1
|
Wu NC, Ellebedy AH. Targeting neuraminidase: the next frontier for broadly protective influenza vaccines. Trends Immunol 2024; 45:11-19. [PMID: 38103991 PMCID: PMC10841738 DOI: 10.1016/j.it.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/17/2023] [Accepted: 11/18/2023] [Indexed: 12/19/2023]
Abstract
Current seasonal influenza vaccines, which mainly target hemagglutinin (HA), require annual updates due to the continuous antigenic drift of the influenza virus. Developing an influenza vaccine with increased breadth of protection will have significant public health benefits. The recent discovery of broadly protective antibodies to neuraminidase (NA) has provided important insights into developing a universal influenza vaccine, either by improving seasonal influenza vaccines or designing novel immunogens. However, further in-depth molecular characterizations of NA antibody responses are warranted to fully leverage broadly protective NA antibodies for influenza vaccine designs. Overall, we posit that focusing on NA for influenza vaccine development is synergistic with existing efforts targeting HA, and may represent a cost-effective approach to generating a broadly protective influenza vaccine.
Collapse
Affiliation(s)
- Nicholas C Wu
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Ali H Ellebedy
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St. Louis, MO 63110, USA; The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| |
Collapse
|
2
|
Lei R, Kim W, Lv H, Mou Z, Scherm MJ, Schmitz AJ, Turner JS, Tan TJC, Wang Y, Ouyang WO, Liang W, Rivera-Cardona J, Teo C, Graham CS, Brooke CB, Presti RM, Mok CKP, Krammer F, Dai X, Ellebedy AH, Wu NC. Leveraging vaccination-induced protective antibodies to define conserved epitopes on influenza N2 neuraminidase. Immunity 2023; 56:2621-2634.e6. [PMID: 37967533 PMCID: PMC10655865 DOI: 10.1016/j.immuni.2023.10.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 07/19/2023] [Accepted: 10/10/2023] [Indexed: 11/17/2023]
Abstract
There is growing appreciation for neuraminidase (NA) as an influenza vaccine target; however, its antigenicity remains poorly characterized. In this study, we isolated three broadly reactive N2 antibodies from the plasmablasts of a single vaccinee, including one that cross-reacts with NAs from seasonal H3N2 strains spanning five decades. Although these three antibodies have diverse germline usages, they recognize similar epitopes that are distant from the NA active site and instead involve the highly conserved underside of NA head domain. We also showed that all three antibodies confer prophylactic and therapeutic protection in vivo, due to both Fc effector functions and NA inhibition through steric hindrance. Additionally, the contribution of Fc effector functions to protection in vivo inversely correlates with viral growth inhibition activity in vitro. Overall, our findings advance the understanding of NA antibody response and provide important insights into the development of a broadly protective influenza vaccine.
Collapse
Affiliation(s)
- Ruipeng Lei
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Wooseob Kim
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Microbiology, Korea University College of Medicine, Seoul 02841, Korea
| | - Huibin Lv
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Zongjun Mou
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Michael J Scherm
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Aaron J Schmitz
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Jackson S Turner
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Timothy J C Tan
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Yiquan Wang
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Wenhao O Ouyang
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Weiwen Liang
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Joel Rivera-Cardona
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Chuyun Teo
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Claire S Graham
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Christopher B Brooke
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Rachel M Presti
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA; Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, Saint Louis, MO 63110, USA; The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Chris K P Mok
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong SAR, China; Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; S.H. Ho Research Centre for Infectious Diseases, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Xinghong Dai
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Ali H Ellebedy
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, Saint Louis, MO 63110, USA; The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| | - Nicholas C Wu
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
3
|
Binding mechanism of oseltamivir and influenza neuraminidase suggests perspectives for the design of new anti-influenza drugs. PLoS Comput Biol 2022; 18:e1010343. [PMID: 35901128 PMCID: PMC9401145 DOI: 10.1371/journal.pcbi.1010343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/24/2022] [Accepted: 06/30/2022] [Indexed: 11/29/2022] Open
Abstract
Oseltamivir is a widely used influenza virus neuraminidase (NA) inhibitor that prevents the release of new virus particles from host cells. However, oseltamivir-resistant strains have emerged, but effective drugs against them have not yet been developed. Elucidating the binding mechanisms between NA and oseltamivir may provide valuable information for the design of new drugs against NA mutants resistant to oseltamivir. Here, we conducted large-scale (353.4 μs) free-binding molecular dynamics simulations, together with a Markov State Model and an importance-sampling algorithm, to reveal the binding process of oseltamivir and NA. Ten metastable states and five major binding pathways were identified that validated and complemented previously discovered binding pathways, including the hypothesis that oseltamivir can be transferred from the secondary sialic acid binding site to the catalytic site. The discovery of multiple new metastable states, especially the stable bound state containing a water-mediated hydrogen bond between Arg118 and oseltamivir, may provide new insights into the improvement of NA inhibitors. We anticipated the findings presented here will facilitate the development of drugs capable of combating NA mutations. Influenza virus neuraminidase (NA), a viral membrane glycoprotein, plays an important role in the interactions with host cell surface receptors. The emergence and spread of influenza mutants resistant to neuraminidase inhibitors (NAIs), such as oseltamivir, has been of great concern. Despite many improvements to NAIs, no new first-line NAIs are currently in clinical use. Although there have been previous molecular dynamics simulation studies on the binding and dissociation process of oseltamivir-NA, we discovered new binding pathways and states of oseltamivir through larger-scale simulations and more systematic analysis, which may provide new ideas for the improvement of oseltamivir and even a series of NAIs. In our study, we strongly demonstrate that a detailed understanding of the drug−receptor association process is of fundamental importance for drug design and provide methodological references for the improvement of other drugs.
Collapse
|
4
|
Strohmeier S, Amanat F, Carreño JM, Krammer F. Monoclonal antibodies targeting the influenza virus N6 neuraminidase. Front Immunol 2022; 13:944907. [PMID: 35967389 PMCID: PMC9363587 DOI: 10.3389/fimmu.2022.944907] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Influenza A viruses are a diverse species that include 16 true hemagglutinin (HA) subtypes and 9 true neuraminidase (NA) subtypes. While the antigenicity of many HA subtypes is reasonably well studied, less is known about NA antigenicity, especially when it comes to non-human subtypes that only circulate in animal reservoirs. The N6 subtype NAs are mostly found in viruses infecting birds. However, they have also been identified in viruses that infect mammals, such as swine and seals. More recently, highly pathogenic H5N6 subtype viruses have caused rare infections and mortality in humans. Here, we generated murine mAbs to the N6 NA, characterized their breadth and antiviral properties in vitro and in vivo and mapped their epitopes by generating escape mutant viruses. We found that the antibodies had broad reactivity across the American and Eurasian N6 lineages, but relatively little binding to the H5N6 NA. Several of the antibodies exhibited strong NA inhibition activity and some also showed activity in the antibody dependent cellular cytotoxicity reporter assay and neutralization assay. In addition, we generated escape mutant viruses for six monoclonal antibodies and found mutations on the lateral ridge of the NA. Lastly, we observed variable protection in H4N6 mouse challenge models when the antibodies were given prophylactically.
Collapse
Affiliation(s)
- Shirin Strohmeier
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Fatima Amanat
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Juan Manuel Carreño
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- *Correspondence: Florian Krammer,
| |
Collapse
|
5
|
Wang Y, Tang CY, Wan XF. Antigenic characterization of influenza and SARS-CoV-2 viruses. Anal Bioanal Chem 2022; 414:2841-2881. [PMID: 34905077 PMCID: PMC8669429 DOI: 10.1007/s00216-021-03806-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/21/2021] [Accepted: 11/24/2021] [Indexed: 12/24/2022]
Abstract
Antigenic characterization of emerging and re-emerging viruses is necessary for the prevention of and response to outbreaks, evaluation of infection mechanisms, understanding of virus evolution, and selection of strains for vaccine development. Primary analytic methods, including enzyme-linked immunosorbent/lectin assays, hemagglutination inhibition, neuraminidase inhibition, micro-neutralization assays, and antigenic cartography, have been widely used in the field of influenza research. These techniques have been improved upon over time for increased analytical capacity, and some have been mobilized for the rapid characterization of the SARS-CoV-2 virus as well as its variants, facilitating the development of highly effective vaccines within 1 year of the initially reported outbreak. While great strides have been made for evaluating the antigenic properties of these viruses, multiple challenges prevent efficient vaccine strain selection and accurate assessment. For influenza, these barriers include the requirement for a large virus quantity to perform the assays, more than what can typically be provided by the clinical samples alone, cell- or egg-adapted mutations that can cause antigenic mismatch between the vaccine strain and circulating viruses, and up to a 6-month duration of vaccine development after vaccine strain selection, which allows viruses to continue evolving with potential for antigenic drift and, thus, antigenic mismatch between the vaccine strain and the emerging epidemic strain. SARS-CoV-2 characterization has faced similar challenges with the additional barrier of the need for facilities with high biosafety levels due to its infectious nature. In this study, we review the primary analytic methods used for antigenic characterization of influenza and SARS-CoV-2 and discuss the barriers of these methods and current developments for addressing these challenges.
Collapse
Affiliation(s)
- Yang Wang
- MU Center for Influenza and Emerging Infectious Diseases (CIEID), University of Missouri, Columbia, MO, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Cynthia Y Tang
- MU Center for Influenza and Emerging Infectious Diseases (CIEID), University of Missouri, Columbia, MO, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
- Institute for Data Science and Informatics, University of Missouri, Columbia, MO, USA
| | - Xiu-Feng Wan
- MU Center for Influenza and Emerging Infectious Diseases (CIEID), University of Missouri, Columbia, MO, USA.
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, USA.
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA.
- Institute for Data Science and Informatics, University of Missouri, Columbia, MO, USA.
- Department of Electrical Engineering & Computer Science, College of Engineering, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
6
|
Wang Y, Lei R, Nourmohammad A, Wu NC. Antigenic evolution of human influenza H3N2 neuraminidase is constrained by charge balancing. eLife 2021; 10:e72516. [PMID: 34878407 PMCID: PMC8683081 DOI: 10.7554/elife.72516] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 12/07/2021] [Indexed: 11/13/2022] Open
Abstract
As one of the main influenza antigens, neuraminidase (NA) in H3N2 virus has evolved extensively for more than 50 years due to continuous immune pressure. While NA has recently emerged as an effective vaccine target, biophysical constraints on the antigenic evolution of NA remain largely elusive. Here, we apply combinatorial mutagenesis and next-generation sequencing to characterize the local fitness landscape in an antigenic region of NA in six different human H3N2 strains that were isolated around 10 years apart. The local fitness landscape correlates well among strains and the pairwise epistasis is highly conserved. Our analysis further demonstrates that local net charge governs the pairwise epistasis in this antigenic region. In addition, we show that residue coevolution in this antigenic region is correlated with the pairwise epistasis between charge states. Overall, this study demonstrates the importance of quantifying epistasis and the underlying biophysical constraint for building a model of influenza evolution.
