1
|
Denessiouk K, Denesyuk AI, Johnson MS, Uversky VN. Two groups and three classes of the conserved structural organization of nucleophile and non-canonical ElbowFlankOxy networks in different superfamily proteins. J Biomol Struct Dyn 2024:1-16. [PMID: 39546335 DOI: 10.1080/07391102.2024.2429798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 04/15/2024] [Indexed: 11/17/2024]
Abstract
The nucleophile elbow is a well-known structural motif, which exists in proteins with catalytic triads and contains a catalytic nucleophile and the first node of an oxyanion hole. Here, we show that structural similarities of proteins with the nucleophile elbow extend beyond simple nucleophile elbow motifs. The motifs are incorporated into larger conserved structural organizations, the ElbowFlankOxy networks, incorporating motifs and flanking residues and networks of conserved interactions. A detailed structural analysis shows two major types of ElbowFlankOxy networks, depending on the formation of the oxyanion hole. Additionally, the ElbowFlankOxy networks show three classes: Class 1-2-3, 3-1-2, and 2-3-1, defined by the order in which the catalytic nucleophile and key interacting residues are located in the amino acid sequence, giving rise to six ElbowFlankOxy network variations. This makes it possible to properly position homologous non-catalytic, non-standard, and unusual catalytic triad active sites of proteins with the nucleophile elbow within the fold classification.
Collapse
Affiliation(s)
- Konstantin Denessiouk
- Structural Bioinformatics Laboratory, Biochemistry, InFLAMES Research Flagship Center, Faculty of Science and Engineering, Biochemistry, Åbo Akademi University, Turku, Finland
| | - Alexander I Denesyuk
- Structural Bioinformatics Laboratory, Biochemistry, InFLAMES Research Flagship Center, Faculty of Science and Engineering, Biochemistry, Åbo Akademi University, Turku, Finland
| | - Mark S Johnson
- Structural Bioinformatics Laboratory, Biochemistry, InFLAMES Research Flagship Center, Faculty of Science and Engineering, Biochemistry, Åbo Akademi University, Turku, Finland
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| |
Collapse
|
2
|
Almeida DV, Ciancaglini I, Sandano ALH, Roman EKB, Andrade VB, Nunes AB, Tramontina R, da Silva VM, Gabel F, Corrêa TLR, Damasio A, Muniz JRC, Squina FM, Garcia W. Unveiling the crystal structure of thermostable dienelactone hydrolase exhibiting activity on terephthalate esters. Enzyme Microb Technol 2024; 180:110498. [PMID: 39182429 DOI: 10.1016/j.enzmictec.2024.110498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/06/2024] [Accepted: 08/18/2024] [Indexed: 08/27/2024]
Abstract
Dienelactone hydrolase (DLH) is one of numerous hydrolytic enzymes with an α/β-hydrolase fold, which catalyze the hydrolysis of dienelactone to maleylacetate. The DLHs share remarkably similar tertiary structures and a conserved arrangement of catalytic residues. This study presents the crystal structure and comprehensive functional characterization of a novel thermostable DLH from the bacterium Hydrogenobacter thermophilus (HtDLH). The crystal structure of the HtDLH, solved at a resolution of about 1.67 Å, exhibits a canonical α/β-hydrolase fold formed by eight β-sheet strands in the core, with one buried α-helix and six others exposed to the solvent. The structure also confirmed the conserved catalytic triad of DHLs formed by Cys121, Asp170, and His202 residues. The HtDLH forms stable homodimers in solution. Functional studies showed that HtDLH has the expected esterase activity over esters with short carbon chains, such as p-nitrophenyl acetate, reaching optimal activity at pH 7.5 and 70 °C. Furthermore, HtDLH maintains more than 50 % of its activity even after incubation at 90 °C for 16 h. Interestingly, HtDLH exhibits catalytic activity towards polyethylene terephthalate (PET) monomers, including bis-1,2-hydroxyethyl terephthalate (BHET) and 1-(2-hydroxyethyl) 4-methyl terephthalate, as well as other aliphatic and aromatic esters. These findings associated with the lack of activity on amorphous PET indicate that HtDLH has characteristic of a BHET-degrading enzyme. This work expands our understanding of enzyme families involved in PET degradation, providing novel insights for plastic biorecycling through protein engineering, which could lead to eco-friendly solutions to reduce the accumulation of plastic in landfills and natural environments.
Collapse
Affiliation(s)
- Dnane Vieira Almeida
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC),Santo André, SP, Brazil
| | - Iara Ciancaglini
- Laboratory of Molecular Sciences, University of Sorocaba (UNISO), Sorocaba, SP, Brazil; Laboratory of Enzymology and Molecular Biology of Microorganisms (LEBIMO), Department of Biochemistry and Tissue Biology, Institute of Biology, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | | | - Ellen K B Roman
- Laboratory of Molecular Sciences, University of Sorocaba (UNISO), Sorocaba, SP, Brazil; Laboratory of Enzymology and Molecular Biology of Microorganisms (LEBIMO), Department of Biochemistry and Tissue Biology, Institute of Biology, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Viviane Brito Andrade
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC),Santo André, SP, Brazil
| | - Ana Bárbara Nunes
- Laboratory of Molecular Sciences, University of Sorocaba (UNISO), Sorocaba, SP, Brazil; Laboratory of Enzymology and Molecular Biology of Microorganisms (LEBIMO), Department of Biochemistry and Tissue Biology, Institute of Biology, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Robson Tramontina
- Laboratory of Enzymology and Molecular Biology of Microorganisms (LEBIMO), Department of Biochemistry and Tissue Biology, Institute of Biology, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Viviam Moura da Silva
- Institut de Biologie Structurale (IBS), CEA, CNRS, UGA, 71 Avenue des Martyrs, Grenoble 38000, France
| | - Frank Gabel
- Institut de Biologie Structurale (IBS), CEA, CNRS, UGA, 71 Avenue des Martyrs, Grenoble 38000, France
| | - Thamy L R Corrêa
- Laboratory of Enzymology and Molecular Biology of Microorganisms (LEBIMO), Department of Biochemistry and Tissue Biology, Institute of Biology, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - André Damasio
- Laboratory of Enzymology and Molecular Biology of Microorganisms (LEBIMO), Department of Biochemistry and Tissue Biology, Institute of Biology, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | | | - Fabio Marcio Squina
- Laboratory of Molecular Sciences, University of Sorocaba (UNISO), Sorocaba, SP, Brazil.
| | - Wanius Garcia
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC),Santo André, SP, Brazil.
| |
Collapse
|
3
|
Bergmann L, Balzer Le S, Hageskal G, Preuss L, Han Y, Astafyeva Y, Loevenich S, Emmann S, Perez-Garcia P, Indenbirken D, Katzowitsch E, Thümmler F, Alawi M, Wentzel A, Streit WR, Krohn I. New dienelactone hydrolase from microalgae bacterial community-Antibiofilm activity against fish pathogens and potential applications for aquaculture. Sci Rep 2024; 14:377. [PMID: 38172513 PMCID: PMC10764354 DOI: 10.1038/s41598-023-50734-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/24/2023] [Indexed: 01/05/2024] Open
Abstract
Biofilms are resistant to many traditional antibiotics, which has led to search for new antimicrobials from different and unique sources. To harness the potential of aquatic microbial resources, we analyzed the meta-omics datasets of microalgae-bacteria communities and mined them for potential antimicrobial and quorum quenching enzymes. One of the most interesting candidates (Dlh3), a dienelactone hydrolase, is a α/β-protein with predicted eight α-helices and eight β-sheets. When it was applied to one of the major fish pathogens, Edwardsiella anguillarum, the biofilm development was reproducibly inhibited by up to 54.5%. The transcriptome dataset in presence of Dlh3 showed an upregulation in functions related to self-defense like active genes for export mechanisms and transport systems. The most interesting point regarding the biotechnological potential for aquaculture applications of Dlh3 are clear evidence of biofilm inhibition and that health and division of a relevant fish cell model (CHSE-214) was not impaired by the enzyme.
Collapse
Affiliation(s)
- Lutgardis Bergmann
- Department of Microbiology and Biotechnology, Institute of Plant Science and Microbiology, University of Hamburg, Ohnhorststr.18, 22609, Hamburg, Germany
| | - Simone Balzer Le
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway
| | - Gunhild Hageskal
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway
| | - Lena Preuss
- Department of Microbiology and Biotechnology, Institute of Plant Science and Microbiology, University of Hamburg, Ohnhorststr.18, 22609, Hamburg, Germany
| | - Yuchen Han
- Department of Microbiology and Biotechnology, Institute of Plant Science and Microbiology, University of Hamburg, Ohnhorststr.18, 22609, Hamburg, Germany
| | - Yekaterina Astafyeva
- Department of Microbiology and Biotechnology, Institute of Plant Science and Microbiology, University of Hamburg, Ohnhorststr.18, 22609, Hamburg, Germany
| | - Simon Loevenich
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway
| | - Sarah Emmann
- Molecular Microbiology, Institute for General Microbiology, Kiel University, Kiel, Germany
| | - Pablo Perez-Garcia
- Molecular Microbiology, Institute for General Microbiology, Kiel University, Kiel, Germany
| | | | - Elena Katzowitsch
- Core Unit Systems Medicine, University of Würzburg, Würzburg, Germany
| | - Fritz Thümmler
- Core Unit Systems Medicine, University of Würzburg, Würzburg, Germany
| | - Malik Alawi
- Bioinformatics Core, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alexander Wentzel
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway
| | - Wolfgang R Streit
- Department of Microbiology and Biotechnology, Institute of Plant Science and Microbiology, University of Hamburg, Ohnhorststr.18, 22609, Hamburg, Germany
| | - Ines Krohn
- Department of Microbiology and Biotechnology, Institute of Plant Science and Microbiology, University of Hamburg, Ohnhorststr.18, 22609, Hamburg, Germany.
| |
Collapse
|
4
|
Son J, Choi W, Kim H, Kim M, Lee JH, Shin SC, Kim HW. Structural and biochemical insights into PsEst3, a new GHSR-type esterase obtained from Paenibacillus sp. R4. IUCRJ 2023; 10:220-232. [PMID: 36862488 PMCID: PMC9980389 DOI: 10.1107/s2052252523001562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
PsEst3, a psychrophilic esterase obtained from Paenibacillus sp. R4, which was isolated from the permafrost of Alaska, exhibits relatively high activity at low temperatures. Here, crystal structures of PsEst3 complexed with various ligands were generated and studied at atomic resolution, and biochemical studies were performed to analyze the structure-function relationship of PsEst3. Certain unique characteristics of PsEst3 distinct from those of other classes of lipases/esterases were identified. Firstly, PsEst3 contains a conserved GHSRA/G pentapeptide sequence in the GxSxG motif around the nucleophilic serine. Additionally, it contains a conserved HGFR/K consensus sequence in the oxyanion hole, which is distinct from that in other lipase/esterase families, as well as a specific domain composition (for example a helix-turn-helix motif) and a degenerative lid domain that exposes the active site to the solvent. Secondly, the electrostatic potential of the active site in PsEst3 is positive, which may cause unintended binding of negatively charged chemicals in the active site. Thirdly, the last residue of the oxyanion hole-forming sequence, Arg44, separates the active site from the solvent by sealing the acyl-binding pocket, suggesting that PsEst3 is an enzyme that is customized to sense an unidentified substrate that is distinct from those of classical lipases/esterases. Collectively, this evidence strongly suggests that PsEst3 belongs to a distinct family of esterases.
