1
|
Torres-Sánchez L, Sana TG, Decossas M, Hashem Y, Krasteva PV. Structures of the P. aeruginosa FleQ-FleN master regulators reveal large-scale conformational switching in motility and biofilm control. Proc Natl Acad Sci U S A 2023; 120:e2312276120. [PMID: 38051770 PMCID: PMC10723142 DOI: 10.1073/pnas.2312276120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/01/2023] [Indexed: 12/07/2023] Open
Abstract
Pseudomonas aeruginosa can cause a wide array of chronic and acute infections associated with its ability to rapidly switch between planktonic, biofilm, and dispersed lifestyles, each with a specific arsenal for bacterial survival and virulence. At the cellular level, many of the physiological transitions are orchestrated by the intracellular second messenger c-di-GMP and its receptor-effector FleQ. A bacterial enhancer binding protein, FleQ acts as a master regulator of both flagellar motility and adherence factor secretion and uses remarkably different transcription activation mechanisms depending on its dinucleotide loading state, adenosine triphosphatase (ATPase) activity, interactions with polymerase sigma (σ) factors, and complexation with a second ATPase, FleN. How the FleQ-FleN tandem can exert diverse effects through recognition of a conserved FleQ binding consensus has remained enigmatic. Here, we provide cryogenic electron microscopy (cryo-EM) structures of both c-di-GMP-bound and c-di-GMP-free FleQ-FleN complexes which deepen our understanding of the proteins' (di)nucleotide-dependent conformational switching and fine-tuned roles in gene expression regulation.
Collapse
Affiliation(s)
- Lucía Torres-Sánchez
- Université de Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, PessacF-33600, France
- Structural Biology of Biofilms Group, European Institute of Chemistry and Biology, PessacF-33600, France
- Doctoral School of Therapeutic Innovation (ITFA), Université Paris-Saclay, Gif-sur-YvetteF-91190, France
| | - Thibault Géry Sana
- Université de Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, PessacF-33600, France
- Structural Biology of Biofilms Group, European Institute of Chemistry and Biology, PessacF-33600, France
| | - Marion Decossas
- Université de Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, PessacF-33600, France
- Structural Biology of Biofilms Group, European Institute of Chemistry and Biology, PessacF-33600, France
| | - Yaser Hashem
- ARNA Laboratory, European Institute of Chemistry and Biology, U1212 INSERM, UMR5320 CNRS, Université de Bordeaux, PessacF-33600, France
| | - Petya Violinova Krasteva
- Université de Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, PessacF-33600, France
- Structural Biology of Biofilms Group, European Institute of Chemistry and Biology, PessacF-33600, France
| |
Collapse
|
2
|
Parvaiz N, Shahbaz M, Azam SS. Role of hinge motion and ATP dynamics in factors for inversion stimulation FIS protein deduced while targeting drug resistant Orientia tsutsugamushi. J Mol Graph Model 2023; 120:108425. [PMID: 36758328 DOI: 10.1016/j.jmgm.2023.108425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/31/2023] [Accepted: 01/31/2023] [Indexed: 02/09/2023]
Abstract
Orientia tsutsugamushi, the causative agent of scrub typhus has been found resistant to various classes of antibiotics such as penicillins, gentamycin and cephalosporins. Review of current literature suggests that the prevalence of scrub typhus has increased globally. Therefore, the current study has aimed at exploring the genome of O. tsutsugamushi to identify potential drug target proteins that can be used for developing novel antibiotics against the pathogen. Subtractive proteomics approach has revealed FIS as a potential drug target protein involved in two component system (TCS), a signaling pathway crucial for bacteria to survive and adjust in changing environmental conditions. Molecular docking studies have revealed compound-356 (CHEMBRIDGE-10040641-3710.356) as a potential inhibitor in both chains A and B of the FIS protein. Simulation results suggest that the docked complex has remained stable and compact throughout the 200 ns run. Significant conformational changes including the hinge motion was observed in the DNA binding domain. Furthermore, the presence of salt bridge between GLU910 and ARG417, rearrangement of interaction residues and displacement of ATP in the central AAA + domain upon binding to the inhibitor were also observed playing a role in stabilizing the protein structure.
Collapse
Affiliation(s)
- Nousheen Parvaiz
- Computational Biology Lab, National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Maham Shahbaz
- Computational Biology Lab, National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Syed Sikander Azam
- Computational Biology Lab, National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| |
Collapse
|
3
|
Abstract
How genomes are organized within cells and how the 3D architecture of a genome influences cellular functions are significant questions in biology. A bacterial genomic DNA resides inside cells in a highly condensed and functionally organized form called nucleoid (nucleus-like structure without a nuclear membrane). The Escherichia coli chromosome or nucleoid is composed of the genomic DNA, RNA, and protein. The nucleoid forms by condensation and functional arrangement of a single chromosomal DNA with the help of chromosomal architectural proteins and RNA molecules as well as DNA supercoiling. Although a high-resolution structure of a bacterial nucleoid is yet to come, five decades of research has established the following salient features of the E. coli nucleoid elaborated below: 1) The chromosomal DNA is on the average a negatively supercoiled molecule that is folded as plectonemic loops, which are confined into many independent topological domains due to supercoiling diffusion barriers; 2) The loops spatially organize into megabase size regions called macrodomains, which are defined by more frequent physical interactions among DNA sites within the same macrodomain than between different macrodomains; 3) The condensed and spatially organized DNA takes the form of a helical ellipsoid radially confined in the cell; and 4) The DNA in the chromosome appears to have a condition-dependent 3-D structure that is linked to gene expression so that the nucleoid architecture and gene transcription are tightly interdependent, influencing each other reciprocally. Current advents of high-resolution microscopy, single-molecule analysis and molecular structure determination of the components are expected to reveal the total structure and function of the bacterial nucleoid.
Collapse
Affiliation(s)
- Subhash C. Verma
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail: (SCV); (SLA)
| | - Zhong Qian
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sankar L. Adhya
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail: (SCV); (SLA)
| |
Collapse
|
4
|
Bacterial pathogen gene regulation: a DNA-structure-centred view of a protein-dominated domain. Clin Sci (Lond) 2017; 130:1165-77. [PMID: 27252403 DOI: 10.1042/cs20160024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 04/15/2016] [Indexed: 02/03/2023]
Abstract
The mechanisms used by bacterial pathogens to regulate the expression of their genes, especially their virulence genes, have been the subject of intense investigation for several decades. Whole genome sequencing projects, together with more targeted studies, have identified hundreds of DNA-binding proteins that contribute to the patterns of gene expression observed during infection as well as providing important insights into the nature of the gene products whose expression is being controlled by these proteins. Themes that have emerged include the importance of horizontal gene transfer to the evolution of pathogens, the need to impose regulatory discipline upon these imported genes and the important roles played by factors normally associated with the organization of genome architecture as regulatory principles in the control of virulence gene expression. Among these architectural elements is the structure of DNA itself, its variable nature at a topological rather than just at a base-sequence level and its ability to play an active (as well as a passive) part in the gene regulation process.
Collapse
|
5
|
Bagchi A. Structural characterization of Fis — A transcriptional regulator from pathogenic Pasteurella multocida essential for expression of virulence factors. Gene 2015; 554:249-53. [DOI: 10.1016/j.gene.2014.10.044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 10/07/2014] [Accepted: 10/26/2014] [Indexed: 10/24/2022]
|
6
|
DNA recognition by a σ(54) transcriptional activator from Aquifex aeolicus. J Mol Biol 2014; 426:3553-68. [PMID: 25158097 PMCID: PMC4188747 DOI: 10.1016/j.jmb.2014.08.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 08/02/2014] [Accepted: 08/16/2014] [Indexed: 01/07/2023]
Abstract
Transcription initiation by bacterial σ(54)-polymerase requires the action of a transcriptional activator protein. Activators bind sequence-specifically upstream of the transcription initiation site via a DNA-binding domain (DBD). The structurally characterized DBDs from activators all belong to the Fis (factor for inversion stimulation) family of helix-turn-helix DNA-binding proteins. We report here structures of the free and DNA-bound forms of the DBD of NtrC4 (4DBD) from Aquifex aeolicus, a member of the NtrC family of σ(54) activators. Two NtrC4-binding sites were identified upstream (-145 and -85bp) from the start of the lpxC gene, which is responsible for the first committed step in lipid A biosynthesis. This is the first experimental evidence for σ(54) regulation in lpxC expression. 4DBD was crystallized both without DNA and in complex with the -145-binding site. The structures, together with biochemical data, indicate that NtrC4 binds to DNA in a manner that is similar to that of its close homolog, Fis. The greater sequence specificity for the binding of 4DBD relative to Fis seems to arise from a larger number of base-specific contacts contributing to affinity than for Fis.
Collapse
|
7
|
Structural change of DNA induced by nucleoid proteins: growth phase-specific Fis and stationary phase-specific Dps. Biophys J 2014; 105:1037-44. [PMID: 23972855 DOI: 10.1016/j.bpj.2013.07.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Revised: 07/10/2013] [Accepted: 07/15/2013] [Indexed: 12/29/2022] Open
Abstract
The effects of nucleoid proteins Fis and Dps of Escherichia coli on the higher order structure of a giant DNA were studied, in which Fis and Dps are known to be expressed mainly in the exponential growth phase and stationary phase, respectively. Fis causes loose shrinking of the higher order structure of a genome-sized DNA, T4 DNA (166 kbp), in a cooperative manner, that is, the DNA conformational transition proceeds through the appearance of a bimodal size distribution or the coexistence of elongated coil and shrunken globular states. The effective volume of the loosely shrunken state induced by Fis is 30-60 times larger than that of the compact state induced by spermidine, suggesting that cellular enzymes can access for DNA with the shrunken state but cannot for the compact state. Interestingly, Dps tends to inhibit the Fis-induced shrinkage of DNA, but promotes DNA compaction in the presence of spermidine. These characteristic effects of nucleotide proteins on a giant DNA are discussed by adopting a simple theoretical model with a mean-field approximation.
