1
|
Wu T, Deng G, Yin Q, Chen S, Zhang Y, Wang B, Xiang L, Liu X. Characterization and molecular evolution analysis of Periploca forrestii inferred from its complete chloroplast genome sequence. Genome 2023; 66:34-50. [PMID: 36516428 DOI: 10.1139/gen-2022-0050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Periploca forrestii, a medicinal plant of the family Apocynaceae, is known as an effective and widely used clinical prescription for the treatment of rheumatoid diseases. In this study, we de novo sequenced and assembled the completement chloroplast (cp) genome of P. forrestii based on combined Oxford Nanopore PromethION and Illumina data. The cp genome was 153 724 bp in length and had four subregions. Moreover, an 84 433 bp large single-copy and a 17 731 bp small single-copy were separated by 25 780 bp inverted repeats (IRs). The cp genome included 132 genes with 18 duplicates in the IRs. A total of 45 repeat structures and 183 simple sequence repeats were detected. Codon usage showed a bias toward A/T-ending codons. A comparative study of Apocynaceae revealed that an IR expansion occurred on P. forrestii. The Ka/Ks values of eight species of Apocynaceae suggested that positive selection was exerted on the psaI and ycf2 genes, which might reflect specific adaptions to the P. forrestii particular growth environment. Phylogenetic analysis indicated that Periplocoideae was a sister to Asclepiadoideae, forming a monophyletic group in the family Apocynaceae. This study provided an important P. forrestii genomic resource for future evolutionary studies and the phylogenetic reconstruction of the family Apocynaceae.
Collapse
Affiliation(s)
- Tianze Wu
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Chinese Academy of Medical Sciences, Beijing 100700, China.,School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Gang Deng
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Chinese Academy of Medical Sciences, Beijing 100700, China.,School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Qinggang Yin
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Chinese Academy of Medical Sciences, Beijing 100700, China
| | - Shilin Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Chinese Academy of Medical Sciences, Beijing 100700, China.,School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Yongping Zhang
- National Engineering Technology Research Center for Miao Medicine, College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, Guizhou, China
| | - Bo Wang
- National Engineering Technology Research Center for Miao Medicine, College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, Guizhou, China
| | - Li Xiang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Chinese Academy of Medical Sciences, Beijing 100700, China
| | - Xia Liu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
2
|
Westermann J, Koebke E, Lentz R, Hülskamp M, Boisson-Dernier A. A Comprehensive Toolkit for Quick and Easy Visualization of Marker Proteins, Protein-Protein Interactions and Cell Morphology in Marchantia polymorpha. FRONTIERS IN PLANT SCIENCE 2020; 11:569194. [PMID: 33178238 PMCID: PMC7593560 DOI: 10.3389/fpls.2020.569194] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/22/2020] [Indexed: 05/17/2023]
Abstract
Even though stable genomic transformation of sporelings and thalli of Marchantia polymorpha is straightforward and efficient, numerous problems can arise during critical phases of the process such as efficient spore production, poor selection capacity of antibiotics or low transformation efficiency. It is therefore also desirable to establish quick methods not relying on stable transgenics to analyze the localization, interactions and functions of proteins of interest. The introduction of foreign DNA into living cells via biolistic mechanisms has been first reported roughly 30 years ago and has been commonly exploited in established plant model species such as Arabidopsis thaliana or Nicotiana benthamiana. Here, we report the fast and reliable transient biolistic transformation of Marchantia thallus epidermal cells using fluorescent protein fusions. We present a catalog of fluorescent markers which can be readily used for tagging of a variety of subcellular compartments. Moreover, we report the functionality of the bimolecular fluorescence complementation (BiFC) in M. polymorpha with the example of the p-body markers MpDCP1/2. Finally, we provide standard staining procedures for live cell imaging in M. polymorpha, applicable to visualize cell boundaries or cellular structures, to complement or support protein localizations and to understand how results gained by transient transformations can be embedded in cell architecture and dynamics. Taken together, we offer a set of easy and quick tools for experiments that aim at understanding subcellular localization, protein-protein interactions and thus functions of proteins of interest in the emerging early diverging land plant model M. polymorpha.
Collapse
Affiliation(s)
| | | | | | | | - Aurélien Boisson-Dernier
- Institute for Plant Sciences, Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany
| |
Collapse
|
3
|
Hong CP, Park J, Lee Y, Lee M, Park SG, Uhm Y, Lee J, Kim CK. accD nuclear transfer of Platycodon grandiflorum and the plastid of early Campanulaceae. BMC Genomics 2017; 18:607. [PMID: 28800729 PMCID: PMC5553655 DOI: 10.1186/s12864-017-4014-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 08/03/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Campanulaceae species are known to have highly rearranged plastid genomes lacking the acetyl-CoA carboxylase (ACC) subunit D gene (accD), and instead have a nuclear (nr)-accD. Plastid genome information has been thought to depend on studies concerning Trachelium caeruleum and genome announcements for Adenophora remotiflora, Campanula takesimana, and Hanabusaya asiatica. RNA editing information for plastid genes is currently unavailable for Campanulaceae. To understand plastid genome evolution in Campanulaceae, we have sequenced and characterized the chloroplast (cp) genome and nr-accD of Platycodon grandiflorum, a basal member of Campanulaceae. RESULTS We sequenced the 171,818 bp cp genome containing a 79,061 bp large single-copy (LSC) region, a 42,433 bp inverted repeat (IR) and a 7840 bp small single-copy (SSC) region, which represents the cp genome with the largest IR among species of Campanulaceae. The genome contains 110 genes and 18 introns, comprising 77 protein-coding genes, four RNA genes, 29 tRNA genes, 17 group II introns, and one group I intron. RNA editing of genes was detected in 18 sites of 14 protein-coding genes. Platycodon has an IR containing a 3' rps12 operon, which occurs in the middle of the LSC region in four other species of Campanulaceae (T. caeruleum, A. remotiflora, C. takesimana, and H. asiatica), but lacks accD, clpP, infA, and rpl23, as has been found in these four species. Platycodon nr-accD contains about 3.2 kb intron between nr-accD.e1 and nr-accD.e2 at the same insertion point as in other Campanulaceae. The phylogenies of the plastid genomes and accD show that Platycodon is basal in the Campanulaceae clade, indicating that IR disruption in Campanulaceae occurred after the loss of accD, clpP, infA, and rpl23 in the cp genome, which occurred during plastid evolution in Campanulaceae. CONCLUSIONS The plastid genome of P. grandiflorum lacks the rearrangement of the IR found in T. caeruleum, A. remotiflora, C. takesimana, and H. asiatica. The absence of accD, clpP, infA, and rpl23 in the plastid genome is a synapomorphic characteristic of Campanulaceae. The chloroplast genome phylogeny supports the hypothesis that chloroplast genomic arrangement occurred after accD nuclear transfer and loss of the four genes in the plastid of early Campanulaceae as a lineage of asterids.
