosomal binding sites, this is the first time that such a structure has been shown to exist.
Collapse
Affiliation(s)
- P Lesage
- Institut de Biologie Physico-Chimique, Paris, France
| | | | | | | | | | | |
Collapse
|
31
|
Romby P, Brunel C, Caillet J, Springer M, Grunberg-Manago M, Westhof E, Ehresmann C, Ehresmann B. Molecular mimicry in translational control of E. coli threonyl-tRNA synthetase gene. Competitive inhibition in tRNA aminoacylation and operator-repressor recognition switch using tRNA identity rules. Nucleic Acids Res 1992; 20:5633-40. [PMID: 1280807 PMCID: PMC334396 DOI: 10.1093/nar/20.21.5633] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We previously showed that: (i) E.coli threonyl-tRNA synthetase (ThrRS) binds to the leader of its mRNA and represses translation by preventing ribosome binding to its loading site; (ii) the translational operator shares sequence and structure similarities with tRNA(Thr); (iii) it is possible to switch the specificity of the translational control from ThrRS to methionyl-tRNA synthetase (MetRS) by changing the CGU anticodon-like sequence to CAU, the tRNA(Met) anticodon. Here, we show that the wild type (CGU) and the mutated (CAU) operators act as competitive inhibitors of tRNA(Thr) and tRNA(fMet) for aminoacylation catalyzed by E.coli ThrRS and MetRS, respectively. The apparent Kd of the MetRS/CAU operator complex is one order magnitude higher than that of the ThrRS/CGU operator complex. Although ThrRS and MetRS shield the anticodon- and acceptor-like domains of their respective operators, the relative contribution of these two domains differs significantly. As in the threonine system, the interaction of MetRS with the CAU operator occludes ribosome binding to its loading site. The present data demonstrate that the anticodon-like sequence is one major determinant for the identity of the operator and the regulation specificity. It further shows that the tRNA-like operator obeys to tRNA identity rules.
Collapse
Affiliation(s)
- P Romby
- UPR du CNRS no. 9002, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Svärd SG, Kirsebom LA. Several regions of a tRNA precursor determine the Escherichia coli RNase P cleavage site. J Mol Biol 1992; 227:1019-31. [PMID: 1279179 DOI: 10.1016/0022-2836(92)90518-o] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The RNase P cleavage reaction was studied as a function of the number of base-pairs in the acceptor-stem and/or T-stem of a natural tRNA precursor, the tRNA(Tyr)Su3 precursor. Our data suggest that the location of the Escherichia coli RNase P cleavage site does not depend merely on the lengths of the acceptor-stem and T-stem as previously suggested. Surprisingly, we find that precursors with only four base-pairs in the acceptor-stem are cleaved by M1 RNA and by holoenzyme. Furthermore, we show that both disruption of base-pairing, and alteration of the nucleotide sequence (without disruption of base-pairing) proximal to the cleavage site result in aberrant cleavage. Thus, the identity of the nucleotides near the cleavage site is important for recognition of the cleavage site rather than base-pairing. The important nucleotides are those at positions -2, -1, +1, +72, +73 and +74. We propose that the nucleotide at position +1 functions as a guiding nucleotide. These results raise the possibility that Mg2+ binding near the cleavage site is dependent on the identity of the nucleotides at these positions. In addition, we show that disruption of base-pairing in the acceptor-stem affects both Michaelis-Menten constants, Km and kcat.
Collapse
Affiliation(s)
- S G Svärd
- Department of Microbiology, Biomedical Center, Uppsala, Sweden
| | | |
Collapse
|
33
|
Zwieb C. Conformity of RNAs that interact with tetranucleotide loop binding proteins. Nucleic Acids Res 1992; 20:4397-400. [PMID: 1329024 PMCID: PMC334163 DOI: 10.1093/nar/20.17.4397] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
A group of RNA binding proteins, termed tetraloop binding proteins, includes ribosomal protein S15 and protein SRP19 of signal recognition particle. They are primary RNA binding proteins, recognize RNA tetranucleotide loops with a GNAR consensus motif, and require a helical region located adjacent to the tetraloop. Closely related RNA structures that fit these criteria appear in helix 6 of SRP RNA, in helices 22 and 23A of 16 S ribosomal RNA, and, as a pseudoknot, in the regulatory region of the rpsO gene.