Collapse
|
8
|
Cline SD, Saleem S, Daines DA. Regulation of the vapBC-1 toxin-antitoxin locus in nontypeable Haemophilus influenzae. PLoS One 2012; 7:e32199. [PMID: 22427824 PMCID: PMC3302801 DOI: 10.1371/journal.pone.0032199] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Accepted: 01/24/2012] [Indexed: 12/27/2022] Open
Abstract
Nontypeable Haemophilus influenzae (NTHi) are human-adapted commensal bacteria that can cause a number of chronic mucosal infections, including otitis media and bronchitis. One way for these organisms to survive antibiotic therapy and cause recurrent disease is to stop replicating, as most antimicrobials target essential biosynthetic pathways. Toxin-antitoxin (TA) gene pairs have been shown to facilitate entry into a reversible bacteriostatic state. Characteristically, these operons encode a protein toxin and an antitoxin that associate following translation to form a nontoxic complex, which then binds to and regulates the cognate TA promoter. Under stressful conditions, the labile antitoxin is degraded and the complex disintegrates, freeing the stable toxin to facilitate growth arrest. How these events affected the regulation of the TA locus, as well as how the transcription of the operon was subsequently returned to its normal state upon resumption of growth, was not fully understood. Here we show that expression of the NTHi vapBC-1 TA locus is repressed by a complex of VapB-1 and VapC-1 under conditions favorable for growth, and activated by the global transactivator Factor for Inversion Stimulation (Fis) upon nutrient upshift from stationary phase. Further, we demonstrate for the first time that the VapC-1 toxin alone can bind to its cognate TA locus control region and that the presence of VapB-1 directs the binding of the VapBC-1 complex in the transcriptional regulation of vapBC-1.
Collapse
Affiliation(s)
| | | | - Dayle A. Daines
- Division of Basic Medical Sciences, Mercer University School of Medicine, Macon, Georgia, United States of America
- * E-mail:
| |
Collapse
|
9
|
Muñiz VA, Srinivasan S, Boswell SA, Meinhold DW, Childs T, Osuna R, Colón W. The role of the local environment of engineered Tyr to Trp substitutions for probing the denaturation mechanism of FIS. Protein Sci 2011; 20:302-12. [PMID: 21280122 DOI: 10.1002/pro.561] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Factor for inversion stimulation (FIS), a 98-residue homodimeric protein, does not contain tryptophan (Trp) residues but has four tyrosine (Tyr) residues located at positions 38, 51, 69, and 95. The equilibrium denaturation of a P61A mutant of FIS appears to occur via a three-state (N(2) ⇆ I(2) ⇆ 2U) process involving a dimeric intermediate (I(2)). Although it was suggested that this intermediate had a denatured C-terminus, direct evidence was lacking. Therefore, three FIS double mutants, P61A/Y38W, P61A/Y69W, and P61A/Y95W were made, and their denaturation was monitored by circular dichroism and Trp fluorescence. Surprisingly, the P61A/Y38W mutant best monitored the N(2) ⇆ I(2) transition, even though Trp38 is buried within the dimer removed from the C-terminus. In addition, although Trp69 is located on the protein surface, the P61A/Y69W FIS mutant exhibited clearly biphasic denaturation curves. In contrast, P61A/Y95W FIS was the least effective in decoupling the two transitions, exhibiting a monophasic fluorescence transition with modest concentration-dependence. When considering the local environment of the Trp residues and the effect of each mutation on protein stability, these results not only confirm that P61A FIS denatures via a dimeric intermediate involving a disrupted C-terminus but also suggest the occurrence of conformational changes near Tyr38. Thus, the P61A mutation appears to compromise the denaturation cooperativity of FIS by failing to propagate stability to those regions involved mostly in intramolecular interactions. Furthermore, our results highlight the challenge of anticipating the optimal location to engineer a Trp residue for investigating the denaturation mechanism of even small proteins.
Collapse
Affiliation(s)
- Virginia A Muñiz
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Structure of transcription factor HetR required for heterocyst differentiation in cyanobacteria. Proc Natl Acad Sci U S A 2011; 108:10109-14. [PMID: 21628585 DOI: 10.1073/pnas.1106840108] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
HetR is an essential regulator of heterocyst development in cyanobacteria. HetR binds to a DNA palindrome upstream of the hetP gene. We report the crystal structure of HetR from Fischerella at 3.0 Å. The protein is a dimer comprised of a central DNA-binding unit containing the N-terminal regions of the two subunits organized with two helix-turn-helix motifs; two globular flaps extending in opposite directions; and a hood over the central core formed from the C-terminal subdomains. The flaps and hood have no structural precedent in the protein database, therefore representing new folds. The structural assignments are supported by site-directed mutagenesis and DNA-binding studies. We suggest that HetR serves as a scaffold for assembly of transcription components critical for heterocyst development.
Collapse
|
11
|
Sardiwal S, Santini JM, Osborne TH, Djordjevic S. Characterization of a two-component signal transduction system that controls arsenite oxidation in the chemolithoautotroph NT-26. FEMS Microbiol Lett 2010; 313:20-8. [PMID: 21039781 DOI: 10.1111/j.1574-6968.2010.02121.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
NT-26 is a chemolithoautotrophic arsenite oxidizer. Understanding the mechanisms of arsenite signalling, tolerance and oxidation by NT-26 will have significant implications for its use in bioremediation and arsenite sensing. We have identified the histidine kinase (AroS) and the cognate response regulator (AroR) involved in the arsenite-dependent transcriptional regulation of the arsenite oxidase aroBA operon. AroS contains a single periplasmic sensory domain that is linked through transmembrane helices to the HAMP domain that transmits the signal to the kinase core of the protein. AroR belongs to a family of AAA+ transcription regulators that interact with DNA through a helix-turn-helix domain. The presence of the AAA+ domain as well as the RNA polymerase σ(54) -interaction sequence motif suggests that this protein regulates transcription through interaction with RNA polymerase in a σ(54) -dependent fashion. The kinase core of AroS and the receiver domain of AroR were heterologously expressed and purified and their autophosphorylation and transphosphorylation activities were confirmed. Using site-directed mutagenesis, we have identified the phosphorylation sites on both proteins. Mutational analysis in NT-26 confirmed that both proteins are essential for arsenite oxidation and the AroS mutant affected growth with arsenite, also implicating it in the regulation of arsenite tolerance. Lastly, arsenite sensing does not appear to involve thiol chemistry.
Collapse
Affiliation(s)
- Sunita Sardiwal
- Division of Biosciences, Institute of Structural and Molecular Biology, University College London, London, UK
| | | | | | | |
Collapse
|
12
|
Shao Y, Feldman-Cohen LS, Osuna R. Biochemical identification of base and phosphate contacts between Fis and a high-affinity DNA binding site. J Mol Biol 2008; 380:327-39. [PMID: 18514225 DOI: 10.1016/j.jmb.2008.04.075] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Revised: 04/23/2008] [Accepted: 04/29/2008] [Indexed: 10/22/2022]
Abstract
Fis (factor for inversion stimulation) is a nucleoid-associated protein in Escherichia coli and other bacteria that stimulates certain site-specific DNA recombination events, alters DNA topology, and serves as a global gene regulator. DNA binding is central to the functions of Fis and involves a helix-turn-helix DNA binding motif located in the carboxy-terminal region. Specific DNA binding is observed at a number of sites exhibiting poorly related sequences. Such interactions require four critical base pairs positioned -7, -3, +3, and +7 nucleotides relative to the central nucleotide of a 15-bp core-binding site. To further understand how Fis interacts with DNA, we identified the positions of 14 DNA phosphates (based on ethylation interference assays) that are required for Fis binding. These are the 5' phosphates of the nucleotides at positions -8, -7, -6, +1, +2, +3, and +4 relative to the central nucleotide on both DNA strands. Another five phosphates located in the flanking regions from positions +10 through +14 can serve as additional contact sites. Using a combination of biochemical approaches and various mutant Fis proteins, we probed possible interactions between several key Fis residues and DNA bases or phosphates within a high-affinity binding site. We provide evidence in support of interactions between the R85 Fis residue and a highly conserved guanine at position -7 and between T87 and the critical base pairs at -3 and +3. In addition, we present evidence in support of interactions between N84 and the phosphate 5' to the base at +4, between R89 and the -7 phosphate, between T87 and the +3 and +4 phosphates, and between K90 and the +3 phosphate. This work provides functional evidence for some of the most critical interactions between Fis and DNA required for a high binding affinity and demonstrates the large contribution made by numerous phosphates to the stability of the Fis-DNA complex.
Collapse
Affiliation(s)
- Yongping Shao
- Department of Biological Sciences, University at Albany, 1400 Washington Avenue, Albany, NY 12222, USA
| | | | | |
Collapse
|
13
|
Shao Y, Feldman-Cohen LS, Osuna R. Functional characterization of the Escherichia coli Fis-DNA binding sequence. J Mol Biol 2007; 376:771-85. [PMID: 18178221 DOI: 10.1016/j.jmb.2007.11.101] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2007] [Revised: 11/29/2007] [Accepted: 11/30/2007] [Indexed: 12/24/2022]
Abstract
The Escherichia coli protein Fis is remarkable for its ability to interact specifically with DNA sites of highly variable sequences. The mechanism of this sequence-flexible DNA recognition is not well understood. In a previous study, we examined the contributions of Fis residues to high-affinity binding at different DNA sequences using alanine-scanning mutagenesis and identified several key residues for Fis-DNA recognition. In this work, we investigated the contributions of the 15-bp core Fis binding sequence and its flanking regions to Fis-DNA interactions. Systematic base-pair replacements made in both half sites of a palindromic Fis binding sequence were examined for their effects on the relative Fis binding affinity. Missing contact assays were also used to examine the effects of base removal within the core binding site and its flanking regions on the Fis-DNA binding affinity. The results revealed that: (1) the -7G and +3Y bases in both DNA strands (relative to the central position of the core binding site) are major determinants for high-affinity binding; (2) the C(5) methyl group of thymine, when present at the +4 position, strongly hinders Fis binding; and (3) AT-rich sequences in the central and flanking DNA regions facilitate Fis-DNA interactions by altering the DNA structure and by increasing the local DNA flexibility. We infer that the degeneracy of specific Fis binding sites results from the numerous base-pair combinations that are possible at noncritical DNA positions (from -6 to -4, from -2 to +2, and from +4 to +6), with only moderate penalties on the binding affinity, the roughly similar contributions of -3A or G and +3T or C to the binding affinity, and the minimal requirement of three of the four critical base pairs to achieve considerably high binding affinities.