Collapse
Affiliation(s)
- Jonghyeon Son
- Research Unit of Cryogenic Novel Material, Korea Polar Research Institute, Incheon 21990, Republic of Korea
- New Drug Development Center, Daegu–Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - Woong Choi
- Research Unit of Cryogenic Novel Material, Korea Polar Research Institute, Incheon 21990, Republic of Korea
| | - Hyun Kim
- Research Unit of Cryogenic Novel Material, Korea Polar Research Institute, Incheon 21990, Republic of Korea
| | - Minseo Kim
- Research Unit of Cryogenic Novel Material, Korea Polar Research Institute, Incheon 21990, Republic of Korea
| | - Jun Hyuck Lee
- Research Unit of Cryogenic Novel Material, Korea Polar Research Institute, Incheon 21990, Republic of Korea
- Department of Polar Sciences, University of Science and Technology, Incheon 21990, Republic of Korea
| | - Seung Chul Shin
- Division of Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea
| | - Han-Woo Kim
- Research Unit of Cryogenic Novel Material, Korea Polar Research Institute, Incheon 21990, Republic of Korea
- Department of Polar Sciences, University of Science and Technology, Incheon 21990, Republic of Korea
| |
Collapse
|
5
|
Schwarz MGA, Antunes D, Brêda GC, Valente RH, Freire DMG. Revisiting Jatropha curcas Monomeric Esterase: A Dienelactone Hydrolase Compatible with the Electrostatic Catapult Model. Biomolecules 2021; 11:1486. [PMID: 34680119 PMCID: PMC8533429 DOI: 10.3390/biom11101486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 11/16/2022] Open
Abstract
Jatropha curcas contains seeds with a high oil content, suitable for biodiesel production. After oil extraction, the remaining mass can be a rich source of enzymes. However, data from the literature describing physicochemical characteristics for a monomeric esterase from the J. curcas seed did not fit the electrostatic catapult model for esterases/lipases. We decided to reevaluate this J. curcas esterase and extend its characterization to check this apparent discrepancy and gain insights into the enzyme's potential as a biocatalyst. After anion exchange chromatography and two-dimensional gel electrophoresis, we identified the enzyme as belonging to the dienelactone hydrolase family, characterized by a cysteine as the nucleophile in the catalytic triad. The enzyme displayed a basic optimum hydrolysis pH of 9.0 and an acidic pI range, in contrast to literature data, making it well in line with the electrostatic catapult model. Furthermore, the enzyme showed low hydrolysis activity in an organic solvent-containing medium (isopropanol, acetonitrile, and ethanol), which reverted when recovering in an aqueous reaction mixture. This enzyme can be a valuable tool for hydrolysis reactions of short-chain esters, useful for pharmaceutical intermediates synthesis, due to both its high hydrolytic rate in basic pH and its stability in an organic solvent.
Collapse
Affiliation(s)
- Marcos Gustavo Araujo Schwarz
- Laboratório de Genômica Funcional e Bioinformática, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040900, Brazil;
| | - Deborah Antunes
- Laboratório de Genômica Funcional e Bioinformática, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040900, Brazil;
| | - Gabriela Coelho Brêda
- Laboratório de Microbiologia Molecular e Proteínas, Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941909, Brazil;
| | - Richard Hemmi Valente
- Laboratório de Toxinologia, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040900, Brazil;
| | - Denise Maria Guimarães Freire
- Laboratório de Biotecnologia Microbiana, Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941909, Brazil;
| |
Collapse
|
6
|
Denesyuk A, Dimitriou PS, Johnson MS, Nakayama T, Denessiouk K. The acid-base-nucleophile catalytic triad in ABH-fold enzymes is coordinated by a set of structural elements. PLoS One 2020; 15:e0229376. [PMID: 32084230 PMCID: PMC7034887 DOI: 10.1371/journal.pone.0229376] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 02/05/2020] [Indexed: 01/09/2023] Open
Abstract
The alpha/beta-Hydrolases (ABH) are a structural class of proteins that are found widespread in nature and includes enzymes that can catalyze various reactions in different substrates. The catalytic versatility of the ABH fold enzymes, which has been a valuable property in protein engineering applications, is based on a similar acid-base-nucleophile catalytic mechanism. In our research, we are concerned with the structure that surrounds the key units of the catalytic machinery, and we have previously found conserved structural organizations that coordinate the catalytic acid, the catalytic nucleophile and the residues of the oxyanion hole. Here, we explore the architecture that surrounds the catalytic histidine at the active sites of enzymes from 40 ABH fold families, where we have identified six conserved interactions that coordinate the catalytic histidine next to the catalytic acid and the catalytic nucleophile. Specifically, the catalytic nucleophile is coordinated next to the catalytic histidine by two weak hydrogen bonds, while the catalytic acid is directly involved in the coordination of the catalytic histidine through by two weak hydrogen bonds. The imidazole ring of the catalytic histidine is coordinated by a CH-π contact and a hydrophobic interaction. Moreover, the catalytic triad residues are connected with a residue that is located at the core of the active site of ABH fold, which is suggested to be the fourth member of a “structural catalytic tetrad”. Besides their role in the stability of the catalytic mechanism, the conserved elements of the catalytic site are actively involved in ligand binding and affect other properties of the catalytic activity, such as substrate specificity, enantioselectivity, pH optimum and thermostability of ABH fold enzymes. These properties are regularly targeted in protein engineering applications, and thus, the identified conserved structural elements can serve as potential modification sites in order to develop ABH fold enzymes with altered activities.
Collapse
Affiliation(s)
- Alexander Denesyuk
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Pushchino, Russia
- * E-mail:
| | - Polytimi S. Dimitriou
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Mark S. Johnson
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Toru Nakayama
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, Miyagi, Japan
| | - Konstantin Denessiouk
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| |
Collapse
|
7
|
Urmey AR, Zondlo NJ. Structural preferences of cysteine sulfinic acid: The sulfinate engages in multiple local interactions with the peptide backbone. Free Radic Biol Med 2020; 148:96-107. [PMID: 31883974 DOI: 10.1016/j.freeradbiomed.2019.12.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/16/2019] [Accepted: 12/19/2019] [Indexed: 02/06/2023]
Abstract
Cysteine sulfinic acid (Cys-SO2-) is a non-enzymatic oxidative post-translational modification (PTM) that has been identified in hundreds of proteins. However, the effects of cysteine sulfination are in most cases poorly understood. Cys-SO2- is structurally distinctive, with long sulfur-carbon and sulfur-oxygen bonds, and with tetrahedral geometry around sulfur due to its lone pair. Cys-SO2- thus has a unique range of potential interactions with the protein backbone which could facilitate protein structural changes. Herein, the structural effects of cysteine oxidation to the sulfinic acid were investigated in model peptides and folded proteins using NMR spectroscopy, circular dichroism, bioinformatics, and computational studies. In the PDB, Cys-SO2- shows a greater preference for α-helix than Cys. In addition, Cys-SO2- is more commonly found in structures with φ > 0, including in multiple types of β-turn. Sulfinate oxygens engage in hydrogen bonds with adjacent (i or i + 1) amide hydrogens. Over half of sulfinates have at least one hydrogen bond with an adjacent amide, and several structures have hydrogen bonds with both adjacent amides. Alternately, sulfur or either oxygen can act as an electron donor for n→π* interactions with the backbone carbonyl of the same residue, as indicated by frequent S⋯CO or O⋯CO distances below the sums of their van der Waals radii in protein structures. In peptides, Cys-SO2- favored α-helical structure at the N-terminus, consistent with helix dipole effects and backbone hydrogen bonds with the sulfinate promoting α-helix. Cys-SO2- has only modestly greater polyproline II helix propensity than Cys-SH, likely due to competition from multiple side chain-backbone interactions. Cys-SO2- stabilizes the i+1 position of a β-turn relative to Cys-SH. Within proteins, the range of side chain-main chain interactions available to Cys-SO2- compared to Cys-SH provides a basis for potential changes in protein structure and function due to cysteine oxidation to the sulfinic acid.
Collapse
Affiliation(s)
- Andrew R Urmey
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, United States
| | - Neal J Zondlo
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, United States.
| |
Collapse
|
8
|
Carboxylic Ester Hydrolases in Bacteria: Active Site, Structure, Function and Application. CRYSTALS 2019. [DOI: 10.3390/cryst9110597] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Carboxylic ester hydrolases (CEHs), which catalyze the hydrolysis of carboxylic esters to produce alcohol and acid, are identified in three domains of life. In the Protein Data Bank (PDB), 136 crystal structures of bacterial CEHs (424 PDB codes) from 52 genera and metagenome have been reported. In this review, we categorize these structures based on catalytic machinery, structure and substrate specificity to provide a comprehensive understanding of the bacterial CEHs. CEHs use Ser, Asp or water as a nucleophile to drive diverse catalytic machinery. The α/β/α sandwich architecture is most frequently found in CEHs, but 3-solenoid, β-barrel, up-down bundle, α/β/β/α 4-layer sandwich, 6 or 7 propeller and α/β barrel architectures are also found in these CEHs. Most are substrate-specific to various esters with types of head group and lengths of the acyl chain, but some CEHs exhibit peptidase or lactamase activities. CEHs are widely used in industrial applications, and are the objects of research in structure- or mutation-based protein engineering. Structural studies of CEHs are still necessary for understanding their biological roles, identifying their structure-based functions and structure-based engineering and their potential industrial applications.
Collapse
|
9
|
Garcia-Orozco KD, Cinco-Moroyoqui F, Angulo-Sanchez LT, Marquez-Rios E, Burgos-Hernandez A, Cardenas-Lopez JL, Gomez-Aguilar C, Corona-Martinez DO, Saab-Rincon G, Sotelo-Mundo RR. Biochemical Characterization of a Novel α/β-Hydrolase/FSH from the White Shrimp Litopenaeus vannamei. Biomolecules 2019; 9:E674. [PMID: 31683580 PMCID: PMC6921030 DOI: 10.3390/biom9110674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 11/16/2022] Open
Abstract
(1) Background: Lipases and esterases are important enzymes that share the α/β hydrolase fold. The activity and cellular localization are important characteristics to understand the role of such enzymes in an organism. (2) Methods: Bioinformatic and biochemical tools were used to describe a new α/β hydrolase from a Litopenaeus vannamei transcriptome (LvFHS for Family Serine Hydrolase). (3) Results: The enzyme was obtained by heterologous overexpression in Escherichia coli and showed hydrolytic activity towards short-chain lipid substrates and high affinity to long-chain lipid substrates. Anti-LvFHS antibodies were produced in rabbit that immunodetected the LvFSH enzyme in several shrimp tissues. (4) Conclusions: The protein obtained and analyzed was an α/β hydrolase with esterase and lipase-type activity towards long-chain substrates up to 12 carbons; its immunodetection in shrimp tissues suggests that it has an intracellular localization, and predicted roles in energy mobilization and signal transduction.