Collapse
Affiliation(s)
- Chang Pyo Hong
- Bioinformatics Team, Theragen Etex Bio Institute, Suwon, 443-270, South Korea
| | - Jihye Park
- Green Plant Institute, B-301, Heungdeok IT Valley, Giheung-gu, Yongin, 446-908, South Korea
| | - Yi Lee
- Department of Industrial Plant Science and Technology, Chungbuk National University, Cheongju, 362-763, South Korea
| | - Minjee Lee
- Green Plant Institute, B-301, Heungdeok IT Valley, Giheung-gu, Yongin, 446-908, South Korea
| | - Sin Gi Park
- Bioinformatics Team, Theragen Etex Bio Institute, Suwon, 443-270, South Korea
| | - Yurry Uhm
- Herbal Crop Research Division, National Institute of Horticultural and Herbal Science (NIHH), RDA, Eumseong, 369-873, South Korea
| | - Jungho Lee
- Green Plant Institute, B-301, Heungdeok IT Valley, Giheung-gu, Yongin, 446-908, South Korea.
| | - Chang-Kug Kim
- Genomics Division, National Institute of Agricultural Science (NAS), RDA, Jeonju, 560-500, South Korea.
| |
Collapse
|
4
|
Kuras R, Guergova-Kuras M, Crofts AR. Steps toward constructing a cytochrome b6 f complex in the purple bacterium Rhodobacter sphaeroides: an example of the structural plasticity of a membrane cytochrome. Biochemistry 1998; 37:16280-8. [PMID: 9819220 DOI: 10.1021/bi9813476] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have modified the cytochrome b subunit of the cytochrome bc1 complex from the purple bacterium Rhodobacter sphaeroides to introduce two distinctive features of cytochrome b6 f complexes. In the first one, we have split cyt b into two polypeptides thus mimicking the organization of cyt b6 and subunit IV in the b6 f complexes. In the second, an extra residue was added between His198 and Phe199, thus extending the span between the histidine ligands for the two b-hemes in helix D. The properties of the mutant strains were determined using thermodynamic and kinetic analysis. The two mutant enzymes were assembled and functioned so as to allow the photosynthetic growth of the mutant strains. For the split enzyme, we show that two independently translated fragments of cyt b are inserted in the membrane. Our results indicate a decrease in the stability of the semiquinone formed at the quinone reduction (Qi) site in this mutant. This property, characteristic for b6 f complexes, indicates the functional importance of the connecting span between helices D and E. The presence of the inserted threonine in helix D modified the spectrum and redox potential of the bL-heme, shifting the potential difference between the two b-hemes from 140 mV in the wild-type to 55 mV in the mutant strain. This change in the driving force of electron transfer through the membrane was reflected in an inability of the mutant strain to accumulate a large transmembrane electrical potential on successive flashes.
Collapse
Affiliation(s)
- R Kuras
- Department of Microbiology, Center for Biophysics and Computational Biology, University of Illinois, Urbana 61801, USA
| | | | | |
Collapse
|
5
|
Davies C, Ramakrishnan V, White SW. Structural evidence for specific S8-RNA and S8-protein interactions within the 30S ribosomal subunit: ribosomal protein S8 from Bacillus stearothermophilus at 1.9 A resolution. Structure 1996; 4:1093-104. [PMID: 8805594 DOI: 10.1016/s0969-2126(96)00115-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND Prokaryotic ribosomal protein S8 is an important RNA-binding protein that occupies a central position within the small ribosomal subunit. It interacts extensively with 16S rRNA and is crucial for the correct folding of the central domain of the rRNA. S8 also controls the synthesis of several ribosomal proteins by binding to mRNA. It binds specifically to very similar sites in the two RNA molecules. RESULTS S8 is divided into two tightly associated domains and contains three regions that are proposed to interact with other ribosomal components: two potential RNA-binding sites, and a hydrophobic patch that may interact with a complementary hydrophobic region of S5. The N-terminal domain fold is found in several proteins including two that bind double-stranded DNA. CONCLUSIONS These multiple RNA-binding sites are consistent with the role of S8 in organizing the central domain and agree with the latest models of the 16S RNA which show that the S8 location coincides with a region of complicated nucleic-acid structure. The presence in a wide variety of proteins of a region homologous to the N-terminal domain supports the idea that ribosomal proteins must represent some of the earliest protein molecules.
Collapse
Affiliation(s)
- C Davies
- Department of Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
6
|
Katoh A, Lee KS, Fukuzawa H, Ohyama K, Ogawa T. cemA homologue essential to CO2 transport in the cyanobacterium Synechocystis PCC6803. Proc Natl Acad Sci U S A 1996; 93:4006-10. [PMID: 8633006 PMCID: PMC39476 DOI: 10.1073/pnas.93.9.4006] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We have isolated mutants of Synechocystis PCC6803 that grew very slowly in a low-sodium medium, which is unfavorable for HCO3(-) transport, and examined two of these mutants (SC1 and SC2) for their ability to take up CO2 and HCO3(-) in the light. The CO2 transport activity of SC1 and SC2 was much lower than that of the wild type (WT), whereas there was no difference between the mutants and the WT in their activity of HCO3(-) transport. A clone containing a 3.9-kilobase-pair insert DNA that transforms both mutants to the WT phenotype was isolated from a genomic library of WT Synechocystis. Sequencing of the insert DNA in the region of mutations in SC1 and SC2 revealed an open reading frame (designated cotA), which showed significant amino-acid sequence homology to cemA encoding a protein found in the inner envelope membrane of chloroplasts. The cotA gene is present in a single copy and was not cotranscribed with any other gene(s). cotA encodes a protein of 247 amino acids containing four transmembrane domains. There was substitution of a single base in SC1 and two bases in SC2 in their cotA genes. A possible role of the cotA gene product in CO2 transport is discussed.