Collapse
Affiliation(s)
- C Zwieb
- Department of Molecular Biology, University of Texas Health Science Center, Tyler 75710
| |
Collapse
|
34
|
Direct evidence for interaction of the conserved GTPase domain within 28 S RNA with mammalian ribosomal acidic phosphoproteins and L12. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)41758-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
35
|
Hammond RW. Analysis of the virulence modulating region of potato spindle tuber viroid (PSTVd) by site-directed mutagenesis. Virology 1992; 187:654-62. [PMID: 1546460 DOI: 10.1016/0042-6822(92)90468-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A series of nucleotide substitutions (G46----C; C47----A; C315----U; U317----C) were introduced into the virulence modulating region of the intermediate strain of potato spindle tuber viroid (PSTVd) in order to examine their effect upon viroid infectivity and pathogenicity with the presence of all four mutations resulting in the sequence of a previously reported severe strain of PSTVd. Eight of the resulting mutant cDNAs were characterized for infectivity and symptom induction in tomato, and the secondary structure of their corresponding RNAs was examined. The combined results of infectivity, computer analysis, and chemical mapping data imply that a previously proposed correlation between thermodynamic stability and PSTVd pathogenicity does not hold true in all cases and suggest that conformation and/or sequence-specific interactions with host factors play a role in symptom development.
Collapse
Affiliation(s)
- R W Hammond
- Microbiology and Plant Pathology Laboratory, USDA-ARS, Beltsville, Maryland 20705
| |
Collapse
|
36
|
Wower I, Kowaleski MP, Sears LE, Zimmermann RA. Mutagenesis of ribosomal protein S8 from Escherichia coli: defects in regulation of the spc operon. J Bacteriol 1992; 174:1213-21. [PMID: 1735715 PMCID: PMC206414 DOI: 10.1128/jb.174.4.1213-1221.1992] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The structural features of Escherichia coli ribosomal protein S8 that are involved in translational regulation of spc operon expression and, therefore, in its interaction with RNA have been investigated by use of a genetic approach. The rpsH gene, which encodes protein S8, was first inserted into an expression vector under the control of the lac promoter and subsequently mutagenized with methoxylamine or nitrous acid. A screening procedure based on the regulatory role of S8 was used to identify mutants that were potentially defective in their ability to associate with spc operon mRNA and, by inference, 16S mRNA. In this way, we isolated 39 variants of the S8 gene containing alterations at 34 different sites, including 37 that led to single amino acid substitutions and 2 that generated premature termination codons. As the mutations were distributed throughout the polypeptide chain, our results indicate that amino acid residues important for the structural integrity of the RNA-binding domain are not localized to a single segment. Nonetheless, the majority were located within three short sequences at the N terminus, middle, and C terminus that are phylogenetically conserved among all known eubacterial and chloroplast versions of this protein. We conclude that these sites encompass the main structural determinants required for the interaction of protein S8 with RNA.
