1
|
Ligeour C, Dupin L, Marra A, Vergoten G, Meyer A, Dondoni A, Souteyrand E, Vasseur JJ, Chevolot Y, Morvan F. Synthesis of Galactoclusters by Metal-Free Thiol “Click Chemistry” and Their Binding Affinities forPseudomonas aeruginosaLectin LecA. European J Org Chem 2014. [DOI: 10.1002/ejoc.201402902] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
2
|
Lee CW, Bae C, Lee J, Ryu JH, Kim HH, Kohno T, Swartz KJ, Kim JI. Solution structure of kurtoxin: a gating modifier selective for Cav3 voltage-gated Ca(2+) channels. Biochemistry 2012; 51:1862-73. [PMID: 22329781 PMCID: PMC3295331 DOI: 10.1021/bi201633j] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Kurtoxin is a 63-amino acid polypeptide isolated from the venom of the South African scorpion Parabuthus transvaalicus. It is the first and only peptide ligand known to interact with Cav3 (T-type) voltage-gated Ca(2+) channels with high affinity and to modify the voltage-dependent gating of these channels. Here we describe the nuclear magnetic resonance (NMR) solution structure of kurtoxin determined using two- and three-dimensional NMR spectroscopy with dynamical simulated annealing calculations. The molecular structure of the toxin was highly similar to those of scorpion α-toxins and contained an α-helix, three β-strands, and several turns stabilized by four disulfide bonds. This so-called "cysteine-stabilized α-helix and β-sheet (CSαβ)" motif is found in a number of functionally varied small proteins. A detailed comparison of the backbone structure of kurtoxin with those of the scorpion α-toxins revealed that three regions [first long loop (Asp(8)-Ile(15)), β-hairpin loop (Gly(39)-Leu(42)), and C-terminal segment (Arg(57)-Ala(63))] in kurtoxin significantly differ from the corresponding regions in scorpion α-toxins, suggesting that these regions may be important for interacting with Cav3 (T-type) Ca(2+) channels. In addition, the surface profile of kurtoxin shows a larger and more focused electropositive patch along with a larger hydrophobic surface compared to those seen on scorpion α-toxins. These distinct surface properties of kurtoxin could explain its binding to Cav3 (T-type) voltage-gated Ca(2+) channels.
Collapse
Affiliation(s)
- Chul Won Lee
- Department of Life Science, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Gordon D, Savarin P, Gurevitz M, Zinn-Justin S. Functional Anatomy of Scorpion Toxins Affecting Sodium Channels. ACTA ACUST UNITED AC 2009. [DOI: 10.3109/15569549809009247] [Citation(s) in RCA: 140] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
4
|
Sudandiradoss C, George Priya Doss C, Rajasekaran R, Purohit R, Ramanathan K, Sethumadhavan R. Analysis of binding residues between scorpion neurotoxins and D2 dopamine receptor: a computational docking study. Comput Biol Med 2008; 38:1056-67. [PMID: 18799158 DOI: 10.1016/j.compbiomed.2008.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2007] [Revised: 06/20/2008] [Accepted: 08/05/2008] [Indexed: 10/21/2022]
Abstract
We report the results on the computation of binding affinity, electrostatic free energies, contact free energies, secondary structures, stabilization centers and stabilizing residues of binding residues during the molecular docking of selected scorpion neurotoxins with D2 dopamine receptor. All the scorpion neurotoxins showed a good and satisfactory docking with the D2 receptor molecule except one neurotoxin 2SN3. We computed multiple alignment studies, solvent accessibility calculations, secondary structure analysis, stabilization centers and stabilizing residues before and after the docking process. Overall, we emphasize that the results obtained in this work will be very helpful in further enhancement of understanding the research on modeling and drug design with respect to the D2 dopamine receptor.