Collapse
Affiliation(s)
- A Katoh
- Graduate Division of Biochemical Regulation, Nagoya University, Japan
| | | | | | | | | |
Collapse
|
7
|
Berthold DA, Schmidt CL, Malkin R. The deletion of petG in Chlamydomonas reinhardtii disrupts the cytochrome bf complex. J Biol Chem 1995; 270:29293-8. [PMID: 7493961 DOI: 10.1074/jbc.270.49.29293] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The 4-kDa protein encoded by chloroplast petG copurifies with the cytochrome bf complex of spinach and is found in a number of other photosynthetic organisms, including the eukaryotic alga Chlamydomonas reinhardtii. To determine whether petG is involved in the function or assembly of the cytochrome bf complex, the gene was cloned from C. reinhardtii, excised from the DNA fragment, and replaced with a spectinomycin resistance cassette. A petG deletion strain of C. reinhardtii was then obtained by biolistic transformation. The resulting homoplasmic petG deletion strains are unable to grow photosynthetically, and immunoblot analysis shows markedly decreased levels of cytochrome b6, cytochrome f, the Rieske iron-sulfur protein, and subunit IV. To verify that this phenotype was due to the removal of petG, we also constructed a strain with a deletion in the open reading frame (ORF56), which is found 25 base pairs downstream of petG. The ORF56 deletion strain grew photosynthetically and had wild-type levels of the four major cytochrome bf subunits. We conclude that the absence of the PetG protein affects either the assembly or stability of the cytochrome bf complex in C. reinhardtii.
Collapse
Affiliation(s)
- D A Berthold
- Department of Plant Biology, University of California, Berkeley 94720-3102, USA
| | | | | |
Collapse
|
8
|
Ems SC, Morden CW, Dixon CK, Wolfe KH, dePamphilis CW, Palmer JD. Transcription, splicing and editing of plastid RNAs in the nonphotosynthetic plant Epifagus virginiana. PLANT MOLECULAR BIOLOGY 1995; 29:721-33. [PMID: 8541499 DOI: 10.1007/bf00041163] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Expression of the vestigial plastid genome of the nonphotosynthetic, parasitic flowering plant Epifagus virginiana was examined by northern analysis and by characterization of cDNAs. Probes for each of 12 plastid genes tested hybridized to all lanes of northern blots containing total RNA prepared from stems and fruits of Epifagus and from leaves of tobacco. Certain transcript patterns in Epifagus plastids are highly complex and similar to those of tobacco operons. In contrast, genes such as rps2, which have become orphaned in Epifagus as a result of evolutionary loss of formerly cotranscribed genes, show simpler transcript patterns in Epifagus than in tobacco. Sizing and sequencing of cDNAs generated by reverse transcriptase-PCR for three genes, rps12, rpl2, and clpP, show that their transcripts are properly cis- and/or trans-spliced at the same five group II intron insertion sites used in photosynthetic plants. A single, conventional C-->U edit in rps12 was found among the total of 1401 nucleotides of cDNA sequence that was determined for the three genes. An octanucleotide sequence identical to a putative guide RNA of plant organelles and perfectly complementary to the rps12 edit site itself was identified just 200 bp upstream of the edit site. These data, together with previous results from the complete sequencing of the Epifagus plastid genome, provide compelling evidence that this degenerate genome is nonetheless expressed and functional. Analysis of the putative maturase MatK, encoded by the group II intron of trnK in photosynthetic land plants but by a freestanding gene in Epifagus, leads us to hypothesize that it acts 'in trans' to assist the splicing of group II introns other than the one in which it is normally encoded.
Collapse
Affiliation(s)
- S C Ems
- Department of Biology, Indiana University, Bloomington 47405, USA
| | | | | | | | | | | |
Collapse
|
9
|
Pan C, Mason TL. Identification of the yeast nuclear gene for the mitochondrial homologue of bacterial ribosomal protein L16. Nucleic Acids Res 1995; 23:3673-7. [PMID: 7478995 PMCID: PMC307264 DOI: 10.1093/nar/23.18.3673] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
An open reading frame encoding a member of the L16 family of ribosomal proteins is adjacent to the URA7 gene on the left arm of chromosome II in Saccharomyces cerevisiae. The predicted L16-like polypeptide is basic (pl 11.12), contains 232 amino acids (26.52 kDa) and has 36% amino acid sequence identity to E. coli L16. Immunoblot analysis with polyclonal antibodies to the L16-like polypeptide showed specific cross-reaction with a 22,000 Mr mitochondrial polypeptide that co-sediments with the large subunit of the mitochondrial ribosome in sucrose density gradients. The levels of the L16 mRNA and protein varied in response to carbon source. In [rho degree] cells lacking mitochondrial rRNA, the L16 mRNA accumulated at normal levels, but the protein was barely detectable, indicating RNA-dependent accumulation of the L16 protein. Gene disruption experiments demonstrated that the yeast mitochondrial L16 is an essential ribosomal protein in vivo.
Collapse
Affiliation(s)
- C Pan
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst 01003, USA
| | | |
Collapse
|
10
|
Davydova NL, Gryaznova OI, Mashchenko OV, Vysotskaya VS, Jonsson BH, al-Karadaghi S, Liljas A, Garber MB. Ribosomal protein L22 from Thermus thermophilus: sequencing, overexpression and crystallisation. FEBS Lett 1995; 369:229-32. [PMID: 7649262 DOI: 10.1016/0014-5793(95)00755-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The gene for the ribosomal protein L22 from Thermus thermophilus has been sequenced and overexpressed in Escherichia coli. A multiple sequence alignment was carried out for all proteins of the L22 family reported so far. The recombinant protein was purified and crystallized. The crystals belong to the space group P2(1)2(1)2(1), with cell parameters of a = 32.6 A, b = 66.0 A, c = 67.8 A.
Collapse
Affiliation(s)
- N L Davydova
- Molecular Biophysics, University of Lund, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Mor TS, Ohad I, Hirschberg J, Pakrasi HB. An unusual organization of the genes encoding cytochrome b559 in Chlamydomonas reinhardtii: psbE and psbF genes are separately transcribed from different regions of the plastid chromosome. MOLECULAR & GENERAL GENETICS : MGG 1995; 246:600-4. [PMID: 7700232 DOI: 10.1007/bf00298966] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The psbE and psbF genes encode the apoproteins of cytochrome b559, an essential component of the pigment protein complex photosystem II. Together with psbL and psbJ, these genes constitute a single operon in all photosynthetic organisms examined thus far. We have cloned and sequenced the psbE and psbF genes of the Chlamydomonas reinhardtii plastid genome. The predicted amino-terminal domains of both polypeptides are more basic than those of other organisms, and the sequence of the psbE gene product indicates a departure from the 'positive-inside' rule for the insertion of proteins in the thylakoid membrane. Northern blot analysis demonstrated that psbE is transcribed into a 0.3 kb mRNA, while transcription of psbF and psbL genes results in a 0.9 kb transcript. The splitting of the psbEFLJ operon into separate transcription units suggests a unique mechanism of regulation of expression of these genes in C. reinhardtii.