Collapse
Affiliation(s)
- I Wower
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst 01003
| | | | | | | |
Collapse
|
37
|
Tounekti N, Mougel M, Roy C, Marquet R, Darlix JL, Paoletti J, Ehresmann B, Ehresmann C. Effect of dimerization on the conformation of the encapsidation Psi domain of Moloney murine leukemia virus RNA. J Mol Biol 1992; 223:205-20. [PMID: 1731069 DOI: 10.1016/0022-2836(92)90726-z] [Citation(s) in RCA: 91] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In Moloney murine leukemia virus, the encapsidation Psi element was shown to be necessary and sufficient to promote packaging of viral RNA, and to be required for dimerization. The conformation of the Psi domain (nucleotides 215 to 565) was investigated in solution by chemical probing. The four bases were monitored at one of their Watson-Crick positions with dimethylsulfate at cytosine N3 and adenosine N1, and with a carbodiimide derivative at guanosine N1 and uridine N3. Position N7 of adenine residues was probed with diethylpyrocarbonate. The analyses were conducted on in vitro transcribed fragments corresponding either to the isolated Psi domain or to the 5'-terminal 725 nucleotides. The RNA fragments were analyzed in their monomeric and dimeric forms. A secondary structure model was derived from probing data, computer prediction and sequence analysis of related murine retroviruses. One major result is that Psi forms an independent and highly structured domain. Dimerization induces an extensive reduction of reactivity in region 278 to 309 that can be interpreted as the result of intermolecular interactions and/or intramolecular conformational rearrangements. A second region (around position 215) was shown to display discrete reactivity changes upon dimerization. These two regions represent likely elements of dimerization. More unexpectedly, reactivity changes (essentially enhancement of reactivity) were also detected in another part of Psi (around position 480) not believed to contain elements of dimerization. These reactivity changes could be interpreted as dimerization-induced allosteric transitions.
Collapse
Affiliation(s)
- N Tounekti
- Unité de Biochimie, URA 158 CNRS, Institut Gustave Roussy, Villejuif, France
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Senecoff JF, Meagher RB. In vivo analysis of plant RNA structure: soybean 18S ribosomal and ribulose-1,5-bisphosphate carboxylase small subunit RNAs. PLANT MOLECULAR BIOLOGY 1992; 18:219-34. [PMID: 1731985 DOI: 10.1007/bf00034951] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
A method to investigate the structure of RNA molecules within intact plant tissues has been developed. The RNA structures are analyzed using dimethyl sulfate (DMS), which modifies substituents of adenine and cytosine residues within single-stranded regions of RNA molecules. Reactive sites are identified by primer extension analysis. Using this procedure, an analysis of the secondary structure of the cytoplasmic 18S ribosomal RNA in soybean seedling leaves has been completed. DMS modification data are in good agreement with the phylogenetic structure predicted for soybean 18S rRNA. However, there are a few notable exceptions where residues thought to be involved in double-stranded regions in all 18S rRNAs are strongly modified in soybean leaf samples. These data taken together with the phylogenetic structure suggest that alternate structures may exist in vivo. The further applicability of this technique is demonstrated by comparing the modification pattern obtained in vivo to that obtained in vitro for a particular mRNA molecule encoding the small subunit of ribulose-1,5-bisphosphate carboxylase. The results obtained are compared to a predicted minimum energy secondary structure. The data indicate that the conformation of RNA molecules within the cell may not be reflected in a structural analysis of purified mRNA molecules.
Collapse
Affiliation(s)
- J F Senecoff
- University of Georgia, Department of Genetics, Athens 30602
| | | |
Collapse
|
39
|
Abstract
Replication of human immunodeficiency virus requires binding of the viral Tat protein to its RNA target sequence TAR; peptides derived from Tat bind to a TAR "contact site" spanning 5 bp and a trinucleotide pyrimidine bulge. We find that high affinity binding requires a U residue in the bulge loop and 2 specific adjacent base pairs. Other bulged RNAs bind in a lower affinity nonspecific manner; sequence-specific binding requires a bulge loop of more than 1 nucleotide. Reaction with diethyl pyrocarbonate indicates that one effect of the bulge is to make the otherwise deep and narrow RNA major groove accessible. A model consistent with these data involves local distortion of A-form geometry at the bulge, which bends the helix and permits protein binding and interactive access in the RNA major groove.