Collapse
Affiliation(s)
- Yongping Shao
- Department of Biological Sciences, University at Albany, 1400 Washington Avenue, Albany, NY 12222, USA
| | | | | |
Collapse
|
14
|
Moriarty DF, Fiorillo C, Miller C, Colón W. A truncated peptide model of the mutant P61A FIS forms a stable dimer. BIOCHIMICA ET BIOPHYSICA ACTA 2007; 1774:78-85. [PMID: 17118726 DOI: 10.1016/j.bbapap.2006.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2006] [Revised: 09/13/2006] [Accepted: 09/19/2006] [Indexed: 05/12/2023]
Abstract
Factor for inversion stimulation (FIS) is a 98-residue homodimeric DNA-binding protein involved in several different cellular processes including DNA inversion and the regulation of multiple genes. FIS contains a flexible and functionally important N-terminus followed by four helices (A-D), the last two of which consist of the DNA-binding region. Helix B, which comprises the main dimerization interface has a 20 degrees kink at its center that was originally thought to be caused by the presence of a proline at position 61. However, it was later shown that the kink remained largely intact and that FIS retained its native-like function when the proline was mutated to an alanine. We previously showed that the P61A mutation increased the stability of FIS, but decreased its equilibrium denaturation cooperativity apparently due to preferential stabilization of the B-helix. Here we studied a peptide of P61A FIS, corresponding to residues 26-71 (26-71(A3) FIS), which encompasses the dimer interface (helices A and B). Circular dichroism (CD) and size-exclusion chromatography/multi-angle light scattering showed that the peptide was alpha-helical and dimeric, respectively, as expected based on the 3D structure of FIS. Urea-induced equilibrium denaturation experiments monitored by far-UV CD revealed a concentration-dependent transition, and data analysis based on a N2<-->2U model yielded a DeltaG of approximately -10 kcal/mol. Our results suggest that 26-71(A3) FIS can form a stable dimeric structure despite lacking the N- and C-terminus of native FIS.
Collapse
Affiliation(s)
- Daniel F Moriarty
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
| | | | | | | |
Collapse
|
15
|
Abstract
Bacteria, like eukaryotic organisms, must compact the DNA molecule comprising their genome and form a functional chromosome. Yet, bacteria do it differently. A number of factors contribute to genome compaction and organization in bacteria, including entropic effects, supercoiling and DNA-protein interactions. A gamut of new experimental techniques have allowed new advances in the investigation of these factors, and spurred much interest in the dynamic response of the chromosome to environmental cues, segregation, and architecture, during both exponential and stationary phases. We review these recent developments with emphasis on the multifaceted roles that DNA-protein interactions play.
Collapse
Affiliation(s)
- Joel Stavans
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
16
|
Ohniwa RL, Morikawa K, Kim J, Ohta T, Ishihama A, Wada C, Takeyasu K. Dynamic state of DNA topology is essential for genome condensation in bacteria. EMBO J 2006; 25:5591-602. [PMID: 17093499 PMCID: PMC1679767 DOI: 10.1038/sj.emboj.7601414] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2006] [Accepted: 10/06/2006] [Indexed: 11/09/2022] Open
Abstract
In bacteria, Dps is one of the critical proteins to build up a condensed nucleoid in response to the environmental stresses. In this study, we found that the expression of Dps and the nucleoid condensation was not simply correlated in Escherichia coli, and that Fis, which is an E. coli (gamma-Proteobacteria)-specific nucleoid protein, interfered with the Dps-dependent nucleoid condensation. Atomic force microscopy and Northern blot analyses indicated that the inhibitory effect of Fis was due to the repression of the expression of Topoismerase I (Topo I) and DNA gyrase. In the Deltafis strain, both topA and gyrA/B genes were found to be upregulated. Overexpression of Topo I and DNA gyrase enhanced the nucleoid condensation in the presence of Dps. DNA-topology assays using the cell extract showed that the extracts from the Deltafis and Topo I-/DNA gyrase-overexpressing strains, but not the wild-type extract, shifted the population toward relaxed forms. These results indicate that the topology of DNA is dynamically transmutable and that the topology control is important for Dps-induced nucleoid condensation.
Collapse
MESH Headings
- Bacterial Outer Membrane Proteins/antagonists & inhibitors
- Bacterial Outer Membrane Proteins/genetics
- Bacterial Outer Membrane Proteins/metabolism
- Blotting, Northern
- Chromosomes, Bacterial/chemistry
- Chromosomes, Bacterial/metabolism
- Chromosomes, Bacterial/ultrastructure
- DNA Gyrase/genetics
- DNA Gyrase/metabolism
- DNA Topoisomerases, Type I/genetics
- DNA Topoisomerases, Type I/metabolism
- DNA, Bacterial/chemistry
- DNA, Bacterial/metabolism
- DNA, Bacterial/ultrastructure
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Escherichia coli Proteins/antagonists & inhibitors
- Escherichia coli Proteins/genetics
- Escherichia coli Proteins/metabolism
- Escherichia coli Proteins/physiology
- Factor For Inversion Stimulation Protein
- Gene Expression Regulation, Bacterial
- Gene Expression Regulation, Enzymologic
- Genome, Bacterial
- Microscopy, Atomic Force
- Nucleic Acid Conformation
- Oxidative Stress
- Transcription Factors/genetics
- Transcription Factors/physiology
Collapse
Affiliation(s)
- Ryosuke L Ohniwa
- Laboratory of Plasma Membrane and Nuclear Signaling, Kyoto University Graduate School of Biostudies, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, Japan.
| | | | | | | | | | | | | |
Collapse
|
17
|
Feldman-Cohen LS, Shao Y, Meinhold D, Miller C, Colón W, Osuna R. Common and variable contributions of Fis residues to high-affinity binding at different DNA sequences. J Bacteriol 2006; 188:2081-95. [PMID: 16513738 PMCID: PMC1428148 DOI: 10.1128/jb.188.6.2081-2095.2006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fis is a nucleoid-associated protein that interacts with poorly related DNA sequences with a high degree of specificity. A difference of more than 3 orders of magnitude in apparent Kd values was observed between specific (Kd, approximately 1 to 4 nM) and nonspecific (Kd, approximately 4 microM) DNA binding. To examine the contributions of Fis residues to the high-affinity binding at different DNA sequences, 13 alanine substitutions were generated in or near the Fis helix-turn-helix DNA binding motif, and the resulting proteins were purified. In vitro binding assays at three different Fis sites (fis P II, hin distal, and lambda attR) revealed that R85, T87, R89, K90, and K91 played major roles in high-affinity DNA binding and that R85, T87, and K90 were consistently vital for binding to all three sites. Other residues made variable contributions to binding, depending on the binding site. N84 was required only for binding to the lambda attR Fis site, and the role of R89 was dramatically altered by the lambda attR DNA flanking sequence. The effects of Fis mutations on fis P II or hin distal site binding in vitro generally correlated with their abilities to mediate fis P repression or DNA inversion in vivo, demonstrating that the in vitro DNA-binding effects are relevant in vivo. The results suggest that while Fis is able to recognize a minimal common set of DNA sequence determinants at different binding sites, it is also equipped with a number of residues that contribute to the binding strength, some of which play variable roles.
Collapse
Affiliation(s)
- Leah S Feldman-Cohen
- Department of Chemistry, College of Staten Island and Macromolecular Assemblies Institute of the City, University of New York, Staten Island 10314, USA
| | | | | | | | | | | |
Collapse
|
18
|
Dame RT. The role of nucleoid-associated proteins in the organization and compaction of bacterial chromatin. Mol Microbiol 2005; 56:858-70. [PMID: 15853876 DOI: 10.1111/j.1365-2958.2005.04598.x] [Citation(s) in RCA: 274] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The bacterial chromosomal DNA is folded into a compact structure called nucleoid. The shape and size of this 'body' is determined by a number of factors. Major players are DNA supercoiling, macromolecular crowding and architectural proteins, associated with the nucleoid, which are the topic of this MicroReview. Although many of these proteins were identified more than 25 years ago, the molecular mechanisms involved in the organization and compaction of DNA have only started to become clear in recent years. Many of these new insights can be attributed to the use of recently developed biophysical techniques.
Collapse
Affiliation(s)
- Remus T Dame
- Physics of Complex Systems, Department of Physics and Astronomy, Faculty of Sciences, Vrije Universiteit, Amsterdam, the Netherlands.
| |
Collapse
|
19
|
Hengen PN, Lyakhov IG, Stewart LE, Schneider TD. Molecular flip-flops formed by overlapping Fis sites. Nucleic Acids Res 2004; 31:6663-73. [PMID: 14602927 PMCID: PMC275571 DOI: 10.1093/nar/gkg877] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The DNA-binding protein Fis frequently uses pairs of sites 7 or 11 base pairs (bp) apart. Two overlapping Fis sites separated by 11 bp are found in the Escherichia coli origin of chromosomal replication. Only one of these sites is bound by Fis at a time, so the structure is a molecular flip-flop that could direct alternative firing of replication complexes in opposite directions. Alternatively, the flip-flop could represent part of an on-off switch for replication. Because they can be used to create precise switched states, molecular flip-flops could be used as the basis of a novel molecular computer.