Collapse
Affiliation(s)
- Yiquan Wang
- Department of Biochemistry, University of Illinois at Urbana-ChampaignUrbanaUnited States
| | - Ruipeng Lei
- Department of Biochemistry, University of Illinois at Urbana-ChampaignUrbanaUnited States
| | - Armita Nourmohammad
- Department of Physics, University of WashingtonSeattleUnited States
- Max Planck Institute for Dynamics and Self-OrganizationGöttingenGermany
- Fred Hutchinson Cancer Research CenterSeattleUnited States
| | - Nicholas C Wu
- Department of Biochemistry, University of Illinois at Urbana-ChampaignUrbanaUnited States
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-ChampaignUrbanaUnited States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-ChampaignUrbanaUnited States
- Carle Illinois College of Medicine, University of Illinois at Urbana-ChampaignUrbanaUnited States
| |
Collapse
|
7
|
Creytens S, Pascha MN, Ballegeer M, Saelens X, de Haan CAM. Influenza Neuraminidase Characteristics and Potential as a Vaccine Target. Front Immunol 2021; 12:786617. [PMID: 34868073 PMCID: PMC8635103 DOI: 10.3389/fimmu.2021.786617] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 10/29/2021] [Indexed: 12/28/2022] Open
Abstract
Neuraminidase of influenza A and B viruses plays a critical role in the virus life cycle and is an important target of the host immune system. Here, we highlight the current understanding of influenza neuraminidase structure, function, antigenicity, immunogenicity, and immune protective potential. Neuraminidase inhibiting antibodies have been recognized as correlates of protection against disease caused by natural or experimental influenza A virus infection in humans. In the past years, we have witnessed an increasing interest in the use of influenza neuraminidase to improve the protective potential of currently used influenza vaccines. A number of well-characterized influenza neuraminidase-specific monoclonal antibodies have been described recently, most of which can protect in experimental challenge models by inhibiting the neuraminidase activity or by Fc receptor-dependent mechanisms. The relative instability of the neuraminidase poses a challenge for protein-based antigen design. We critically review the different solutions that have been proposed to solve this problem, ranging from the inclusion of stabilizing heterologous tetramerizing zippers to the introduction of inter-protomer stabilizing mutations. Computationally engineered neuraminidase antigens have been generated that offer broad, within subtype protection in animal challenge models. We also provide an overview of modern vaccine technology platforms that are compatible with the induction of robust neuraminidase-specific immune responses. In the near future, we will likely see the implementation of influenza vaccines that confront the influenza virus with a double punch: targeting both the hemagglutinin and the neuraminidase.
Collapse
MESH Headings
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Antigenic Drift and Shift
- Antigens, Viral/immunology
- Antigens, Viral/ultrastructure
- Catalytic Domain/genetics
- Catalytic Domain/immunology
- Cross Protection
- Evolution, Molecular
- Humans
- Immunogenicity, Vaccine
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/genetics
- Influenza Vaccines/immunology
- Influenza, Human/immunology
- Influenza, Human/prevention & control
- Influenza, Human/virology
- Alphainfluenzavirus/enzymology
- Alphainfluenzavirus/genetics
- Alphainfluenzavirus/immunology
- Betainfluenzavirus/enzymology
- Betainfluenzavirus/genetics
- Betainfluenzavirus/immunology
- Mutation
- Nanoparticles
- Neuraminidase/administration & dosage
- Neuraminidase/genetics
- Neuraminidase/immunology
- Neuraminidase/ultrastructure
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/ultrastructure
- Viral Proteins/administration & dosage
- Viral Proteins/genetics
- Viral Proteins/immunology
- Viral Proteins/ultrastructure
Collapse
Affiliation(s)
- Sarah Creytens
- Vlaams Instituut voor Biotechnologie (VIB)-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Mirte N. Pascha
- Section Virology, Division Infectious Diseases & Immunology, Department of Biomolecular Health Sciences, Utrecht University, Utrecht, Netherlands
| | - Marlies Ballegeer
- Vlaams Instituut voor Biotechnologie (VIB)-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Xavier Saelens
- Vlaams Instituut voor Biotechnologie (VIB)-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Cornelis A. M. de Haan
- Section Virology, Division Infectious Diseases & Immunology, Department of Biomolecular Health Sciences, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
8
|
Du W, de Vries E, van Kuppeveld FJM, Matrosovich M, de Haan CAM. Second sialic acid-binding site of influenza A virus neuraminidase: binding receptors for efficient release. FEBS J 2021; 288:5598-5612. [PMID: 33314755 PMCID: PMC8518505 DOI: 10.1111/febs.15668] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/02/2020] [Accepted: 12/08/2020] [Indexed: 12/11/2022]
Abstract
Influenza A viruses (IAVs) are a major cause of human respiratory tract infections and cause significant disease and mortality. Human IAVs originate from animal viruses that breached the host species barrier. IAV particles contain sialoglycan receptor-binding hemagglutinin (HA) and receptor-destroying neuraminidase (NA) in their envelope. When IAV crosses the species barrier, the functional balance between HA and NA needs to be adjusted to the sialoglycan repertoire of the novel host species. Relatively little is known about the role of NA in host adaptation in contrast to the extensively studied HA. NA prevents virion aggregation and facilitates release of (newly assembled) virions from cell surfaces and from decoy receptors abundantly present in mucus and cell glycocalyx. In addition to a highly conserved catalytic site, NA carries a second sialic acid-binding site (2SBS). The 2SBS preferentially binds α2,3-linked sialic acids and enhances activity of the neighboring catalytic site by bringing/keeping multivalent substrates in close contact with this site. In this way, the 2SBS contributes to the HA-NA balance of virus particles and affects virus replication. The 2SBS is highly conserved in all NA subtypes of avian IAVs, with some notable exceptions associated with changes in the receptor-binding specificity of HA and host tropism. Conservation of the 2SBS is invariably lost in human (pandemic) viruses and in several other viruses adapted to mammalian host species. Preservation or loss of the 2SBS is likely to be an important factor of the viral host range.
Collapse
Affiliation(s)
- Wenjuan Du
- Section of VirologyDivision of Infectious Diseases & ImmunologyDepartment of Biomolecular Health SciencesFaculty of Veterinary MedicineUtrecht UniversityThe Netherlands
| | - Erik de Vries
- Section of VirologyDivision of Infectious Diseases & ImmunologyDepartment of Biomolecular Health SciencesFaculty of Veterinary MedicineUtrecht UniversityThe Netherlands
| | - Frank J. M. van Kuppeveld
- Section of VirologyDivision of Infectious Diseases & ImmunologyDepartment of Biomolecular Health SciencesFaculty of Veterinary MedicineUtrecht UniversityThe Netherlands
| | | | - Cornelis A. M. de Haan
- Section of VirologyDivision of Infectious Diseases & ImmunologyDepartment of Biomolecular Health SciencesFaculty of Veterinary MedicineUtrecht UniversityThe Netherlands
| |
Collapse
|
9
|
Analysis of the Evolution of Pandemic Influenza A(H1N1) Virus Neuraminidase Reveals Entanglement of Different Phenotypic Characteristics. mBio 2021; 12:mBio.00287-21. [PMID: 33975931 PMCID: PMC8262965 DOI: 10.1128/mbio.00287-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The influenza A virus (IAV) neuraminidase (NA) is essential for virion release from cells and decoy receptors and an important target of antiviral drugs and antibodies. Adaptation to a new host sialome and escape from the host immune system are forces driving the selection of mutations in the NA gene. Phylogenetic analysis shows that until 2015, 16 amino acid substitutions in NA became fixed in the virus population after introduction in the human population of the pandemic IAV H1N1 (H1N1pdm09) in 2009. The accumulative effect of these substitutions, in the order in which they appeared, was analyzed using recombinant proteins and viruses in combination with different functional assays. The results indicate that NA activity did not evolve to a single optimum but rather fluctuated within a certain bandwidth. Furthermore, antigenic and enzymatic properties of NA were intertwined, with several residues affecting multiple properties. For example, the substitution K432E in the second sialic acid binding site, next to the catalytic site, was shown to affect catalytic activity, substrate specificity, and the pH optimum for maximum activity. This substitution also altered antigenicity of NA, which may explain its selection. We propose that the entanglement of NA phenotypes may be an important determining factor in the evolution of NA.IMPORTANCE Since its emergence in 2009, the pandemic H1N1 influenza A virus (IAV) has caused significant disease and mortality in humans. IAVs contain two envelope glycoproteins, the receptor-binding hemagglutinin (HA) and the receptor-destroying neuraminidase (NA). NA is essential for virion release from cells and decoy receptors, is an important target of antiviral drugs, and is increasingly being recognized as an important vaccine antigen. Not much is known, however, about the evolution of this protein upon the emergence of the novel pandemic H1N1 virus, with respect to its enzymatic activity and antigenicity. By reconstructing the evolutionary path of NA, we show that antigenic and enzymatic properties of NA are intertwined, with several residues affecting multiple properties. Understanding the entanglement of NA phenotypes will lead to better comprehension of IAV evolution and may help the development of NA-based vaccines.
Collapse
|
10
|
Structure-Based Modification of an Anti-neuraminidase Human Antibody Restores Protection Efficacy against the Drifted Influenza Virus. mBio 2020; 11:mBio.02315-20. [PMID: 33024040 PMCID: PMC7542365 DOI: 10.1128/mbio.02315-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The immune system produces antibodies to protect the human body from harmful invaders. The monoclonal antibody (MAb) is one kind of effective antivirals. In this study, we isolated an antibody (Z2B3) from an H7N9 influenza virus-infected child. It shows cross-reactivity to both group 1 (N1) and group 2 (N9) neuraminidases (NAs) but is sensitive to N1 NA with a K432E substitution. Structural analysis of the NA-antibody fragment antigen-binding (Fab) complex provides a clue for antibody modification, and the modified antibody restored binding and inhibition to recently drifted N1 NA and regained protection against the variant influenza strain. This finding suggests that antibodies to NA may be a useful therapy and can be in principle edited to defeat drifted influenza virus. Here, we investigate a monoclonal antibody, Z2B3, isolated from an H7N9-infected patient, that exhibited cross-reactivity to both N9 (group 2) and a broad range of seasonal and avian N1 (group 1) proteins but lost activity to the N1 with the substitution K432E. This substitution exists in 99.25% of seasonal influenza strains after 2013. The NA-Z2B3 complex structures indicated that Z2B3 binds within the conserved active site of the neuraminidase (NA) protein. A salt bridge between D102 in Z2B3 and K432 in NA plays an important role in binding. Structure-based modification of Z2B3 with D102R in heavy chain reversed the salt bridge and restored the binding and inhibition of N1 with E432. Furthermore, Z2B3-D102R can protect mice from A/Serbia/NS-601/2014 H1N1 virus (NA contains E432) infection while the wild-type Z2B3 antibody shows no protection. This study demonstrates that a broadly reactive and protective antibody to NA can be in principle edited to restore binding and inhibition to recently drifted N1 NA and regain protection against the variant influenza strain.
Collapse
|
11
|
Rijal P, Wang BB, Tan TK, Schimanski L, Janesch P, Dong T, McCauley JW, Daniels RS, Townsend AR, Huang KYA. Broadly Inhibiting Antineuraminidase Monoclonal Antibodies Induced by Trivalent Influenza Vaccine and H7N9 Infection in Humans. J Virol 2020; 94:e01182-19. [PMID: 31748388 PMCID: PMC6997757 DOI: 10.1128/jvi.01182-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 11/08/2019] [Indexed: 01/24/2023] Open
Abstract
The majority of antibodies induced by influenza neuraminidase (NA), like those against hemagglutinin (HA), are relatively specific to viruses isolated within a limited time window, as seen in serological studies and the analysis of many murine monoclonal antibodies (MAbs). We report three broadly reactive human MAbs targeting N1 NA. Two were isolated from a young adult vaccinated with trivalent influenza vaccine (TIV), which inhibited N1 NA from viruses isolated from humans over a period of a hundred years. The third antibody, isolated from a child with acute mild H7N9 infection, inhibited both group 1 N1 and group 2 N9 NAs. In addition, the antibodies cross-inhibited the N1 NAs of highly pathogenic avian H5N1 influenza viruses. These antibodies are protective in prophylaxis against seasonal H1N1 viruses in mice. This study demonstrates that human antibodies to N1 NA with exceptional cross-reactivity can be recalled by vaccination and highlights the importance of standardizing the NA antigen in seasonal vaccines to offer optimal protection.IMPORTANCE Antibodies to the influenza virus NA can provide protection against influenza disease. Analysis of human antibodies to NA lags behind that of antibodies to HA. We show that human monoclonal antibodies against NA induced by vaccination and infection can be very broadly reactive, with the ability to inhibit a wide spectrum of N1 NAs on viruses isolated between 1918 and 2018. This suggests that antibodies to NA may be a useful therapy and that the efficacy of influenza vaccines could be enhanced by ensuring the appropriate content of NA antigen.