Collapse
Affiliation(s)
- C Sudandiradoss
- Bioinformatics Division, School of Biotechnology, Chemical and Biomedical Engineering, Vellore Institute of Technology University, Vellore 632014, Tamil Nadu, India
| | | | | | | | | | | |
Collapse
|
5
|
Sudandiradoss C, Priya Doss CG, Rajasekaran R, Ramanathan K, Purohit R, Sethumadhavan R. Investigations on the interactions of scorpion neurotoxins with the predicted structure of D1 dopamine receptor by protein–protein docking method. A bioinformatics approach. C R Biol 2008; 331:489-99. [DOI: 10.1016/j.crvi.2008.04.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Revised: 04/09/2008] [Accepted: 04/11/2008] [Indexed: 01/21/2023]
|
6
|
Tong X, Zhu J, Ma Y, Chen X, Wu G, He F, Cao C, Wu H. Solution Structure of BmKαIT01, an α-Insect Toxin from the Venom of the Chinese Scorpion Buthus martensii Karsch,. Biochemistry 2007; 46:11322-30. [PMID: 17877370 DOI: 10.1021/bi7006788] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The solution structure of an alpha-insect toxin from Buthus martensii Karsch, BmKalphaIT01, has been determined by two-dimensional NMR spectroscopy and molecular modeling techniques. Combining the sequence homology comparison and toxicity bioassays, BmKalphaIT01 has been suggested to be a natural mutant of alpha-insect toxins and so can serve as a tool to study the relationship of structure-function among this group of toxins. The overall structure of BmKalphaIT01 shares a common core structure consisting of an alpha-helix packed against a three-stranded antiparallel beta-sheet, which exhibits distinctive local conformations within the loops connecting these secondary structure elements. The solution structure of BmKalphaIT01 features a non-proline cis peptide bond between Asn9 and Tyr10, which is proposed to mediate the spatial closing of the five-residue turn (Gln8-Cys12) and the C-terminal segment (Arg58-His64) to form the NC domain and confer the toxin insect-specific bioactivity. Conformational heterogeneity is observed in the solution of BmKalphaIT01 and could be attributed to the cis-trans isomerization of the peptide bond between residues 9 and 10. The minor conformation of BmKalphaIT01 with a trans peptide bond between Asn9 and Tyr10 may be responsible for its moderate bioactivity against mammals. The cis-trans isomerization of the peptide bond between residues 9 and 10 may be the structural basis of dual pharmacological activities of alpha-insect and alpha-like scorpion toxins, which is supported by the fact that conformational heterogeneity occurs in the solution structures of LqhalphaIT, LqqIII, and LqhIII and by comparison of the solution structure of BmKalphaIT01 with those of some relevant alpha-type toxins.
Collapse
Affiliation(s)
- Xiaotian Tong
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Shacham E, Sheehan B, Volkmann N. Density-based score for selecting near-native atomic models of unknown structures. J Struct Biol 2006; 158:188-95. [PMID: 17296314 PMCID: PMC2175034 DOI: 10.1016/j.jsb.2006.12.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2006] [Revised: 10/20/2006] [Accepted: 12/07/2006] [Indexed: 11/15/2022]
Abstract
We present a low-resolution density-based scoring scheme for selecting high-quality models from a large pool of lesser quality models. We use pre-configured decoy data sets that contain large numbers of models with different degrees of correctness to evaluate the performance of the strategy. We find that the scoring scheme consistently identifies one of the highest quality models for a wide variety of target structures, resolution ranges, and noise models. Tests with experimental data yield similar results.
Collapse
Affiliation(s)
| | | | - Niels Volkmann
- *Correspondence should be addressed to Niels Volkmann, The Burnham Institute for Medical Research, Bioinformatics and Systems Biology Program, 10901 North Torrey Pines Road, La Jolla, CA 92037, Phone: 858 646 3187, Fax: 858 646 3195, e-mail:
| |
Collapse
|
8
|
Karbat I, Turkov M, Cohen L, Kahn R, Gordon D, Gurevitz M, Frolow F. X-ray structure and mutagenesis of the scorpion depressant toxin LqhIT2 reveals key determinants crucial for activity and anti-insect selectivity. J Mol Biol 2006; 366:586-601. [PMID: 17166514 DOI: 10.1016/j.jmb.2006.10.085] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2006] [Revised: 10/23/2006] [Accepted: 10/25/2006] [Indexed: 10/23/2022]
Abstract
Scorpion depressant beta-toxins show high preference for insect voltage-gated sodium channels (Na(v)s) and modulate their activation. Although their pharmacological and physiological effects were described, their three-dimensional structure and bioactive surface have never been determined. We utilized an efficient system for expression of the depressant toxin LqhIT2 (from Leiurus quinquestriatushebraeus), mutagenized its entire exterior, and determined its X-ray structure at 1.2 A resolution. The toxin molecule is composed of a conserved cysteine-stabilized alpha/beta-core (core-globule), and perpendicular to it an entity constituted from the N and C-terminal regions (NC-globule). The surface topology and overall hydrophobicity of the groove between the core and NC-globules (N-groove) is important for toxin activity and plays a role in selectivity to insect Na(v)s. The N-groove is flanked by Glu24 and Tyr28, which belong to the "pharmacophore" of scorpion beta-toxins, and by the side-chains of Trp53 and Asn58 that are important for receptor site recognition. Substitution of Ala13 by Trp in the N-groove uncoupled activity from binding, suggesting that this region of the molecule is also involved in "voltage-sensor trapping", the mode of action that typifies scorpion beta-toxins. The involvement of the N-groove in recognition of the receptor site, which seems to require a defined topology, as well as in sensor trapping, which involves interaction with a moving channel region, is puzzling. On the basis of the mutagenesis studies we hypothesize that following binding to the receptor site, the toxin undergoes a conformational change at the N-groove region that facilitates the trapping of the voltage-sensor in its activated position.