Collapse
Affiliation(s)
- K M Weeks
- Department of Chemistry, Yale University, New Haven, Connecticut 06511
| | | |
Collapse
|
40
|
Dubreuil YL, Expert-Bezançon A, Favre A. Conformation and structural fluctuations of a 218 nucleotides long rRNA fragment: 4-thiouridine as an intrinsic photolabelling probe. Nucleic Acids Res 1991; 19:3653-60. [PMID: 1712940 PMCID: PMC328394 DOI: 10.1093/nar/19.13.3653] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The structure in solution of an RNA fragment (218 nucleotides long) containing part of E. coli 16S rRNA domain 2 has been studied using the intrinsic photoaffinity probe 4-thiouridine (s4U). In vitro transcription with T7 polymerase, in the presence of s4U triphosphate yielded complete RNA molecules. An affinity electrophoresis system based on Phenylmercuric substituted polyacrylamide (APM) gels allows separation of the RNA chains as a function of their s4U content. Distribution of s4U within chains follows a binomial law indicating that (i) substitution is close to random, (ii) efficiency of s4U incorporation is 0.22 times that of U. The monothiolated RNA fraction isolated from APM gel was irradiated at 366 nm under native conditions and the intramolecularly crosslinked molecules, (34%), were separated on denaturing polyacrylamide gel according to loop size. The positions of the two partners of bridges were identified by mean of reverse transcription and RNA sequencing. 17 of the 41 possible s4U positions lead to detectable bridges. These crosslinks formed efficiently at the border of bihelical regions or when structural mobility is allowed. The pattern of crosslinks is in agreement with the previously proposed secondary structure but indicates that it is much more flexible than expected.
Collapse
Affiliation(s)
- Y L Dubreuil
- Institut Jacques Monod, CNRS Université Paris 7, France
| | | | | |
Collapse
|
41
|
Abstract
Over the last two decades essentially three different approaches have been used to study the topography of RNA-protein interactions in the ribosome. These are: (a) the analysis of binding sites for individual ribosomal proteins or groups of proteins on the RNA; (b) the determination of protein footprint sites on the RNA by the application of higher order structure analytical techniques; and (c) the localisation of RNA-protein cross-link sites on the RNA. This article compares and contrasts the types of data that the three different approaches provide, and gives a brief and highly simplified summary of the results that have been obtained for both the 16S and 23S ribosomal RNA from E coli.
Collapse
MESH Headings
- Bacterial Proteins/metabolism
- Base Sequence
- Binding Sites
- Escherichia coli/chemistry
- Escherichia coli/metabolism
- Molecular Sequence Data
- Nucleic Acid Conformation
- Protein Binding
- RNA, Bacterial/chemistry
- RNA, Bacterial/metabolism
- RNA, Ribosomal/chemistry
- RNA, Ribosomal/metabolism
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/metabolism
- RNA, Ribosomal, 23S/chemistry
- RNA, Ribosomal, 23S/metabolism
- Ribosomal Proteins/metabolism
- Ribosomes/metabolism
Collapse
Affiliation(s)
- R Brimacombe
- Max-Planck-Institut für Molekulare Genetik, Abteilung Wittmann, Berlin-Dahlem, Germany
| |
Collapse
|
42
|
Wakao H, Romby P, Ebel JP, Grunberg-Manago M, Ehresmann C, Ehresmann B. Topography of the Escherichia coli ribosomal 30S subunit-initiation factor 2 complex. Biochimie 1991; 73:991-1000. [PMID: 1720674 DOI: 10.1016/0300-9084(91)90140-v] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The specific effect of the binding of initiation factor IF2 on E coli 16S rRNA within the [IF2/30S/GTP] complex has been probed by crosslinking experiment with trans-diamminedichloro platinum (II) and by phosphate alkylation with ethylnitrosourea. Several 16S rRNA fragments crosslinked to IF2 have been identified and are mostly located in the head and the lateral protrusion of the 30S subunit. The study of the effect of IF2 binding to the 30S subunit reveals that the factor does not tightly bind to the 16S rRNA and induces both isolated reductions and enhancements of phosphate reactivity in the 16S rRNA. Several of them are located near the binding site of IF2 and weak effects are observed in distant parts of the subunit. These results are discussed in the light of current knowledge of the topographical localization of IF2 with the 30S subunit and of its relation with function.