Collapse
Affiliation(s)
- Pramila Rijal
- Center for Translational Immunology, Chinese Academy of Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Bei Bei Wang
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Tiong Kit Tan
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Lisa Schimanski
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Philipp Janesch
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Tao Dong
- Center for Translational Immunology, Chinese Academy of Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - John W McCauley
- Worldwide Influenza Centre, The Francis Crick Institute, London, United Kingdom
| | - Rodney S Daniels
- Worldwide Influenza Centre, The Francis Crick Institute, London, United Kingdom
| | - Alain R Townsend
- Center for Translational Immunology, Chinese Academy of Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Kuan-Ying A Huang
- Division of Infectious Diseases, Department of Paediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- School of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
12
|
Zhu X, Turner HL, Lang S, McBride R, Bangaru S, Gilchuk IM, Yu W, Paulson JC, Crowe JE, Ward AB, Wilson IA. Structural Basis of Protection against H7N9 Influenza Virus by Human Anti-N9 Neuraminidase Antibodies. Cell Host Microbe 2019; 26:729-738.e4. [PMID: 31757767 DOI: 10.1016/j.chom.2019.10.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 08/20/2019] [Accepted: 10/01/2019] [Indexed: 01/22/2023]
Abstract
Influenza virus neuraminidase (NA) is a major target for small-molecule antiviral drugs. Antibodies targeting the NA surface antigen could also inhibit virus entry and egress to provide host protection. However, our understanding of the nature and range of target epitopes is limited because of a lack of human antibody structures with influenza neuraminidase. Here, we describe crystal and cryogenic electron microscopy (cryo-EM) structures of NAs from human-infecting avian H7N9 viruses in complex with five human anti-N9 antibodies, systematically defining several antigenic sites and antibody epitope footprints. These antibodies either fully or partially block the NA active site or bind to epitopes distant from the active site while still showing neuraminidase inhibition. The inhibition of antibodies to NAs was further analyzed by glycan array and solution-based NA activity assays. Together, these structural studies provide insights into protection by anti-NA antibodies and templates for the development of NA-based influenza virus vaccines and therapeutics.
Collapse
Affiliation(s)
- Xueyong Zhu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Hannah L Turner
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Shanshan Lang
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ryan McBride
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA; Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Sandhya Bangaru
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Iuliia M Gilchuk
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Wenli Yu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - James C Paulson
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA; Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - James E Crowe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA; Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA; Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA.
| |
Collapse
|
13
|
Stadlbauer D, Zhu X, McMahon M, Turner JS, Wohlbold TJ, Schmitz AJ, Strohmeier S, Yu W, Nachbagauer R, Mudd PA, Wilson IA, Ellebedy AH, Krammer F. Broadly protective human antibodies that target the active site of influenza virus neuraminidase. Science 2019; 366:499-504. [PMID: 31649200 PMCID: PMC7105897 DOI: 10.1126/science.aay0678] [Citation(s) in RCA: 157] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 09/27/2019] [Indexed: 12/21/2022]
Abstract
Better vaccines against influenza virus are urgently needed to provide broader protection against diverse strains, subtypes, and types. Such efforts are assisted by the identification of novel broadly neutralizing epitopes targeted by protective antibodies. Influenza vaccine development has largely focused on the hemagglutinin, but the other major surface antigen, the neuraminidase, has reemerged as a potential target for universal vaccines. We describe three human monoclonal antibodies isolated from an H3N2-infected donor that bind with exceptional breadth to multiple different influenza A and B virus neuraminidases. These antibodies neutralize the virus, mediate effector functions, are broadly protective in vivo, and inhibit neuraminidase activity by directly binding to the active site. Structural and functional characterization of these antibodies will inform the development of neuraminidase-based universal vaccines against influenza virus.
Collapse
Affiliation(s)
- Daniel Stadlbauer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Biotechnology, University of Natural Resources and Life Sciences, A-1190 Vienna, Austria
| | - Xueyong Zhu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Meagan McMahon
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jackson S Turner
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Teddy J Wohlbold
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pediatrics, Columbia Irving Medical Center, New York, NY 10032, USA
- NewYork-Presbyterian Morgan Stanley Children's Hospital, New York, NY 10032, USA
| | - Aaron J Schmitz
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Shirin Strohmeier
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Wenli Yu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Raffael Nachbagauer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Philip A Mudd
- Division of Emergency Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ali H Ellebedy
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
14
|
Saikia S, Bordoloi M, Sarmah R, Kolita B. Antiviral compound screening, peptide designing, and protein network construction of influenza a virus (strain a/Puerto Rico/8/1934 H1N1). Drug Dev Res 2018; 80:106-124. [PMID: 30276835 DOI: 10.1002/ddr.21475] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 09/03/2018] [Accepted: 09/05/2018] [Indexed: 11/11/2022]
Abstract
Plant-based antiviral therapy is the current need for holistic health care management, which can be achieved through screening of phytochemicals and designing of antiviral peptides. There exist certain host's factors which are directly involved for rapid viral replication causing worldwide pandemic. A total of 177 phytochemicals from Ocimum sanctum (L.), Tinospora cordifolia (Thunb.) Miers, Cinnamomum camphora (L.) J. Presl., Allium sativum (L.), Curcuma longa (L.), and Aloe vera (L.) Burm. f. were evaluated for their affinity to all viral proteins of H1N1. Applying drug filters and keeping the threshold of such filters relative to the standards, 82 compounds were found suitable for further analysis. Consensus scoring system was used for screening top ligands from 82 compounds, which screened the top 12 compounds. Highly conserved regions (>80%) which were hydrophilic, flexible, antigenic, and also charged were screened out as potent antiviral peptides. The viral proteins were taken as the targets for the modeled peptides for protein-protein docking. Further, host-pathogen interacting network was constructed to unveil host factors involved in viral replication, from which unique protein clusters representing their involvement in viral reproduction were selected through mapping with pathway databases. Twelve compounds and five peptides were found to be highly effective against all the proteins of H1N1. Based on the uniqueness, 13 clusters of proteins were obtained which are engaged in cellular process, namely, viral reproduction, fructose-6-phosphate metabolism, nitrogen compound metabolism, biosynthesis, cellular process, oligodendrocyte development, localization, multiorganism process, primary metabolism, response to unfolded protein, metabolism, and response to protein and catabolism.
Collapse
Affiliation(s)
- Surovi Saikia
- Chemical Sciences & Technology (Natural Products Chemistry) Division, CSIR North East Institute of Science & Technology, Jorhat, Assam, India
| | - Manobjyoti Bordoloi
- Chemical Sciences & Technology (Natural Products Chemistry) Division, CSIR North East Institute of Science & Technology, Jorhat, Assam, India
| | - Rajeev Sarmah
- Allied Health Sciences, Assam Down Town University, Panikhaiti, Guwahati, Assam, India
| | - Bhaskor Kolita
- Chemical Sciences & Technology (Natural Products Chemistry) Division, CSIR North East Institute of Science & Technology, Jorhat, Assam, India
| |
Collapse
|
15
|
Guo Z, Wilson JR, York IA, Stevens J. Biosensor-based epitope mapping of antibodies targeting the hemagglutinin and neuraminidase of influenza A virus. J Immunol Methods 2018; 461:23-29. [PMID: 30053389 DOI: 10.1016/j.jim.2018.07.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 03/21/2018] [Accepted: 07/23/2018] [Indexed: 01/04/2023]
Abstract
Characterization of the epitopes on antigen recognized by monoclonal antibodies (mAb) is useful for the development of therapeutic antibodies, diagnostic tools, and vaccines. Epitope mapping also provides functional information for sequence-based repertoire analysis of antibody response to pathogen infection and/or vaccination. However, development of mapping strategies has lagged behind mAb discovery. We have developed a site-directed mutagenesis approach that can be used in conjunction with bio-layer interferometry (BLI) biosensors to map mAb epitopes. By generating a panel of single point mutants in the recombinant hemagglutinin (HA) and neuraminidase (NA) proteins of influenza A viruses, we have characterized the epitopes of hundreds of mAbs targeting the H1 and H3 subtypes of HA and the N9 subtype of NA.
Collapse
Affiliation(s)
- Zhu Guo
- Influenza Division, National Center for Immunization and Respiratory Disease, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Jason R Wilson
- Influenza Division, National Center for Immunization and Respiratory Disease, Centers for Disease Control and Prevention, Atlanta, GA, USA; CNI Advantage, LLC, Norman, OK, USA
| | - Ian A York
- Influenza Division, National Center for Immunization and Respiratory Disease, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | - James Stevens
- Influenza Division, National Center for Immunization and Respiratory Disease, Centers for Disease Control and Prevention, Atlanta, GA, USA
| |
Collapse
|
16
|
Chen F, Liu H, Sun H, Pan P, Li Y, Li D, Hou T. Assessing the performance of the MM/PBSA and MM/GBSA methods. 6. Capability to predict protein-protein binding free energies and re-rank binding poses generated by protein-protein docking. Phys Chem Chem Phys 2018; 18:22129-39. [PMID: 27444142 DOI: 10.1039/c6cp03670h] [Citation(s) in RCA: 331] [Impact Index Per Article: 55.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Understanding protein-protein interactions (PPIs) is quite important to elucidate crucial biological processes and even design compounds that interfere with PPIs with pharmaceutical significance. Protein-protein docking can afford the atomic structural details of protein-protein complexes, but the accurate prediction of the three-dimensional structures for protein-protein systems is still notoriously difficult due in part to the lack of an ideal scoring function for protein-protein docking. Compared with most scoring functions used in protein-protein docking, the Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) and Molecular Mechanics/Poisson Boltzmann Surface Area (MM/PBSA) methodologies are more theoretically rigorous, but their overall performance for the predictions of binding affinities and binding poses for protein-protein systems has not been systematically evaluated. In this study, we first evaluated the performance of MM/PBSA and MM/GBSA to predict the binding affinities for 46 protein-protein complexes. On the whole, different force fields, solvation models, and interior dielectric constants have obvious impacts on the prediction accuracy of MM/GBSA and MM/PBSA. The MM/GBSA calculations based on the ff02 force field, the GB model developed by Onufriev et al. and a low interior dielectric constant (εin = 1) yield the best correlation between the predicted binding affinities and the experimental data (rp = -0.647), which is better than MM/PBSA (rp = -0.523) and a number of empirical scoring functions used in protein-protein docking (rp = -0.141 to -0.529). Then, we examined the capability of MM/GBSA to identify the possible near-native binding structures from the decoys generated by ZDOCK for 43 protein-protein systems. The results illustrate that the MM/GBSA rescoring has better capability to distinguish the correct binding structures from the decoys than the ZDOCK scoring. Besides, the optimal interior dielectric constant of MM/GBSA for re-ranking docking poses may be determined by analyzing the characteristics of protein-protein binding interfaces. Considering the relatively high prediction accuracy and low computational cost, MM/GBSA may be a good choice for predicting the binding affinities and identifying correct binding structures for protein-protein systems.