Collapse
Affiliation(s)
- Paul N Hengen
- Intramural Research Support Program, SAIC, NCI Frederick, Frederick, MD 21702-1201, USA
| | | | | | | |
Collapse
|
20
|
Boswell S, Mathew J, Beach M, Osuna R, Colón W. Variable Contributions of Tyrosine Residues to the Structural and Spectroscopic Properties of the Factor for Inversion Stimulation. Biochemistry 2004; 43:2964-77. [PMID: 15005633 DOI: 10.1021/bi035441k] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The diverse roles of tyrosine residues in proteins may be attributed to their dual hydrophobic and polar nature, which can result in hydrophobic and ring stacking interactions, as well as hydrogen bonding. The small homodimeric DNA binding protein, factor for inversion stimulation (FIS), contains four tyrosine residues located at positions 38, 51, 69, and 95, each involved in specific intra- or intermolecular interactions. To investigate their contributions to the stability, flexibility, and spectroscopic properties of FIS, each one was independently mutated to phenylalanine. Equilibrium denaturation experiments show that Tyr95 and Tyr51 stabilize FIS by about 2 and 1 kcal/mol, respectively, as a result of their involvement in a hydrogen bond-salt bridge network. In contrast, Tyr38 destabilizes FIS by about 1 kcal/mol due to the placement of a hydroxyl group in a hydrophobic environment. The stability of FIS was not altered when the solvent-exposed Tyr69 was mutated. Limited proteolysis with trypsin and V8 proteases was used to monitor the flexibility of the C-terminus (residues 71-98) and the dimer core (residues 26-70), respectively. The results for Y95F and Y51F FIS revealed a different proteolytic susceptibility of the dimer core compared to the C-terminus, suggesting an increased flexibility of the latter. DNA binding affinity of the various FIS mutants was only modestly affected and correlated inversely with the C-terminal flexibility probed by trypsin proteolysis. Deconvolution of the fluorescence contribution of each mutant revealed that it varies in intensity and direction for each tyrosine in WT FIS, highlighting the role of specific interactions and the local environment in determining the fluorescence of tyrosine residues. The significant changes in stability, flexibility, and signals observed for the Y51F and Y95F mutations are attributed to their coupled participation in the hydrogen bond-salt bridge network. These results highlight the importance of tyrosine hydrogen-bonding and packing interactions for the stability of FIS and demonstrate the varying roles that tyrosine residues can play on the structural and spectroscopic properties of even small proteins.
Collapse
Affiliation(s)
- Sarah Boswell
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, New York 12180, USA
| | | | | | | | | |
Collapse
|
21
|
Warren D, Sam MD, Manley K, Sarkar D, Lee SY, Abbani M, Wojciak JM, Clubb RT, Landy A. Identification of the lambda integrase surface that interacts with Xis reveals a residue that is also critical for Int dimer formation. Proc Natl Acad Sci U S A 2003; 100:8176-81. [PMID: 12832614 PMCID: PMC166202 DOI: 10.1073/pnas.1033041100] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Lambda integrase (Int) is a heterobivalent DNA-binding protein that together with the accessory DNA-bending proteins IHF, Fis, and Xis, forms the higher-order protein-DNA complexes that execute integrative and excisive recombination at specific loci on the chromosomes of phage lambda and its Escherichia coli host. The large carboxyl-terminal domain of Int is responsible for binding to core-type DNA sites and catalysis of DNA cleavage and ligation reactions. The small amino-terminal domain (residues 1-70), which specifies binding to arm-type DNA sites distant from the regions of strand exchange, consists of a three-stranded beta-sheet, proposed to recognize the cognate DNA site, and an alpha-helix. We report here that a site on this alpha-helix is critical for both homomeric interactions between Int protomers and heteromeric interactions with Xis. The mutant E47A, which was identified by alanine-scanning mutagenesis, abolishes interactions between Int and Xis bound at adjacent binding sites and reduces interactions between Int protomers bound at adjacent arm-type sites. Concomitantly, this residue is essential for excisive recombination and contributes to the efficiency of the integrative reaction. NMR titration data with a peptide corresponding to Xis residues 57-69 strongly suggest that the carboxyl-terminal tail of Xis and the alpha-helix of the aminoterminal domain of Int comprise the primary interaction surface for these two proteins. The use of a common site on lambda Int for both homotypic and heterotypic interactions fits well with the complex regulatory patterns associated with this site-specific recombination reaction.
Collapse
Affiliation(s)
- David Warren
- Division of Biology and Medicine, Brown
University, Providence, RI 02912; Department
of Chemistry and Biochemistry, Molecular Biology Institute, University of
California, and UCLA–DOE Institute for Genomics and Proteomics, 405
Hilgard Avenue, Los Angeles, CA 90095; and
Institute of Microbial Technology, Sector 39A,
Chandigarh 160036, India
| | - My D. Sam
- Division of Biology and Medicine, Brown
University, Providence, RI 02912; Department
of Chemistry and Biochemistry, Molecular Biology Institute, University of
California, and UCLA–DOE Institute for Genomics and Proteomics, 405
Hilgard Avenue, Los Angeles, CA 90095; and
Institute of Microbial Technology, Sector 39A,
Chandigarh 160036, India
| | - Kate Manley
- Division of Biology and Medicine, Brown
University, Providence, RI 02912; Department
of Chemistry and Biochemistry, Molecular Biology Institute, University of
California, and UCLA–DOE Institute for Genomics and Proteomics, 405
Hilgard Avenue, Los Angeles, CA 90095; and
Institute of Microbial Technology, Sector 39A,
Chandigarh 160036, India
| | - Dibyendu Sarkar
- Division of Biology and Medicine, Brown
University, Providence, RI 02912; Department
of Chemistry and Biochemistry, Molecular Biology Institute, University of
California, and UCLA–DOE Institute for Genomics and Proteomics, 405
Hilgard Avenue, Los Angeles, CA 90095; and
Institute of Microbial Technology, Sector 39A,
Chandigarh 160036, India
| | - Sang Yeol Lee
- Division of Biology and Medicine, Brown
University, Providence, RI 02912; Department
of Chemistry and Biochemistry, Molecular Biology Institute, University of
California, and UCLA–DOE Institute for Genomics and Proteomics, 405
Hilgard Avenue, Los Angeles, CA 90095; and
Institute of Microbial Technology, Sector 39A,
Chandigarh 160036, India
| | - Mohamad Abbani
- Division of Biology and Medicine, Brown
University, Providence, RI 02912; Department
of Chemistry and Biochemistry, Molecular Biology Institute, University of
California, and UCLA–DOE Institute for Genomics and Proteomics, 405
Hilgard Avenue, Los Angeles, CA 90095; and
Institute of Microbial Technology, Sector 39A,
Chandigarh 160036, India
| | - Jonathan M. Wojciak
- Division of Biology and Medicine, Brown
University, Providence, RI 02912; Department
of Chemistry and Biochemistry, Molecular Biology Institute, University of
California, and UCLA–DOE Institute for Genomics and Proteomics, 405
Hilgard Avenue, Los Angeles, CA 90095; and
Institute of Microbial Technology, Sector 39A,
Chandigarh 160036, India
| | - Robert T. Clubb
- Division of Biology and Medicine, Brown
University, Providence, RI 02912; Department
of Chemistry and Biochemistry, Molecular Biology Institute, University of
California, and UCLA–DOE Institute for Genomics and Proteomics, 405
Hilgard Avenue, Los Angeles, CA 90095; and
Institute of Microbial Technology, Sector 39A,
Chandigarh 160036, India
- To whom correspondence may be addressed. E-mail:
or
| | - Arthur Landy
- Division of Biology and Medicine, Brown
University, Providence, RI 02912; Department
of Chemistry and Biochemistry, Molecular Biology Institute, University of
California, and UCLA–DOE Institute for Genomics and Proteomics, 405
Hilgard Avenue, Los Angeles, CA 90095; and
Institute of Microbial Technology, Sector 39A,
Chandigarh 160036, India
- To whom correspondence may be addressed. E-mail:
or
| |
Collapse
|
22
|
Mitra K, Steitz TA, Engelman DM. Rational design of 'water-soluble' bacteriorhodopsin variants. Protein Eng Des Sel 2002; 15:485-92. [PMID: 12082167 DOI: 10.1093/protein/15.6.485] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We have explored the interchangeability of soluble and membrane proteins by attempting to render a helical membrane protein 'water soluble' through mutation of its lipid-exposed residues. Using an atomic resolution structure of bacteriorhodopsin (bR), two different strategies were developed to identify lipid-exposed residues for mutation. In the first strategy all residues in trimeric bR with solvent accessibility >35% were marked for replacement. Replacement residues were chosen so as to map an average surface of helical soluble proteins onto the bR surface, resulting in the mutagenesis of 14.9% of surface residues. The second strategy took into account the observation that accessible residues can be categorized as fully or partially accessible. Consequently, three mutants were designed based on monomeric bR, all with their accessible residues changed and with varying extents of mutagenesis of partially accessible residues. 13.5-24.3% of the wild-type surface was altered in these designs. The construct for the first design was cloned into Escherichia coli. Trace amounts of the mutant protein were expressed with the concurrent overexpression of an endogenous prolyl isomerase. In contrast, all three mutant proteins of the second design expressed well and could be purified to homogeneity. Systematic refolding trials were undertaken with limited success at solubilization in aqueous media. We have discussed the feasibility of applying the 'solubilization strategy' outlined here to membrane proteins.