Collapse
Affiliation(s)
- Karina D Garcia-Orozco
- Laboratorio de Estructura Biomolecular. Centro de Investigacion en Alimentacion y Desarrollo, A.C. 83304 Hermosillo, Sonora, Mexico.
| | - Francisco Cinco-Moroyoqui
- Departamento de Investigación y Posgrado en Alimentos. Universidad de Sonora, 83000 Hermosillo, Sonora, Mexico.
| | - Lucía T Angulo-Sanchez
- Laboratorio de Estructura Biomolecular. Centro de Investigacion en Alimentacion y Desarrollo, A.C. 83304 Hermosillo, Sonora, Mexico.
| | - Enrique Marquez-Rios
- Departamento de Investigación y Posgrado en Alimentos. Universidad de Sonora, 83000 Hermosillo, Sonora, Mexico.
| | - Armando Burgos-Hernandez
- Departamento de Investigación y Posgrado en Alimentos. Universidad de Sonora, 83000 Hermosillo, Sonora, Mexico.
| | - Jose L Cardenas-Lopez
- Departamento de Investigación y Posgrado en Alimentos. Universidad de Sonora, 83000 Hermosillo, Sonora, Mexico.
| | - Carolina Gomez-Aguilar
- Laboratorio de Estructura Biomolecular. Centro de Investigacion en Alimentacion y Desarrollo, A.C. 83304 Hermosillo, Sonora, Mexico.
| | - David O Corona-Martinez
- Departamento de Ciencias de la Salud, Universidad de Sonora, Cd. 85040 Obregon, Sonora, Mexico.
| | - Gloria Saab-Rincon
- Departamento de Ingeniería Celular & Biocatalisis, Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico, 62250 Cuernavaca, Morelos, Mexico.
| | - Rogerio R Sotelo-Mundo
- Laboratorio de Estructura Biomolecular. Centro de Investigacion en Alimentacion y Desarrollo, A.C. 83304 Hermosillo, Sonora, Mexico.
| |
Collapse
|
10
|
Yang X, Dai J, Zhao S, Li R, Goulette T, Chen X, Xiao H. Identification and characterization of a novel carboxylesterase from Phaseolus vulgaris for detection of organophosphate and carbamates pesticides. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:5095-5104. [PMID: 29604085 DOI: 10.1002/jsfa.9048] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/04/2018] [Accepted: 03/28/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Organophosphate and carbamate pesticide residues in food and the environment pose a great threat to human health and have made the easy and rapid detection of these pesticide residues an important task. Discovering new enzyme sources from plants can help reduce the cost of large-scale applications of rapid pesticide detection via enzyme inhibition. RESULTS Plant esterase from kidney beans was purified. Kidney bean esterase is identified as a carboxylesterase by substrate and inhibitor specificity tests and mass spectrometry identification. The kidney bean esterase demonstrates optimal catalytic activity at 40 °C, pH 6.5 and an enzyme concentration of 0.30 µg mL-1 . The kidney bean esterase can be inhibited by organophosphate and carbamate pesticides, which can be substituted for acetylcholinesterase. The limit of detection of the purified kidney bean esterase was two- to 20-fold higher than that of the crude one. The method detection limit meets the detection requirement for the maximum residue limits (MRL) in actual samples. CONCLUSION The findings of the present study provide a new source of enzymes for pesticides detection by enzyme inhibition. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiao Yang
- School of Food and Bioengineering, Xihua University, Chengdu, China
| | - Juan Dai
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, China
| | - Sujuan Zhao
- School of Food and Bioengineering, Xihua University, Chengdu, China
| | - Rong Li
- School of Food and Bioengineering, Xihua University, Chengdu, China
| | - Tim Goulette
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Xianggui Chen
- School of Food and Bioengineering, Xihua University, Chengdu, China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
11
|
Hashim NHF, Mahadi NM, Illias RM, Feroz SR, Abu Bakar FD, Murad AMA. Biochemical and structural characterization of a novel cold-active esterase-like protein from the psychrophilic yeast Glaciozyma antarctica. Extremophiles 2018; 22:607-616. [DOI: 10.1007/s00792-018-1021-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 03/11/2018] [Indexed: 02/04/2023]
|
12
|
Indole Biodegradation in Acinetobacter sp. Strain O153: Genetic and Biochemical Characterization. Appl Environ Microbiol 2017; 83:AEM.01453-17. [PMID: 28778892 DOI: 10.1128/aem.01453-17] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 07/26/2017] [Indexed: 01/30/2023] Open
Abstract
Indole is a molecule of considerable biochemical significance, acting as both an interspecies signal molecule and a building block of biological elements. Bacterial indole degradation has been demonstrated for a number of cases; however, very little is known about genes and proteins involved in this process. This study reports the cloning and initial functional characterization of genes (iif and ant cluster) responsible for indole biodegradation in Acinetobacter sp. strain O153. The catabolic cascade was reconstituted in vitro with recombinant proteins, and each protein was assigned an enzymatic function. Degradation starts with oxidation, mediated by the IifC and IifD flavin-dependent two-component oxygenase system. Formation of indigo is prevented by IifB, and the final product, anthranilic acid, is formed by IifA, an enzyme which is both structurally and functionally comparable to cofactor-independent oxygenases. Moreover, the iif cluster was identified in the genomes of a wide range of bacteria, suggesting the potential of widespread Iif-mediated indole degradation. This work provides novel insights into the genetic background of microbial indole biodegradation.IMPORTANCE The key finding of this research is identification of the genes responsible for microbial biodegradation of indole, a toxic N-heterocyclic compound. A large amount of indole is present in urban wastewater and sewage sludge, creating a demand for an efficient and eco-friendly means to eliminate this pollutant. A common strategy of oxidizing indole to indigo has the major drawback of producing insoluble material. Genes and proteins of Acinetobacter sp. strain O153 (DSM 103907) reported here pave the way for effective and indigo-free indole removal. In addition, this work suggests possible novel means of indole-mediated bacterial interactions and provides the basis for future research on indole metabolism.
Collapse
|
13
|
Porter JL, Boon PLS, Murray TP, Huber T, Collyer CA, Ollis DL. Directed evolution of new and improved enzyme functions using an evolutionary intermediate and multidirectional search. ACS Chem Biol 2015; 10:611-21. [PMID: 25419863 DOI: 10.1021/cb500809f] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The ease with which enzymes can be adapted from their native roles and engineered to function specifically for industrial or commercial applications is crucial to enabling enzyme technology to advance beyond its current state. Directed evolution is a powerful tool for engineering enzymes with improved physical and catalytic properties and can be used to evolve enzymes where lack of structural information may thwart the use of rational design. In this study, we take the versatile and diverse α/β hydrolase fold framework, in the form of dienelactone hydrolase, and evolve it over three unique sequential evolutions with a total of 14 rounds of screening to generate a series of enzyme variants. The native enzyme has a low level of promiscuous activity toward p-nitrophenyl acetate but almost undetectable activity toward larger p-nitrophenyl esters. Using p-nitrophenyl acetate as an evolutionary intermediate, we have generated variants with altered specificity and catalytic activity up to 3 orders of magnitude higher than the native enzyme toward the larger nonphysiological p-nitrophenyl ester substrates. Several variants also possess increased stability resulting from the multidimensional approach to screening. Crystal structure analysis and substrate docking show how the enzyme active site changes over the course of the evolutions as either a direct or an indirect result of mutations.
Collapse
Affiliation(s)
- Joanne L. Porter
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Priscilla L. S. Boon
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Tracy P. Murray
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Thomas Huber
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Charles A. Collyer
- School
of Molecular Bioscience, University of Sydney, Sydney, New South Wales 2006, Australia
| | - David L. Ollis
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| |
Collapse
|
14
|
Porter JL, Collyer CA, Ollis DL. Compensatory Stabilizing Role of Surface Mutations During the Directed Evolution of Dienelactone Hydrolase for Enhanced Activity. Protein J 2015; 34:82-9. [DOI: 10.1007/s10930-015-9600-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
15
|
Kumar A, Trefault N, Olaniran AO. Microbial degradation of 2,4-dichlorophenoxyacetic acid: Insight into the enzymes and catabolic genes involved, their regulation and biotechnological implications. Crit Rev Microbiol 2014; 42:194-208. [DOI: 10.3109/1040841x.2014.917068] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
16
|
Kumar A, Pillay B, Olaniran AO. Two structurally different dienelactone hydrolases (TfdEI and TfdEII) from Cupriavidus necator JMP134 plasmid pJP4 catalyse cis- and trans-dienelactones with similar efficiency. PLoS One 2014; 9:e101801. [PMID: 25054964 PMCID: PMC4108320 DOI: 10.1371/journal.pone.0101801] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 06/10/2014] [Indexed: 11/18/2022] Open
Abstract
In this study, dienelactone hydrolases (TfdEI and TfdEII) located on plasmid pJP4 of Cupriavidus necator JMP134 were cloned, purified, characterized and three dimensional structures were predicted. tfdEI and tfdEII genes were cloned into pET21b vector and expressed in E. coli BL21(DE3). The enzymes were purified by applying ultra-membrane filtration, anion-exchange QFF and gel-filtration columns. The enzyme activity was determined by using cis-dienelactone. The three-dimensional structure of enzymes was predicted using SWISS-MODEL workspace and the biophysical properties were determined on ExPASy server. Both TfdEI and TfdEII (Mr 25 kDa) exhibited optimum activity at 37°C and pH 7.0. The enzymes retained approximately 50% of their activity after 1 h of incubation at 50°C and showed high stability against denaturing agents. The TfdEI and TfdEII hydrolysed cis-dienelactone at a rate of 0.258 and 0.182 µMs−1, with a Km value of 87 µM and 305 µM, respectively. Also, TfdEI and TfdEII hydrolysed trans-dienelactone at a rate of 0.053 µMs−1 and 0.0766 µMs−1, with a Km value of 84 µM and 178 µM, respectively. The TfdEI and TfdEII kcat/Km ratios were 0.12 µM−1s−1and 0.13 µM−1s−1 and 0.216 µM−1s−1 and 0.094 µM−1s−1 for for cis- and trans-dienelactone, respectively. The kcat/Km ratios for cis-dienelactone show that both enzymes catalyse the reaction with same efficiency even though Km value differs significantly. This is the first report to characterize and compare reaction kinetics of purified TfdEI and TfdEII from Cupriavidus necator JMP134 and may be helpful for further exploration of their catalytic mechanisms.
Collapse
Affiliation(s)
- Ajit Kumar
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Westville Campus), Durban, Republic of South Africa
| | - Balakrishna Pillay
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Westville Campus), Durban, Republic of South Africa
| | - Ademola O. Olaniran
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Westville Campus), Durban, Republic of South Africa
- * E-mail:
| |
Collapse
|
17
|
Porter JL, Carr PD, Collyer CA, Ollis DL. Crystallization of dienelactone hydrolase in two space groups: structural changes caused by crystal packing. Acta Crystallogr F Struct Biol Commun 2014; 70:884-9. [PMID: 25005082 PMCID: PMC4089525 DOI: 10.1107/s2053230x1401108x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 05/14/2014] [Indexed: 11/10/2022] Open
Abstract
Dienelactone hydrolase (DLH) is a monomeric protein with a simple α/β-hydrolase fold structure. It readily crystallizes in space group P2₁2₁2₁ from either a phosphate or ammonium sulfate precipitation buffer. Here, the structure of DLH at 1.85 Å resolution crystallized in space group C2 with two molecules in the asymmetric unit is reported. When crystallized in space group P2₁2₁2₁ DLH has either phosphates or sulfates bound to the protein in crucial locations, one of which is located in the active site, preventing substrate/inhibitor binding. Another is located on the surface of the enzyme coordinated by side chains from two different molecules. Crystallization in space group C2 from a sodium citrate buffer results in new crystallographic protein-protein interfaces. The protein backbone is highly similar, but new crystal contacts cause changes in side-chain orientations and in loop positioning. In regions not involved in crystal contacts, there is little change in backbone or side-chain configuration. The flexibility of surface loops and the adaptability of side chains are important factors enabling DLH to adapt and form different crystal lattices.