Collapse
Affiliation(s)
- Fu Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Hui Liu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Huiyong Sun
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Peichen Pan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Youyong Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China
| | - Dan Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Tingjun Hou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China. and State Key Lab of CAD&CG, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| |
Collapse
|
17
|
Nogales A, Martínez-Sobrido L. Reverse Genetics Approaches for the Development of Influenza Vaccines. Int J Mol Sci 2016; 18:E20. [PMID: 28025504 PMCID: PMC5297655 DOI: 10.3390/ijms18010020] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 12/15/2016] [Accepted: 12/19/2016] [Indexed: 12/20/2022] Open
Abstract
Influenza viruses cause annual seasonal epidemics and occasional pandemics of human respiratory disease. Influenza virus infections represent a serious public health and economic problem, which are most effectively prevented through vaccination. However, influenza viruses undergo continual antigenic variation, which requires either the annual reformulation of seasonal influenza vaccines or the rapid generation of vaccines against potential pandemic virus strains. The segmented nature of influenza virus allows for the reassortment between two or more viruses within a co-infected cell, and this characteristic has also been harnessed in the laboratory to generate reassortant viruses for their use as either inactivated or live-attenuated influenza vaccines. With the implementation of plasmid-based reverse genetics techniques, it is now possible to engineer recombinant influenza viruses entirely from full-length complementary DNA copies of the viral genome by transfection of susceptible cells. These reverse genetics systems have provided investigators with novel and powerful approaches to answer important questions about the biology of influenza viruses, including the function of viral proteins, their interaction with cellular host factors and the mechanisms of influenza virus transmission and pathogenesis. In addition, reverse genetics techniques have allowed the generation of recombinant influenza viruses, providing a powerful technology to develop both inactivated and live-attenuated influenza vaccines. In this review, we will summarize the current knowledge of state-of-the-art, plasmid-based, influenza reverse genetics approaches and their implementation to provide rapid, convenient, safe and more effective influenza inactivated or live-attenuated vaccines.
Collapse
Affiliation(s)
- Aitor Nogales
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642, USA.
| | - Luis Martínez-Sobrido
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642, USA.
| |
Collapse
|
18
|
Wilson JR, Guo Z, Reber A, Kamal RP, Music N, Gansebom S, Bai Y, Levine M, Carney P, Tzeng WP, Stevens J, York IA. An influenza A virus (H7N9) anti-neuraminidase monoclonal antibody with prophylactic and therapeutic activity in vivo. Antiviral Res 2016; 135:48-55. [PMID: 27713074 DOI: 10.1016/j.antiviral.2016.10.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 09/16/2016] [Accepted: 10/03/2016] [Indexed: 12/09/2022]
Abstract
Zoonotic A(H7N9) avian influenza viruses emerged in China in 2013 and continue to be a threat to human public health, having infected over 800 individuals with a mortality rate approaching 40%. Treatment options for people infected with A(H7N9) include the use of neuraminidase (NA) inhibitors. However, like other influenza viruses, A(H7N9) can become resistant to these drugs. The use of monoclonal antibodies is a rapidly developing strategy for controlling influenza virus infection. Here we generated a murine monoclonal antibody (3c10-3) directed against the NA of A(H7N9) and show that prophylactic systemic administration of 3c10-3 fully protected mice from lethal challenge with wild-type A/Anhui/1/2013 (H7N9). Further, post-infection treatment with a single systemic dose of 3c10-3 at either 24, 48 or 72 h post A(H7N9) challenge resulted in both dose- and time-dependent protection of up to 100% of mice, demonstrating therapeutic potential for 3c10-3. Epitope mapping revealed that 3c10-3 binds near the enzyme active site of NA, and functional characterization showed that 3c10-3 inhibits the enzyme activity of NA and restricts the cell-to-cell spread of the virus in cultured cells. Affinity analysis also revealed that 3c10-3 binds equally well to recombinant NA of wild-type A/Anhui/1/2013 and to a variant NA carrying a R289K mutation known to infer NAI resistance. These results suggest that 3c10-3 has the potential to be used as a therapeutic to treat A(H7N9) infections either as an alternative to, or in combination with, current NA antiviral inhibitors.
Collapse
Affiliation(s)
- Jason R Wilson
- Influenza Division, National Center for Immunization and Respiratory Disease, Centers for Disease Control and Prevention, Atlanta, GA, USA; Carter Consulting, Inc., Atlanta, GA, USA
| | - Zhu Guo
- Influenza Division, National Center for Immunization and Respiratory Disease, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Adrian Reber
- Influenza Division, National Center for Immunization and Respiratory Disease, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Ram P Kamal
- Influenza Division, National Center for Immunization and Respiratory Disease, Centers for Disease Control and Prevention, Atlanta, GA, USA; Battelle Memorial Institute, Atlanta, GA, USA
| | - Nedzad Music
- Influenza Division, National Center for Immunization and Respiratory Disease, Centers for Disease Control and Prevention, Atlanta, GA, USA; Battelle Memorial Institute, Atlanta, GA, USA
| | - Shane Gansebom
- Influenza Division, National Center for Immunization and Respiratory Disease, Centers for Disease Control and Prevention, Atlanta, GA, USA; Carter Consulting, Inc., Atlanta, GA, USA
| | - Yaohui Bai
- Influenza Division, National Center for Immunization and Respiratory Disease, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Min Levine
- Influenza Division, National Center for Immunization and Respiratory Disease, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Paul Carney
- Influenza Division, National Center for Immunization and Respiratory Disease, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Wen-Pin Tzeng
- Influenza Division, National Center for Immunization and Respiratory Disease, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - James Stevens
- Influenza Division, National Center for Immunization and Respiratory Disease, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Ian A York
- Influenza Division, National Center for Immunization and Respiratory Disease, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| |
Collapse
|
19
|
Influenza virus neuraminidase (NA): a target for antivirals and vaccines. Arch Virol 2016; 161:2087-94. [PMID: 27255748 DOI: 10.1007/s00705-016-2907-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 05/22/2016] [Indexed: 10/21/2022]
Abstract
Influenza, the most common infectious disease, poses a great threat to human health because of its highly contagious nature and fast transmissibility, often leading to high morbidity and mortality. Effective vaccination strategies may aid in the prevention and control of recurring epidemics and pandemics associated with this infectious disease. However, antigenic shifts and drifts are major concerns with influenza virus, requiring effective global monitoring and updating of vaccines. Current vaccines are standardized primarily based on the amount of hemagglutinin, a major surface antigen, which chiefly constitutes these preparations along with the varying amounts of neuraminidase (NA). Anti-influenza drugs targeting the active site of NA have been in use for more than a decade now. However, NA has not been approved as an effective antigenic component of the influenza vaccine because of standardization issues. Although some studies have suggested that NA antibodies are able to reduce the severity of the disease and induce a long-term and cross-protective immunity, a few major scientific issues need to be addressed prior to launching NA-based vaccines. Interestingly, an increasing number of studies have shown NA to be a promising target for future influenza vaccines. This review is an attempt to consolidate studies that reflect the strength of NA as a suitable vaccine target. The studies discussed in this article highlight NA as a potential influenza vaccine candidate and support taking the process of developing NA vaccines to the next stage.
Collapse
|
20
|
Bogdanoff WA, Morgenstern D, Bern M, Ueberheide BM, Sanchez-Fauquier A, DuBois RM. De Novo Sequencing and Resurrection of a Human Astrovirus-Neutralizing Antibody. ACS Infect Dis 2016; 2:313-321. [PMID: 27213181 PMCID: PMC4869151 DOI: 10.1021/acsinfecdis.6b00026] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Indexed: 11/29/2022]
Abstract
Monoclonal antibody (mAb) therapeutics targeting cancer, autoimmune diseases, inflammatory diseases, and infectious diseases are growing exponentially. Although numerous panels of mAbs targeting infectious disease agents have been developed, their progression into clinically useful mAbs is often hindered by the lack of sequence information and/or loss of hybridoma cells that produce them. Here we combine the power of crystallography and mass spectrometry to determine the amino acid sequence and glycosylation modification of the Fab fragment of a potent human astrovirus-neutralizing mAb. We used this information to engineer a recombinant antibody single-chain variable fragment that has the same specificity as the parent monoclonal antibody to bind to the astrovirus capsid protein. This antibody can now potentially be developed as a therapeutic and diagnostic agent.
Collapse
Affiliation(s)
- Walter A. Bogdanoff
- Department of Biomolecular Engineering, University of California Santa Cruz, 1156 High Street, Santa
Cruz, California 95064, United States
| | - David Morgenstern
- Department of Biochemistry and Molecular
Pharmacology, New York University School of Medicine, New York, New York 10016, United States
| | - Marshall Bern
- Protein Metrics, San Carlos, California 94070, United States
| | - Beatrix M. Ueberheide
- Department of Biochemistry and Molecular
Pharmacology, New York University School of Medicine, New York, New York 10016, United States
| | - Alicia Sanchez-Fauquier
- Viral Gastroenteritis
Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Rebecca M. DuBois
- Department of Biomolecular Engineering, University of California Santa Cruz, 1156 High Street, Santa
Cruz, California 95064, United States
| |
Collapse
|
21
|
Jagusiak A, Konieczny L, Krol M, Marszalek P, Piekarska B, Piwowar P, Roterman I, Rybarska J, Stopa B, Zemanek G. Intramolecular immunological signal hypothesis revived--structural background of signalling revealed by using Congo Red as a specific tool. Mini Rev Med Chem 2015; 14:1104-13. [PMID: 25429660 PMCID: PMC4440395 DOI: 10.2174/1389557514666141127150803] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 10/11/2014] [Accepted: 11/11/2014] [Indexed: 11/22/2022]
Abstract
Micellar structures formed by self-assembling Congo red molecules bind to proteins penetrating into functionrelated
unstable packing areas. Here, we have used Congo red - a supramolecular protein ligand to investigate how the
intramolecular structural changes that take place in antibodies following antigen binding lead to complement activation.
According to our findings, Congo red binding significantly enhances the formation of antigen-antibody complexes. As a
result, even low-affinity transiently binding antibodies can participate in immune complexes in the presence of Congo
red, although immune complexes formed by these antibodies fail to trigger the complement cascade. This indicates that
binding of antibodies to the antigen may not, by itself, fulfill the necessary conditions to generate the signal which
triggers effector activity. These findings, together with the results of molecular dynamics simulation studies, enable us to
conclude that, apart from the necessary assembling of antibodies, intramolecular structural changes generated by
strains which associate high- affinity bivalent antibody fitting to antigen determinants are also required to cross the
complement activation threshold.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - G Zemanek
- Department of Bioinformatics and Telemedicine, Jagiellonian University, Medical College, Lazarza 16, 31- 530 Krakow, Poland..
| |
Collapse
|
22
|
Wan H, Yang H, Shore DA, Garten RJ, Couzens L, Gao J, Jiang L, Carney PJ, Villanueva J, Stevens J, Eichelberger MC. Structural characterization of a protective epitope spanning A(H1N1)pdm09 influenza virus neuraminidase monomers. Nat Commun 2015; 6:6114. [PMID: 25668439 PMCID: PMC4347215 DOI: 10.1038/ncomms7114] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 12/18/2014] [Indexed: 11/28/2022] Open
Abstract
A(H1N1)pdm09 influenza A viruses predominated in the 2013–2014 USA influenza season, and although most of these viruses remain sensitive to Food and Drug Administration-approved neuraminidase (NA) inhibitors, alternative therapies are needed. Here we show that monoclonal antibody CD6, selected for binding to the NA of the prototypic A(H1N1)pdm09 virus, A/California/07/2009, protects mice against lethal virus challenge. The crystal structure of NA in complex with CD6 Fab reveals a unique epitope, where the heavy-chain complementarity determining regions (HCDRs) 1 and 2 bind one NA monomer, the light-chain CDR2 binds the neighbouring monomer, whereas HCDR3 interacts with both monomers. This 30-amino-acid epitope spans the lateral face of an NA dimer and is conserved among circulating A(H1N1)pdm09 viruses. These results suggest that the large, lateral CD6 epitope may be an effective target of antibodies selected for development as therapeutic agents against circulating H1N1 influenza viruses. Neuraminidase inhibitors offer a line of defence against flu infections, but resistance can occur even in the absence of prior exposure. Here Wan et al. describe the mode of action of CD6, a monoclonal antibody that protects against a common influenza strain, as a new therapeutic intervention model.