Collapse
Affiliation(s)
- Izhar Karbat
- Department of Plant Sciences, George S. Wise Faculty of Life Sciences, and The Daniella Rich Institute for Structural Biology, Tel-Aviv University, Tel-Aviv 69978, Israel
| | | | | | | | | | | | | |
Collapse
|
9
|
Sharma M, Ethayathulla AS, Jabeen T, Singh N, Sarvanan K, Yadav S, Sharma S, Srinivasan A, Singh TP. Crystal structure of a highly acidic neurotoxin from scorpion Buthus tamulus at 2.2Ǻ resolution reveals novel structural features. J Struct Biol 2006; 155:52-62. [PMID: 16677826 DOI: 10.1016/j.jsb.2005.12.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2005] [Revised: 12/02/2005] [Accepted: 12/06/2005] [Indexed: 10/25/2022]
Abstract
The crystal structure of a highly acidic neurotoxin from the scorpion Buthus tamulus has been determined at 2.2A resolution. The amino acid sequence determination shows that the polypeptide chain has 64 amino acid residues. The pI measurement gave a value of 4.3 which is one of the lowest pI values reported so far for a scorpion toxin. As observed in other alpha-toxins, it contains four disulphide bridges, Cys12-Cys63, Cys16-Cys36, Cys22-Cys46, and Cys26-Cys48. The crystal structure reveals the presence of two crystallographically independent molecules in the asymmetric unit. The conformations of two molecules are identical with an r.m.s. value of 0.3A for their C(alpha) tracings. The overall fold of the toxin is very similar to other scorpion alpha-toxins. It is a betaalphabetabeta protein. The beta-sheet involves residues Glu2-Ile6 (strand beta1), Asp32-Trp39 (strand beta3) and Val45-Val55 (strand beta4). The single alpha-helix formed is by residues Asn19-Asp28 (alpha2). The structure shows a trans peptide bond between residues 9 and 10 in the five-membered reverse turn Asp8-Cys12. This suggests that this toxin belongs to classical alpha-toxin subfamily. The surface features of the present toxin are highly characteristic, the first (A-site) has residues, Phe18, Trp38 and Trp39 that protrude outwardly presumably to interact with its receptor. There is another novel face (N-site) of this neurotoxin that contains several negatively charged residues such as, Glu2, Asp3, Asp32, Glu49 and Asp50 which are clustered in a small region of the toxin structure. On yet another face (P-site) in a triangular arrangement, with respect to the above two faces there are several positively charged residues, Arg58, Lys62 and Arg64 that also protrude outwardly for a potentially potent interaction with other molecules. This toxin with three strong features appears to be one of the most toxic molecules reported so far. In this sense, it may be a new subclass of neurotoxins with the largest number of hot spots.
Collapse
Affiliation(s)
- Madhu Sharma
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Srairi-Abid N, Guijarro JI, Benkhalifa R, Mantegazza M, Cheikh A, Ben Aissa M, Haumont PY, Delepierre M, El Ayeb M. A new type of scorpion Na+-channel-toxin-like polypeptide active on K+ channels. Biochem J 2005; 388:455-64. [PMID: 15656785 PMCID: PMC1138952 DOI: 10.1042/bj20041407] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We have purified and characterized two peptides, named KAaH1 and KAaH2 (AaH polypeptides 1 and 2 active on K+ channels, where AaH stands for Androctonus australis Hector), from the venom of A. australis Hector scorpions. Their sequences contain 58 amino acids including six half-cysteines and differ only at positions 26 (Phe/Ser) and 29 (Lys/Gln). Although KAaH1 and KAaH2 show important sequence similarity with anti-mammal beta toxins specific for voltage-gated Na+ channels, only weak beta-like effects were observed when KAaH1 or KAaH2 (1 microM) were tested on brain Nav1.2 channels. In contrast, KAaH1 blocks Kv1.1 and Kv1.3 channels expressed in Xenopus oocytes with IC50 values of 5 and 50 nM respectively, whereas KAaH2 blocks only 20% of the current on Kv1.1 and is not active on Kv1.3 channels at a 100 nM concentration. KAaH1 is thus the first member of a new subfamily of long-chain toxins mainly active on voltage-gated K+ channels. NMR spectra of KAaH1 and KAaH2 show good dispersion of signals but broad lines and poor quality. Self-diffusion NMR experiments indicate that lines are broadened due to a conformational exchange on the millisecond time scale. NMR and CD indicate that both polypeptides adopt a similar fold with alpha-helical and b-sheet structures. Homology-based molecular models generated for KAaH1 and KAaH2 are in accordance with CD and NMR data. In the model of KAaH1, the functionally important residues Phe26 and Lys29 are close to each other and are located in the alpha-helix. These residues may constitute the so-called functional dyad observed for short alpha-KTx scorpion toxins in the beta-sheet.