Collapse
Affiliation(s)
- H Wakao
- Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg, France
| | | | | | | | | | | |
Collapse
|
43
|
Marquet R, Baudin F, Gabus C, Darlix JL, Mougel M, Ehresmann C, Ehresmann B. Dimerization of human immunodeficiency virus (type 1) RNA: stimulation by cations and possible mechanism. Nucleic Acids Res 1991; 19:2349-57. [PMID: 1645868 PMCID: PMC329442 DOI: 10.1093/nar/19.9.2349] [Citation(s) in RCA: 153] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The retroviral genome consists of two identical RNA molecules joined close to their 5' ends by the dimer linkage structure. Recent findings indicated that retroviral RNA dimerization and encapsidation are probably related events during virion assembly. We studied the cation-induced dimerization of HIV-1 RNA and results indicate that all in vitro generated HIV-1 RNAs containing a 100 nucleotide domain downstream from the 5' splice site are able to dimerize. RNA dimerization depends on the concentration of RNA, mono- and multivalent cations, the size of the monovalent cation, temperature, and pH. Up to 75% of HIV-1 RNA is dimeric in the presence of spermidine. HIV-1 RNA dimer is fairly resistant to denaturing agents and unaffected by intercalating drugs. Antisense HIV-1 RNA does not dimerize but heterodimers can be formed between HIV-1 RNA and either MoMuLV or RSV RNA. Therefore retroviral RNA dimerization probably does not simply proceed through mechanisms involving Watson-Crick base-pairing. Neither adenine and cytosine protonation, nor quartets containing only guanines appear to determine the stability of the HIV-1 RNA dimer, while quartets involving both adenine(s) and guanine(s) could account for our results. A consensus sequence PuGGAPuA found in the putative dimerization-encapsidation region of all retroviral genomes examined may participate in the dimerization process.
Collapse
Affiliation(s)
- R Marquet
- Laboratoire de Biochimie, Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg, France
| | | | | | | | | | | | | |
Collapse
|
44
|
Yeh LC, Lee JC. Higher-order structure of the 5.8 S rRNA sequence within the yeast 35 S precursor ribosomal RNA synthesized in vitro. J Mol Biol 1991; 217:649-59. [PMID: 2005617 DOI: 10.1016/0022-2836(91)90523-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Dimethylsulfate, 1-cyclohexyl-3-(2-morpholinoethyl)-carbodiimide metho-p-toluene-sulfonate, RNase T1 and RNase V1 have been used as structure-sensitive probes to examine the higher-order structure of the 5.8 S rRNA sequence within the yeast 35 S precursor ribosomal RNA molecule. Data produced have been used to evaluate several theoretical structure models for the 5.8 S rRNA sequence within the precursor rRNA. These models are generated by minimum free energy calculations. A model is proposed that accommodates 83% of the residues experimentally shown to be in either base-paired or single-stranded structure in the correct configuration. Several alternative suboptimal secondary structures have been evaluated. Moreover, the chemical reactivities of several residues within the 5.8 S rRNA sequence in the precursor rRNA molecule differ from those of the corresponding residues in the mature rRNA molecule. This finding provides experimental evidence to support the notion that the 5.8 S rRNA sequence within the precursor rRNA undergoes structural reorganization following rRNA processing.
Collapse
Affiliation(s)
- L C Yeh
- Department of Biochemistry, University of Texas Health Science Center, San Antonio 78284-7760
| | | |
Collapse
|
45
|
Abstract
This chapter describes the RNA structural characteristics that have emerged so far. Folded RNA molecules are stabilized by a variety of interactions, the most prevalent of which are stacking and hydrogen bonding between bases. Many interactions among backbone atoms also occur in the structure of tRNA, although they are often ignored when considering RNA structure because they are not as well-characterized as interactions among bases. Backbone interactions include hydrogen bonding and the stacking of sugar or phosphate groups with bases or with other sugar and phosphate groups. The interactions found in a three-dimensional RNA structure can be divided into two categories: secondary interactions and tertiary interactions. This division is useful for several reasons. Secondary structures are routinely determined by a combination of techniques discussed in chapter, whereas tertiary interactions are more difficult to determine. Computer algorithms that generate RNA structures can search completely through possible secondary structures, but the inclusion of tertiary interactions makes a complete search of possible structures impractical for RNA molecules even as small as tRNA. The division of RNA structure into building blocks consisting of secondary or tertiary interactions makes it easier to describe RNA structures. In those cases in which RNA studies are incomplete, the studies of DNA are described with the rationalization that RNA structures may be analogous to DNA structures, or that the techniques used to study DNA could be applied to the analogous RNA structures. The chapter focuses on the aspects of RNA structure that affect the three-dimensional shape of RNA and that affect its ability to interact with other molecules.