Collapse
Affiliation(s)
- Kakoli Mitra
- Department of Molecular Biophysics and Biochemistry, the Howard Hughes Medical Institute, Yale University, 266 Whitney Avenue, New Haven, CT 06520-8114, USA
| | | | | |
Collapse
|
23
|
Ceruso MA, Weinstein H. Structural mimicry of proline kinks: tertiary packing interactions support local structural distortions. J Mol Biol 2002; 318:1237-49. [PMID: 12083514 DOI: 10.1016/s0022-2836(02)00221-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Proline residues in the helical segments of soluble and transmembrane proteins have received special attention from both a structural and functional perspective. A feature of these helices is the structural distortion termed "proline-kink", which has been associated with the presence of the proline residue. However, a recent report on the yeast heat-shock transcription factor of Kluyveromyces lactis (HSF_KL) suggests that these proline-associated deformations can be achieved in the absence of proline residues, thus raising the question of the mechanisms responsible for the structural mimicry of proline-related features. In this study, the specific interactions responsible for the distortion were characterized by comparative analysis of the atomic details of the packing interactions that surround the evolutionarily conserved proline-kink in the alpha2 helix of HSF_KL and a set of 39 structurally related proteins that lacked the distortion. The mechanistic details inferred from this analysis were confirmed with molecular dynamics simulations. The study shows that the packing interactions between the alpha2 and alpha1 helices in HSF_KL are responsible for the stabilization of the conserved kink, whether a proline residue that divides the helix into segments is present or not. The proline-kink can facilitate the formation of tertiary packing interactions that would otherwise not be possible. However, it is the ability to establish differential packing interactions for the helix segments, rather than the structural properties of the proline-kink itself, that emerges as the key factor for the characteristic distortion.
Collapse
Affiliation(s)
- Marc A Ceruso
- Department of Physiology and Biophysics, Mount Sinai School of Medicine, New York, NY 10029-6574, USA
| | | |
Collapse
|
24
|
Merickel SK, Sanders ER, Vázquez-Ibar JL, Johnson RC. Subunit exchange and the role of dimer flexibility in DNA binding by the Fis protein. Biochemistry 2002; 41:5788-98. [PMID: 11980482 DOI: 10.1021/bi020019+] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Fis is an abundant bacterial DNA binding protein that functions in many different reactions. We show here that Fis subunits rapidly exchange between dimers in solution by disulfide cross-linking mixtures of Fis mutants with different electrophoretic mobilities and by monitoring energy transfer between fluorescently labeled Fis subunits upon heterodimer formation. The effects of detergents and salt concentrations on subunit exchange imply that the dimer is predominantly stabilized by hydrophobic forces, consistent with the X-ray crystal structures. Specific and nonspecific DNA strongly inhibit Fis subunit exchange. In all crystal forms of Fis, the separation between the DNA recognition helices within the Fis dimer is too short to insert into adjacent major grooves on canonical B-DNA, implying that conformational changes within the Fis dimer and/or the DNA must occur upon binding. We therefore investigated the functional importance of dimer interface flexibility for Fis-DNA binding by studying the DNA binding properties of Fis mutants that were cross-linked at different positions in the dimer. Flexibility within the core dimer interface does not appear to be required for efficient DNA binding, Fis-DNA complex dissociation, or Fis-induced DNA bending. Moreover, FRET-based experiments provided no evidence for a change in the spatial relationship between the two helix-turn-helix motifs in the Fis dimer upon DNA binding. These results support a model in which the unusually short distance between DNA recognition helices on Fis is accommodated primarily through bending of the DNA.
Collapse
Affiliation(s)
- Stacy K Merickel
- Department of Biological Chemistry, School of Medicine, Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, California 90095, USA
| | | | | | | |
Collapse
|
25
|
Reeve WG, Tiwari RP, Kale NB, Dilworth MJ, Glenn AR. ActP controls copper homeostasis in Rhizobium leguminosarum bv. viciae and Sinorhizobium meliloti preventing low pH-induced copper toxicity. Mol Microbiol 2002; 43:981-91. [PMID: 11936079 DOI: 10.1046/j.1365-2958.2002.02791.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Two 'calcium-irreparable' acid-sensitive mutants were identified after mutagenizing Rhizobium leguminosarum bv. viciae and Sinorhizobium meliloti with Tn5. Each mutant contains a single copy of the transposon which, inserted within the actP gene, prevents expression of a P-type ATPase that belongs to the CPx heavy metal-transporting subfamily. Here, we show that both actP-knockout mutants show sensitivity to copper; omission of this heavy metal from low pH-buffered media restores acid tolerance to these strains. Furthermore, complementation of the mutant phenotype requires only the actPgene. An actP-gusA fusion in R. leguminosarum was transcriptionally regulated by copper in a pH-dependent manner.Downstream to actP in both organisms is the hmrR gene that encodes a heavy metal-responsive regulator (HmrR) that belongs to the merR class of regulatory genes. Insertional Inactivation of hmrR abolished transcriptional activation of actP by copper ions and increased the basal level of its expression in their absence. These observations suggest that HmrR can regulate actP transcription positively and negatively. We show that copper homeostasis is an essential mechanism for the acid tolerance of these root nodule bacteria since it prevents this heavy metal from becoming overtly toxic in acidic conditions.
Collapse
Affiliation(s)
- Wayne G Reeve
- Centre for Rhizobium Studies, School of Biological Sciences and Biotechnology, Murdoch University, Perth, Australia
| | | | | | | | | |
Collapse
|
26
|
Ussery D, Larsen TS, Wilkes KT, Friis C, Worning P, Krogh A, Brunak S. Genome organisation and chromatin structure in Escherichia coli. Biochimie 2001; 83:201-12. [PMID: 11278070 DOI: 10.1016/s0300-9084(00)01225-6] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have analysed the complete sequence of the Escherichia coli K12 isolate MG1655 genome for chromatin-associated protein binding sites, and compared the predicted location of predicted sites with experimental expression data from 'DNA chip' experiments. Of the dozen proteins associated with chromatin in E. coli, only three have been shown to have significant binding preferences: integration host factor (IHF) has the strongest binding site preference, and FIS sites show a weak consensus, and there is no clear consensus site for binding of the H-NS protein. Using hidden Markov models (HMMs), we predict the location of 608 IHF sites, scattered throughout the genome. A subset of the IHF sites associated with repeats tends to be clustered around the origin of replication. We estimate there could be roughly 6000 FIS sites in E. coli, and the sites tend to be localised in two regions flanking the replication termini. We also show that the regions upstream of genes regulated by H-NS are more curved and have a higher AT content than regions upstream of other genes. These regions in general would also be localised near the replication terminus.
Collapse
Affiliation(s)
- D Ussery
- Center for Biological Sequence Analysis, Department of Biotechnology, Building 208, The Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| | | | | | | | | | | | | |
Collapse
|
27
|
Pérez-Rueda E, Collado-Vides J. The repertoire of DNA-binding transcriptional regulators in Escherichia coli K-12. Nucleic Acids Res 2000; 28:1838-47. [PMID: 10734204 PMCID: PMC102813 DOI: 10.1093/nar/28.8.1838] [Citation(s) in RCA: 218] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Using a combination of several approaches we estimated and characterized a total of 314 regulatory DNA-binding proteins in Escherichia coli, which might represent its minimal set of transcription factors. The collection is comprised of 35% activators, 43% repressors and 22% dual regulators. Within many regulatory protein families, the members are homogeneous in their regulatory roles, physiology of regulated genes, regulatory function, length and genome position, showing that these families have evolved homogeneously in prokaryotes, particularly in E.coli. This work describes a full characterization of the repertoire of regulatory interactions in a whole living cell. This repertoire should contribute to the interpretation of global gene expression profiles in both prokaryotes and eukaryotes.
Collapse
Affiliation(s)
- E Pérez-Rueda
- Programa de Biología Molecular Computacional, Centro de Investigación sobre Fijación de Nitrógeno, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, AP 565-A 62110, Mexico
| | | |
Collapse
|
28
|
Pelton JG, Kustu S, Wemmer DE. Solution structure of the DNA-binding domain of NtrC with three alanine substitutions. J Mol Biol 1999; 292:1095-110. [PMID: 10512705 DOI: 10.1006/jmbi.1999.3140] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The structure of the 20 kDa C-terminal DNA-binding domain of NtrC from Salmonella typhimurium (residues Asp380-Glu469) with alanine replacing Arg456, Asn457, and Arg461, was determined by NMR spectroscopy. NtrC is a homodimeric enhancer-binding protein that activates the transcription of genes whose products are required for nitrogen metabolism. The 91-residue C-terminal domain contains the determinants necessary for dimerization and DNA-binding of the full length protein. The mutant protein does not bind to DNA but retains many characteristics of the wild-type protein, and the mutant domain expresses at high yield (20 mg/l) in minimal medium. Three-dimensional (1)H/(13)C/(15)N triple-resonance, (1)H-(13)C-(13)C-(1)H correlation and (15)N-separated nuclear Overhauser effect (NOE) spectroscopy experiments were used to make backbone and side-chain (1)H,(15)N, and (13)C assignments. The structures were calculated using a total of 1580 intra and inter-monomer distance and hydrogen bond restraints (88 hydrogen bonds; 44 hydrogen bond restraints), and 88 phi dihedral restraints for residues Asp400 through Glu469 in both monomers. A total of 54 ambiguous restraints (intra or inter-monomer) involving residues close to the 2-fold symmetry axis were also included. Each monomer consists of four helical segments. Helices A (Trp402-Leu414) and B (Leu421-His440) join with those of another monomer to form an antiparallel four-helix bundle. Helices C (Gln446-Leu451) and D (Ala456-Met468) of each monomer adopt a classic helix-turn-helix DNA-binding fold at either end of the protein. The backbone rms deviation for the 28 best of 40 starting structures is 0.6 (+/-0.2) A. Structural differences between the C-terminal domain of NtrC and the homologous Factor for Inversion Stimulation are discussed.