Collapse
Affiliation(s)
- T S Mor
- Department of Biological Chemistry, Hebrew University of Jerusalem, Israel
| | | | | | | |
Collapse
|
12
|
Abstract
Consistent with their postulated origin from endosymbiotic cyanobacteria, chloroplasts of plants and algae have ribosomes whose component RNAs and proteins are strikingly similar to those of eubacteria. Comparison of the secondary structures of 16S rRNAs of chloroplasts and bacteria has been particularly useful in identifying highly conserved regions likely to have essential functions. Comparative analysis of ribosomal protein sequences may likewise prove valuable in determining their roles in protein synthesis. This review is concerned primarily with the RNAs and proteins that constitute the chloroplast ribosome, the genes that encode these components, and their expression. It begins with an overview of chloroplast genome structure in land plants and algae and then presents a brief comparison of chloroplast and prokaryotic protein-synthesizing systems and a more detailed analysis of chloroplast rRNAs and ribosomal proteins. A description of the synthesis and assembly of chloroplast ribosomes follows. The review concludes with discussion of whether chloroplast protein synthesis is essential for cell survival.
Collapse
Affiliation(s)
- E H Harris
- DCMB Group, Department of Botany, Duke University, Durham, North Carolina 27708-1000
| | | | | |
Collapse
|
13
|
Chittum HS, Champney WS. Ribosomal protein gene sequence changes in erythromycin-resistant mutants of Escherichia coli. J Bacteriol 1994; 176:6192-8. [PMID: 7928988 PMCID: PMC196958 DOI: 10.1128/jb.176.20.6192-6198.1994] [Citation(s) in RCA: 116] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The genes for ribosomal proteins L4 and L22 from two erythromycin-resistant mutants of Escherichia coli have been isolated and sequenced. In the L4 mutant, an A-to-G transition in codon 63 predicted a Lys-to-Glu change in the protein. In the L22 strain, a 9-bp deletion removed codons 82 to 84, eliminating the sequence Met-Lys-Arg from the protein. Consistent with these DNA changes, in comparison with wild-type proteins, both mutant proteins had reduced first-dimension mobilities in two-dimensional polyacrylamide gels. Complementation of each mutation by a wild-type gene on a plasmid vector resulted in increased erythromycin sensitivity in the partial-diploid strains. The fraction of ribosomes containing the mutant form of the protein was increased by growth in the presence of erythromycin. Erythromycin binding was increased by the fraction of wild-type protein present in the ribosome population. The strain with the L4 mutation was found to be cold sensitive for growth at 20 degrees C, and 50S-subunit assembly was impaired at this temperature. The mutated sequences are highly conserved in the corresponding proteins from a number of species. The results indicate the participation of these proteins in the interaction of erythromycin with the ribosome.
Collapse
Affiliation(s)
- H S Chittum
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | | |
Collapse
|
14
|
Hirose T, Wakasugi T, Sugiura M, Kössel H. RNA editing of tobacco petB mRNAs occurs both in chloroplasts and non-photosynthetic proplastids. PLANT MOLECULAR BIOLOGY 1994; 26:509-13. [PMID: 7948899 DOI: 10.1007/bf00039562] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
We found an RNA editing site in the protein coding region of tobacco (Nicotiana tabacum) petB transcripts. This editing (CCA to CUA) leads to an amino acid conversion from proline to leucine. It is observed not only in chloroplasts isolated from tobacco leaves but also in non-photosynthetic proplastids isolated from a tobacco cell culture. Also unspliced pre-mRNA shows complete editing. The editing site is the same as that recently observed in the maize petB transcripts which restores the codon for a highly conserved leucine residue, suggesting that RNA editing at this site is critical for the protein (cytochrome b6) function.
Collapse
Affiliation(s)
- T Hirose
- Center for Gene Research, Nagoya University, Japan
| | | | | | | |
Collapse
|
15
|
Gockel G, Hachtel W, Baier S, Fliss C, Henke M. Genes for components of the chloroplast translational apparatus are conserved in the reduced 73-kb plastid DNA of the nonphotosynthetic euglenoid flagellate Astasia longa. Curr Genet 1994; 26:256-62. [PMID: 7859309 DOI: 10.1007/bf00309557] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The colourless, nonphotosynthetic protist Astasia longa is phylogenetically related to Euglena gracilis. The 73-kb plastid DNA (ptDNA) of A. longa is about half the size of most chloroplast DNAs (cpDNAs). More than 38 kb of the Astasia ptDNA sequence has been determined. No genes for photosynthetic function have been found except for rbcL. Identified genes include rpoB, tufA, and genes coding for three rRNAs, 17 tRNAs, and 13 ribosomal proteins. Not only is the nucleotide sequence of these genes highly conserved between A. longa and E. gracilis, but a number of these genes are clustered in a similar fashion and have introns in the same positions in both species. The results further support the idea that photosynthetic genes normally encoded in cpDNA have been preferentially lost in Astasia, but that the chloroplast genes coding for components of the plastid translational apparatus have been maintained. This apparatus might be needed for the expression of rbcL and also for that of still unidentified nonphotosynthetic genes of Astasia ptDNA.
Collapse
Affiliation(s)
- G Gockel
- Botanisches Institut, Universität Bonn, Germany
| | | | | | | | | |
Collapse
|
16
|
Kong L, Dubnau D. Regulation of competence-specific gene expression by Mec-mediated protein-protein interaction in Bacillus subtilis. Proc Natl Acad Sci U S A 1994; 91:5793-7. [PMID: 8016067 PMCID: PMC44083 DOI: 10.1073/pnas.91.13.5793] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The expression of competence genes in Bacillus subtilis is controlled by a signal transduction cascade which increases the expression of a competence transcription factor (CTF, encoded by comK) during the transition from exponential growth to stationary phase. The transcription of CTF (ComK) is decreased by the product of the mecA gene, and this inhibition is relieved in response to an unknown signal received from upstream in the regulatory pathway. Inactivation of either mecA or another gene, mecB, results in overproduction of ComK. We show here that the concentration of MecA protein does not vary markedly with culture medium, as a function of growth stage, or in competent and noncompetent cells. We also show that MecA can interact directly with ComK. Finally, evidence is presented suggesting that MecB functions prior to MecA in the signaling pathway. A model is discussed which involves the sequestration of ComK by MecA binding and the release of the transcription factor when an appropriate signal is relayed to MecA by MecB.
Collapse
Affiliation(s)
- L Kong
- Department of Microbiology, Public Health Research Institute, New York, NY 10016
| | | |
Collapse
|
17
|
Burnette-Vick B, Champney WS, Musich PR. A temperature-sensitive mutant of Escherichia coli with an alteration in ribosomal protein L22. Genetica 1994; 94:17-25. [PMID: 7729693 DOI: 10.1007/bf01429216] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A temperature-sensitive, protein synthesis-defective mutant of Escherichia coli exhibiting an altered ribosomal protein L22 has been investigated. The temperature-sensitive mutation was mapped to the rplV gene for protein L22. The genes from the wild type and mutant strains were amplified by the polymerase chain reaction and the products were sequenced. A cytosine to thymine transition at position 22 of the coding sequence was found in the mutant DNA, predicting an arginine to cysteine alteration in the protein. A single cysteine residue was found in the isolated mutant protein. This amino acid change accounts for the altered mobility of the mutant protein in two-dimensional gels and during reversed-phase HPLC. The temperature-sensitive phenotype was fully complemented by a plasmid carrying the wild type L22 gene. Ribosomes from the complemented cells showed only wild type protein L22 by two dimensional gel analysis and were as heat-resistant as control ribosomes in a translation assay. The point mutation in the L22 gene is uniquely responsible for the temperature-sensitivity of this strain.