Collapse
Affiliation(s)
- M Chastain
- University of California, Berkeley 94720
| | | |
Collapse
|
46
|
You QM, Romaniuk PJ. The effects of disrupting 5S RNA helical structures on the binding of Xenopus transcription factor IIIA. Nucleic Acids Res 1990; 18:5055-62. [PMID: 2402434 PMCID: PMC332123 DOI: 10.1093/nar/18.17.5055] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Block mutations were constructed in helical stems II, III, IV and V of Xenopus laevis oocyte 5S RNA. The affinities of these mutants for binding to transcription factor IIIA (TFIIIA) were determined using a nitrocellulose filter binding assay. Mutations in stems III and IV had little or no effect on the binding affinity of TFIIIA for 5S RNA. However, single mutants in stems II and V (positions 16-21, 57-62, 71-72, and 103-104) which disrupt the double helix, reduce the binding of TFIIIA by a factor of two to three fold. In contrast, double mutants (16-21/57-62, 71-72/103-104) which restore the helical structure of these stems, but with altered sequences, fully restore the TFIIIA binding affinity. The experiments reported here indicate that the double helical structures of stems II and V, but not the sequences, are required for optimal TFIIIA binding.
Collapse
Affiliation(s)
- Q M You
- Department of Biochemistry and Microbiology, University of Victoria, BC, Canada
| | | |
Collapse
|
47
|
Portier C, Philippe C, Dondon L, Grunberg-Manago M, Ebel JP, Ehresmann B, Ehresmann C. Translational control of ribosomal protein S15. BIOCHIMICA ET BIOPHYSICA ACTA 1990; 1050:328-36. [PMID: 2207162 DOI: 10.1016/0167-4781(90)90190-d] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The expression of ribosomal protein S15 is shown to be translationally and negatively autocontrolled using a fusion within a reporter gene. Isolation and characterization of several deregulated mutants indicate that the regulatory site (the translational operator site) overlaps the ribosome loading site of the S15 messenger. In this region, three domains, each exhibiting a stem-loop structure, were determined using chemical and enzymatic probes. The most downstream hairpin carries the Shine-Dalgarno sequence and the initiation codon. Genetic and structural data derived from mutants constructed by site-directed mutagenesis show that the operator is a dynamic structure, two domains of which can form a pseudoknot. Binding of S15 to these two domains suggests that the pseudoknot could be stabilized by S15. A model is presented in which two alternative structures would explain the molecular basis of the S15 autocontrol.
Collapse
Affiliation(s)
- C Portier
- Institut de Biologie Physico-chimique, Paris, France
| | | | | | | | | | | | | |
Collapse
|
48
|
Romby P, Baudin F, Brunel C, Leal de Stevenson I, Westhof E, Romaniuk PJ, Ehresmann C, Ehresmann B. Ribosomal 5S RNA from Xenopus laevis oocytes: conformation and interaction with transcription factor IIIA. Biochimie 1990; 72:437-52. [PMID: 2124147 DOI: 10.1016/0300-9084(90)90068-r] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
This review describes extensive studies on 5S rRNA from X laevis oocytes combining conformational analyses in solution (using a variety of chemical and enzymatic probes), computer modeling, site-directed mutagenesis, crosslinking and TFIIIA binding. The proposed 3-dimensional model adopts a Y-shaped structure with no tertiary interactions between the different domains of the RNA. The conserved nucleotides are not crucial for the tertiary folding but they maintain an intrinsic structure in the loop regions. The model was tested by the analysis of several 5S rRNA mutants. A series of 5S RNA mutants with defined block sequence changes in regions corresponding to each of the loop regions was constructed by in vitro transcription of the mutated genes. Our results show that none of the mutations perturbs the Y-shaped structure of the RNA, although they induce conformational changes restricted to the mutated regions. The interaction of the resulting 5S rRNA mutants with TFIIIA was determined by a direct binding assay. Only the mutations in the hinge region between the 3 helical domains have a significant effect on the binding for the protein. Finally, TFIIIA was crosslinked by the use of trans-diamminedichloroplatinum (II) to a region covering the fork region. Our results show that (i) the tertiary structure does not involve long-range interactions; (ii) the intrinsic structures in loops are strictly sequence-dependent; (iii) the hinge nucleotides govern the relative orientation of the 3 helical domains; (iv) TFIIIA recognizes essentially specific features of the tertiary structure of 5S rRNA.