Collapse
Affiliation(s)
- Najet Srairi-Abid
- Laboratoire des Venins et Toxines, Institut Pasteur de Tunis, 13, place Pasteur, BP-74 Tunis 1002, Tunisia.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Inceoglu B, Lango J, Pessah IN, Hammock BD. Three structurally related, highly potent, peptides from the venom of Parabuthus transvaalicus possess divergent biological activity. Toxicon 2005; 45:727-33. [PMID: 15804521 DOI: 10.1016/j.toxicon.2005.01.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2004] [Revised: 01/19/2005] [Accepted: 01/21/2005] [Indexed: 11/15/2022]
Abstract
The venom of South African scorpion Parabuthus transvaalicus contains a novel group of peptide toxins. These peptides resemble the long chain neurotoxins (LCN) of 60-70 residues with four disulfide bridges; however they are 58 residues long and have only three disulfide bridges constituting a new family of peptide toxins. Here we report the isolation and characterization of three new members of this mammal specific group of toxins. Dortoxin is a lethal peptide, bestoxin causes writhing in mice and altitoxin is a highly depressant peptide. Binding ability of these peptides to rat brain synaptosomes is tested. While the crude venom of P. transvaalicus enhances the binding of [(3)H] BTX to rat brain synaptosomes none of these individual toxins had a positive effect on binding. Although the primary structures of these toxins are very similar to birtoxin, their 3D models indicate significant differences. Dortoxin, bestoxin and altitoxin cumulatively constitute at least 20% of the peptide contained in the venom of P. transvaalicus and contribute very significantly to the toxicity of the venom of this medically important scorpion species. Therefore the amino acid sequences presented here can be used to make more specific and effective antivenins. Possible approaches to a systematic nomenclature of toxins are suggested.
Collapse
Affiliation(s)
- Bora Inceoglu
- Department of Entomology and Cancer Research Center, University of California at Davis, CA 95616, USA
| | | | | | | |
Collapse
|
12
|
Huan JY, Meza-Romero R, Mooney JL, Chou YK, Edwards DM, Rich C, Link JM, Vandenbark AA, Bourdette DN, Bächinger HP, Burrows GG. Rationally designed mutations convert complexes of human recombinant T cell receptor ligands into monomers that retain biological activity. JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY (OXFORD, OXFORDSHIRE : 1986) 2005; 80:2-12. [PMID: 22973070 PMCID: PMC3438139 DOI: 10.1002/jctb.1086] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Single-chain human recombinant T cell receptor ligands derived from the peptide binding/TCR recognition domain of human HLA-DR2b (DRA*0101/DRB1*1501) produced in Escherichia coli with and without amino-terminal extensions containing antigenic peptides have been described previously. While molecules with the native sequence retained biological activity, they formed higher order aggregates in solution. In this study, we used site-directed mutagenesis to modify the β-sheet platform of the DR2-derived RTLs, obtaining two variants that were monomeric in solution by replacing hydrophobic residues with polar (serine) or charged (aspartic acid) residues. Size exclusion chromatography and dynamic light scattering demonstrated that the modified RTLs were monomeric in solution, and structural characterization using circular dichroism demonstrated the highly ordered secondary structure of the RTLs. Peptide binding to the `empty' RTLs was quantified using biotinylated peptides, and functional studies showed that the modified RTLs containing covalently tethered peptides were able to inhibit antigen-specific T cell proliferation in vitro, as well as suppress experimental autoimmune encephalomyelitis in vivo. These studies demonstrated that RTLs encoding the Ag-binding/TCR recognition domain of MHC class II molecules are innately very robust structures, capable of retaining potent biological activity separate from the Ig-fold domains of the progenitor class II structure, with prevention of aggregation accomplished by modification of an exposed surface that was buried in the progenitor structure.
Collapse
Affiliation(s)
- Jianya Y Huan
- Department of Neurology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Roberto Meza-Romero
- Department of Neurology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Jeffery L Mooney
- Department of Neurology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Yuan K Chou
- Department of Neurology, Oregon Health and Science University, Portland, OR 97239, USA
| | - David M Edwards
- Department of Neurology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Cathleen Rich
- Neuroimmunology Research, Veterans Affairs Medical Center, Portland, OR 97207, USA
| | - Jason M Link
- Neuroimmunology Research, Veterans Affairs Medical Center, Portland, OR 97207, USA
| | - Arthur A Vandenbark
- Department of Neurology, Oregon Health and Science University, Portland, OR 97239, USA
- Neuroimmunology Research, Veterans Affairs Medical Center, Portland, OR 97207, USA
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Dennis N Bourdette
- Department of Neurology, Oregon Health and Science University, Portland, OR 97239, USA
| | | | - Gregory G Burrows
- Department of Neurology, Oregon Health and Science University, Portland, OR 97239, USA
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, OR 97239, USA
| |
Collapse
|
13
|
Affiliation(s)
- Zbigniew Dauter
- Synchrotron Radiation Research Section, Macromolecular Crystallography Laboratory, National Cancer Institute, Brookhaven National Laboratory, Building 725 A X9, Upton, New York 11973, USA
| |
Collapse
|
14
|
Wagner S, Castro MS, Barbosa JARG, Fontes W, Schwartz ENF, Sebben A, Rodrigues Pires O, Sousa MV, Schwartz CA. Purification and primary structure determination of Tf4, the first bioactive peptide isolated from the venom of the Brazilian scorpion Tityus fasciolatus. Toxicon 2003; 41:737-45. [PMID: 12782073 DOI: 10.1016/s0041-0101(03)00008-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In the present study Tityus fasciolatus crude venom toxicity was evaluated and we also report the purification and characterization of a 6.6 kDa neurotoxin isolated from T. fasciolatus venom. This new toxin, named Tf4, has a molecular mass of 6614Da and its primary structure is homologous to TbIT-I from T. bahiensis and TsTX-VI and TsNTxP from T. serrulatus. Tf4 delays frog sodium channel inactivation reversibly, but it is non-toxic to mammals or crustaceans. An attempt to identify the residues responsible for the partial loss of toxicity in Tf4 was carried out based on homology modeling and sequence comparison.