Collapse
Affiliation(s)
- Joanne L. Porter
- Research School of Chemistry, Australian National University, Building 137, Sullivans Creek Road, Canberra, ACT 0200, Australia
| | - Paul D. Carr
- Research School of Chemistry, Australian National University, Building 137, Sullivans Creek Road, Canberra, ACT 0200, Australia
| | - Charles A. Collyer
- School of Molecular Bioscience, University of Sydney, Biochemistry Building, Sydney, NSW 2006, Australia
| | - David L. Ollis
- Research School of Chemistry, Australian National University, Building 137, Sullivans Creek Road, Canberra, ACT 0200, Australia
| |
Collapse
|
18
|
Negus D, Taylor PW. A poly-γ-(D)-glutamic acid depolymerase that degrades the protective capsule of Bacillus anthracis. Mol Microbiol 2014; 91:1136-47. [PMID: 24428662 DOI: 10.1111/mmi.12523] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2014] [Indexed: 02/03/2023]
Abstract
A mixed culture of Pseudomonas fluorescens and Pusillimonas noertemanii, obtained by soil enrichment, elaborated an enzyme (EnvD) which rapidly hydrolysed poly-γ-d-glutamic acid (PDGA), the constituent of the anti-phagocytic capsule conferring virulence on Bacillus anthracis. The EnvD gene is carried on the P. noertemanii genome but co-culture is required for the elaboration of PDGA depolymerase activity. EnvD showed strong sequence homology to dienelactone hydrolases from other Gram-negative bacteria, possessed no general protease activity but cleaved γ-links in both d- and l-glutamic acid-containing polymers. The stability at 37°C was markedly superior to that of CapD, a γ-glutamyltranspeptidase with PDGA depolymerase activity. Recombinant EnvD was recovered from inclusion bodies in soluble form from an Escherichia coli expression vector and the enzyme stripped the PDGA capsule from the surface of B. anthracis Pasteur within 5 min. We conclude from this in vitro study that rEnvD shows promise as a potential therapeutic for the treatment of anthrax.
Collapse
Affiliation(s)
- David Negus
- University College London School of Pharmacy, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | | |
Collapse
|
19
|
Zhang M, Zhao J, Yang H, Liu P, Bu Y. 310-Helical Peptide Acting as a Dual Relay for Charge-Hopping Transfer in Proteins. J Phys Chem B 2013; 117:6385-93. [DOI: 10.1021/jp4012526] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Meng Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China
| | - Jing Zhao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China
| | - Hongfang Yang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China
| | - Ping Liu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China
| | - Yuxiang Bu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China
| |
Collapse
|
20
|
Menyhárd DK, Kiss-Szemán A, Tichy-Rács É, Hornung B, Rádi K, Szeltner Z, Domokos K, Szamosi I, Náray-Szabó G, Polgár L, Harmat V. A self-compartmentalizing hexamer serine protease from Pyrococcus horikoshii: substrate selection achieved through multimerization. J Biol Chem 2013; 288:17884-94. [PMID: 23632025 DOI: 10.1074/jbc.m113.451534] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Oligopeptidases impose a size limitation on their substrates, the mechanism of which has long been under debate. Here we present the structure of a hexameric serine protease, an oligopeptidase from Pyrococcus horikoshii (PhAAP), revealing a complex, self-compartmentalized inner space, where substrates may access the monomer active sites passing through a double-gated "check-in" system, first passing through a pore on the hexamer surface and then turning to enter through an even smaller opening at the monomers' domain interface. This substrate screening strategy is unique within the family. We found that among oligopeptidases, a residue of the catalytic apparatus is positioned near an amylogenic β-edge, which needs to be protected to prevent aggregation, and we found that different oligopeptidases use different strategies to achieve such an end. We propose that self-assembly within the family results in characteristically different substrate selection mechanisms coupled to different multimerization states.
Collapse
Affiliation(s)
- Dóra K Menyhárd
- Protein Modeling Research Group, Hungarian Academy of Sciences, Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Walker I, Hennessy JE, Ollis DL, Easton CJ. Substrate-induced conformational change and isomerase activity of dienelactone hydrolase and its site-specific mutants. Chembiochem 2012; 13:1645-51. [PMID: 22761053 DOI: 10.1002/cbic.201200232] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Indexed: 11/06/2022]
Abstract
Studies of the interactions of dienelactone hydrolase (DLH) and its mutants with both E and Z dienelactone substrates show that the enzyme exhibits two different conformational responses specific for hydrolysis of each of its substrate isomers. DLH facilitates hydrolysis of the Z dienelactone through an unusual charge-relay system that is initiated by interaction between the substrate carboxylate and an enzyme arginine residue that activates an otherwise non-nucleophilic cysteine. The E dienelactone does not display this substrate-arginine binding interaction, but instead induces an alternate conformational response that promotes hydrolysis. Furthermore, the substitution of cysteine 123 for serine (C123S) in DLH, instead of inactivating the enzyme as is typical for this active-site mutation, changes the catalysis from substrate hydrolysis to isomerisation. This is due to the deacylation of the acyl-enzyme intermediates being much slower, thereby increasing their lifetimes and allowing for their interconversion through isomerisation, followed by relactonisation.
Collapse
Affiliation(s)
- Ian Walker
- Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia
| | | | | | | |
Collapse
|
22
|
Gaiji N, Cardinale F, Prandi C, Bonfante P, Ranghino G. The computational-based structure of Dwarf14 provides evidence for its role as potential strigolactone receptor in plants. BMC Res Notes 2012; 5:307. [PMID: 22713366 PMCID: PMC3436726 DOI: 10.1186/1756-0500-5-307] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 06/19/2012] [Indexed: 11/28/2022] Open
Abstract
Background Strigolactones (SLs) are recently identified plant hormones modulating root and shoot branching. Besides their endogenous role within the producing organism, SLs are also key molecules in the communication of plants with arbuscular mycorrhizal (AM) fungi and parasitic weeds. In fact SLs are exuded into the rhizosphere where they act as a host-derived signal, stimulating the germination of the seeds of parasitic plants which would not survive in the absence of a host root to colonize. Similarly, their perception by AM fungi causes extensive hyphal branching; this is a prerequisite for effective root colonization, since it increases the number of potential contact points with the host surface. In spite of the crucial and multifaceted biological role of SLs, there is no information on the receptor(s) which bind(s) such active molecules, neither in the producing plants, or in parasitic weeds or AM fungi. Results In this work, we applied homology modelling techniques to investigate the structure of the protein encoded by the gene Dwarf14, which was first identified in rice as conferring SLs insensitivity when mutated. The best sequence identity was with bacterial RsbQ. Both proteins belong to the superfamily of alpha/beta-fold hydrolases, some members of which play a role in the metabolism or signalling of plant hormones. The Dwarf14 (D14) structure was refined by means of molecular dynamics simulations. In order to support the hypothesis that D14 could be an endogenous SLs receptor, we performed docking experiments with a natural ligand. Conclusions It is suggested that D14 interacts with and thereby may act as a receptor for SLs in plants. This hypothesis offers a starting point to experimentally study the mechanism of its activity in vivo by means of structural, molecular and genetic approaches. Lastly, knowledge of the putative receptor structure will boost the research on analogues of the natural substrates as required for agricultural applications.
Collapse
|
23
|
The unusual extended C-terminal helix of the peroxisomal α/β-hydrolase Lpx1 is involved in dimer contacts but dispensable for dimerization. J Struct Biol 2011; 175:362-71. [DOI: 10.1016/j.jsb.2011.06.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 06/20/2011] [Accepted: 06/22/2011] [Indexed: 11/24/2022]
|
24
|
Bains J, Kaufman L, Farnell B, Boulanger MJ. A product analog bound form of 3-oxoadipate-enol-lactonase (PcaD) reveals a multifunctional role for the divergent cap domain. J Mol Biol 2011; 406:649-58. [PMID: 21237173 DOI: 10.1016/j.jmb.2011.01.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 12/24/2010] [Accepted: 01/03/2011] [Indexed: 11/15/2022]
Abstract
Lactones are a class of structurally diverse molecules that serve essential roles in biological processes ranging from quorum sensing to the aerobic catabolism of aromatic compounds. Not surprisingly, enzymes involved in the bioprocessing of lactones are often targeted for protein engineering studies with the potential, for example, of optimized bioremediation of aromatic pollutants. The enol-lactone hydrolase (ELH) represents one such class of targeted enzymes and catalyzes the conversion of 3-oxoadipate-enol-lactone into the linear β-ketoadipate. To define the structural details that govern ELH catalysis and assess the impact of divergent features predicted by sequence analysis, we report the first structural characterization of an ELH (PcaD) from Burkholderia xenovorans LB400 in complex with the product analog levulinic acid. The overall dimeric structure of PcaD reveals an α-helical cap domain positioned atop a core α/β-hydrolase domain. Despite the localization of the conserved catalytic triad to the core domain, levulinic acid is bound largely within the region of the active site defined by the cap domain, suggesting a key role for this divergent substructure in mediating product release. Furthermore, the architecture of the cap domain results in an unusually deep active-site pocket with topological features to restrict binding to small or kinked substrates. The evolutionary basis for this substrate selectivity is discussed with respect to the homologous dienelactone hydrolase. Overall, the PcaD costructure provides a detailed insight into the intimate role of the cap domain in influencing all aspects of substrate binding, turnover, and product release.
Collapse
Affiliation(s)
- Jasleen Bains
- Department of Biochemistry and Microbiology, University of Victoria, PO Box 3055 STN CSC, Victoria, BC, Canada
| | | | | | | |
Collapse
|
25
|
Ishizuka T, Fujimori I, Kato M, Noji-Sakikawa C, Saito M, Yoshigae Y, Kubota K, Kurihara A, Izumi T, Ikeda T, Okazaki O. Human carboxymethylenebutenolidase as a bioactivating hydrolase of olmesartan medoxomil in liver and intestine. J Biol Chem 2010; 285:11892-902. [PMID: 20177059 PMCID: PMC2852926 DOI: 10.1074/jbc.m109.072629] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Olmesartan medoxomil (OM) is a prodrug type angiotensin II type 1 receptor antagonist widely prescribed as an antihypertensive agent. Herein, we describe the identification and characterization of the OM bioactivating enzyme that hydrolyzes the prodrug and converts to its pharmacologically active metabolite olmesartan in human liver and intestine. The protein was purified from human liver cytosol by successive column chromatography and was identified by mass spectrometry to be a carboxymethylenebutenolidase (CMBL) homolog. Human CMBL, whose endogenous function has still not been reported, is a human homolog of Pseudomonas dienelactone hydrolase involved in the bacterial halocatechol degradation pathway. The ubiquitous expression of human CMBL gene transcript in various tissues was observed. The recombinant human CMBL expressed in mammalian cells was clearly shown to activate OM. By comparing the enzyme kinetics and chemical inhibition properties between the recombinant protein and human tissue preparations, CMBL was demonstrated to be the primary OM bioactivating enzyme in the liver and intestine. The recombinant CMBL also converted other prodrugs having the same ester structure as OM, faropenem medoxomil and lenampicillin, to their active metabolites. CMBL exhibited a unique sensitivity to chemical inhibitors, thus, being distinguishable from other known esterases. Site-directed mutagenesis on the putative active residue Cys132 of the recombinant CMBL caused a drastic reduction of the OM-hydrolyzing activity. We report for the first time that CMBL serves as a key enzyme in the bioactivation of OM, hydrolyzing the ester bond of the prodrug type xenobiotics.