Collapse
Affiliation(s)
- J G Pelton
- Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94710, USA
| | | | | |
Collapse
|
29
|
Tzou WS, Hwang MJ. Modeling helix-turn-helix protein-induced DNA bending with knowledge-based distance restraints. Biophys J 1999; 77:1191-205. [PMID: 10465734 PMCID: PMC1300411 DOI: 10.1016/s0006-3495(99)76971-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
A crucial element of many gene functions is protein-induced DNA bending. Computer-generated models of such bending have generally been derived by using a presumed bending angle for DNA. Here we describe a knowledge-based docking strategy for modeling the structure of bent DNA recognized by a major groove-inserting alpha-helix of proteins with a helix-turn-helix (HTH) motif. The method encompasses a series of molecular mechanics and dynamics simulations and incorporates two experimentally derived distance restraints: one between the recognition helix and DNA, the other between respective sites of protein and DNA involved in chemical modification-enabled nuclease scissions. During simulation, a DNA initially placed at a distance was "steered" by these restraints to dock with the binding protein and bends. Three prototype systems of dimerized HTH DNA binding were examined: the catabolite gene activator protein (CAP), the phage 434 repressor (Rep), and the factor for inversion stimulation (Fis). For CAP-DNA and Rep-DNA, the root mean square differences between model and x-ray structures in nonhydrogen atoms of the DNA core domain were 2.5 A and 1.6 A, respectively. An experimental structure of Fis-DNA is not yet available, but the predicted asymmetrical bending and the bending angle agree with results from a recent biochemical analysis.
Collapse
Affiliation(s)
- W S Tzou
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan, ROC
| | | |
Collapse
|
30
|
Beach MB, Osuna R. Identification and characterization of the fis operon in enteric bacteria. J Bacteriol 1998; 180:5932-46. [PMID: 9811652 PMCID: PMC107668 DOI: 10.1128/jb.180.22.5932-5946.1998] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/1998] [Accepted: 09/09/1998] [Indexed: 11/20/2022] Open
Abstract
The small DNA binding protein Fis is involved in several different biological processes in Escherichia coli. It has been shown to stimulate DNA inversion reactions mediated by the Hin family of recombinases, stimulate integration and excision of phage lambda genome, regulate the transcription of several different genes including those of stable RNA operons, and regulate the initiation of DNA replication at oriC. fis has also been isolated from Salmonella typhimurium, and the genomic sequence of Haemophilus influenzae reveals its presence in this bacteria. This work extends the characterization of fis to other organisms. Very similar fis operon structures were identified in the enteric bacteria Klebsiella pneumoniae, Serratia marcescens, Erwinia carotovora, and Proteus vulgaris but not in several nonenteric bacteria. We found that the deduced amino acid sequences for Fis are 100% identical in K. pneumoniae, S. marcescens, E. coli, and S. typhimurium and 96 to 98% identical when E. carotovora and P. vulgaris Fis are considered. The deduced amino acid sequence for H. influenzae Fis is about 80% identical and 90% similar to Fis in enteric bacteria. However, in spite of these similarities, the E. carotovora, P. vulgaris, and H. influenzae Fis proteins are not functionally identical. An open reading frame (ORF1) preceding fis in E. coli is also found in all these bacteria, and their deduced amino acid sequences are also very similar. The sequence preceding ORF1 in the enteric bacteria showed a very strong similarity to the E. coli fis P region from -53 to +27 and the region around -116 containing an ihf binding site. Both beta-galactosidase assays and primer extension assays showed that these regions function as promoters in vivo and are subject to growth phase-dependent regulation. However, their promoter strengths vary, as do their responses to Fis autoregulation and integration host factor stimulation.
Collapse
Affiliation(s)
- M B Beach
- Department of Biological Sciences, University at Albany, Albany, New York 12222, USA
| | | |
Collapse
|
31
|
Rajpal A, Taylor MG, Kirsch JF. Quantitative evaluation of the chicken lysozyme epitope in the HyHEL-10 Fab complex: free energies and kinetics. Protein Sci 1998; 7:1868-74. [PMID: 9761468 PMCID: PMC2144172 DOI: 10.1002/pro.5560070903] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The hen (chicken) egg-white lysozyme (HEWL) epitope for the monoclonal antibody HyHEL-10 Fab (Fab-10) was investigated by alanine scan mutagenesis. The association rate constants (k(on)) for the HEWL Fab-10 complexes were obtained from the homogenous solution method described in the preceding paper (Taylor et al., 1998). A new method for determining the dissociation rate constant (k(off)) for the complex, by trapping nascent free antibody with an inactive HEWL mutant is described. The values of k(on) fall within a factor of 2 of the wild-type (WT) HEWL value (1.43+/-0.13 X 10(6)M(-1)s(-1)), while the increases in k(off)more nearly reflect the total change in free energies of the complex (deltadeltaG(D)). The dissociation constants (K(D)) were measured directly in those cases where satisfactory kinetic data could not be obtained. The Y20A, K96A, and K97A HEWL.Fab-10 complexes are destabilized by more than 4 kcal/mol compared to the WT complex. The R21A, L75A, and D101A antibody complexes are moderately destabilized (0.7 < deltadeltaG(D)< or = 1.0 kcal/mol). Additional mutations of the "hotspot" residues (Tyr20, Lys96, Lys97) were constructed to probe, more precisely, the nature of their contributions to complex formation. The results show that the entire hydrocarbon side chains of Tyr20 and Lys97, and only the epsilon-amino group of Lys96, contribute to the stability of the complex. The value of deltadeltaG(D) for the R21A mutant complex is a distinct outlier in the Arg21 replacement series demonstrating the importance of supplementing alanine scan mutagenesis with additional mutations.
Collapse
Affiliation(s)
- A Rajpal
- Department of Chemistry, University of California, Berkeley 94720, USA
| | | | | |
Collapse
|
32
|
Yang WZ, Ko TP, Corselli L, Johnson RC, Yuan HS. Conversion of a beta-strand to an alpha-helix induced by a single-site mutation observed in the crystal structure of Fis mutant Pro26Ala. Protein Sci 1998; 7:1875-83. [PMID: 9761469 PMCID: PMC2144158 DOI: 10.1002/pro.5560070904] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The conversion from an alpha-helix to a beta-strand has received extensive attention since this structural change may induce many amyloidogenic proteins to self-assemble into fibrils and cause fatal diseases. Here we report the conversion of a peptide segment from a beta-strand to an alpha-helix by a single-site mutation as observed in the crystal structure of Fis mutant Pro26Ala determined at 2.0 A resolution. Pro26 in Fis occurs at the point where a flexible extended beta-hairpin arm leaves the core structure. Thus it can be classified as a "hinge proline" located at the C-terminal end of the beta2-strand and the N-terminal cap of the A alpha-helix. The replacement of Pro26 to alanine extends the A alpha-helix for two additional turns in one of the dimeric subunits; therefore, the structure of the peptide from residues 22 to 26 is converted from a beta-strand to an alpha-helix. This result confirms the structural importance of the proline residue located at the hinge region and may explain the mutant's reduced ability to activate Hin-catalyzed DNA inversion. The peptide (residues 20 to 26) in the second monomer subunit presumably retains its beta-strand conformation in the crystal; therefore, this peptide shows a "chameleon-like" character since it can adopt either an alpha-helix or a beta-strand structure in different environments. The structure of Pro26Ala provides an additional example where not only the protein sequence, but also non-local interactions determine the secondary structure of proteins.
Collapse
Affiliation(s)
- W Z Yang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China
| | | | | | | | | |
Collapse
|
33
|
Jacobson BA, Fuchs JA. A 45 bp inverted repeat is required for cell cycle regulation of the Escherichia coli nrd operon. Mol Microbiol 1998; 28:1307-14. [PMID: 9680218 DOI: 10.1046/j.1365-2958.1998.00896.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Expression of beta-galactosidase from a nrd-lacZ fusion was used to determine the role in nrd regulation of an inverted sequence upstream of the promoter. Removal or replacement of a 45bp inverted repeat with an altered sequence including a 48bp perfect inverted repeat resulted in a mutant phenotype that was low in nrd expression in an exponentially growing culture and that did not increase during DNA synthesis inhibition. Changing the 22 bp in the upstream half of the inverted repeat resulted in the same phenotype, whereas changing the 22 bp in the downstream half of the inverted repeat decreased nrd expression to a lesser extent in an exponentially growing culture and had only a smaller effect on nrd expression during DNA synthesis inhibition. As other mutants with the phenotype of the upstream inverted repeat mutant were found to lack cell cycle regulation, expression of nrd-lac mRNA produced from a plasmid with this mutation in the nrd-lacZ fusion gene was compared with nrd mRNA produced from the chromosomal nrd gene in a synchronized culture. The results indicated that the upstream half of the nrd inverted repeat contains a cis-acting element essential for nrd cell cycle regulation.
Collapse
Affiliation(s)
- B A Jacobson
- Department of Biochemistry, University of Minnesota, St Paul 55108, USA
| | | |
Collapse
|
34
|
Rippe K, Mücke N, Schulz A. Association states of the transcription activator protein NtrC from E. coli determined by analytical ultracentrifugation. J Mol Biol 1998; 278:915-33. [PMID: 9600853 DOI: 10.1006/jmbi.1998.1746] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The transcription activator protein NtrC (nitrogen regulatory protein C) can catalyze the transition of E. coli RNA polymerase complexed with the sigma54 factor (RNAP.sigma54) from the closed complex (RNAP.sigma54 bound at the promoter) to the open complex (melting of the promoter DNA). This process involves phosphorylation of NtrC, assembly of a multimeric NtrC complex at the enhancer DNA sequence, interaction of this complex with promoter bound RNAP. sigma54 via DNA looping, and hydrolysis of ATP. We have used analytical ultracentrifugation to study the different NtrC association states and to derive hydrodynamic models for the conformation of the various NtrC species. The following results were obtained. (i) The unphosphorylated wild-type protein formed a dimer with a measured molecular weight of 102(+/-3) kDa, which compares to a calculated molecular weight of 54 kDa for a monomer (concentration range studied 2 to 8 microM NtrC monomer). (ii) In the unphosphorylated state one NtrC dimer was bound to one binding site as determined with DNA oligonucleotide duplexes containing one or two binding sites (concentration range studied 50 to 1000 nM NtrC dimer). (iii) The data obtained at protein concentrations that were below the concentration of binding sites indicate that binding to the DNA duplex with two binding sites occurred with essentially no cooperativity. The experiments were conducted in the absence of ATP. (iv) The phosphorylated protein formed a specific complex at the DNA duplex with the enhancer sequence (two NtrC binding sites) that consisted of four dimers (concentration range studied 100 to 1000 nM NtrC dimer). (v) The formation of this octameric complex was highly cooperative, and the data suggest that two DNA strands could bind simultaneously to this complex. (vi) From the sedimentation data a model was derived in which the NtrC dimer adopts a V shaped structure with the DNA binding domains being located at the bottom and the two receiver domains at the top of the V. In this conformation higher order NtrC complexes can be stabilized by interaction between the phosphorylated receiver domain and the central activation domain of different NtrC dimers.