Collapse
Affiliation(s)
- Simone Wagner
- Laboratório de Toxinologia, Módulo 05, ICC Ala Sul, Subsolo, Departamento de Ciências Fisiológicas/IB, Universidade de Brasília, Brasília/DF, Brazil CEP 70.910-900
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Kamikubo YI, Okumura Y, Loskutoff DJ. Identification of the disulfide bonds in the recombinant somatomedin B domain of human vitronectin. J Biol Chem 2002; 277:27109-19. [PMID: 12019263 DOI: 10.1074/jbc.m200354200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The NH(2)-terminal somatomedin B (SMB) domain (residues 1-44) of human vitronectin contains eight Cys residues organized into four disulfide bonds and is required for the binding of type 1 plasminogen activator inhibitor (PAI-1). In the present study, we map the four disulfide bonds in recombinant SMB (rSMB) and evaluate their functional importance. Active rSMB was purified from transformed Escherichia coli by immunoaffinity chromatography using a monoclonal antibody that recognizes a conformational epitope in SMB (monoclonal antibody 153). Plasmon surface resonance (BIAcore) and competitive enzyme-linked immunosorbent assays demonstrate that the purified rSMB domain and intact urea-activated vitronectin have similar PAI-1 binding activities. The individual disulfide linkages present in active rSMB were investigated by CNBr cleavage, partial reduction and S-alkylation, mass spectrometry, and protein sequencing. Two pairs of disulfide bonds at the NH(2)-terminal portion of active rSMB were identified as Cys(5)-Cys(9) and Cys(19)-Cys(21). Selective reduction/S-alkylation of these two disulfide linkages caused the complete loss of PAI-1 binding activity. The other two pairs of disulfide bonds in the COOH-terminal portion of rSMB were identified as Cys(25)-Cys(31) and Cys(32)-Cys(39) by protease-generated peptide mapping of partially reduced and S-alkylated rSMB. These results suggest a linear uncrossed pattern for the disulfide bond topology of rSMB that is distinct from the crossed pattern present in most small disulfide bond-rich proteins.
Collapse
Affiliation(s)
- Yu-ichi Kamikubo
- Department of Cell Biology, Division of Vascular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
16
|
Tsodikov OV, Record MT, Sergeev YV. Novel computer program for fast exact calculation of accessible and molecular surface areas and average surface curvature. J Comput Chem 2002; 23:600-9. [PMID: 11939594 DOI: 10.1002/jcc.10061] [Citation(s) in RCA: 331] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
New computer programs, SurfRace and FastSurf, perform fast calculations of the solvent accessible and molecular (solvent excluded) surface areas of macromolecules. Program SurfRace also calculates the areas of cavities inaccessible from the outside. We introduce the definition of average curvature of molecular surface and calculate average molecular surface curvatures for each atom in a structure. All surface area and curvature calculations are analytic and therefore yield exact values of these quantities. High calculation speed of this software is achieved primarily by avoiding computationally expensive mathematical procedures wherever possible and by efficient handling of surface data structures. The programs are written initially in the language C for PCs running Windows 2000/98/NT, but their code is portable to other platforms with only minor changes in input-output procedures. The algorithm is robust and does not ignore either multiplicity or degeneracy of atomic overlaps. Fast, memory-efficient and robust execution make this software attractive for applications both in computationally expensive energy minimization algorithms, such as docking or molecular dynamics simulations, and in stand-alone surface area and curvature calculations.
Collapse
Affiliation(s)
- Oleg V Tsodikov
- Department of Chemistry, University of Wisconsin-Madison, 53706, USA.
| | | | | |
Collapse
|
17
|
Cook WJ, Zell A, Watt DD, Ealick SE. Structure of variant 2 scorpion toxin from Centruroides sculpturatus Ewing. Protein Sci 2002; 11:479-86. [PMID: 11847271 PMCID: PMC2373473 DOI: 10.1110/ps.39202] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2001] [Revised: 11/12/2001] [Accepted: 11/13/2001] [Indexed: 10/17/2022]
Abstract
Centruroides sculpturatus Ewing variant 2 toxin (CsE-v2) is a neurotoxin isolated from the venom of a scorpion native to the Arizona desert. The structure of CsE-v2 was solved in two different crystal forms using a combination of molecular replacement and multiple isomorphous replacement techniques. Crystals of CsE-v2 display a temperature-dependent, reversible-phase transition near room temperature. At lower temperature the space group changes from P3(2)21 to P3(1)21 with an approximate doubling of the C-axis. The small-cell structure, which has one molecule per asymmetric unit, has an R factor of 0.229 at 2.8 A resolution. The large-cell structure has two molecules per asymmetric unit and was refined at 2.2 A resolution to an R factor of 0.255. CsE-v2 is a rigid, compact structure with four intrachain disulfide bonds. The structure is similar to other long-chain beta neurotoxins, and the largest differences occur in the last six residues. The high-resolution structure of CsE-v2 corrects an error in the reported C-terminal sequence; the terminal tripeptide sequence is Ser 64-Cys 65-Ser 66 rather than Ser 64-Ser 65-Cys 66. Comparison of CsE-v2 with long-chain alpha toxins reveals four insertions and one deletion, as well as additional residues at the N and C termini. Structural alignment of alpha and beta toxins suggests that the primary distinguishing feature between the two classes is the length of the loop between the second and third strands in a three-strand beta sheet. The shorter loop in alpha toxins exposes a critical lysine side chain, whereas the longer loop in beta toxins buries the corresponding basic residue (either arginine or lysine).