Collapse
Affiliation(s)
- Tomoko Ishizuka
- Drug Metabolism and Pharmacokinetics Research Laboratories, Daiichi Sankyo Co. Ltd., Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Yano H, Kuroda S. Introduction of the Disulfide Proteome: Application of a Technique for the Analysis of Plant Storage Proteins as Well as Allergens. J Proteome Res 2008; 7:3071-9. [DOI: 10.1021/pr8003453] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Hiroyuki Yano
- National Institute of Crop Science, Tsukuba 305-8518, Japan, and BRAIN Tokyo Office, Minato-ku, Tokyo 105-0001, Japan
| | - Shigeru Kuroda
- National Institute of Crop Science, Tsukuba 305-8518, Japan, and BRAIN Tokyo Office, Minato-ku, Tokyo 105-0001, Japan
| |
Collapse
|
27
|
Martínez-Martínez I, Navarro-Fernández J, Daniel Lozada-Ramírez J, García-Carmona F, Sánchez-Ferrer Á. YesT: A new rhamnogalacturonan acetyl esterase fromBacillus subtilis. Proteins 2008; 71:379-88. [DOI: 10.1002/prot.21705] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
28
|
Kakugawa S, Fushinobu S, Wakagi T, Shoun H. Characterization of a thermostable carboxylesterase from the hyperthermophilic bacterium Thermotoga maritima. Appl Microbiol Biotechnol 2007; 74:585-91. [PMID: 17106678 DOI: 10.1007/s00253-006-0687-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2006] [Revised: 09/11/2006] [Accepted: 09/15/2006] [Indexed: 10/23/2022]
Abstract
The gene encoding carboxylesterase from the hyperthermophilic bacterium Thermotoga maritima (tm0053) was cloned. The recombinant protein (EST53) was overexpressed in Escherichia coli without its NH(2)-terminal hydrophobic region, and with a C-terminal hexahistidine sequence. The enzyme was purified to homogeneity by heat treatment, followed by Ni(2+) affinity chromatography, and then characterized. Among the p-nitrophenyl esters tested, the best substrate was p-nitrophenyl decanoate with K (m) and k (cat) values of 3.1 muM and 10.8 s(-1), respectively, at 60 degrees C and pH 7.5. The addition of O,O'-bis(2-aminoethyl)ethyleneglycol-N,N,N',N'-tetraacetic acid decreased the esterase activity, indicating that EST53 is dependent on the presence of Ca(2+) ion. In addition, its activity was inhibited by the addition of phenylmethylsulfonyl fluoride and diethyl pyrocarbonate, indicating that it contains serine and histidine residues, which play key roles in the catalytic mechanism. EST53 shows a relatively high degree of similarity to Burkholderia lipases that belong to family I.2 of the lipolytic enzymes, whereas the local sequence around the pentapeptide of EST53 is most similar to those of Bacillus lipases belonging to family I.4.
Collapse
Affiliation(s)
- Satoshi Kakugawa
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | | | | | | |
Collapse
|
29
|
de Eugenio LI, Garci A P, Luengo JM, Sanz JSM, Roma N JS, Garci A JL, Prieto MAA. Biochemical Evidence That phaZ Gene Encodes a Specific Intracellular Medium Chain Length Polyhydroxyalkanoate Depolymerase in Pseudomonas putida KT2442. J Biol Chem 2007; 282:4951-4962. [PMID: 17170116 DOI: 10.1074/jbc.m608119200] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Polyhydroxyalkanoates (PHAs) can be catabolized by many microorganisms using intra- or extracellular PHA depolymerases. Most of our current knowledge of these intracellular enzyme-coding genes comes from the analysis of short chain length PHA depolymerases, whereas medium chain length PHA (mcl-PHA) intracellular depolymerization systems still remained to be characterized. The phaZ gene of some Pseudomonas putida strains has been identified only by mutagenesis and complementation techniques as putative intracellular mcl-PHA depolymerase. However, none of their corresponding encoded PhaZ enzymes have been characterized in depth. In this study the PhaZ depolymerase from P. putida KT2442 has been purified and biochemically characterized after its overexpression in Escherichia coli. To facilitate these studies we have developed a new and very sensitive radioactive method for detecting PHA hydrolysis in vitro. We have demonstrated that PhaZ is an intracellular depolymerase that is located in PHA granules and that hydrolyzes specifically mcl-PHAs containing aliphatic and aromatic monomers. The enzyme behaves as a serine hydrolase that is inhibited by phenylmethylsulfonyl fluoride. We have modeled the three-dimensional structure of PhaZ complexed with a 3-hydroxyoctanoate dimer. Using this model, we found that the enzyme appears to be built up from a corealpha/beta hydrolase-type domain capped with a lid structure with an active site containing a catalytic triad buried near the connection between domains. All these data constitute the first biochemical characterization of PhaZ and allow us to propose this enzyme as the paradigmatic representative of intracellular endo/exo-mcl-PHA depolymerases.
Collapse
Affiliation(s)
- Laura I de Eugenio
- Departamento de Microbiologi´a Molecular, Centro de Investigaciones Biolo´gicas, Consejo Superior de Investigaciones Cienti´ficas (CSIC), C. Ramiro de Maeztu, 9, 28040 Madrid
| | - Pedro Garci A
- Departamento de Microbiologi´a Molecular, Centro de Investigaciones Biolo´gicas, Consejo Superior de Investigaciones Cienti´ficas (CSIC), C. Ramiro de Maeztu, 9, 28040 Madrid
| | - José M Luengo
- Departamento de Bioqui´mica y Biologi´a Molecular, Universidad de Leo´n, 24007 Leo´n
| | - Jesu S M Sanz
- Instituto de Biologi´a Molecular y Celular, Universidad Miguel Herna´ndez, Av. Universidad, s/n. 03202 Elche (Alicante), and the
| | - Julio San Roma N
- Instituto de Ciencia y Tecnologi´a de Poli´meros, CSIC, C. Juan de la Cierva 3, 28006 Madrid, Spain
| | - José Luis Garci A
- Departamento de Microbiologi´a Molecular, Centro de Investigaciones Biolo´gicas, Consejo Superior de Investigaciones Cienti´ficas (CSIC), C. Ramiro de Maeztu, 9, 28040 Madrid
| | - Mari A A Prieto
- Departamento de Microbiologi´a Molecular, Centro de Investigaciones Biolo´gicas, Consejo Superior de Investigaciones Cienti´ficas (CSIC), C. Ramiro de Maeztu, 9, 28040 Madrid.
| |
Collapse
|
30
|
Horsman GP, Ke J, Dai S, Seah SYK, Bolin JT, Eltis LD. Kinetic and structural insight into the mechanism of BphD, a C-C bond hydrolase from the biphenyl degradation pathway. Biochemistry 2006; 45:11071-86. [PMID: 16964968 PMCID: PMC2519953 DOI: 10.1021/bi0611098] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Kinetic and structural analyses of 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid (HOPDA) hydrolase from Burkholderia xenovorans LB400 (BphD(LB400)) provide insight into the catalytic mechanism of this unusual serine hydrolase. Single turnover stopped-flow analysis at 25 degrees C showed that the enzyme rapidly (1/tau(1) approximately 500 s(-1)) transforms HOPDA (lambda(max) = 434 nm) into a species with electronic absorption maxima at 473 and 492 nm. The absorbance of this enzyme-bound species (E:S) decayed in a biphasic manner (1/tau(2) = 54 s(-1), 1/tau(3) = 6 s(-1) approximately k(cat)) with simultaneous biphasic appearance (48 and 8 s(-1)) of an absorbance band at 270 nm characteristic of one of the products, 2-hydroxypenta-2,4-dienoic acid (HPD). Increasing solution viscosity with glycerol slowed 1/tau(1) and 1/tau(2) but affected neither 1/tau(3) nor k(cat), suggesting that 1/tau(2) may reflect diffusive HPD dissociation, and 1/tau(3) represents an intramolecular event. Product inhibition studies suggested that the other product, benzoate, is released after HPD. Contrary to studies in a related hydrolase, we found no evidence that ketonized HOPDA is partially released prior to hydrolysis, and, therefore, postulate that the biphasic kinetics reflect one of two mechanisms, pending assignment of E:S (lambda(max) = 492 nm). The crystal structures of the wild type, the S112C variant, and S112C incubated with HOPDA were each determined to 1.6 A resolution. The latter reveals interactions between conserved active site residues and the dienoate moiety of the substrate. Most notably, the catalytic residue His265 is hydrogen-bonded to the 2-hydroxy/oxo substituent of HOPDA, consistent with a role in catalyzing ketonization. The data are more consistent with an acyl-enzyme mechanism than with the formation of a gem-diol intermediate.
Collapse
Affiliation(s)
- Geoff P. Horsman
- Departments of Biochemistry and Molecular Biology, and Microbiology and Immunology, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Jiyuan Ke
- Purdue Cancer Center and Markey Center for Structural Biology, Department of Biological Sciences, Purdue University, West Lafayette, IN 47907−2054
| | - Shaodong Dai
- Purdue Cancer Center and Markey Center for Structural Biology, Department of Biological Sciences, Purdue University, West Lafayette, IN 47907−2054
| | - Stephen Y. K. Seah
- Departments of Biochemistry and Molecular Biology, and Microbiology and Immunology, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Jeffrey T. Bolin
- Purdue Cancer Center and Markey Center for Structural Biology, Department of Biological Sciences, Purdue University, West Lafayette, IN 47907−2054
| | - Lindsay D. Eltis
- Departments of Biochemistry and Molecular Biology, and Microbiology and Immunology, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
- To whom correspondence should be addressed: Lindsay D. Eltis, , Phone: (604)822−0042, Fax: (604)822−6041
| |
Collapse
|
31
|
Schneider G, Neuberger G, Wildpaner M, Tian S, Berezovsky I, Eisenhaber F. Application of a sensitive collection heuristic for very large protein families: evolutionary relationship between adipose triglyceride lipase (ATGL) and classic mammalian lipases. BMC Bioinformatics 2006; 7:164. [PMID: 16551354 PMCID: PMC1435942 DOI: 10.1186/1471-2105-7-164] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2005] [Accepted: 03/21/2006] [Indexed: 11/30/2022] Open
Abstract
Background Manually finding subtle yet statistically significant links to distantly related homologues becomes practically impossible for very populated protein families due to the sheer number of similarity searches to be invoked and analyzed. The unclear evolutionary relationship between classical mammalian lipases and the recently discovered human adipose triglyceride lipase (ATGL; a patatin family member) is an exemplary case for such a problem. Results We describe an unsupervised, sensitive sequence segment collection heuristic suitable for assembling very large protein families. It is based on fan-like expanding, iterative database searches. To prevent inclusion of unrelated hits, additional criteria are introduced: minimal alignment length and overlap with starting sequence segments, finding starting sequences in reciprocal searches, automated filtering for compositional bias and repetitive patterns. This heuristic was implemented as FAMILYSEARCHER in the ANNIE sequence analysis environment and applied to search for protein links between the classical lipase family and the patatin-like group. Conclusion The FAMILYSEARCHER is an efficient tool for tracing distant evolutionary relationships involving large protein families. Although classical lipases and ATGL have no obvious sequence similarity and differ with regard to fold and catalytic mechanism, homology links detected with FAMILYSEARCHER show that they are evolutionarily related. The conserved sequence parts can be narrowed down to an ancestral core module consisting of three β-strands, one α-helix and a turn containing the typical nucleophilic serine. Moreover, this ancestral module also appears in numerous enzymes with various substrate specificities, but that critically rely on nucleophilic attack mechanisms.