Collapse
Affiliation(s)
- B Burnette-Vick
- Department of Biochemistry, College of Medicine, East Tennessee State University, Johnson City 37614
| | | | | |
Collapse
|
18
|
Cramer WA, Tae GS, Furbacher PN, Böttger M. The enigmatic cytochrome b-559 of oxygenic photosynthesis. PHYSIOLOGIA PLANTARUM 1993; 88:705-711. [PMID: 28741778 DOI: 10.1111/j.1399-3054.1993.tb01392.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The ubiquitous and obligatory association of cytochrome b-559 with the photosystem II reaction center of oxygenic photosynthesis is a conundrum since it seems not to have a function in the primary electron transport pathway of oxygen evolution. A model for the cytochrome structure that satisfies the cis-positive rule for membrane protein assembly consists of two short, non-identical hydrophobic membrane-spanning polypeptides (α and β), each containing a single histidine residue, as ligands for the bridging heme prosthetic group that is on the side of the membrane opposite to the water splitting apparatus. The ability of the heterodimer, but not the single α-subunit, to satisfy the cis-positive rule implies that the cytochrome inserts into the membrane as a heterodimer, with some evidence implicating it as the first membrane inserted unit of the assembling reaction center. The very positive redox potential of the cytochrome can be explained by a position for the heme in a hydrophobic niche near the stromal aqueous interface where it is also influenced by the large positive dipole potential of the parallel α-helices of the cytochrome. The requirement for the cytochrome in oxygenic photosynthesis may be a consequence of the presence of the strongly oxidizing reaction center needed for H2 O-splitting. This may lead to the need, under conditions of stress or plastid development, for an alternate source of electrons when the H2 O-splitting system is not operative as a source of reductant for the reaction center.
Collapse
Affiliation(s)
- William A Cramer
- Dept of Biological Sciences, Purdue Univ., West Lafayette, IN 47907 USA
| | - Gun-Sik Tae
- Dept of Biological Sciences, Purdue Univ., West Lafayette, IN 47907 USA
| | - Paul N Furbacher
- Dept of Biological Sciences, Purdue Univ., West Lafayette, IN 47907 USA
| | - Michel Böttger
- Dept of Biological Sciences, Purdue Univ., West Lafayette, IN 47907 USA
| |
Collapse
|
19
|
Johnson CH, Schmidt GW. The psbB gene cluster of the Chlamydomonas reinhardtii chloroplast: sequence and transcriptional analyses of psbN and psbH. PLANT MOLECULAR BIOLOGY 1993; 22:645-658. [PMID: 8343600 DOI: 10.1007/bf00047405] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We have sequenced and characterized the complete psbB gene cluster of Chlamydomonas reinhardtii chloroplast DNA. Although the petB and petD genes are located elsewhere, the sequential order of psbB, ORF31, psbN and psbH is identical to that of the psbB operon in higher plants. Also, intergenic non-coding regions are much larger in the Chlamydomonas gene cluster. Northern blot analyses indicate the formation of dicistronic transcripts of psbB and ORF31 and monocistronic transcripts of psbN and psbH. It is unclear whether a psbB operon is transcribed to yield a large polycistronic precursor but northern blot analysis with total RNA from cells grown at 15 degrees C does not detect an increased complexity of the transcripts, as has been found in studies of the psbB operon of higher plants. From primer extension and nuclease protection assays, it is apparent that 5' and 3' processing of the primary psbH transcript results in the accumulation of a heterogenous population of mRNAs. Northern blot analyses reveal transcription of Chlamydomonas psbN and show that its mRNA is much larger than that identified in liverwort and pea. The sequence identities of the PSII-H and PSII-N polypeptides as compared to their vascular plant counterparts is 50 to 62%. While the amino acid sequences of PSII-H and PSII-N proteins are significantly conserved, the mass of PSII-H from Chlamydomonas is significantly larger.
Collapse
Affiliation(s)
- C H Johnson
- Department of Botany, University of Georgia, Athens 30602
| | | |
Collapse
|
20
|
Zemmour J, Parham P. A ribosomal protein-like sequence in the 3' untranslated region of the HLA-F gene. TISSUE ANTIGENS 1992; 40:250-3. [PMID: 1481201 DOI: 10.1111/j.1399-0039.1992.tb02052.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- J Zemmour
- Department of Cell Biology, Stanford University School of Medicine, CA
| | | |
Collapse
|
21
|
Scaramuzzi CD, Stokes HW, Hiller RG. Characterisation of a chloroplast-encoded secY homologue and atpH from a chromophytic alga. Evidence for a novel chloroplast genome organisation. FEBS Lett 1992; 304:119-23. [PMID: 1618309 DOI: 10.1016/0014-5793(92)80601-c] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
secY is a prokaryotic gene that encodes the SecY protein, an integral membrane component of the prokaryotic protein translocation apparatus. A chloroplast-encoded secY homologue has been identified in the unicellular, chromophytic alga, Pavlova lutherii. The gene predicts a protein composed of ten membrane-spanning regions, that is approximately 25% homologous and 50% similar to bacterial and plastid SecY proteins. The secY gene from P. lutherii is independent of the ribosomal protein (rp) gene cluster to which it is closely linked in other organisms. In P. lutherii secY is located 5' to atpI and atpH. Since, in higher plants the atpIHFA gene cluster and the rp gene cluster are separated by approximately 50 kb, we conclude, this indicates a novel chloroplast gene arrangement in P. lutherii.
Collapse
Affiliation(s)
- C D Scaramuzzi
- School of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| | | | | |
Collapse
|
22
|
Monod C, Goldschmidt-Clermont M, Rochaix JD. Accumulation of chloroplast psbB RNA requires a nuclear factor in Chlamydomonas reinhardtii. ACTA ACUST UNITED AC 1992; 231:449-59. [PMID: 1371579 DOI: 10.1007/bf00292715] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
We have isolated and characterized a nuclear mutant, 222E, in Chlamydomonas reinhardtii, which is defective in photosystem II (PSII). Polypeptide P5, the product of psbB, is not produced in this mutant, leading to a destabilization of other PSII components. The mutant specifically fails to accumulate psbB transcripts and displays an altered transcription pattern downstream of psbB. Pulse-labelling experiments suggest that mRNA stability and/or processing are affected by the alteration of a nuclear gene product in this mutant. We show that the C. reinhardtii psbB gene is co-transcribed with a small open reading frame that is highly conserved in location and amino acid sequence in land plants. The 5' and 3' termini of the psbB transcript have been mapped to 35 bases upstream of the initiation codon and approximately 600 bases downstream of the stop codon. The 3' flanking region contains two potential stem-loops, of which the larger (with an estimated free energy of -46 kcal) is near the 3' terminus of the transcript.