Collapse
Affiliation(s)
- Hongquan Wan
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, Maryland 20993, USA
| | - Hua Yang
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, Georgia 30333, USA
| | - David A Shore
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, Georgia 30333, USA
| | - Rebecca J Garten
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, Georgia 30333, USA
| | - Laura Couzens
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, Maryland 20993, USA
| | - Jin Gao
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, Maryland 20993, USA
| | - Lianlian Jiang
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, Maryland 20993, USA
| | - Paul J Carney
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, Georgia 30333, USA
| | - Julie Villanueva
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, Georgia 30333, USA
| | - James Stevens
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, Georgia 30333, USA
| | - Maryna C Eichelberger
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, Maryland 20993, USA
| |
Collapse
|
23
|
Singh H, Nero TL, Wang Y, Parker MW, Nie G. Activity-modulating monoclonal antibodies to the human serine protease HtrA3 provide novel insights into regulating HtrA proteolytic activities. PLoS One 2014; 9:e108235. [PMID: 25248123 PMCID: PMC4172569 DOI: 10.1371/journal.pone.0108235] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 08/27/2014] [Indexed: 11/18/2022] Open
Abstract
Mammalian HtrA (high temperature requirement factor A) proteases, comprising 4 multi-domain members HtrA1-4, play important roles in a number of normal cellular processes as well as pathological conditions such as cancer, arthritis, neurodegenerative diseases and pregnancy disorders. However, how HtrA activities are regulated is not well understood, and to date no inhibitors specific to individual HtrA proteins have been identified. Here we investigated five HtrA3 monoclonal antibodies (mAbs) that we have previously produced, and demonstrated that two of them regulated HtrA3 activity in an opposing fashion: one inhibited while the other stimulated. The inhibitory mAb also blocked HtrA3 activity in trophoblast cells and enhanced migration and invasion, confirming its potential in vivo utility. To understand how the binding of these mAbs modulated HtrA3 protease activity, their epitopes were visualized in relation to a 3-dimensional HtrA3 homology model. This model suggests that the inhibitory HtrA3 mAb blocks substrate access to the protease catalytic site, whereas the stimulatory mAb may bind to the PDZ domain alone or in combination with the N-terminal and protease domains. Since HtrA1, HtrA3 and HtrA4 share identical domain organization, our results establish important foundations for developing potential therapeutics to target these HtrA proteins specifically for the treatment of a number of diseases, including cancer and pregnancy disorders.
Collapse
Affiliation(s)
- Harmeet Singh
- MIMR-PHI Institute of Medical Research, Clayton, Victoria, Australia
- Monash University, Clayton, Victoria, Australia
- * E-mail: (GN); (HS)
| | - Tracy L. Nero
- ACRF Rational Drug Discovery Centre, St Vincent’s Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Yao Wang
- MIMR-PHI Institute of Medical Research, Clayton, Victoria, Australia
- Monash University, Clayton, Victoria, Australia
| | - Michael W. Parker
- ACRF Rational Drug Discovery Centre, St Vincent’s Institute of Medical Research, Fitzroy, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, the University of Melbourne, Parkville, Victoria, Australia
| | - Guiying Nie
- MIMR-PHI Institute of Medical Research, Clayton, Victoria, Australia
- Monash University, Clayton, Victoria, Australia
- * E-mail: (GN); (HS)
| |
Collapse
|
24
|
Single-domain antibodies targeting neuraminidase protect against an H5N1 influenza virus challenge. J Virol 2014; 88:8278-96. [PMID: 24829341 DOI: 10.1128/jvi.03178-13] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Influenza virus neuraminidase (NA) is an interesting target of small-molecule antiviral drugs. We isolated a set of H5N1 NA-specific single-domain antibodies (N1-VHHm) and evaluated their in vitro and in vivo antiviral potential. Two of them inhibited the NA activity and in vitro replication of clade 1 and 2 H5N1 viruses. We then generated bivalent derivatives of N1-VHHm by two methods. First, we made N1-VHHb by genetically joining two N1-VHHm moieties with a flexible linker. Second, bivalent N1-VHH-Fc proteins were obtained by genetic fusion of the N1-VHHm moiety with the crystallizable region of mouse IgG2a (Fc). The in vitro antiviral potency against H5N1 of both bivalent N1-VHHb formats was 30- to 240-fold higher than that of their monovalent counterparts, with 50% inhibitory concentrations in the low nanomolar range. Moreover, single-dose prophylactic treatment with bivalent N1-VHHb or N1-VHH-Fc protected BALB/c mice against a lethal challenge with H5N1 virus, including an oseltamivir-resistant H5N1 variant. Surprisingly, an N1-VHH-Fc fusion without in vitro NA-inhibitory or antiviral activity also protected mice against an H5N1 challenge. Virus escape selection experiments indicated that one amino acid residue close to the catalytic site is required for N1-VHHm binding. We conclude that single-domain antibodies directed against influenza virus NA protect against H5N1 virus infection, and when engineered with a conventional Fc domain, they can do so in the absence of detectable NA-inhibitory activity. IMPORTANCE Highly pathogenic H5N1 viruses are a zoonotic threat. Outbreaks of avian influenza caused by these viruses occur in many parts of the world and are associated with tremendous economic loss, and these viruses can cause very severe disease in humans. In such cases, small-molecule inhibitors of the viral NA are among the few treatment options for patients. However, treatment with such drugs often results in the emergence of resistant viruses. Here we show that single-domain antibody fragments that are specific for NA can bind and inhibit H5N1 viruses in vitro and can protect laboratory mice against a challenge with an H5N1 virus, including an oseltamivir-resistant virus. In addition, plant-produced VHH fused to a conventional Fc domain can protect in vivo even in the absence of NA-inhibitory activity. Thus, NA of influenza virus can be effectively targeted by single-domain antibody fragments, which are amenable to further engineering.
Collapse
|
25
|
Abstract
Neuraminidase (NA) is the second most abundant influenza surface glycoprotein and contributes to virus replication in several ways, most notably by removing sialic acids from the host and viral glycoproteins, releasing newly formed virus particles from infected cells. Antibodies that block this enzyme activity restrict virus replication in vitro. This chapter describes foundational epidemiologic and human influenza challenge studies that provide evidence of an association between NA inhibiting antibodies and resistance to disease. Mouse challenge studies show that while NA immunity is infection-permissive, NA-specific antibodies attenuate infection and prevent severe disease. NA immunity is most effective against homologous viruses but there is substantial protection against viruses with a heterologous NA (different lineage within a NA subtype). Monoclonal antibodies specific for conserved antigenic domains of subtype N1 protect against seasonal and pandemic H1N1 as well as H5N1 virus challenge. Clinical studies demonstrate that licensed seasonal vaccines contain immunogenic amounts of NA, but the contribution of this immunity to vaccine efficacy is currently not known. New types of influenza vaccines could be designed to elicit NA immunity. Because NA induces heterologous immunity, it could be an important constituent of universal influenza vaccines that aim to protect against unexpected emerging viruses.
Collapse
Affiliation(s)
- Maryna C Eichelberger
- Division of Viral Products, Office of Vaccine Research and Review, Center for Biologics Research and Regulation, US Food and Drug Administration, HFM445, Silver Spring, MD, 20892, USA,
| | | |
Collapse
|
26
|
Sedykh MA, Buneva VN, Nevinsky GA. Polyreactivity of natural antibodies: Exchange by HL-fragments. BIOCHEMISTRY (MOSCOW) 2013; 78:1305-1320. [DOI: 10.1134/s0006297913120018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
27
|
Molecular basis for broad neuraminidase immunity: conserved epitopes in seasonal and pandemic H1N1 as well as H5N1 influenza viruses. J Virol 2013; 87:9290-300. [PMID: 23785204 DOI: 10.1128/jvi.01203-13] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Influenza A viruses, including H1N1 and H5N1 subtypes, pose a serious threat to public health. Neuraminidase (NA)-related immunity contributes to protection against influenza virus infection. Antibodies to the N1 subtype provide protection against homologous and heterologous H1N1 as well as H5N1 virus challenge. Since neither the strain-specific nor conserved epitopes of N1 have been identified, we generated a panel of mouse monoclonal antibodies (MAbs) that exhibit different reactivity spectra with H1N1 and H5N1 viruses and used these MAbs to map N1 antigenic domains. We identified 12 amino acids essential for MAb binding to the NA of a recent seasonal H1N1 virus, A/Brisbane/59/2007. Of these, residues 248, 249, 250, 341, and 343 are recognized by strain-specific group A MAbs, while residues 273, 338, and 339 are within conserved epitope(s), which allows cross-reactive group B MAbs to bind the NAs of seasonal H1N1 and the 1918 and 2009 pandemic (09pdm) H1N1 as well as H5N1 viruses. A single dose of group B MAbs administered prophylactically fully protected mice against lethal challenge with seasonal and 09pdm H1N1 viruses and resulted in significant protection against the highly pathogenic wild-type H5N1 virus. Another three N1 residues (at positions 396, 397, and 456) are essential for binding of cross-reactive group E MAbs, which differ from group B MAbs in that they do not bind 09pdm H1N1 viruses. The identification of conserved N1 epitopes reveals the molecular basis for NA-mediated immunity between H1N1 and H5N1 viruses and demonstrates the potential for developing broadly protective NA-specific antibody treatments for influenza.
Collapse
|
28
|
Abstract
Influenza neuraminidase is the target of two licensed antivirals that have been very successful, with several more in development. However, neuraminidase has been largely ignored as a vaccine target despite evidence that inclusion of neuraminidase in the subunit vaccine gives increased protection. This article describes current knowledge on the structure, enzyme activity, and antigenic significance of neuraminidase.