Collapse
Affiliation(s)
- K Rippe
- Abteilung Biophysik der Makromoleküle, Im Neuenheimer Feld 280, Heidelberg, D-69120, Germany
| | | | | |
Collapse
|
35
|
Hengen PN, Bartram SL, Stewart LE, Schneider TD. Information analysis of Fis binding sites. Nucleic Acids Res 1997; 25:4994-5002. [PMID: 9396807 PMCID: PMC147151 DOI: 10.1093/nar/25.24.4994] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Originally discovered in the bacteriophage Mu DNA inversion system gin, Fis (Factor for Inversion Stimulation) regulates many genetic systems. To determine the base frequency conservation required for Fis to locate its binding sites, we collected a set of 60 experimentally defined wild-type Fis DNA binding sequences. The sequence logo for Fis binding sites showed the significance and likely kinds of base contacts, and these are consistent with available experimental data. Scanning with an information theory based weight matrix within fis, nrd, tgt/sec and gin revealed Fis sites not previously identified, but for which there are published footprinting and biochemical data. DNA mobility shift experiments showed that a site predicted to be 11 bases from the proximal Salmonella typhimurium hin site and a site predicted to be 7 bases from the proximal P1 cin site are bound by Fis in vitro. Two predicted sites separated by 11 bp found within the nrd promoter region, and one in the tgt/sec promoter, were also confirmed by gel shift analysis. A sequence in aldB previously reported to be a Fis site, for which information theory predicts no site, did not shift. These results demonstrate that information analysis is useful for predicting Fis DNA binding.
Collapse
Affiliation(s)
- P N Hengen
- Laboratory of Mathematical Biology, National Cancer Institute, Frederick Cancer Research and Development Center, PO Box B, Building 469, Room 144, Frederick, MD 21702-1201, USA
| | | | | | | |
Collapse
|
36
|
Safo MK, Yang WZ, Corselli L, Cramton SE, Yuan HS, Johnson RC. The transactivation region of the fis protein that controls site-specific DNA inversion contains extended mobile beta-hairpin arms. EMBO J 1997; 16:6860-73. [PMID: 9362499 PMCID: PMC1170289 DOI: 10.1093/emboj/16.22.6860] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The Fis protein regulates site-specific DNA inversion catalyzed by a family of DNA invertases when bound to a cis-acting recombinational enhancer. As is often found for transactivation domains, previous crystal structures have failed to resolve the conformation of the N-terminal inversion activation region within the Fis dimer. A new crystal form of a mutant Fis protein now reveals that the activation region contains two beta-hairpin arms that protrude over 20 A from the protein core. Saturation mutagenesis identified the regulatory and structurally important amino acids. The most critical activating residues are located near the tips of the beta-arms. Disulfide cross-linking between the beta-arms demonstrated that they are highly flexible in solution and that efficient inversion activation can occur when the beta-arms are covalently linked together. The emerging picture for this regulatory motif is that contacts with the recombinase at the tip of the mobile beta-arms activate the DNA invertase in the context of an invertasome complex.
Collapse
Affiliation(s)
- M K Safo
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 11529, Republic of China
| | | | | | | | | | | |
Collapse
|
37
|
Deufel A, Hermann T, Kahmann R, Muskhelishvili G. Stimulation of DNA inversion by FIS: evidence for enhancer-independent contacts with the Gin-gix complex. Nucleic Acids Res 1997; 25:3832-9. [PMID: 9380505 PMCID: PMC146962 DOI: 10.1093/nar/25.19.3832] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Efficient DNA inversion catalysed by the invertase Gin requires the cis-acting recombinational enhancer and the Escherichia coliFIS protein. Binding of FIS bends the enhancer DNA and, on a negatively supercoiled DNA inversion substrate, facilitates the formation of a synaptic complex with specific topology. Previous studies have indicated that FIS-independent Gin mutants can be isolated which have lost the topological constraints imposed on the inversion reaction yet remain sensitive to the stimulatory effect of FIS. Whether the effect of FIS is purely architectural, or whether in addition direct protein contacts between Gin and FIS are required for efficient catalysis has remained an unresolved question. Here we show that FIS mutants impaired in DNA binding are capable of either positively or negatively affecting the inversion reaction both in vivo and in vitro. We further demonstrate that the mutant protein FIS K25E/V66A/M67T dramatically enhances the cleavage of recombination sites by FIS-independent Gin in an enhancer-independent manner. Our observations suggest that FIS plays a dual role in the inversion reaction and stimulates both the assembly of the synaptic complex as well as DNA strand cleavage.
Collapse
Affiliation(s)
- A Deufel
- Institut für Genetik und Mikrobiologie der Universität München, Maria-Ward-Strasse 1a, 80638 München, Germany
| | | | | | | |
Collapse
|
38
|
Abstract
For many years the lac operon of Escherichia coli has been the paradigm for gene regulation. Recently, the structures of the lac repressor core bound to isopropyl-beta-D-1-thiogalactoside (IPTG), the intact apo lac repressor, the intact lac repressor complexes with IPTG and a 21-base-pair symmetric operator, and the refined headpiece of the repressor have been determined. These structures have provided a framework for understanding a wealth of biochemical and genetic information. An analysis of these structures, as well as a description of their function and a comparison to homologous proteins, is now possible.
Collapse
Affiliation(s)
- M A Kercher
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | | | |
Collapse
|
39
|
Sandmann C, Cordes F, Saenger W. Structure model of a complex between the factor for inversion stimulation (FIS) and DNA: Modeling protein-DNA complexes with dyad symmetry and known protein structures. Proteins 1996. [DOI: 10.1002/(sici)1097-0134(199608)25:4<486::aid-prot8>3.0.co;2-b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
40
|
Sandmann C, Cordes F, Saenger W. Structure model of a complex between the factor for inversion stimulation (FIS) and DNA: modeling protein-DNA complexes with dyad symmetry and known protein structures. Proteins 1996; 25:486-500. [PMID: 8865343 DOI: 10.1002/prot.8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A method is presented to predict overall conformations of protein-DNA complexes on the basis of the known three-dimensional structures of the proteins. The method is restricted to proteins with a common twofold symmetry axis, which show only minor conformational changes upon binding to DNA. The method uses a numerical finite difference solution of the linearized Poisson-Boltzmann equation and subsequent energy minimization cycles. Structural parameters-the rotation angle of the DNA relative to the protein around the common symmetry axis, the protein-DNA distance, and intermolecular hydrogen-bonding contacts-are presented for two test cases, DNA bound to CAP (catabolite gene activator protein) and to the Cro-repressor of bacteriophage 434. The DNA curvature in the starting model of the docking procedure was chosen as a smoothed approximation of the conformation found in the X-ray structures of these complexes. The method is further used to predict the unknown structure of the complex between the factor for inversion stimulation (FIS) and DNA, which is bent upon binding to FIS. In contrast to the test cases, the unknown curvature of the starting model is derived from a calibration of electrostatic precalculations for different proteins according to crystallographically observed DNA bending. The results of the modeling are in good accordance with the experimentally observed overall structure of protein-DNA complexes for the two test cases; for FIS, they correspond to several of the experimentally proposed protein-DNA contacts.
Collapse
Affiliation(s)
- C Sandmann
- Institut für Kristallographie, Freie Universität Berlin, Germany
| | | | | |
Collapse
|
41
|
Tsai CJ, Lin SL, Wolfson HJ, Nussinov R. Protein-protein interfaces: architectures and interactions in protein-protein interfaces and in protein cores. Their similarities and differences. Crit Rev Biochem Mol Biol 1996; 31:127-52. [PMID: 8740525 DOI: 10.3109/10409239609106582] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Protein structures generally consist of favorable folding motifs formed by specific arrangements of secondary structure elements. Similar architectures can be adopted by different amino acids sequences, although the details of the structures vary. It has long been known that despite the sequence variability, there is a striking preferential conservation of the hydrophobic character of the amino acids at the buried positions of these folding motifs. Differences in the sizes of the side-chains are accommodated by movements of the secondary structure elements with respect to each other, leading to compact packing. Scanning protein-protein interfaces reveals that similar architectures are also observed at and around their interacting surfaces, with preservation of the hydrophobic character, although not to the same extent. The general forces that determine the origin of the native structures of proteins have been investigated intensively. The major non-bonded forces operating on a protein chain as it folds into a three-dimensional structure are likely to be packing, the hydrophobic effect, and electrostatic interactions. While the substantial hydrophobic forces lead to a compact conformation, they are also nonspecific and cannot serve as a guide to a conformationally unique structure. For the general folding problem, it thus appears that packing is a prime candidate for determining a particular fold. Specific hydrogen-bonding patterns and salt-bridges have also been proposed to play a role. Inspection of protein-protein interfaces reveals that the hallmarks governing single chain protein structures also determine their interactions, suggesting that similar principles underlie protein folding and protein-protein associations. This review focuses on some aspects of protein-protein interfaces, particularly on the architectures and their interactions. These are compared with those present in protein monomers. This task is facilitated by the recently compiled, non-redundant structural dataset of protein-protein interfaces derived from the crystallographic database. In particular, although current view holds that protein-protein interfaces and interactions are similar to those found in the conformations of single-chain proteins, this review brings forth the differences as well. Not only is it logical that such differences would exist, it is these differences that further illuminate protein folding on the one hand and protein-protein recognition on the other. These are also particularly important in considering inhibitor (ligand) design.