Collapse
Affiliation(s)
- C Monod
- Department of Molecular Biology, University of Geneva, Switzerland
| | | | | |
Collapse
|
23
|
Oda K, Yamato K, Ohta E, Nakamura Y, Takemura M, Nozato N, Akashi K, Kanegae T, Ogura Y, Kohchi T. Gene organization deduced from the complete sequence of liverwort Marchantia polymorpha mitochondrial DNA. A primitive form of plant mitochondrial genome. J Mol Biol 1992; 223:1-7. [PMID: 1731062 DOI: 10.1016/0022-2836(92)90708-r] [Citation(s) in RCA: 362] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Analysis of the mitochondrial DNA of a liverwort Marchantia polymorpha by electron microscopy and restriction endonuclease mapping indicated that the liverwort mitochondrial genome was a single circular molecule of about 184,400 base-pairs. We have determined the complete sequence of the liverwort mitochondrial DNA and detected 94 possible genes in the sequence of 186,608 base-pairs. These included genes for three species of ribosomal RNA, 29 genes for 27 species of transfer RNA and 30 open reading frames (ORFs) for functionally known proteins (16 ribosomal proteins, 3 subunits of H(+)-ATPase, 3 subunits of cytochrome c oxidase, apocytochrome b protein and 7 subunits of NADH ubiquinone oxidoreductase). Three ORFs showed similarity to ORFs of unknown function in the mitochondrial genomes of other organisms. Furthermore, 29 ORFs were predicted as possible genes by using the index of G + C content in first, second and third letters of codons (42.0 +/- 10.9%, 37.0 +/- 13.2% and 26.4 +/- 9.4%, respectively) obtained from the codon usages of identified liverwort genes. To date, 32 introns belonging to either group I or group II intron have been found in the coding regions of 17 genes including ribosomal RNA genes (rrn18 and rrn26), a transfer RNA gene (trnS) and a pseudogene (psi nad7). RNA editing was apparently lacking in liverwort mitochondria since the nucleotide sequences of the liverwort mitochondrial DNA were well-conserved at the DNA level.
Collapse
Affiliation(s)
- K Oda
- Department of Agricultural Chemistry Faculty of Agriculture, Kyoto University, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Ohyama K. Organization and Expression of Genes of Plastid Chromosomes from Non-Angiospermous Land Plants and Green Algae. ACTA ACUST UNITED AC 1992. [DOI: 10.1007/978-3-7091-9138-5_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
|
25
|
Copertino DW, Christopher DA, Hallick RB. A mixed group II/group III twintron in the Euglena gracilis chloroplast ribosomal protein S3 gene: evidence for intron insertion during gene evolution. Nucleic Acids Res 1991; 19:6491-7. [PMID: 1721702 PMCID: PMC329205 DOI: 10.1093/nar/19.23.6491] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The splicing of a 409 nucleotide intron from the Euglena gracilis chloroplast ribosomal protein S3 gene (rps3) was examined by cDNA cloning and sequencing, and northern hybridization. Based on the characterization of a partially spliced pre-mRNA, the intron was characterized as a 'mixed' twintron, composed of a 311 nucleotide group II intron internal to a 98 nucleotide group III intron. Twintron excision is via a 2-step sequential splicing pathway, with removal of the internal group II intron preceding excision of the external group III intron. Based on secondary structural analysis of the twintron, we propose that group III introns may represent highly degenerate versions of group II introns. The existence of twintrons is interpreted as evidence that group II introns were inserted during the evolution of Euglena chloroplast genes from a common ancestor with eubacteria, archaebacteria, cyanobacteria, and other chloroplasts.
Collapse
Affiliation(s)
- D W Copertino
- Department of Molecular and Cellular Biology, University of Arizona, Tucson 85721
| | | | | |
Collapse
|
26
|
Abstract
The use of pairwise comparisons of correctly aligned DNA and protein sequences for the measurement of time in historical biology remains a contentious matter. However, the limited success of some molecular evolutionary clocks provides a stimulus to attempt to improve their resolution by the judicious selection of sequences for ease of alignment, commonality of function, taxonomic breadth and appropriate rates of evolution. Existing algorithms for correcting observed distances for superimposed nucleotide substitutions or amino acid replacements appear adequate for the task, given the noise that results from the inherent variability of the process. Some possible approaches are illustrated through the use of gene and protein sequences of the large subunit of ribulose 1,5-bisphosphate carboxylase/oxygenase: an enzyme that is demonstrably homologous from purple bacteria to flowering plants.
Collapse
Affiliation(s)
- B Runnegar
- Institute of Geophysics and Planetary Physics, University of California, Los Angeles 90024
| |
Collapse
|
27
|
Kasten B, Wehe M, Reski R, Abel WO. trnR-CCG is not unique to the plastid DNA of the liverwort Marchantia: gene identification from the moss Physcomitrella patens. Nucleic Acids Res 1991; 19:5074. [PMID: 1923774 PMCID: PMC328813 DOI: 10.1093/nar/19.18.5074] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- B Kasten
- Institut für Allgemeine Botanik, Hamburg, FRG
| | | | | | | |
Collapse
|
28
|
Büschlen S, Choquet Y, Kuras R, Wollman FA. Nucleotide sequences of the continuous and separated petA, petB and petD chloroplast genes in Chlamydomonas reinhardtii. FEBS Lett 1991; 284:257-62. [PMID: 2060646 DOI: 10.1016/0014-5793(91)80698-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We have mapped and sequenced the petA (cytf), petB (cytb6) and petD (subunit IV) genes on the chloroplast genome of Chlamydomonas reinhardtii. At variance with the pet genes in higher plant chloroplasts, the petB and petD genes are continuous, not adjacent and not located next to the psbB gene. The corresponding polypeptide sequences are highly conserved when compared with their counterparts from other sources but have a few features specific of algal cytb6/f complexes. In particular the transit sequence of cytf displays unique characteristics when compared with those previously described for cytf in higher plants.