Collapse
Affiliation(s)
- Gillian M Air
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| |
Collapse
|
29
|
Buschiazzo A, Muiá R, Larrieux N, Pitcovsky T, Mucci J, Campetella O. Trypanosoma cruzi trans-sialidase in complex with a neutralizing antibody: structure/function studies towards the rational design of inhibitors. PLoS Pathog 2012; 8:e1002474. [PMID: 22241998 PMCID: PMC3252381 DOI: 10.1371/journal.ppat.1002474] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 11/21/2011] [Indexed: 12/27/2022] Open
Abstract
Trans-sialidase (TS), a virulence factor from Trypanosoma cruzi, is an enzyme playing key roles in the biology of this protozoan parasite. Absent from the mammalian host, it constitutes a potential target for the development of novel chemotherapeutic drugs, an urgent need to combat Chagas' disease. TS is involved in host cell invasion and parasite survival in the bloodstream. However, TS is also actively shed by the parasite to the bloodstream, inducing systemic effects readily detected during the acute phase of the disease, in particular, hematological alterations and triggering of immune cells apoptosis, until specific neutralizing antibodies are elicited. These antibodies constitute the only known submicromolar inhibitor of TS's catalytic activity. We now report the identification and detailed characterization of a neutralizing mouse monoclonal antibody (mAb 13G9), recognizing T. cruzi TS with high specificity and subnanomolar affinity. This mAb displays undetectable association with the T. cruzi superfamily of TS-like proteins or yet with the TS-related enzymes from Trypanosoma brucei or Trypanosoma rangeli. In immunofluorescence assays, mAb 13G9 labeled 100% of the parasites from the infective trypomastigote stage. This mAb also reduces parasite invasion of cultured cells and strongly inhibits parasite surface sialylation. The crystal structure of the mAb 13G9 antigen-binding fragment in complex with the globular region of T. cruzi TS was determined, revealing detailed molecular insights of the inhibition mechanism. Not occluding the enzyme's catalytic site, the antibody performs a subtle action by inhibiting the movement of an assisting tyrosine (Y119), whose mobility is known to play a key role in the trans-glycosidase mechanism. As an example of enzymatic inhibition involving non-catalytic residues that occupy sites distal from the substrate-binding pocket, this first near atomic characterization of a high affinity inhibitory molecule for TS provides a rational framework for novel strategies in the design of chemotherapeutic compounds. Chagas' disease, or American trypanosomiasis, is an endemic illness that affects approximately 8 million people in Latin America. The etiologic agent is the protozoan parasite Trypanosoma cruzi. To survive in the mammalian host and invade its cells, leading to the chronic infection, the parasite incorporates a charged carbohydrate (sialic acid). However, the parasite is unable to synthesize sialic acid, having to scavenge it from the host's sialo-glycoconjugates, through a transglycosylation reaction catalyzed by the enzyme trans-sialidase, which is unique to these organisms. We have obtained a monoclonal antibody that fully inhibits T. cruzi trans-sialidase actually being, at the best of our knowledge, the most potent inhibitor available. We now report a complete characterization of this neutralizing monoclonal antibody, at the functional and molecular levels. The antibody displays very high affinity and specificity for the T. cruzi enzyme, labels the parasites' surface and effectively blocks its sialylation and host cell invasion capacities. The determination of the 3D structure of the enzyme-antibody immunocomplex by X ray diffraction, allowed us to unveil the inhibition mechanism, providing clues for rational drug design. Given that sialidases are virulence factors in several pathogenic microorganisms, the reported data shall help to expand informative knowledge in this area.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal, Murine-Derived/chemistry
- Antibodies, Monoclonal, Murine-Derived/immunology
- Antibodies, Monoclonal, Murine-Derived/therapeutic use
- Antibodies, Neutralizing/chemistry
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/therapeutic use
- Binding Sites
- Chagas Disease/drug therapy
- Chagas Disease/enzymology
- Glycoproteins/antagonists & inhibitors
- Glycoproteins/chemistry
- Glycoproteins/immunology
- Mice
- Neuraminidase/antagonists & inhibitors
- Neuraminidase/chemistry
- Neuraminidase/immunology
- Protein Structure, Quaternary
- Trypanosoma cruzi/enzymology
- Trypanosoma cruzi/immunology
- Trypanosoma cruzi/pathogenicity
- Virulence Factors/antagonists & inhibitors
- Virulence Factors/chemistry
- Virulence Factors/immunology
Collapse
Affiliation(s)
- Alejandro Buschiazzo
- Institut Pasteur de Montevideo, Unit of Protein Crystallography, Montevideo, Uruguay
- Institut Pasteur, Department of Structural Biology and Chemistry, Paris, France
- * E-mail: (AB); (OC)
| | - Romina Muiá
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina
| | - Nicole Larrieux
- Institut Pasteur de Montevideo, Unit of Protein Crystallography, Montevideo, Uruguay
| | - Tamara Pitcovsky
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina
| | - Juan Mucci
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Oscar Campetella
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
- * E-mail: (AB); (OC)
| |
Collapse
|
30
|
Mancini N, Solforosi L, Clementi N, De Marco D, Clementi M, Burioni R. A potential role for monoclonal antibodies in prophylactic and therapeutic treatment of influenza. Antiviral Res 2011; 92:15-26. [DOI: 10.1016/j.antiviral.2011.07.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Revised: 05/19/2011] [Accepted: 07/12/2011] [Indexed: 10/17/2022]
|
31
|
H5N1 virus-like particle vaccine elicits cross-reactive neutralizing antibodies that preferentially bind to the oligomeric form of influenza virus hemagglutinin in humans. J Virol 2011; 85:10945-54. [PMID: 21865396 DOI: 10.1128/jvi.05406-11] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Transmission of pathogenic avian influenza viruses (AIV) from wild birds to domestic poultry and humans is continuing in multiple countries around the world. In preparation for a potential AIV pandemic, multiple vaccine candidates are under development. In the case of H5N1 AIV, a clear shift in transmission from clade 1 to clade 2 viruses occurred in recent years. The virus-like particle (VLP) represents an economical approach to pandemic vaccine development. In the current study, we evaluated the humoral immune response in humans vaccinated with H5N1 A/Indonesia/05/2005 (clade 2.1) VLP vaccine manufactured in Sf9 insect cells. The VLPs were comprised of the influenza virus hemagglutinin (HA), neuraminidase (NA), and matrix 1 (M1) proteins. In an FDA-approved phase I/II human clinical study, two doses of H5N1 VLPs at 15, 45, or 90 μg HA/dose resulted in seroconversion and production of functional antibodies. Moreover, cross-reactivity against other clade 2 subtypes was demonstrated using virus neutralization assays. H5N1 whole-genome fragment phage display libraries (GFPDL) were used to elucidate the antibody epitope repertoire in postvaccination human sera. Diverse epitopes in HA1/HA2 and NA were recognized by postvaccination sera from the two high-dose groups, including large segments spanning the HA1 receptor binding domain. Importantly, the vaccine elicited sera that preferentially bound to an oligomeric form of recombinant HA1 compared with monomeric HA1. The oligomeric/monomeric HA1 binding ratios of the sera correlated with the virus neutralizing titers. Additionally, the two high-dose VLP vaccine groups generated NA-inhibiting antibodies that were associated with binding to a C-terminal epitope close to the sialic acid binding site. These findings represent the first report describing the quality of the antibody responses in humans following AIV VLP immunization and support further development of such vaccines against emerging influenza virus strains.
Collapse
|
32
|
Sircar A, Gray JJ. SnugDock: paratope structural optimization during antibody-antigen docking compensates for errors in antibody homology models. PLoS Comput Biol 2010; 6:e1000644. [PMID: 20098500 PMCID: PMC2800046 DOI: 10.1371/journal.pcbi.1000644] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Accepted: 12/15/2009] [Indexed: 11/19/2022] Open
Abstract
High resolution structures of antibody-antigen complexes are useful for analyzing the binding interface and to make rational choices for antibody engineering. When a crystallographic structure of a complex is unavailable, the structure must be predicted using computational tools. In this work, we illustrate a novel approach, named SnugDock, to predict high-resolution antibody-antigen complex structures by simultaneously structurally optimizing the antibody-antigen rigid-body positions, the relative orientation of the antibody light and heavy chains, and the conformations of the six complementarity determining region loops. This approach is especially useful when the crystal structure of the antibody is not available, requiring allowances for inaccuracies in an antibody homology model which would otherwise frustrate rigid-backbone docking predictions. Local docking using SnugDock with the lowest-energy RosettaAntibody homology model produced more accurate predictions than standard rigid-body docking. SnugDock can be combined with ensemble docking to mimic conformer selection and induced fit resulting in increased sampling of diverse antibody conformations. The combined algorithm produced four medium (Critical Assessment of PRediction of Interactions-CAPRI rating) and seven acceptable lowest-interface-energy predictions in a test set of fifteen complexes. Structural analysis shows that diverse paratope conformations are sampled, but docked paratope backbones are not necessarily closer to the crystal structure conformations than the starting homology models. The accuracy of SnugDock predictions suggests a new genre of general docking algorithms with flexible binding interfaces targeted towards making homology models useful for further high-resolution predictions. Antibodies are proteins that are key elements of the immune system and increasingly used as drugs. Antibodies bind tightly and specifically to antigens to block their activity or to mark them for destruction. Three-dimensional structures of the antibody-antigen complexes are useful for understanding their mechanism and for designing improved antibody drugs. Experimental determination of structures is laborious and not always possible, so we have developed tools to predict structures of antibody-antigen complexes computationally. Computer-predicted models of antibodies, or homology models, typically have errors which can frustrate algorithms for prediction of protein-protein interfaces (docking), and result in incorrect predictions. Here, we have created and tested a new docking algorithm which incorporates flexibility to overcome structural errors in the antibody structural model. The algorithm allows both intramolecular and interfacial flexibility in the antibody during docking, resulting in improved accuracy approaching that when using experimentally determined antibody structures. Structural analysis of the predicted binding region of the complex will enable the protein engineer to make rational choices for better antibody drug designs.
Collapse
Affiliation(s)
- Aroop Sircar
- Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Jeffrey J. Gray
- Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
- Program in Molecular & Computational Biophysics, Johns Hopkins University, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
33
|
Cherry JL, Lipman DJ, Nikolskaya A, Wolf YI. Evolutionary dynamics of N-glycosylation sites of influenza virus hemagglutinin. PLOS CURRENTS 2009; 1:RRN1001. [PMID: 20025194 PMCID: PMC2762648 DOI: 10.1371/currents.rrn1001] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/17/2009] [Indexed: 11/29/2022]
Abstract
The hemagglutinin protein of influenza virus bears several sites of N-linked asparagine glycosylation. The number and location of these sites varies with strain and substrain. The human H3 hemagglutinin has gained several glycosylation sites on the antigenically important globular head since its introduction to humans, presumably due to selection. Although there is abundant evidence that glycosylation can affect antigenic and functional properties of the protein, direct evidence for selection is lacking. We have analyzed gain and loss of glycosylation sites on the side branches of a large phylogenetic tree of H3 HA1 sequences (branches off of the main, long-term line of descent). Side branches contrast with the main line of descent: losses of glycosylation sites are not uncommon, and they outnumber gains. Although other explanations are possible, this observation is consistent with weak selection for glycosylation sites or a more complicated pattern of selection. Furthermore, terminal and internal branches differ with respect to rates of gain and loss of glycosylation sites. This pattern would not be expected under selective neutrality, but is easily explained by weak selection or selection that changes with the immune state of the host population. Thus, it provides evidence that selection acts on the glycosylation state of hemagglutinin.
Collapse
|
34
|
Polyreactive antibodies in multidonor-derived immunoglobulin G: theory and conclusions drawn from experiments. Immunobiology 2009; 215:356-69. [PMID: 19592128 DOI: 10.1016/j.imbio.2009.06.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Revised: 06/05/2009] [Accepted: 06/10/2009] [Indexed: 11/21/2022]
Abstract
Multidonor-derived (md) preparations of IgG antibodies, agents of therapeutic potential, contain molecules interacting at clonal concentrations (concns) and with affinities recently estimated to cover a considerable range. Here we demonstrate that polyreactivity of the monomeric molecules represents the essential driving force of formation of the main reaction product, the IgG-dimers. This conclusion is obtained by applying the principles of the law of mass action to dimer formation by polyreactive monomeric reactants. In addition, general interrelationships involving the mean number of reactants per reactor, the experimental dimer portion (w/w) and the mean concentrations of monomers in a polyreactive and monoreactive antibody system are derived. These interrelationships, together with quantitative results obtained from simplified computational kinetic models of polyreactive antibodies, allow to estimate a remarkably high value for the mean number of reactants per reactor, exceeding 60 for the underlying IgG preparation obtained from pooled human plasma units of 5000 donors. Moreover, the potential origin and other consequences of polyreactivity are outlined.
Collapse
|
35
|
Harris KS, Casey JL, Coley AM, Karas JA, Sabo JK, Tan YY, Dolezal O, Norton RS, Hughes AB, Scanlon D, Foley M. Rapid optimization of a peptide inhibitor of malaria parasite invasion by comprehensive N-methyl scanning. J Biol Chem 2009; 284:9361-71. [PMID: 19164290 DOI: 10.1074/jbc.m808762200] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Apical membrane antigen 1 (AMA1) of the malaria parasite Plasmodium falciparum has been implicated in the invasion of host erythrocytes and is an important vaccine candidate. We have previously described a 20-residue peptide, R1, that binds to AMA1 and subsequently blocks parasite invasion. Because this peptide appears to target a site critical for AMA1 function, it represents an important lead compound for anti-malarial drug development. However, the effectiveness of this peptide inhibitor was limited to a subset of parasite isolates, indicating a requirement for broader strain specificity. Furthermore, a barrier to the utility of any peptide as a potential therapeutic is its susceptibility to rapid proteolytic degradation. In this study, we sought to improve the proteolytic stability and AMA1 binding properties of the R1 peptide by systematic methylation of backbone amides (N-methylation). The inclusion of a single N-methyl group in the R1 peptide backbone dramatically increased AMA1 affinity, bioactivity, and proteolytic stability without introducing global structural alterations. In addition, N-methylation of multiple R1 residues further improved these properties. Therefore, we have shown that modifications to a biologically active peptide can dramatically enhance activity. This approach could be applied to many lead peptides or peptide therapeutics to simultaneously optimize a number of parameters.