Collapse
Affiliation(s)
- C J Tsai
- Laboratory of Mathematical Biology, NCI-FCRDC, Frederick, MD 21702, USA
| | | | | | | |
Collapse
|
42
|
Abstract
The control of rRNA synthesis in response to both extra- and intracellular signals has been a subject of interest to microbial physiologists for nearly four decades, beginning with the observations that Salmonella typhimurium cells grown on rich medium are larger and contain more RNA than those grown on poor medium. This was followed shortly by the discovery of the stringent response in Escherichia coli, which has continued to be the organism of choice for the study of rRNA synthesis. In this review, we summarize four general areas of E. coli rRNA transcription control: stringent control, growth rate regulation, upstream activation, and anti-termination. We also cite similar mechanisms in other bacteria and eukaryotes. The separation of growth rate-dependent control of rRNA synthesis from stringent control continues to be a subject of controversy. One model holds that the nucleotide ppGpp is the key effector for both mechanisms, while another school holds that it is unlikely that ppGpp or any other single effector is solely responsible for growth rate-dependent control. Recent studies on activation of rRNA synthesis by cis-acting upstream sequences has led to the discovery of a new class of promoters that make contact with RNA polymerase at a third position, called the UP element, in addition to the well-known -10 and -35 regions. Lastly, clues as to the role of antitermination in rRNA operons have begun to appear. Transcription complexes modified at the antiterminator site appear to elongate faster and are resistant to the inhibitory effects of ppGpp during the stringent response.
Collapse
Affiliation(s)
- C Condon
- Department of Molecular Biology and Microbiology, Tufts University Health Sciences Campus, Boston, Massachusetts 02111, USA
| | | | | |
Collapse
|
43
|
Yuan HS, Wang SS, Yang WZ, Finkel SE, Johnson RC. The structure of Fis mutant Pro61Ala illustrates that the kink within the long alpha-helix is not due to the presence of the proline residue. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(19)61998-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
44
|
Mullin DA, Van Way SM, Blankenship CA, Mullin AH. FlbD has a DNA-binding activity near its carboxy terminus that recognizes ftr sequences involved in positive and negative regulation of flagellar gene transcription in Caulobacter crescentus. J Bacteriol 1994; 176:5971-81. [PMID: 7928958 PMCID: PMC196814 DOI: 10.1128/jb.176.19.5971-5981.1994] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
FlbD is a transcriptional regulatory protein that negatively autoregulates fliF, and it is required for expression of other Caulobacter crescentus flagellar genes, including flaN and flbG. In this report we have investigated the interaction between carboxy-terminal fragments of FlbD protein and enhancer-like ftr sequences in the promoter regions of fliF, flaN, and flbG. FlbDc87 is a glutathione S-transferase (GST)-FlbD fusion protein that carries the carboxy-terminal 87 amino acids of FlbD, and FlbDc87 binds to restriction fragments containing the promoter regions of fliF, flaN, and flbG, whereas a GST-FlbD fusion protein carrying the last 48 amino acids of FlbD failed to bind to these promoter regions. DNA footprint analysis demonstrated that FlbDc87 is a sequence-specific DNA-binding protein that makes close contact with 11 nucleotides in ftr4, and 6 of these nucleotides were shown previously to function in negative regulation of fliF transcription in vivo (S. M. Van Way, A. Newton, A. H. Mullin, and D. A. Mullin, J. Bacteriol. 175:367-376, 1993). Three DNA fragments, each carrying an ftr4 mutation that resulted in elevated fliF transcript levels in vivo, were defective in binding to FlbDc87 in vitro. We also found that a missense mutation in the recognition helix of the putative helix-turn-helix DNA-binding motif of FlbDc87 resulted in defective binding to ftr4 in vitro. These data suggest that the binding of FlbDc87 to ftr4 is relevant to negative transcriptional regulation of fliF and that FlbD functions directly as a repressor. Footprint analysis showed that FlbDc87 also makes close contacts with specific nucleotides in ftr1, ftr2, and ftr3 in the flaN-flbG promoter region, and some of these nucleotides were shown previously to be required for regulated transcription of flaN and flbG (D. A. Mullin and A. Newton, J. Bacteriol. 175:2067-2076, 1993). Footprint analysis also revealed a new ftr-like sequence, ftr5, at -136 from the transcription start site of flbG. Our results demonstrate that FlbD contains a sequence-specific DNA-binding activity within the 87 amino acids at its carboxy terminus, and the results suggest that FlbD exerts its effect as a positive and negative regulator of C. crescentus flagellar genes by binding to ftr sequences.
Collapse
Affiliation(s)
- D A Mullin
- Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana 70118-5698
| | | | | | | |
Collapse
|
45
|
Hinrichs W, Kisker C, Düvel M, Müller A, Tovar K, Hillen W, Saenger W. Structure of the Tet repressor-tetracycline complex and regulation of antibiotic resistance. Science 1994; 264:418-20. [PMID: 8153629 DOI: 10.1126/science.8153629] [Citation(s) in RCA: 303] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The most frequently occurring resistance of Gram-negative bacteria against tetracyclines is triggered by drug recognition of the Tet repressor. This causes dissociation of the repressor-operator DNA complex and enables expression of the resistance protein TetA, which is responsible for active efflux of tetracycline. The 2.5 angstrom resolution crystal structure of the homodimeric Tet repressor complexed with tetracycline-magnesium reveals detailed drug recognition. The orientation of the operator-binding helix-turn-helix motifs of the repressor is inverted in comparison with other DNA binding proteins. The repressor-drug complex is unable to interact with DNA because the separation of the DNA binding motifs is 5 angstroms wider than usually observed.
Collapse
Affiliation(s)
- W Hinrichs
- Institut für Kristallographie, Freie Universität Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
46
|
Tippner D, Afflerbach H, Bradaczek C, Wagner R. Evidence for a regulatory function of the histone-like Escherichia coli protein H-NS in ribosomal RNA synthesis. Mol Microbiol 1994; 11:589-604. [PMID: 7512187 DOI: 10.1111/j.1365-2958.1994.tb00339.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We have isolated a small Escherichia coli protein which stably interacts with ribosomal RNA P1 promoter DNA. We present evidence showing that the protein is identical to the histone-like E. coli protein, H-NS (H1). Binding of H-NS to the P1 promoter region is dependent on the DNA curvature. Mapping the H-NS-DNA contact sites by nuclease protection and high-resolution footprinting techniques reveal three H-NS-binding domains, and contacts of the protein in the major groove of the bent DNA. The binding region extends from position -18 to -89, relative to the P1 transcription start site, and shows an overlap with the known binding sites for Fis, another E. coli protein, which acts as transcriptional activator of P1. The binding of H-NS does not displace Fis; instead, heterologous complexes are formed. Apparently, H-NS and Fis bind to separated curved DNA segments, with the planes of the curves pointing into different directions. In vitro transcriptional analyses demonstrate that H-NS represses rRNA P1 promoter-directed transcription. Repression is most pronounced in the presence of Fis. Thus, H-NS seems specifically to antagonize Fis-dependent activation. No comparable inactivation is observed for the second rRNA promoter P2.
Collapse
Affiliation(s)
- D Tippner
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Germany
| | | | | | | |
Collapse
|
47
|
Bétermier M, Galas DJ, Chandler M. Interaction of Fis protein with DNA: bending and specificity of binding. Biochimie 1994; 76:958-67. [PMID: 7748940 DOI: 10.1016/0300-9084(94)90021-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The Escherichia coli Fis protein is a dimeric DNA-binding protein whose specific binding sites share a weak consensus sequence. Use of the gel retardation technique indicates that binding of Fis on a linear DNA fragment leads to the formation of a ladder of defined retarded complexes, independently of the presence of a specific site. This non-specific binding of Fis is consistent with a model where equivalent low-affinity sites on a given fragment would be bound randomly and independently of each other by consecutive Fis dimers. Evidence is presented that non-specific binding of Fis can, however, induce an apparent site-specific conformational change in the DNA. This observation is discussed in terms of a model in which each Fis:DNA complex detected in gel retardation experiments actually represents a dynamic equilibrium of a fixed number of Fis dimers distributed on the fragment.
Collapse
Affiliation(s)
- M Bétermier
- Laboratoire de Microbiologie et Génétique Moléculaire du CNRS, Toulouse, France
| | | | | |
Collapse
|
48
|
|
49
|
Lawrence CE, Altschul SF, Boguski MS, Liu JS, Neuwald AF, Wootton JC. Detecting subtle sequence signals: a Gibbs sampling strategy for multiple alignment. Science 1993; 262:208-14. [PMID: 8211139 DOI: 10.1126/science.8211139] [Citation(s) in RCA: 1214] [Impact Index Per Article: 37.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A wealth of protein and DNA sequence data is being generated by genome projects and other sequencing efforts. A crucial barrier to deciphering these sequences and understanding the relations among them is the difficulty of detecting subtle local residue patterns common to multiple sequences. Such patterns frequently reflect similar molecular structures and biological properties. A mathematical definition of this "local multiple alignment" problem suitable for full computer automation has been used to develop a new and sensitive algorithm, based on the statistical method of iterative sampling. This algorithm finds an optimized local alignment model for N sequences in N-linear time, requiring only seconds on current workstations, and allows the simultaneous detection and optimization of multiple patterns and pattern repeats. The method is illustrated as applied to helix-turn-helix proteins, lipocalins, and prenyltransferases.
Collapse
Affiliation(s)
- C E Lawrence
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894
| | | | | | | | | | | |
Collapse
|
50
|
Abstract
The molecular basis for the specificity and activity of protein-DNA interactions is currently being established from the combination of results on the structure and biochemistry of DNA-binding proteins and enzymes. Data detailed in the 12 most recent studies on DNA-binding protein and enzyme structures, including the major advances in the elucidation of enzyme-mediated DNA-repair processes, have both increased understanding of DNA recognition and enhanced prospects for the design of novel DNA-binding proteins in the future.
Collapse
Affiliation(s)
- J A Tainer
- Department of Molecular Biology, Scripps Research Institute, La Jolla, California 92037
| | | |
Collapse
|