Collapse
Affiliation(s)
- Georg Schneider
- IMP - Research Institute of Molecular Pathology, Dr. Bohr-Gasse 7, A-1030 Vienna, Republic of Austria
| | - Georg Neuberger
- IMP - Research Institute of Molecular Pathology, Dr. Bohr-Gasse 7, A-1030 Vienna, Republic of Austria
| | - Michael Wildpaner
- IMP - Research Institute of Molecular Pathology, Dr. Bohr-Gasse 7, A-1030 Vienna, Republic of Austria
| | - Sun Tian
- IMP - Research Institute of Molecular Pathology, Dr. Bohr-Gasse 7, A-1030 Vienna, Republic of Austria
| | - Igor Berezovsky
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford str., M-105, 02138 Cambridge, MA, USA
| | - Frank Eisenhaber
- IMP - Research Institute of Molecular Pathology, Dr. Bohr-Gasse 7, A-1030 Vienna, Republic of Austria
| |
Collapse
|
32
|
Yano H, Kuroda M. Disulfide proteome yields a detailed understanding of redox regulations: A model study of thioredoxin-linked reactions in seed germination. Proteomics 2006; 6:294-300. [PMID: 16294303 DOI: 10.1002/pmic.200402033] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Accumulating evidence suggests that redox regulations play important roles in a broad spectrum of biological processes. Recently, Yano et al. developed a disulfide proteome technique that comprehensively visualizes redox change in proteins. In this paper, using the disulfide proteome, we examined rice bran and identified fragments of embryo-specific protein and dienelactone hydrolase as putative targets of thioredoxin. Also, monitoring of the endogenous and recombinant effects of thioredoxin on rice bran proteins and supporting in vivo observations propose a mechanism of redox regulation in seed germination, in which thioredoxin activates cysteine protease with a concurrent unfolding of its substrate, the embryo-specific protein. Our findings suggest that thioredoxin controls the lifetime of specific proteins effectively by regulating the redox reactions coordinately. The model study demonstrates that the disulfide proteome technique is useful not only for identifying targets of thioredoxin, but also for clarify the detailed mechanism of redox regulation.
Collapse
Affiliation(s)
- Hiroyuki Yano
- Department of Rice Research, National Institute of Crop Science, Kannondai, Tsukuba 305-8518, Japan.
| | | |
Collapse
|
33
|
Peltier JB, Cai Y, Sun Q, Zabrouskov V, Giacomelli L, Rudella A, Ytterberg AJ, Rutschow H, van Wijk KJ. The oligomeric stromal proteome of Arabidopsis thaliana chloroplasts. Mol Cell Proteomics 2005; 5:114-33. [PMID: 16207701 DOI: 10.1074/mcp.m500180-mcp200] [Citation(s) in RCA: 269] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
This study presents an analysis of the stromal proteome in its oligomeric state extracted from highly purified chloroplasts of Arabidopsis thaliana. 241 proteins (88% with predicted cTP), mostly assembled in oligomeric complexes, were identified by mass spectrometry with emphasis on distinguishing between paralogues. This is critical because different paralogues in a gene family often have different subcellular localizations and/or different expression patterns and functions. The native protein masses were determined for all identified proteins. Comparison with the few well characterized stromal complexes from A. thaliana confirmed the accuracy of the native mass determination, and by extension, the usefulness of the native mass data for future in-depth protein interaction studies. Resolved protein interactions are discussed and compared with an extensive collection of native mass data of orthologues in other plants and bacteria. Relative protein expression levels were estimated from spot intensities and also provided estimates of relative concentrations of individual proteins. No such quantification has been reported so far. Surprisingly proteins dedicated to chloroplast protein synthesis, biogenesis, and fate represented nearly 10% of the total stroma protein mass. Oxidative pentose phosphate pathway, glycolysis, and Calvin cycle represented together about 75%, nitrogen assimilation represented 5-7%, and all other pathways such as biosynthesis of e.g. fatty acids, amino acids, nucleotides, tetrapyrroles, and vitamins B(1) and B(2) each represented less than 1% of total protein mass. Several proteins with diverse functions outside primary carbon metabolism, such as the isomerase ROC4, lipoxygenase 2 involved in jasmonic acid biosynthesis, and a carbonic anhydrase (CA1), were surprisingly abundant in the range of 0.75-1.5% of the total stromal mass. Native images with associated information are available via the Plastid Proteome Database.
Collapse
Affiliation(s)
- Jean-Benoit Peltier
- Department of Plant Biology, Cornell Theory Center, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Korza HJ, Bochtler M. Pseudomonas aeruginosa LD-carboxypeptidase, a serine peptidase with a Ser-His-Glu triad and a nucleophilic elbow. J Biol Chem 2005; 280:40802-12. [PMID: 16162494 DOI: 10.1074/jbc.m506328200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
LD-Carboxypeptidases (EC 3.4.17.13) are named for their ability to cleave amide bonds between l- and d-amino acids, which occur naturally in bacterial peptidoglycan. They are specific for the link between meso-diaminopimelic acid and d-alanine and therefore degrade GlcNAc-MurNAc tetrapeptides to the corresponding tripeptides. As only the tripeptides can be reused as peptidoglycan building blocks, ld-carboxypeptidases are thought to play a role in peptidoglycan recycling. Despite the pharmaceutical interest in peptidoglycan biosynthesis, the fold and catalytic type of ld-carboxypeptidases are unknown. Here, we show that a previously uncharacterized open reading frame in Pseudomonas aeruginosa has ld-carboxypeptidase activity and present the crystal structure of this enzyme. The structure shows that the enzyme consists of an N-terminal beta-sheet and a C-terminal beta-barrel domain. At the interface of the two domains, Ser(115) adopts a highly strained conformation in the context of a strand-turn-helix motif that is similar to the "nucleophilic elbow" in alphabeta-hydrolases. Ser(115) is hydrogen-bonded to a histidine residue, which is oriented by a glutamate residue. All three residues, which occur in the order Ser-Glu-His in the amino acid sequence, are strictly conserved in naturally occurring ld-carboxypeptidases and cannot be mutated to alanines without loss of activity. We conclude that ld-carboxypeptidases are serine peptidases with Ser-His-Glu catalytic triads.
Collapse
Affiliation(s)
- Henryk J Korza
- International Institute of Molecular and Cell Biology, Ulica Trojdena 4, 02-109 Warsaw, Poland
| | | |
Collapse
|
35
|
Solyanikova IP, Golovleva LA. Bacterial degradation of chlorophenols: pathways, biochemica, and genetic aspects. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2004; 39:333-351. [PMID: 15186025 DOI: 10.1081/pfc-120035921] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Chlorophenols belong to the group of toxic and persistent to microbial attack xenobiotics. Nevertheless, due to the adaptation microorganisms acquire the ability to use chlorophenols as the sole source of carbon and energy. The present review describes the diversity of aerobic pathways for the utilization of halogenated phenols by bacteria with the emphasis on the main reactions and intermediates formed, enzymes responsible for these reactions and their genetic basis. Taking into account (i) the fact that enzymes degrading chlorophenols are similar to the ones involved in the conversion of other (chloro)aromatic compounds and (ii) that present numerous publications describing the properties of separated enzymes or encoding their genes are published, this review was planned as the attempt to present both, the most general and specific aspects in chlorophenols degradation with the emphasis on the literature of the last ten years.
Collapse
Affiliation(s)
- Inna P Solyanikova
- G. K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | | |
Collapse
|
36
|
Rehm BHA. Polyester synthases: natural catalysts for plastics. Biochem J 2003; 376:15-33. [PMID: 12954080 PMCID: PMC1223765 DOI: 10.1042/bj20031254] [Citation(s) in RCA: 464] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2003] [Accepted: 09/04/2003] [Indexed: 11/17/2022]
Abstract
Polyhydroxyalkanoates (PHAs) are biopolyesters composed of hydroxy fatty acids, which represent a complex class of storage polyesters. They are synthesized by a wide range of different Gram-positive and Gram-negative bacteria, as well as by some Archaea, and are deposited as insoluble cytoplasmic inclusions. Polyester synthases are the key enzymes of polyester biosynthesis and catalyse the conversion of (R)-hydroxyacyl-CoA thioesters to polyesters with the concomitant release of CoA. These soluble enzymes turn into amphipathic enzymes upon covalent catalysis of polyester-chain formation. A self-assembly process is initiated resulting in the formation of insoluble cytoplasmic inclusions with a phospholipid monolayer and covalently attached polyester synthases at the surface. Surface-attached polyester synthases show a marked increase in enzyme activity. These polyester synthases have only recently been biochemically characterized. An overview of these recent findings is provided. At present, 59 polyester synthase structural genes from 45 different bacteria have been cloned and the nucleotide sequences have been obtained. The multiple alignment of the primary structures of these polyester synthases show an overall identity of 8-96% with only eight strictly conserved amino acid residues. Polyester synthases can been assigned to four classes based on their substrate specificity and subunit composition. The current knowledge on the organization of the polyester synthase genes, and other genes encoding proteins related to PHA metabolism, is compiled. In addition, the primary structures of the 59 PHA synthases are aligned and analysed with respect to highly conserved amino acids, and biochemical features of polyester synthases are described. The proposed catalytic mechanism based on similarities to alpha/beta-hydrolases and mutational analysis is discussed. Different threading algorithms suggest that polyester synthases belong to the alpha/beta-hydrolase superfamily, with a conserved cysteine residue as catalytic nucleophile. This review provides a survey of the known biochemical features of these unique enzymes and their proposed catalytic mechanism.
Collapse
Affiliation(s)
- Bernd H A Rehm
- Institut für Molekulare Mikrobiologie und Biotechnologie der Westfälischen Wilhelms-Universität Münster, Corrensstrasse 3, 48149 Münster, Germany.
| |
Collapse
|
37
|
Hotta Y, Ezaki S, Atomi H, Imanaka T. Extremely stable and versatile carboxylesterase from a hyperthermophilic archaeon. Appl Environ Microbiol 2002; 68:3925-31. [PMID: 12147492 PMCID: PMC124002 DOI: 10.1128/aem.68.8.3925-3931.2002] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have found that the hyperthermophilic archaeon Pyrobaculum calidifontis VA1 produced a thermostable esterase. We isolated and sequenced the esterase gene (est(Pc)) from strain VA1. est(Pc) consisted of 939 bp, corresponding to 313 amino acid residues with a molecular mass of 34,354 Da. As est(Pc) showed significant identity (30%) to mammalian hormone-sensitive lipases (HSLs), esterase of P. calidifontis (Est) could be regarded as a new member of the HSL family. Activity levels of the enzyme were comparable or higher than those of previously reported enzymes not only at high temperature (6,410 U/mg at 90 degrees C), but also at ambient temperature (1,050 U/mg at 30 degrees C). The enzyme displayed extremely high thermostability and was also stable after incubation with various water-miscible organic solvents at a concentration of 80%. The enzyme also exhibited activity in the presence of organic solvents. Est of P. calidifontis showed higher hydrolytic activity towards esters with short to medium chains, with p-nitrophenyl caproate (C(6)) the best substrate among the p-nitrophenyl esters examined. As for the alcoholic moiety, the enzyme displayed esterase activity towards esters with both straight- and branched-chain alcohols. Most surprisingly, we found that this Est enzyme hydrolyzed the tertiary alcohol ester tert-butyl acetate, a feature very rare among previously reported lipolytic enzymes. The extreme stability against heat and organic solvents, along with its activity towards a tertiary alcohol ester, indicates a high potential for the Est of P. calidifontis in future applications.
Collapse
Affiliation(s)
- Yuji Hotta
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | |
Collapse
|
38
|
Reva B, Finkelstein A, Topiol S. Threading with chemostructural restrictions method for predicting fold and functionally significant residues: application to dipeptidylpeptidase IV (DPP-IV). Proteins 2002; 47:180-93. [PMID: 11933065 DOI: 10.1002/prot.10076] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We present a new method for more accurate modeling of protein structure, called threading with chemostructural restrictions. This method addresses those cases in which a target sequence has only remote homologues of known structure for which sequence comparison methods cannot provide accurate alignments. Although remote homologues cannot provide an accurate model for the whole chain, they can be used in constructing practically useful models for the most conserved-and often the most interesting-part of the structure. For many proteins of interest, one can suggest certain chemostructural patterns for the native structure based on the available information on the structural superfamily of the protein, the type of activity, the sequence location of the functionally significant residues, and other factors. We use such patterns to restrict (1) a number of possible templates, and (2) a number of allowed chain conformations on a template. The latter restrictions are imposed in the form of additional template potentials (including terms acting as sequence anchors) that act on certain residues. This approach is tested on remote homologues of alpha/beta-hydrolases that have significant structural similarity in the positions of their catalytic triads. The study shows that, in spite of significant deviations between the model and the native structures, the surroundings of the catalytic triad (positions of C(alpha) atoms of 20-30 nearby residues) can be reproduced with accuracy of 2-3 A. We then apply the approach to predict the structure of dipeptidylpeptidase IV (DPP-IV). Using experimentally available data identifying the catalytic triad residues of DPP-IV (David et al., J Biol Chem 1993;268:17247-17252); we predict a model structure of the catalytic domain of DPP-IV based on the 3D fold of prolyl oligopeptidase (Fulop et al., Cell 1998;94:161-170) and use this structure for modeling the interaction of DPP-IV with inhibitor.