Collapse
Affiliation(s)
- Karen S Harris
- Department of Biochemistry, La Trobe University, Victoria 3086, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Influenza virus neuraminidase (NA) plays a crucial role in facilitating the spread of newly synthesized virus in the host and is an important target for controlling disease progression. The NA crystal structure from the 1918 "Spanish flu" (A/Brevig Mission/1/18 H1N1) and that of its complex with zanamivir (Relenza) at 1.65-A and 1.45-A resolutions, respectively, corroborated the successful expression of correctly folded NA tetramers in a baculovirus expression system. An additional cavity adjacent to the substrate-binding site is observed in N1, compared to N2 and N9 NAs, including H5N1. This cavity arises from an open conformation of the 150 loop (Gly147 to Asp151) and appears to be conserved among group 1 NAs (N1, N4, N5, and N8). It closes upon zanamivir binding. Three calcium sites were identified, including a novel site that may be conserved in N1 and N4. Thus, these high-resolution structures, combined with our recombinant expression system, provide new opportunities to augment the limited arsenal of therapeutics against influenza.
Collapse
|
37
|
Nakajima S, Nakajima K, Nobusawa E, Zhao J, Tanaka S, Fukuzawa K. Comparison of epitope structures of H3HAs through protein modeling of influenza A virus hemagglutinin: mechanism for selection of antigenic variants in the presence of a monoclonal antibody. Microbiol Immunol 2008; 51:1179-87. [PMID: 18094536 DOI: 10.1111/j.1348-0421.2007.tb04013.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Starting with nine plaques of influenza A/Kamata/14/91(H3N2) virus, we selected mutants in the presence of monoclonal antibody 203 (mAb203). In total, amino acid substitutions were found at nine positions (77, 80, 131, 135, 141, 142, 143, 144 and 146), which localized in the antigenic site A of the hemagglutinin (HA). The escape mutants differed in the extent to which they had lost binding to mAb203. HA protein with substitutions of some amino acid residues created by site-directed mutagenesis in the escape mutants retained the ability to bind to mAb203. Changes in the amino acid character affecting charge or hydrophobicity accounted for the binding capacity to the antibody of the HA with most of the substitutions in the escape mutants and binding-positive mutants. However, the effect of some amino acid substitutions remained unexplained. A three-dimensional model of the 1991 HA was constructed and used to analyze substituted amino acids in these mutants for the accessible surface hydrophobic and hydrophilic characters. One amino acid substitution in an escape mutant and another amino acid substitution in a binding-positive mutant seemed to be explained by the changes noted on this model.
Collapse
Affiliation(s)
- Setsuko Nakajima
- Department of Virology, Medical School, Nagoya City University, Mizuho-ku, Aichi, Japan.
| | | | | | | | | | | |
Collapse
|
38
|
Konstantakaki M, Tzartos SJ, Poulas K, Eliopoulos E. Molecular modeling of the complex between Torpedo acetylcholine receptor and anti-MIR Fab198. Biochem Biophys Res Commun 2007; 356:569-75. [PMID: 17376405 DOI: 10.1016/j.bbrc.2007.02.161] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2007] [Accepted: 02/28/2007] [Indexed: 12/01/2022]
Abstract
Myasthenia gravis is a neuromuscular disorder caused by an antibody-mediated autoimmune response to the muscle-type nicotinic acetylcholine receptor (AChR). The majority of monoclonal antibodies (mAbs) produced in rats immunized with intact AChR compete with each other for binding to an area of the alpha-subunit called the main immunogenic region (MIR). The availability of a complex between the AChR and Fab198 (Fab fragment of the anti-MIR mAb198) would help understand how the antigen and antibody interact and in designing improved antibody fragments that protect against the destructive activity of myasthenic antibodies. In the present study, we modeled the Torpedo AChR/Fab198 complex, based primarily on the recent 4A resolution structure of the Torpedo AChR. In order to computationally dock the two structures, we used the ZDOCK software. The total accessible surface area change of the complex compared to those of experimentally determined antigen-antibody complexes indicates an intermediate size contact surface. CDRs H3 and L3 seem to contribute most to the binding, while L2 seems to contribute least. These data suggest mutagenesis experiments aimed at validating the model and improving the binding affinity of Fab198 for the AChR.
Collapse
Affiliation(s)
- Maria Konstantakaki
- Department of Agricultural Biotechnology, Agricultural University of Athens, 75 Iera Odos, Votanikos, GR11855 Athens, Greece
| | | | | | | |
Collapse
|
39
|
Piekarska B, Drozd A, Konieczny L, Król M, Jurkowski W, Roterman I, Spólnik P, Stopa B, Rybarska J. The indirect generation of long-distance structural changes in antibodies upon their binding to antigen. Chem Biol Drug Des 2007; 68:276-83. [PMID: 17177888 DOI: 10.1111/j.1747-0285.2006.00448.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
An allosteric mechanism for the generation of long-distance structural alterations in Fab fragments of antibodies in immune complexes has been postulated and tested in theoretical and experimental analysis. The flexing and/or torsion-derived forces exerted on the elbow region in Fab arms of bivalent antibodies upon binding to antigen were assumed to drive the disruption of hydrogen bonds which stabilize N- and C-terminal chain fragments in V-domains. This allows an extra movement in the elbow followed by a relaxation in the Fab arm and may generate long-distance effects if, in particular, the structural changes are generated asymmetrically involving one chain of the Fab arm only. This mechanism was studied by simulation of molecular dynamics. The local instability in the area involving the site of packing of the N-terminal chain fragment allows penetration and binding of the supramolecular dye Congo red that hence becomes an indicator of the initiated relaxation process and is also the prospective ligand in studies of designing drugs. The susceptibility to dye binding was observed in complexation of bivalent antibodies only, supplying the evidence that constraints associating the interaction with randomly distributed antigenic determinants drive the local structural changes in the V-domain followed by long-distance effects.
Collapse
Affiliation(s)
- Barbara Piekarska
- Chair of Medical Biochemistry, Jagiellonian University Medical College, Kopernika 7, 31-034 Kraków, Poland.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Li Y, Parry G, Chen L, Callahan JA, Shaw DE, Meehan EJ, Mazar AP, Huang M. An anti-urokinase plasminogen activator receptor (uPAR) antibody: crystal structure and binding epitope. J Mol Biol 2006; 365:1117-29. [PMID: 17101149 DOI: 10.1016/j.jmb.2006.10.059] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2006] [Revised: 10/11/2006] [Accepted: 10/18/2006] [Indexed: 01/09/2023]
Abstract
Human urokinase-type plasminogen activator receptor (uPAR/CD87) is expressed at the invasive interface of the tumor-stromal microenvironment in many human cancers and interacts with a wide array of extracellular molecules. An anti-uPAR antibody (ATN615) was prepared using hybridoma technology. This antibody binds to uPAR in vitro with high affinity (K(d) approximately 1 nM) and does not interfere with uPA binding to uPAR. Here we report the crystal structure of the Fab fragment of ATN615 at 1.77 A and the analysis of ATN615-suPAR-ATF structure that was previously determined, emphasizing the ATN615-suPAR interaction. The complementarity determining regions (CDRs) of ATN615 consist of a high percentage of aromatic residues, and form a relatively flat and undulating surface. The ATN615 Fab fragment recognizes domain 3 of suPAR. The antibody-antigen recognition involves 11 suPAR residues and 12 Fab residues from five CDRs. Structural data suggest that Pro188, Asn190, Gly191, and Arg192 residues of uPAR are the key residues for the antibody recognition, while Pro189 and Arg192 render specificity of ATN615 for human uPAR. Interestingly, this antibody-antigen interface has a small contact area, mainly polar interaction with little hydrophobic character, yet has high binding strength. Furthermore, several solvent molecules (assigned as polyethylene glycols) were clearly visible in the binding interface between antibody and antigen, suggesting that solvent molecules may be important for the maximal binding between suPAR and ATN615 Fab. ATN615 undergoes small but noticeable changes in its CDR region upon antigen binding.
Collapse
Affiliation(s)
- Yongdong Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yang Qiao Xi Lu, Fuzhou 350002, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Xu Z, Fang S, Shi H, Li H, Deng Y, Liao Y, Wu JM, Zheng H, Zhu H, Chen HM, Tsang SY, Xue H. Topology characterization of a benzodiazepine-binding beta-rich domain of the GABAA receptor alpha1 subunit. Protein Sci 2005; 14:2622-37. [PMID: 16195550 PMCID: PMC2253290 DOI: 10.1110/ps.051555205] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Structural investigation of GABAA receptors has been limited by difficulties imposed by its trans-membrane-complex nature. In the present study, the topology of a membrane-proximal beta-rich (MPB) domain in the C139-L269 segment of the receptor alpha1 subunit was probed by mapping the benzodiazepine (BZ)-binding and epitopic sites, as well as fluorescence resonance energy transfer (FRET) analysis. Ala-scanning and semiconservative substitutions within this segment revealed the contribution of the phenyl rings of Y160 and Y210, the hydroxy group of S186 and the positive charge on R187 to BZ-binding. FRET with the bound BZ ligand indicated the proximity of Y160, S186, R187, and S206 to the BZ-binding site. On the other hand, epitope-mapping using the monoclonal antibodies (mAbs) against the MPB domain established a clustering of T172, R173, E174, Q196, and T197. Based on the lack of FRET between Trp substitutionally placed at R173 or V198 and bound BZ, this epitope-mapped cluster is located on a separate end of the folded protein from the BZ-binding site. Mutations of the five conserved Cys and Trp residues in the MPB domain gave rise to synergistic and rescuing effects on protein secondary structures and unfolding stability that point to a CCWCW-pentad, reminiscent to the CWC-triad "pin" of immunoglobulin (Ig)-like domains, important for the structural maintenance. These findings, together with secondary structure and fold predictions suggest an anti-parallel beta-strand topology with resemblance to Ig-like fold, having the BZ-binding and the epitopic residues being clustered at two different ends of the fold.
Collapse
Affiliation(s)
- Zhiwen Xu
- Department of Biochemistry, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Venkatramani L, Bochkareva E, Lee JT, Gulati U, Graeme Laver W, Bochkarev A, Air GM. An epidemiologically significant epitope of a 1998 human influenza virus neuraminidase forms a highly hydrated interface in the NA-antibody complex. J Mol Biol 2005; 356:651-63. [PMID: 16384583 DOI: 10.1016/j.jmb.2005.11.061] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2005] [Revised: 11/17/2005] [Accepted: 11/20/2005] [Indexed: 10/25/2022]
Abstract
The crystal structure of the complex between neuraminidase (NA) of influenza virus A/Memphis/31/98 (H3N2) and Fab of monoclonal antibody Mem5 has been determined at 2.1A resolution and shows a novel pattern of interactions compared to other NA-Fab structures. The interface buries a large area of 2400 A2 and the surfaces have high complementarity. However, the interface is also highly hydrated. There are 33 water molecules in the interface>or=95% buried from bulk solvent, but only 13 of these are isolated from other water molecules. The rest are involved in an intricate network of water-mediated hydrogen bonds throughout the interface, stabilizing the complex. Glu199 on NA, the most critical side-chain to the interaction as previously determined by escape mutant analysis and site-directed mutation, is located in a non-aqueous island. Glu199 and three other residues that contribute the major part of the antigen buried surface of the complex have mutated in human influenza viruses isolated after 1998, confirming that Mem5 identifies an epidemiologically important antigenic site. We conclude that antibody selection of NA variants is a significant component of recent antigenic drift in human H3N2 influenza viruses, supporting the idea that influenza vaccines should contain NA in addition to hemagglutinin.