Collapse
Affiliation(s)
- S Büschlen
- Institut de Biologie Physico-Chimique, Paris, France
| | | | | | | |
Collapse
|
29
|
Smith AG, Wilson RM, Kaethner TM, Willey DL, Gray JC. Pea chloroplast genes encoding a 4 kDa polypeptide of photosystem I and a putative enzyme of C1 metabolism. Curr Genet 1991; 19:403-10. [PMID: 1913879 DOI: 10.1007/bf00309603] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The nucleotide sequence of 3.2 kbp of pea chloroplast DNA located upstream from the petA gene for cytochrome f, and previously reported to contain the gene for a photosystem I polypeptide, has been determined. Three open reading frames of 587, 40 and 157 codons have been identified. Orf40 encodes a highly conserved, hydrophobic, membrane-spanning polypeptide, and is identified as the gene psaI for the 4 kDa subunit of photosystem I. Orf587 is an extended version of the gene zfpA previously identified as encoding a conserved putative zinc-finger protein. The product of orf587 shows extensive homology to an unidentified open reading frame cotranscribed with a gene for folate metabolism in Escherichia coli and local homology to a region of the beta subunit of rat mitochondrial propionyl-CoA carboxylase. It is suggested that the product of orf587 is an enzyme of C1 metabolism and is unlikely to be a regulatory DNA-binding protein. Orf157 potentially encodes an unidentified basic protein, but the protein sequence is not conserved in other plants.
Collapse
Affiliation(s)
- A G Smith
- Botany School, University of Cambridge, UK
| | | | | | | | | |
Collapse
|
30
|
Yokoi F, Tanaka M, Wakasugi T, Sugiura M. The chloroplast gene for ribosomal protein CL23 is functional in tobacco. FEBS Lett 1991; 281:64-6. [PMID: 1707833 DOI: 10.1016/0014-5793(91)80359-b] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Chloroplast rpl23 loci potentially coding for a polypeptide homologous to the E. coli L23 ribosomal protein are frame-shifted in spinach and several other plants, indicating that these loci are pseudogenes. In tobacco, rpl23 constitutes a continuous open reading frame of 93 codons and its transcript initiates at least 66 bp upstream from the initiation codon. The N-terminal amino acid sequence of a 13 kDa protein from the 50 S subunit of tobacco chloroplast ribosomes matches that derived from the tobacco rpl23 locus. This shows that rpl23 is a functional gene in tobacco.
Collapse
Affiliation(s)
- F Yokoi
- Center for Gene Research, Nagoya University, Japan
| | | | | | | |
Collapse
|
31
|
Willey DL, Gray JC. An open reading frame encoding a putative haem-binding polypeptide is cotranscribed with the pea chloroplast gene for apocytochrome f. PLANT MOLECULAR BIOLOGY 1990; 15:347-56. [PMID: 2103453 DOI: 10.1007/bf00036920] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The nucleotide sequence of a 1 kbp region of pea chloroplast DNA upstream from the gene petA encoding apocytochrome f has been determined. An open reading frame of 231 codons (ORF231) encoding a putative membrane-spanning polypeptide is separated by 205 bp from the coding region of petA. The open reading frame is homologous to open reading frames located in a similar position with respect to petA in chloroplast DNA from Marchantia polymorpha, tobacco, rice, wheat and Vicia faba. The sequence around a conserved histidine residue in a putative membrane-spanning region of the polypeptide resembles sequences present in cytochrome b from chromaffin granules and neutrophil membranes, suggesting that the open reading frame may encode a haem-binding polypeptide, possibly a b-type cytochrome. Northern hybridisation analysis indicates the presence in pea chloroplasts of a complex pattern of transcripts containing ORF231. Large transcripts of 5.5 kb, 4.3 kb, 3.4 kb and 2.7 kb encode both ORF231 and apocytochrome f, indicating that ORF231 and petA are co-transcribed.
Collapse
Affiliation(s)
- D L Willey
- Botany School, Cambridge Centre for Molecular Recognition, University of Cambridge, UK
| | | |
Collapse
|
32
|
Bryant DA, Stirewalt VL. The cyanelle genome of Cyanophora paradoxa encodes ribosomal proteins not encoded by the chloroplasts genomes of higher plants. FEBS Lett 1990; 259:273-80. [PMID: 2403527 DOI: 10.1016/0014-5793(90)80026-f] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The rpl35, rpl20, rpl5, rps8, and a portion of the rpl6 genes of the cyanelle genome of Cyanophora paradoxa have been cloned, mapped and sequenced. Homologs of the rpl35, rpl5, and rpl6 genes are not found in the chloroplasts of higher plants. The rpl35 genes most likely form a dicistronic operon which is located upstream from the apcE-apcA-apcB locus of the cyanelle and which is divergently transcribed from this locus. The rpl5, rpl8, and rpl6 genes probably form a part of a larger cluster of genes encoding components of the cyanellar ribosomes. These genes are organized in a fashion similar to that observed in all procaryotes examined to date, with the exception that the rps14 gene is not found between the rpl5 and rps8 coding sequences. Hypotheses concerning the origins of cyanelles and chloroplasts are discussed.
Collapse
Affiliation(s)
- D A Bryant
- Dept. of Molecular and Cell Biology, Pennsylvania State University, University Park 16802
| | | |
Collapse
|
33
|
Michel F, Umesono K, Ozeki H. Comparative and functional anatomy of group II catalytic introns--a review. Gene X 1989; 82:5-30. [PMID: 2684776 DOI: 10.1016/0378-1119(89)90026-7] [Citation(s) in RCA: 626] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The 70 published sequences of group II introns from fungal and plant mitochondria and plant chloroplasts are analyzed for conservation of primary sequence, secondary structure and three-dimensional base pairings. Emphasis is put on structural elements with known or suspected functional significance with respect to self-splicing: the exon-binding and intron-binding sites, the bulging A residue involved in lariat formation, structural domain V and two isolated base pairs, one of them involving the last intron nucleotide and the other one, the first nt of the 3' exon. Separate sections are devoted to the 29 group II-like introns from Euglena chloroplasts and to the possible relationship of catalytic group II introns to nuclear premessenger introns. Alignments of all available sequences of group II introns are provided in the APPENDIX.