Collapse
Affiliation(s)
- Boris Reva
- Novartis Institute for Biomedical Research, Summit, New Jersey, USA.
| | | | | |
Collapse
|
39
|
Krupenko SA, Vlasov AP, Wagner C. On the role of conserved histidine 106 in 10-formyltetrahydrofolate dehydrogenase catalysis: connection between hydrolase and dehydrogenase mechanisms. J Biol Chem 2001; 276:24030-7. [PMID: 11320079 DOI: 10.1074/jbc.m009257200] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The enzyme, 10-formyltetrahydrofolate dehydrogenase (FDH), converts 10-formyltetrahydrofolate (10-formyl-THF) to tetrahydrofolate in an NADP(+)-dependent dehydrogenase reaction or an NADP(+)-independent hydrolase reaction. The hydrolase reaction occurs in a 310-amino acid long amino-terminal domain of FDH (N(t)-FDH), whereas the dehydrogenase reaction requires the full-length enzyme. The amino-terminal domain of FDH shares some sequence identity with several other enzymes utilizing 10-formyl-THF as a substrate. These enzymes have two strictly conserved residues, aspartate and histidine, in the putative catalytic center. We have shown recently that the conserved aspartate is involved in FDH catalysis. In the present work we studied the role of the conserved histidine, His(106), in FDH function. Site-directed mutagenesis experiments showed that replacement of the histidine with alanine, asparagine, aspartate, glutamate, glutamine, or arginine in N(t)-FDH resulted in expression of insoluble proteins. Replacement of the histidine with another positively charged residue, lysine, produced a soluble mutant with no hydrolase activity. The insoluble mutants refolded from inclusion bodies adopted a conformation inherent to the wild-type N(t)-FDH, but they did not exhibit any hydrolase activity. Substitution of alanine for three non-conserved histidines located close to the conserved one did not reveal any significant changes in the hydrolase activity of N(t)-FDH. Expressed full-length FDH with the substitution of lysine for the His(106) completely lost both the hydrolase and dehydrogenase activities. Thus, our study showed that His(106), besides being an important structural residue, is also directly involved in both the hydrolase and dehydrogenase mechanisms of FDH. Modeling of the putative hydrolase catalytic center/folate-binding site suggested that the catalytic residues, aspartate and histidine, are unlikely to be adjacent to the catalytic cysteine in the aldehyde dehydrogenase catalytic center. We hypothesize that 10-formyl-THF dehydrogenase reaction is not an independent reaction but is a combination of hydrolase and aldehyde dehydrogenase reactions.
Collapse
Affiliation(s)
- S A Krupenko
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425, USA.
| | | | | |
Collapse
|
40
|
Bertonati C, Marta M, Patamia M, Colella A, Pomponi M. Inhibition of AChE: structure-activity relationship among conformational transition of Trp84 and biomolecular rate constant. JOURNAL OF ENZYME INHIBITION 2001; 15:547-56. [PMID: 11140610 DOI: 10.3109/14756360009040709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In this study the authors attempt to correlate kinetic constants for carbamylation of AChE, by a series of carbamate inhibitors, with the conformational positioning of Trp84 in transition state complexes of the same carbamates with Torpedo AChE, as obtained by computerized molecular modelling. They present evidence for changes in the distance of the carbamates from the center of the indole ring which can be correlated with the bimolecular rate constants for inhibition. As a result the greater the distance from Trp84, the smaller the bimolecular inhibition constant value, ki (= k2/Ka), becomes. In conclusion, the value of the bimolecular rate constant for selected AChE inhibitors (structural changes that have been hypothesised or natural alkaloids of unknown activity) which possess similar size and rigidity, can be obtained. Under these conditions energy minimization alone seems to be sufficient even to accurately predict protein-substrate interactions that actually occur. Modelling studies also suggest that conformational re-orientation of Trp84 in the transition state could produce an overall movement of the Cys67-Cys94 loop.
Collapse
Affiliation(s)
- C Bertonati
- Istituto di Chimica e Chimica Clinica, Facoltà di Medicina, UCSC, Rome, Italy
| | | | | | | | | |
Collapse
|
41
|
Mølgaard A, Kauppinen S, Larsen S. Rhamnogalacturonan acetylesterase elucidates the structure and function of a new family of hydrolases. Structure 2000; 8:373-83. [PMID: 10801485 DOI: 10.1016/s0969-2126(00)00118-0] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND The complex polysaccharide rhamnogalacturonan constitutes a major part of the hairy region of pectin. It can have different types of carbohydrate sidechains attached to the rhamnose residues in the backbone of alternating rhamnose and galacturonic acid residues; the galacturonic acid residues can be methylated or acetylated. Aspergillus aculeatus produces enzymes that are able to perform a synergistic degradation of rhamnogalacturonan. The deacetylation of the backbone by rhamnogalacturonan acetylesterase (RGAE) is an essential prerequisite for the subsequent action of the enzymes that cleave the glycosidic bonds. RESULTS The structure of RGAE has been determined at 1.55 A resolution. RGAE folds into an alpha/beta/alpha structure. The active site of RGAE is an open cleft containing a serine-histidine-aspartic acid catalytic triad. The position of the three residues relative to the central parallel beta sheet and the lack of the nucleophilic elbow motif found in structures possessing the alpha/beta hydrolase fold show that RGAE does not belong to the alpha/beta hydrolase family. CONCLUSIONS Structural and sequence comparisons have revealed that, despite very low sequence similarities, RGAE is related to seven other proteins. They are all members of a new hydrolase family, the SGNH-hydrolase family, which includes the carbohydrate esterase family 12 as a distinct subfamily. The SGNH-hydrolase family is characterised by having four conserved blocks of residues, each with one completely conserved residue; serine, glycine, asparagine and histidine, respectively. Each of the four residues plays a role in the catalytic function.
Collapse
Affiliation(s)
- A Mølgaard
- Centre for Crystallographic Studies, University of Copenhagen, Copenhagen, DK-2100, Denmark
| | | | | |
Collapse
|
42
|
Jia Y, Kappock TJ, Frick T, Sinskey AJ, Stubbe J. Lipases provide a new mechanistic model for polyhydroxybutyrate (PHB) synthases: characterization of the functional residues in Chromatium vinosum PHB synthase. Biochemistry 2000; 39:3927-36. [PMID: 10747780 DOI: 10.1021/bi9928086] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Polyhydroxybutyrate (PHB) synthases catalyze the conversion of beta-hydroxybutyryl coenzyme A (HBCoA) to PHB. These enzymes require an active site cysteine nucleophile for covalent catalysis. A protein BLASTp search using the Class III Chromatium vinosum synthase sequence reveals high homology to prokaryotic lipases whose crystal structures are known. The homology is very convincing in the alpha-beta-elbow (with the active site nucleophile)-alpha-beta structure, residues 131-175 of the synthase. A conserved histidine of the Class III PHB synthases aligns with the active site histidine of the lipases using the ClustalW algorithm. This is intriguing as this histidine is approximately 200 amino acids removed in sequence space from the catalytic nucleophile. Different threading algorithms suggest that the Class III synthases belong to the alpha/beta hydrolase superfamily which includes prokaryotic lipases. Mutagenesis studies were carried out on C. vinosum synthase C149, H331, H303, D302, and C130 residues. These studies reveal that H331 is the general base catalyst that activates the nucleophile, C149, for covalent catalysis. The model indicates that C130 is not involved in catalysis as previously proposed [Müh, U., Sinskey, A. J., Kirby, D. P., Lane, W. S., and Stubbe, J. (1999) Biochemistry 38, 826-837]. Studies with D302 mutants suggest D302 functions as a general base catalyst in activation of the 3-hydroxyl of HBCoA (or a hydroxybutyrate acyl enzyme) for nucleophilic attack on the covalently linked thiol ester intermediate. The relationship of the lipase model to previous models based on fatty acid synthases is discussed.
Collapse
Affiliation(s)
- Y Jia
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | | | | | | | | |
Collapse
|
43
|
Jaeger KE, Dijkstra BW, Reetz MT. Bacterial biocatalysts: molecular biology, three-dimensional structures, and biotechnological applications of lipases. Annu Rev Microbiol 1999; 53:315-51. [PMID: 10547694 DOI: 10.1146/annurev.micro.53.1.315] [Citation(s) in RCA: 718] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bacteria produce and secrete lipases, which can catalyze both the hydrolysis and the synthesis of long-chain acylglycerols. These reactions usually proceed with high regioselectivity and enantioselectivity, and, therefore, lipases have become very important stereoselective biocatalysts used in organic chemistry. High-level production of these biocatalysts requires the understanding of the mechanisms underlying gene expression, folding, and secretion. Transcription of lipase genes may be regulated by quorum sensing and two-component systems; secretion can proceed either via the Sec-dependent general secretory pathway or via ABC transporters. In addition, some lipases need folding catalysts such as the lipase-specific foldases and disulfide-bond-forming proteins to achieve a secretion-competent conformation. Three-dimensional structures of bacterial lipases were solved to understand the catalytic mechanism of lipase reactions. Structural characteristics include an alpha/beta hydrolase fold, a catalytic triad consisting of a nucleophilic serine located in a highly conserved Gly-X-Ser-X-Gly pentapeptide, and an aspartate or glutamate residue that is hydrogen bonded to a histidine. Four substrate binding pockets were identified for triglycerides: an oxyanion hole and three pockets accommodating the fatty acids bound at position sn-1, sn-2, and sn-3. The differences in size and the hydrophilicity/hydrophobicity of these pockets determine the enantiopreference of a lipase. The understanding of structure-function relationships will enable researchers to tailor new lipases for biotechnological applications. At the same time, directed evolution in combination with appropriate screening systems will be used extensively as a novel approach to develop lipases with high stability and enantioselectivity.
Collapse
Affiliation(s)
- K E Jaeger
- Lehrstuhl Biologie der Mikroorganismen, Ruhr-Universität, Bochum, Germany.
| | | | | |
Collapse
|
44
|
Peters GH, Frimurer TM, Andersen JN, Olsen OH. Molecular dynamics simulations of protein-tyrosine phosphatase 1B. I. ligand-induced changes in the protein motions. Biophys J 1999; 77:505-15. [PMID: 10388775 PMCID: PMC1300347 DOI: 10.1016/s0006-3495(99)76907-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Activity of enzymes, such as protein tyrosine phosphatases (PTPs), is often associated with structural changes in the enzyme, resulting in selective and stereospecific reactions with the substrate. To investigate the effect of a substrate on the motions occurring in PTPs, we have performed molecular dynamics simulations of PTP1B and PTP1B complexed with a high-affinity peptide DADEpYL, where pY stands for phosphorylated tyrosine. The peptide sequence is derived from the epidermal growth factor receptor (EGFR988-993). Simulations were performed in water for 1 ns, and the concerted motions in the protein were analyzed using the essential dynamics technique. Our results indicate that the predominately internal motions in PTP1B occur in a subspace of only a few degrees of freedom. Upon substrate binding, the flexibility of the protein is reduced by approximately 10%. The largest effect is found in the protein region, where the N-terminal of the substrate is located, and in the loop region Val198-Gly209. Displacements in the latter loop are associated with the motions in the WPD loop, which contains a catalytically important aspartic acid. Estimation of the pKa of the active-site cysteine along the trajectory indicates that structural inhomogeneity causes the pKa to vary by approximately +/-1 pKa unit. In agreement with experimental observations, the active-site cysteine is negatively charged at physiological pH.