Collapse
Affiliation(s)
- P Romby
- Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg, France
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Egebjerg J, Douthwaite SR, Liljas A, Garrett RA. Characterization of the binding sites of protein L11 and the L10.(L12)4 pentameric complex in the GTPase domain of 23 S ribosomal RNA from Escherichia coli. J Mol Biol 1990; 213:275-88. [PMID: 1692883 DOI: 10.1016/s0022-2836(05)80190-1] [Citation(s) in RCA: 114] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Ribonuclease and chemical probes were used to investigate the binding sites of ribosomal protein L11 and the pentameric complex L10.(L12)4 on Escherichia coli 23 S RNA. Protein complexes were formed with an RNA fragment constituting most of domains I and II or with 23 S RNA and they were investigated by an end-labelling method and a reverse transcriptase procedure, respectively. The results demonstrate that the two protein moieties bind at adjacent sites within a small RNA region. The L11 binding region overlaps with those of the modified peptide antibiotics thiostrepton and micrococcin and is constrained structurally by a three-helix junction while the L10.(L12)4 site is centred on an adjacent internal loop. The secondary structure of the whole region was determined in detail by the phylogenetic sequence comparison method, and the results for the L11 binding region, together with the experimental data, were used in a computer graphics approach to build a partial RNA tertiary structural model. The model provides insight into the topography of the L11 binding site. It also provides a structural rationale for the mutually co-operative binding of protein L11 with the antibiotics thiostrepton and micrococcin, and with the L10.(L12)4 protein complex.
Collapse
Affiliation(s)
- J Egebjerg
- Biostructural Chemistry, Chemistry Institute, Aarhus University, Denmark
| | | | | | | |
Collapse
|
50
|
Dietrich A, Romby P, Maréchal-Drouard L, Guillemaut P, Giegé R. Solution conformation of several free tRNALeu species from bean, yeast and Escherichia coli and interaction of these tRNAs with bean cytoplasmic Leucyl-tRNA synthetase. A phosphate alkylation study with ethylnitrosourea. Nucleic Acids Res 1990; 18:2589-97. [PMID: 2187177 PMCID: PMC330741 DOI: 10.1093/nar/18.9.2589] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The solution conformation of eight leucine tRNAs from Phaseolus vulgaris, baker's yeast and Escherichia coli, characterized by long variable regions, and the interaction of four of them with bean cytoplasmic leucyl-tRNA synthetase were studied by phosphate mapping with ethylnitrosourea. Phosphate reactivities in the variable regions agree with the existence of RNA helices closed by miniloops. At the junction of these regions with the T-stem, phosphate 48 is strongly protected, in contrast to small variable region tRNAs where P49 is protected. The constant protection of P22 is another characteristics of leucine tRNAs. Conformational differences between leucine isoacceptors concern the anticodon region, the D-arm and the variable region. In several parts of free tRNALeu species, e.g. in the T-loop, phosphate reactivities are similar to those found in tRNAs of other specificities, indicating conformational similarities among tRNAs. Phosphate alkylation of four leucine tRNAs complexed to leucyl-tRNA synthetase indicates that the 3'-side of the anticodon stem, the D-stem and the hinge region between the anticodon and D-stems are in contact with the plant enzyme.
Collapse
Affiliation(s)
- A Dietrich
- Laboratoire de Biochimie, Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg, France
| | | | | | | | | |
Collapse
|