Collapse
Affiliation(s)
- F Michel
- Centre de Génétique Moléculaire du C.N.R.S., 91190 Gif-sur-Yvette, France
| | | | | |
Collapse
|
34
|
Turmel M, Boulanger J, Bergeron A. Nucleotide sequence of the chloroplast petD gene of Chlamydomonas eugametos. Nucleic Acids Res 1989; 17:3593. [PMID: 2726496 PMCID: PMC317806 DOI: 10.1093/nar/17.9.3593] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- M Turmel
- Département de Biochimie, Faculté des Science et de Génie, Université Laval, Québec, Canada
| | | | | |
Collapse
|
35
|
Umesono K, Inokuchi H, Shiki Y, Takeuchi M, Chang Z, Fukuzawa H, Kohchi T, Shirai H, Ohyama K, Ozeki H. Structure and organization of Marchantia polymorpha chloroplast genome. II. Gene organization of the large single copy region from rps'12 to atpB. J Mol Biol 1988; 203:299-331. [PMID: 2974085 DOI: 10.1016/0022-2836(88)90002-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The nucleotide sequence (56,410 base-pairs) of the large single-copy region of chloroplast DNA from the liverwort Marchantia polymorpha has been determined. The sequence starts from one end (JLA) of the large single-copy region and encompasses genes for 21 tRNAs, six ATPase subunits (atpA, atpB, atpE, atpF, atpH and atpI), two photosystem I polypeptides (psaA and psaB), four photosystem II polypeptides (psbA, psbC, psbD and psbG), five ribosomal proteins (rps2, rps4, rps7, rps'12 and rps14), and three RNA polymerase subunits (rpoB, rpoC1 and rpoC2). In addition, we detected 18 open reading frames ranging from 29 to 2136 amino acid residues long, four of which share significant amino acid sequence homology to those of an Escherichia coli malK protein (designated mbpX), human mitochondrial ND2 (ndh2) and ND3 (ndh3) of a respiratory chain NADH dehydrogenase, or a bacterial antenna protein of a light-harvesting complex (lhcA). Sequence analysis suggests that four tRNA genes and six protein genes might be split by introns; they are trnG(UCC), trnK(UUU), trnL(UAA), trnV(UAC), atpF, ndh2, rpoC1, rps'12, ORF135 and ORF167. In the large single-copy region described here, the gene organization deduced is highly conserved with respect to that of higher plants, but an inversion of some 30,000 base-pairs flanked by trnL(CAA) and trnD(GUC) was seen between the liverwort and tobacco chloroplast genomes.
Collapse
Affiliation(s)
- K Umesono
- Department of Biophysics, Faculty of Science, Kyoto University, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Ohyama K, Fukuzawa H, Kohchi T, Sano T, Sano S, Shirai H, Umesono K, Shiki Y, Takeuchi M, Chang Z. Structure and organization of Marchantia polymorpha chloroplast genome. I. Cloning and gene identification. J Mol Biol 1988; 203:281-98. [PMID: 2462054 DOI: 10.1016/0022-2836(88)90001-0] [Citation(s) in RCA: 109] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We have determined the complete nucleotide sequence of chloroplast DNA from a liverwort, Marchantia polymorpha, using a clone bank of chloroplast DNA fragments. The circular genome consists of 121,024 base-pairs and includes two large inverted repeats (IRA and IRB, each 10,058 base-pairs), a large single-copy region (LSC, 81,095 base-pairs), and a small single-copy region (SSC, 19,813 base-pairs). The nucleotide sequence was analysed with a computer to deduce the entire gene organization, assuming the universal genetic code and the presence of introns in the coding sequences. We detected 136 possible genes. 103 gene products of which are related to known stable RNA or protein molecules. Stable RNA genes for four species of ribosomal RNA and 32 species of tRNA were located, although one of the tRNA genes may be defective. Twenty genes encoding polypeptides involved in photosynthesis and electron transport were identified by comparison with known chloroplast genes. Twenty-five open reading frames (ORFs) show structural similarities to Escherichia coli RNA polymerase subunits, 19 ribosomal proteins and two related proteins. Seven ORFs are comparable with human mitochondrial NADH dehydrogenase genes. A computer-aided homology search predicted possible chloroplast homologues of bacterial proteins; two ORFs for bacterial 4Fe-4S-type ferredoxin, two for distinct subunits of a protein-dependent transport system, one ORF for a component of nitrogenase, and one for an antenna protein of a light-harvesting complex. The other 33 ORFs, consisting of 29 to 2136 codons, remain to be identified, but some of them seem to be conserved in evolution. Detailed information on gene identification is presented in the accompanying papers. We postulated that there were 22 introns in 20 genes (8 tRNA genes and 12 ORFs), which may be classified into the groups I and II found in fungal mitochondrial genes. The structural gene for ribosomal protein S12 is trans-split on the opposite DNA strand. The universal genetic code was confirmed by the substitution pattern of simultaneous codons, and by possible codon recognition of the chloroplast-encoded tRNA molecules, assuming no importation of tRNA molecules from the cytoplasm. The nucleotide residue A or T is preferred at the third position of the codons (G+C, 11.9%) and in intergenic spacers (G+C, 19.5%), resulting in an overall G+C content that is low (28.8%) throughout the liverwort chloroplast genome. Possible gene expression signals such as promoters and terminators for transcription, predicted locations of gene products, and DNA replicative origins are discussed.
Collapse
Affiliation(s)
- K Ohyama
- Research Center for Cell and Tissue Culture, Faculty of Agriculture, Kyoto University, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Kohchi T, Shirai H, Fukuzawa H, Sano T, Komano T, Umesono K, Inokuchi H, Ozeki H, Ohyama K. Structure and organization of Marchantia polymorpha chloroplast genome. IV. Inverted repeat and small single copy regions. J Mol Biol 1988; 203:353-72. [PMID: 3199437 DOI: 10.1016/0022-2836(88)90004-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We characterized the genes in the regions of large inverted repeats (IRA and IRB, 10,058 base-pairs each) and a small single copy (SSC 19,813 bp) of chloroplast DNA from Marchantia polymorpha. The inverted repeat (IR) regions contain genes for four ribosomal RNAs (16 S, 23 S, 4.5 S and 5 S rRNAs) and five transfer RNAs (valine tRNA(GAC), isoleucine tRNA(GAU), alanine tRNA(UGC), arginine tRNA(ACG) and asparagine tRNA(GUU)). The gene organization of the IR regions in the liverwort chloroplast genome is conserved, although the IR regions are smaller (10,058 base-pairs) than any reported in higher plant chloroplasts. The small single-copy region (19,813 base-pairs) encoded genes for 17 open reading frames, a leucine tRNA(UAG) and a proline tRNA(GGG)-like sequence. We identified 12 open reading frames by homology of their coding sequences to a 4Fe-4S-type ferredoxin protein, a bacterial nitrogenase reductase component (Fe-protein), five human mitochondrial components of NADH dehydrogenase (ND1, ND4, ND4L, ND5 and ND6), two Escherichia coli ribosomal proteins (S15 and L21), two putative proteins encoded in the kinetoplast maxicircle DNA of Leishmania tarentolae (LtORF 3 and LtORF 4), and a bacterial permease inner membrane component (encoded by malF in E. coli or hisQ in Salmonella typhimurium).
Collapse
Affiliation(s)
- T Kohchi
- Research Centre for Cell and Tissue Culture, Kyoto University, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|