Collapse
Affiliation(s)
- G H Peters
- Department of Chemistry, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | | | | | | |
Collapse
|
45
|
Heikinheimo P, Goldman A, Jeffries C, Ollis DL. Of barn owls and bankers: a lush variety of alpha/beta hydrolases. Structure 1999; 7:R141-6. [PMID: 10404588 DOI: 10.1016/s0969-2126(99)80079-3] [Citation(s) in RCA: 196] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
alpha/beta Hydrolase fold proteins are an important, diverse, widespread group of enzymes not yet fully exploited by structural biologists. We describe the current state of knowledge of this family, and suggest a smaller definition of the required core and some possible future avenues of exploration.
Collapse
|
46
|
Zhang L, Godzik A, Skolnick J, Fetrow JS. Functional analysis of the Escherichia coli genome for members of the alpha/beta hydrolase family. FOLDING & DESIGN 1999; 3:535-48. [PMID: 9889164 DOI: 10.1016/s1359-0278(98)00069-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND Database-searching methods based on sequence similarity have become the most commonly used tools for characterizing newly sequenced proteins. Due to the often underestimated functional diversity in protein families and superfamilies, however, it is difficult to make the characterization specific and accurate. In this work, we have extended a method for active-site identification from predicted protein structures. RESULTS The structural conservation and variation of the active sites of the alpha/beta hydrolases with known structures were studied. The similarities were incorporated into a three-dimensional motif that specifies essential requirements for the enzymatic functions. A threading algorithm was used to align 651 Escherichia coli open reading frames (ORFs) to one of the members of the alpha/beta hydrolase fold family. These ORFs were then screened according to our three-dimensional motif and with an extra requirement that demands conservation of the key active-site residues among the proteins that bear significant sequence similarity to the ORFs. 17 ORFs from E. coli were predicted to have hydrolase activity and their putative active-site residues were identified. Most were in agreement with the experiments and results of other database-searching methods. The study further suggests that YHET_ECOLI, a hypothetical protein classified as a member of the UPF0017 family (an uncharacterized protein family), bears all the hallmarks of the alpha/beta hydrolase family. CONCLUSIONS The novel feature of our method is that it uses three-dimensional structural information for function prediction. The results demonstrate the importance and necessity of such a method to fill the gap between sequence alignment and function prediction; furthermore, the method provides a way to verify the structure predictions, which enables an expansion of the applicable scope of the threading algorithms.
Collapse
Affiliation(s)
- L Zhang
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
47
|
Masai E, Shinohara S, Hara H, Nishikawa S, Katayama Y, Fukuda M. Genetic and biochemical characterization of a 2-pyrone-4, 6-dicarboxylic acid hydrolase involved in the protocatechuate 4, 5-cleavage pathway of Sphingomonas paucimobilis SYK-6. J Bacteriol 1999; 181:55-62. [PMID: 9864312 PMCID: PMC103531 DOI: 10.1128/jb.181.1.55-62.1999] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sphingomonas paucimobilis SYK-6 is able to grow on a wide variety of dimeric lignin compounds with guaiacyl moieties, which are converted into protocatechuate by the actions of lignin degradation enzymes in this strain. Protocatechuate is a key metabolite in the SYK-6 degradation of lignin compounds with guaiacyl moieties, and it is thought that it degrades to pyruvate and oxaloacetate via the protocatechuate 4,5-cleavage pathway. In a 10.5-kb EcoRI fragment carrying the protocatechuate 4,5-dioxygenase gene (ligAB) (Y. Noda, S. Nishikawa, K. Shiozuka, H. Kadokura, H. Nakajima, K. Yoda, Y. Katayama, N. Morohoshi, T. Haraguchi, and M. Yamasaki. J. Bacteriol. 172:2704-2709, 1990), we found the ligI gene encoding 2-pyrone-4, 6-dicarboxylic acid (PDC) hydrolase. PDC hydrolase is a member of this pathway and catalyzes the interconversion between PDC and 4-carboxy-2-hydroxymuconic acid (CHM). The ligI gene is thought to be transcribed divergently from ligAB and consists of an 879-bp open reading frame encoding a polypeptide with a molecular mass of 32,737 Da. The ligI gene product (LigI), expressed in Escherichia coli, was purified to near-homogeneity and was estimated to be a monomer (31.6 kDa) by gel filtration chromatography. The isoelectric point was determined to be 4.9. The optimum pH for hydrolysis of PDC is 8.5, the optimum pH for synthesis of PDC is 6.0 to 7.5, and the Km values for PDC and CHM are 74 and 49 microM, respectively. LigI activity was inhibited by the addition of thiol reagents, suggesting that the cysteine residue is a catalytic site. LigI is more resistant to metal ion inhibition than the PDC hydrolases of Pseudomonas ochraceae (K. Maruyama, J. Biochem. 93:557-565, 1983) and Comamonas testosteroni (P. J. Kersten, S. Dagley, J. W. Whittaker, D. M. Arciero, and J. D. Lipscomb, J. Bacteriol. 152:1154-1162, 1982). The insertional inactivation of the ligI gene in S. paucimobilis SYK-6 led to the complete loss of PDC hydrolase activity and to a growth defect on vanillic acid; it did not affect growth on syringic acid. These results indicate that the ligI gene is essential for the growth of SYK-6 on vanillic acid but is not responsible for the growth of SYK-6 on syringic acid.
Collapse
Affiliation(s)
- E Masai
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | | | | | | | | | | |
Collapse
|
48
|
Quirk DJ, Park C, Thompson JE, Raines RT. His...Asp catalytic dyad of ribonuclease A: conformational stability of the wild-type, D121N, D121A, and H119A enzymes. Biochemistry 1998; 37:17958-64. [PMID: 9922164 DOI: 10.1021/bi981688j] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Residue His119 acts as an acid/base during the cleavage/hydrolysis reactions catalyzed by bovine pancreatic ribonuclease A (RNase A). In the native enzyme, His119 forms a hydrogen bond with Asp121. This His...Asp dyad is conserved in all homologous pancreatic ribonucleases of known sequence. Yet, replacing Asp121 with an asparagine or alanine residue does not have a substantial effect on either structure or function [Schultz, L. W., Quirk, D. J., and Raines, R. T. (1998) Biochemistry 37, 8886-8898]. Here, the pH dependencies of the conformational stabilities of wild-type RNase A and the D121N, D121A, and H119A variants were determined by monitoring thermal stability over the pH range 1.2-6.0. Replacing Asp121 with an asparagine or alanine residue results in a loss of conformational stability at pH 6.0 of deltadeltaG(o) = 2.0 kcal/mol, from a total of 9.0 kcal/mol. The magnitude of this loss is similar to that to transition-state binding during catalysis. As the pH decreases, the aspartate residue becomes protonated and deltadeltaG(o) decreases. D121N RNase A and D121A RNase A are approximately equivalent in conformational stability. This equivalence arises from compensating changes to enthalpy and entropy. A general analytical method was developed to determine the value of the pKa of a residue in the native and denatured states of a protein by comparing the pH-stability profile of the wild-type protein with that of a variant in which the ionizable residue is replaced with a nonionizable one. Accordingly, Asp121 was found to have pKa values of approximately 2.4 and 3.4 in the native and denatured states, respectively, of wild-type RNase A. This change in pKa can account fully for the differential effects of pH on the conformational stabilities of the wild-type and variant proteins. We conclude that the His...Asp catalytic dyad in pancreatic ribonucleases has two significant roles: (1) to position the proper tautomer of His119 for catalysis and (2) to enhance the conformational stability of the native enzyme. Most enzymic residues contribute to catalysis or stability (or neither). Asp121 of RNase A is a rare example of a residue that contributes equally to both.
Collapse
Affiliation(s)
- D J Quirk
- Department of Biochemistry, University of Wisconsin-Madison 53706, USA
| | | | | | | |
Collapse
|
49
|
Kabashima T, Fujii M, Meng Y, Ito K, Yoshimoto T. Prolyl endopeptidase from Sphingomonas capsulata: isolation and characterization of the enzyme and nucleotide sequence of the gene. Arch Biochem Biophys 1998; 358:141-8. [PMID: 9750174 DOI: 10.1006/abbi.1998.0836] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Prolyl endopeptidase (prolyl oligopeptidase, EC 3.4.21.26) was purified from Sphingomonas capsulata IFO 12533, and its gene was cloned and expressed in Escherichia coli. The recombinant enzyme was markedly inhibited by diisopropyl phosphofluoridate and hardly affected by SH reagents or metal chelators, similar to the native enzyme purified from S. capsulata. Nucleotide sequencing analysis revealed an open reading frame of 2169 bp, coding for a protein of 723 amino acids with a predicted molecular weight of 78,433. The amino acid sequence was 39.6, 45.3, 38.9, and 38.3% homologous to Flavobacterium meningosepticum, Aeromonas hydrophila, porcine brain, and human T cell prolyl endopeptidase, respectively. A region near the C-terminus and the region containing the putative catalytic triad residues were highly conserved. The enzyme was crystallized by the hanging drop vapor diffusion method, using ammonium sulfate as a precipitant.
Collapse
Affiliation(s)
- T Kabashima
- School of Pharmaceutical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852, Japan.
| | | | | | | | | |
Collapse
|
50
|
Anthonsen HW, Baptista A, Drabløs F, Martel P, Petersen SB, Sebastião M, Vaz L. Lipases and esterases: a review of their sequences, structure and evolution. BIOTECHNOLOGY ANNUAL REVIEW 1998; 1:315-71. [PMID: 9704093 DOI: 10.1016/s1387-2656(08)70056-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
This chapter aims to provide a brief review on the enzyme family of lipases and esterases. The sequences, 3D structures and pH dependent electrostatic signatures are presented and analyzed. Since the family comprises more than 100 sequences, we have tried to focus on the most interesting features from our perspective, which translates into finding similarities and differences between members of this family, in particular in and around the active sites, and to identify residues that are partially or totally conserved. Such residues we believe are either important for maintaining the structural scaf-fold of the protein or to maintain activity or specificity. The structure function relationship for these proteins is therefore of central interest. Can we uniquely identify a protein from this large family of sequences--and if so, what is the identifier? The protein family displays some highly complex features: many of the proteins are interfacially activated, i.e. they need to be in physical contact with the aggregated substrate. Access to the active site is blocked with either a loop fragment or an alpha-helical fragment in the absence of interfacial contact. Although the number of known, relevant protein 3D structures is growing steadily, we are nevertheless faced with a virtual explosion in the number of known or deduced amino acid sequences. It is therefore unrealistic to expect that all protein sequences within the foreseeable future will have their 3D structure determined by X-ray diffractional analysis or through other methods. When feasible the gene and/or the amino acid sequences will be analyzed from an evolutionary perspective. As the 3D folds are often remarkably similar, both among the triglyceride lipases as well as among the esterases, the functional diversities (e.g. specificity) must originate in differences in surface residue utilization, in particular of charged residues. The pH variations in the isopotential surfaces of some of the most interesting lipases are presented and a qualitative interpretation proposed. Finally we illustrate that NMR has potential for becoming an important tool in the study of lipases, esterases and their kinetics.
Collapse
|