Collapse
Affiliation(s)
- William J Cook
- Department of Pathology, University of Alabama at Birmingham, 35294, USA
| | | | | | | |
Collapse
|
18
|
Dominy BN, Brooks CL. Identifying native-like protein structures using physics-based potentials. J Comput Chem 2002; 23:147-60. [PMID: 11913380 DOI: 10.1002/jcc.10018] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
As the field of structural genomics matures, new methods will be required that can accurately and rapidly distinguish reliable structure predictions from those that are more dubious. We present a method based on the CHARMM gas phase implicit hydrogen force field in conjunction with a generalized Born implicit solvation term that allows one to make such discrimination. We begin by analyzing pairs of threaded structures from the EMBL database, and find that it is possible to identify the misfolded structures with over 90% accuracy. Further, we find that misfolded states are generally favored by the solvation term due to the mispairing of favorable intramolecular ionic contacts. We also examine 29 sets of 29 misfolded globin sequences from Levitt's "Decoys 'R' Us" database generated using a sequence homology-based method. Again, we find that discrimination is possible with approximately 90% accuracy. Also, even in these less distorted structures, mispairing of ionic contacts results in a more favorable solvation energy for misfolded states. This is also found to be the case for collapsed, partially folded conformations of CspA and protein G taken from folding free energy calculations. We also find that the inclusion of the generalized Born solvation term, in postprocess energy evaluation, improves the correlation between structural similarity and energy in the globin database. This significantly improves the reliability of the hypothesis that more energetically favorable structures are also more similar to the native conformation. Additionally, we examine seven extensive collections of misfolded structures created by Park and Levitt using a four-state reduced model also contained in the "Decoys 'R' Us" database. Results from these large databases confirm those obtained in the EMBL and misfolded globin databases concerning predictive accuracy, the energetic advantage of misfolded proteins regarding the solvation component, and the improved correlation between energy and structural similarity due to implicit solvation. Z-scores computed for these databases are improved by including the generalized Born implicit solvation term, and are found to be comparable to trained and knowledge-based scoring functions. Finally, we briefly explore the dynamic behavior of a misfolded protein relative to properly folded conformations. We demonstrate that the misfolded conformation diverges quickly from its initial structure while the properly folded states remain stable. Proteins in this study are shown to be more stable than their misfolded counterparts and readily identified based on energetic as well as dynamic criteria. In summary, we demonstrate the utility of physics-based force fields in identifying native-like conformations in a variety of preconstructed structural databases. The details of this discrimination are shown to be dependent on the construction of the structural database.
Collapse
Affiliation(s)
- Brian N Dominy
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | |
Collapse
|
19
|
Burrows GG, Chou YK, Wang C, Chang JW, Finn TP, Culbertson NE, Kim J, Bourdette DN, Lewinsohn DA, Lewinsohn DM, Ikeda M, Yoshioka T, Allen CN, Offner H, Vandenbark AA. Rudimentary TCR signaling triggers default IL-10 secretion by human Th1 cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:4386-95. [PMID: 11591763 DOI: 10.4049/jimmunol.167.8.4386] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Understanding the process of inducing T cell activation has been hampered by the complex interactions between APC and inflammatory Th1 cells. To dissociate Ag-specific signaling through the TCR from costimulatory signaling, rTCR ligands (RTL) containing the alpha1 and beta1 domains of HLA-DR2b (DRA*0101:DRB1*1501) covalently linked with either the myelin basic protein peptide 85-99 (RTL303) or CABL-b3a2 (RTL311) peptides were constructed to provide a minimal ligand for peptide-specific TCRs. When incubated with peptide-specific Th1 cell clones in the absence of APC or costimulatory molecules, only the cognate RTL induced partial activation through the TCR. This partial activation included rapid TCR zeta-chain phosphorylation, calcium mobilization, and reduced extracellular signal-related kinase activity, as well as IL-10 production, but not proliferation or other obvious phenotypic changes. On restimulation with APC/peptide, the RTL-pretreated Th1 clones had reduced proliferation and secreted less IFN-gamma; IL-10 production persisted. These findings reveal for the first time the rudimentary signaling pattern delivered by initial engagement of the external TCR interface, which is further supplemented by coactivation molecules. Activation with RTLs provides a novel strategy for generating autoantigen-specific bystander suppression useful for treatment of complex autoimmune diseases.