Collapse
Affiliation(s)
- Lalitha Venkatramani
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73190, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Lee JT, Air GM. Interaction between a 1998 human influenza virus N2 neuraminidase and monoclonal antibody Mem5. Virology 2005; 345:424-33. [PMID: 16297424 DOI: 10.1016/j.virol.2005.10.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2005] [Revised: 09/12/2005] [Accepted: 10/07/2005] [Indexed: 11/19/2022]
Abstract
Influenza virus constantly escapes antibody inhibition by introducing mutations that disrupt protein-protein interactions. Based on the structure of the complex between neuraminidase (NA) of influenza A/Memphis/31/98 (H3N2) and the Fab of a monoclonal antibody (Mem5) that binds and inhibits the Memphis/98 NA, we investigated the contribution made by individual amino acids of NA to the stability of the complex. We made mutations D147A, D147N, H150A, H197A, D198A, D198N, E199A, E199Q, K221R, A246K, D251N, and D251A. Binding of each mutant to NA was quantitated by NA inhibition assays and ELISA. Most of the mutant NAs were inhibited by Mem5 to the same extent as wild-type, but with lower affinity. The exceptions were E199A, E199Q, and K221R, in which binding was abrogated. The ELISA results confirmed a correlation between NA inhibition and binding. The Mem5 epitope is dominated by a few high-energy interactions as was found in the epitope on an avian subtype N9 NA that binds antibody NC41 and different to the more diffuse energy distribution in the NC10 epitope on N9 NA. Energetic dominance of a particular interaction, which is associated with potential for antibody escape mutations, may be associated with the absence of water molecules in the vicinity. Critical contacts in a dominant antigenic site are likely to mutate, allowing some predictions of antigenic drift.
Collapse
Affiliation(s)
- Janis T Lee
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, 73104, USA
| | | |
Collapse
|
44
|
Zhang XW, Yap YL. The 3D structure analysis of SARS-CoV S1 protein reveals a link to influenza virus neuraminidase and implications for drug and antibody discovery. THEOCHEM 2004; 681:137-141. [PMID: 32287547 PMCID: PMC7126208 DOI: 10.1016/j.theochem.2004.04.065] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2004] [Accepted: 04/19/2004] [Indexed: 10/28/2022]
Abstract
The spike protein of SARS-associated coronavirus (SARS-CoV) is an important target for anti-SARS drug discovery. Its S1 domain is responsible for receptor binding and SARS-CoV entry into cells. In this study, we constructed a rational 3D model for S1 domain of SARS-CoV spike protein by fold recognition and molecular modeling techniques. We found that there is a structure similarity between S1 protein and influenza virus neuraminidase. Our analyses suggest that the existing anti-influenza virus inhibitors and anti-neuraminidase antibody could be used as a starting point for designing anti-SARS drugs, vaccines and antibodies. Interestingly, our prediction for antibody is consistent with a recently experimental discovery of anti-SARS antibody.
Collapse
Affiliation(s)
- Xue Wu Zhang
- Hong Kong University-Pasteur Research Centre, Dexter H.C. Man Building, 8 Sassoon Road, Pokfulam, HongKong, China
| | | |
Collapse
|
45
|
Ruzheinikov SN, Muranova TA, Sedelnikova SE, Partridge LJ, Blackburn GM, Murray IA, Kakinuma H, Takahashi-Ando N, Shimazaki K, Sun J, Nishi Y, Rice DW. High-resolution crystal structure of the Fab-fragments of a family of mouse catalytic antibodies with esterase activity. J Mol Biol 2003; 332:423-35. [PMID: 12948492 DOI: 10.1016/s0022-2836(03)00902-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The crystal structures of four related Fab fragments of a family of catalytic antibodies displaying differential levels of esterase activity have been solved in the presence and in the absence of the transition-state analogue (TSA) that was used to elicit the immune response. The electron density maps show that the TSA conformation is essentially identical, with limited changes on hapten binding. Interactions with the TSA explain the specificity for the D rather than the L-isomer of the substrate. Differences in the residues in the hapten-binding pocket, which increase hydrophobicity, appear to correlate with an increase in the affinity of the antibodies for their substrate. Analysis of the structures at the active site reveals a network of conserved hydrogen bond contacts between the TSA and the antibodies, and points to a critical role of two conserved residues, HisL91 and LysH95, in catalysis. However, these two key residues are set into very different contexts in their respective structures, with an apparent direct correlation between the catalytic power of the antibodies and the complexity of their interactions with the rest of the protein. This suggests that the catalytic efficiency may be controlled by contacts arising from a second sphere of residues at the periphery of the active site.
Collapse
Affiliation(s)
- Sergey N Ruzheinikov
- Krebs Institute for Biomolecular Research, University of Sheffield, Firth Court, Western Bank, S10 2TN Sheffield, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Król M, Roterman I, Piekarska B, Konieczny L, Rybarska J, Stopa B. Local and long-range structural effects caused by the removal of the N-terminal polypeptide fragment from immunoglobulin L chain lambda. Biopolymers 2003; 69:189-200. [PMID: 12767122 DOI: 10.1002/bip.10355] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The role of the N-terminal polypeptide fragment of the immunoglobulin l-chain in V domain packing stability, and the flexibility of the whole chain was approached by molecular dynamics simulation. The observations were supported by experimental analysis. The N-terminal polypeptide fragment appeared to be the low-stability packing element in the V domain. At moderately elevated temperature it may be replaced at its packing locus by Congo red and then removed by proteolysis. After removal of Congo red by adsorption to (diethylamino)ethyl (DEAE) cellulose, the stability of complete L chain and of L chain devoid of the N-terminal polypeptide fragment were compared. The results indicated that the N-terminal polypeptide fragment plays an essential role in the stability of the V domain. Its removal makes the domain accessible for ANS and Congo red dye binding without heating. The decreased domain stability was registered in particular as increased root mean square (RMS) fluctuation and higher susceptibility to proteolytic attack. The long-range effect was most clearly manifested at 340 K as independent V and C domain fluctuation in the l-chain devoid of the N-terminal polypeptide fragment. This is likely due to the lack of direct connections between the N- and C-termini of the V domain polypeptide. In a complete V domain the connection involves residues 8-12 and 106-110 in particular. Partial or complete disruption of this connection increases the freedom of V domain rotation, while its increased cohesion strengthens the coupling of the V and C domains, making the whole L chain less flexible.
Collapse
Affiliation(s)
- Marcin Król
- Department of Biostatistics and Medical Informatics, Collegium Medicum, Jagiellonian University, 17 Kopernika St, Kraków, 31-501 Poland
| | | | | | | | | | | |
Collapse
|
47
|
Sundberg EJ, Mariuzza RA. Molecular recognition in antibody-antigen complexes. ADVANCES IN PROTEIN CHEMISTRY 2003; 61:119-60. [PMID: 12461823 DOI: 10.1016/s0065-3233(02)61004-6] [Citation(s) in RCA: 178] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
With the numerous detailed molecular descriptions of antibody-antigen interfaces, the structual study of these molecular interactions has evolved from an attempt to understand to immunological function to their use as model systems for protein-protein interactions. In this chapter, we describe the structual aspects common to antibody-antigen interfaces and discuss the roles they may play in antibody cross-rectivity and molecular mimicry. More detailed analysis of these interfaces has required the marriage of structural studies with extensive mutagenesis and thermodynamic analysis efforts. Here, we discuss the thermodynamic mapping of interfaces for two model antibody-antigen complexes, including the identification of thermodynamic hot spots in binding and the various mechanism used to accommodate interface mutations. We also discuss the functional roles for protein plasticity in antigen recognition, including the entropic control of antibody affinity maturation and the use of induced fit mechanism of different types and to varying degrees by mature antibodies in binding their specific antigens.
Collapse
Affiliation(s)
- Eric J Sundberg
- Center for Advanced Research in Biotechnology, University of Maryland Biotechnology Institute, Rockville, Maryland 20850, USA
| | | |
Collapse
|
48
|
Lucke AJ, Tyndall JDA, Singh Y, Fairlie DP. Designing supramolecular structures from models of cyclic peptide scaffolds with heterocyclic constraints. J Mol Graph Model 2003; 21:341-55. [PMID: 12543133 DOI: 10.1016/s1093-3263(02)00181-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cyclic peptides containing oxazole and thiazole heterocycles have been examined for their capacity to be used as scaffolds in larger, more complex, protein-like structures. Both the macrocyclic scaffolds and the supramolecular structures derived therefrom have been visualised by molecular modelling techniques. These molecules are too symmetrical to examine structurally by NMR spectroscopy. The cyclic hexapeptide ([Aaa-Thz](3), [Aaa-Oxz](3)) and cyclic octapeptide ([Aaa-Thz](4), [Aaa-Oxz](4)) analogues are composed of dipeptide surrogates (Aaa: amino acid, Thz: thiazole, Oxz: oxazole) derived from intramolecular condensation of cysteine or serine/threonine side chains in dipeptides like Aaa-Cys, Aaa-Ser and Aaa-Thr. The five-membered heterocyclic rings, like thiazole, oxazole and reduced analogues like thiazoline, thiazolidine and oxazoline have profound influences on the structures and bioactivities of cyclic peptides derived therefrom. This work suggests that such constrained cyclic peptides can be used as scaffolds to create a range of novel protein-like supramolecular structures (e.g. cylinders, troughs, cones, multi-loop structures, helix bundles) that are comparable in size, shape and composition to bioactive surfaces of proteins. They may therefore represent interesting starting points for the design of novel artificial proteins and artificial enzymes.
Collapse
Affiliation(s)
- A J Lucke
- Centre for Drug Design and Development, Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia
| | | | | | | |
Collapse
|
49
|
Hanessian S, Wang J, Montgomery D, Stoll V, Stewart KD, Kati W, Maring C, Kempf D, Hutchins C, Laver WG. Design, synthesis, and neuraminidase inhibitory activity of GS-4071 analogues that utilize a novel hydrophobic paradigm. Bioorg Med Chem Lett 2002; 12:3425-9. [PMID: 12419376 DOI: 10.1016/s0960-894x(02)00732-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Structure-based design has led to the synthesis of a novel analogue of GS-4071, an influenza neuraminidase inhibitor, in which the basic amino group has been replaced by a hydrophobic vinyl group. An X-ray co-crystal structure of the new inhibitor (K(i)=45 nM) bound to the active site shows that the vinyl group occupies the same subsite as the amino group in GS-4071.
Collapse
|
50
|
Gulati U, Hwang CC, Venkatramani L, Gulati S, Stray SJ, Lee JT, Laver WG, Bochkarev A, Zlotnick A, Air GM. Antibody epitopes on the neuraminidase of a recent H3N2 influenza virus (A/Memphis/31/98). J Virol 2002; 76:12274-80. [PMID: 12414967 PMCID: PMC136895 DOI: 10.1128/jvi.76.23.12274-12280.2002] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2002] [Accepted: 08/23/2002] [Indexed: 11/20/2022] Open
Abstract
We have characterized monoclonal antibodies raised against the neuraminidase (NA) of a Sydney-like influenza virus (A/Memphis/31/98, H3N2) in a reassortant virus A/NWS/33(HA)-A/Mem/31/98(NA) (H1N2) and nine escape mutants selected by these monoclonal antibodies. Five of the antibodies use the same heavy chain VDJ genes and may not be independent. Another antibody, Mem5, uses the same V(H) and J genes with a different D gene and different isotype. Sequence changes in escape mutants selected by these antibodies occur in two loops of the NA, at amino acid 198, 199, 220, or 221. These amino acids are located on the opposite side of the NA monomer to the major epitopes found in N9 and early N2 NAs. Escape mutants with a change at 198 have reduced NA activity compared to the wild-type virus. Asp198 points toward the substrate binding pocket, and we had previously found that a site-directed mutation of this amino acid resulted in a loss of enzyme activity (M. R. Lentz, R. G. Webster, and G. M. Air, Biochemistry 26:5351-5358, 1987). Mutations at residue 199, 220, or 221 did not alter the NA activity significantly compared to that of wild-type NA. A 3.5-A structure of Mem5 Fab complexed with the Mem/98 NA shows that the Mem5 antibody binds at the sites of escape mutation selected by the other antibodies.
Collapse
Affiliation(s)
- Upma Gulati
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|