Collapse
Affiliation(s)
- G G Burrows
- Department of Neurology, Oregon Health and Science University, Portland, OR 97201, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Jablonsky MJ, Jackson PL, Krishna NR. Solution structure of an insect-specific neurotoxin from the New World scorpion Centruroides sculpturatus Ewing. Biochemistry 2001; 40:8273-82. [PMID: 11444973 DOI: 10.1021/bi010223h] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report the high-resolution solution structure of the 6.3 kDa neurotoxic protein CsE-v5 from the scorpion Centruroides sculpturatus Ewing (CsE, range southwestern U.S.). This protein is the second example of an Old World-like neurotoxin isolated from the venom of this New World scorpion. However, unlike CsE-V, which is the first Old World-like toxin isolated and shows both anti-insect and anti-mammal activity, CsE-v5 shows high specificity for insect sodium channels. Sequence-specific proton NMR assignments and distance and angle constraints were obtained from 600 MHz 2D-NMR data. Distance geometry and dynamical simulated annealing refinements were performed to produce a final family of 20 structures without constraint violations, along with an energy-minimized average structure. The protein structure is well-defined (0.66 and 0.97 D rmsd for backbone and all heavy atoms, respectively) with a compact hydrophobic core and several extending loops. A large hydrophobic patch, containing four aromatic rings and other aliphatic residues, makes up a large area of one side of the protein. CsE-v5 shows secondary structural features characteristic of long-chain scorpion toxins: a two and a half-turn alpha-helix, a three-strand antiparallel beta-sheet, and four beta-turns. Among the proteins studied to date from the CsE venom, CsE-v5 is the most compact protein with nearly 50% of the amide protons having long exchange lifetimes, but CsE-v5 is unusual in that it has loop structures similar to both Old and New World toxins. Further, it also lacks prolines in its C-terminal 14 residues. It shows some important differences with respect to CsE-V not only in its primary sequence, but also in its electrostatic potential surface, especially around areas in register with residues 8, 9, 17, 18, 32, 43, and 57. The loss of anti-mammal activity in CsE-v5 and the differences in its anti-insect activity compared to that of other proteins such as CsE-V, v1, and v3 from this New World scorpion may be related to residue variations at these locations.
Collapse
Affiliation(s)
- M J Jablonsky
- Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, AL 35294-2041, USA
| | | | | |
Collapse
|
21
|
Furmonaviciene R, Shakib F. The molecular basis of allergenicity: comparative analysis of the three dimensional structures of diverse allergens reveals a common structural motif. Mol Pathol 2001; 54:155-9. [PMID: 11376127 PMCID: PMC1187054 DOI: 10.1136/mp.54.3.155] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
BACKGROUND Although a large number of allergens have been characterised, the structural, functional, and biochemical features that these molecules have in common, and that could explain their ability to elicit powerful IgE antibody responses, are still uncertain. Recently, there has been considerable interest in the role of the cysteine protease activity of the house dust mite allergen Der p 1 in biasing the immune response in favour of IgE production. AIMS To search for remote homologues of Der p 1 with sequences similar to the 30 conserved amino acids surrounding the catalytic cysteine residue (Cys34). METHODS Potential homologues were analysed by examining their three dimensional structures and multiple sequence alignments using the programs PROPSEARCH, ClustalW, GeneDoc, and Swiss Pdb Viewer. RESULTS Diverse allergens (for example, the plant cysteine protease papain, the transport protein lipocalin Mus m 1, and the ragweed allergen Amb a 5) have a similar structural motif; namely, a groove resembling the substrate binding groove of Der p 1. The groove is located inside an alpha-beta motif, between an alpha helix on one side and an antiparallel beta sheet on the other side. A similar common motif (a cysteine stabilised alpha-beta fold) can also be found in some toxins and defensins. CONCLUSION Allergens of diverse sources have a common structural motif, namely a groove located inside an alpha-beta motif, which could potentially serve as a ligand binding site.
Collapse
Affiliation(s)
- R Furmonaviciene
- Division of Molecular and Clinical Immunology, Faculty of Medicine and Health Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
| | | |
Collapse
|
22
|
Ali SA, Stoeva S, Grossmann JG, Abbasi A, Voelter W. Purification, characterization, and primary structure of four depressant insect-selective neurotoxin analogs from scorpion (Buthus sindicus) venom. Arch Biochem Biophys 2001; 391:197-206. [PMID: 11437351 DOI: 10.1006/abbi.2001.2363] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Four depressant insect-selective neurotoxin analogs (termed Bs-dprIT1 to 4) from the venom of the scorpion Buthus sindicus were purified to homogeneity in a single step using reverse-phase HPLC. The molecular masses of the purified toxins were 6820.9, 6892.4, 6714.7, and 6657.1 Da, respectively, as determined by mass spectrometry. These long-chain neurotoxins were potent against insects with half lethal dose values of 67, 81, 103, and 78 ng/100 mg larva and 138, 160, 163, and 142 ng/100 mg cockroach, respectively, but were not lethal to mice even at the highest applied dose of 10 microg/20 g mouse. When injected into blowfly larvae (Sarcophaga falculata), Bs-dprIT1 to 4 induced classical manifestations of depressant toxins, i.e., a slow depressant flaccid paralysis. The primary structures of Bs-dprIT 1 to 4 revealed high sequence homology (60-75%) with other depressant insect toxins isolated from scorpion venoms. Despite the high sequence conservation, Bs-dprIT1 to 4 showed some remarkable features such as (i) the presence of methionine (Met(6) in Bs-dprIT1 and Met(24) in Bs-dprIT2 to 4) and histidine (His(53) and His(57) in Bs-dprIT1) residues, i.e., amino acid residues that are uncommon to this type of toxin; (ii) the substitution of two highly conserved tryptophan residues (Trp43 --> Ala and Trp53 --> His) in the sequence of Bs-dprIT1; and (iii) the occurrence of more positively charged amino acid residues at the C-terminal end than in other depressant insect toxins. Multiple sequence alignment, sequence analysis, sequence-based structure prediction, and 3D homology modeling studies revealed a protein fold and secondary structural elements similar to those of other scorpion toxins affecting sodium channel activation. The electrostatic potential calculated on the surface of the predicted 3D model of Bs-dprIT1 revealed a significant positive patch in the region of the toxin that is supposed to bind to the sodium channel.
Collapse
Affiliation(s)
- S A Ali
- Abteilung für Physikalische Biochemie, Physiologisch-Chemisches Institut der Universität Tübingen, Hoppe-Seyler-Strasse 4, Tübingen, D-72076, Germany.
| | | | | | | | | |
Collapse
|
23
|
Chang JW, Mechling DE, Bächinger HP, Burrows GG. Design, engineering, and production of human recombinant t cell receptor ligands derived from human leukocyte antigen DR2. J Biol Chem 2001; 276:24170-6. [PMID: 11319230 DOI: 10.1074/jbc.m101808200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Major histocompatibility complex (MHC) class II molecules are membrane-anchored heterodimers on the surface of antigen-presenting cells that bind the T cell receptor, initiating a cascade of interactions that results in antigen-specific activation of clonal populations of T cells. Susceptibility to multiple sclerosis is associated with certain MHC class II haplotypes, including human leukocyte antigen (HLA) DR2. Two DRB chains, DRB5*0101 and DRB1*1501, are co-expressed in the HLA-DR2 haplotype, resulting in the formation of two functional cell surface heterodimers, HLA-DR2a (DRA*0101, DRB5*0101) and HLA-DR2b (DRA*0101, DRB1*1501). Both isotypes can present an immunodominant peptide of myelin basic protein (MBP-(84-102)) to MBP-specific T cells from multiple sclerosis patients. We have previously demonstrated that the peptide binding/T cell recognition domains of rat MHC class II (alpha1 and beta1 domains) could be expressed as a single exon for structural and functional characterization; Burrows, G. G., Chang, J. W., Bächinger, H.-P., Bourdette, D. N., Wegmann, K. W., Offner, H., and Vandenbark A. A. (1999) Protein Eng. 12, 771-778; Burrows, G. G., Adlard, K. L., Bebo, B. F., Jr., Chang, J. W., Tenditnyy, K., Vandenbark, A. A., and Offner, H. (2000) J. Immunol. 164, 6366-6371). Single-chain human recombinant T cell receptor ligands (RTLs) of approximately 200 amino acid residues derived from HLA-DR2b were designed using the same principles and have been produced in Escherichia coli with and without amino-terminal extensions containing antigenic peptides. Structural characterization using circular dichroism predicted that these molecules retained the antiparallel beta-sheet platform and antiparallel alpha-helices observed in the native HLA-DR2 heterodimer. The proteins exhibited a cooperative two-state thermal unfolding transition, and DR2-derived RTLs with a covalently linked MBP peptide (MBP-(85-99)) showed increased stability to thermal unfolding relative to the empty DR2-derived RTLs. These novel molecules represent a new class of small soluble ligands for modulating the behavior of T cells and provide a platform technology for developing potent and selective human diagnostic and therapeutic agents for treatment of autoimmune disease.
Collapse
Affiliation(s)
- J W Chang
- Department of Neurology, Shriner's Hospital for Children, and Department of Biochemistry and Molecular Biology, Oregon Health Sciences University, Portland, Oregon 97201, USA
| | | | | | | |
Collapse
|
24
|
Abstract
AaIT is a single chain neurotoxic polypeptide derived from the venom of the Buthid scorpion Androctonus australis Hector, composed of 70 amino acids cross-linked by four disulfide bridges. Its strict selectivity for insects has been documented by toxicity, electrophysiological and ligand receptor binding assays. These last have shown that various insect neuronal membranes possess a single class of non-interacting AaIT binding sites of high affinity (K(D) = 1-3(n)M) and low capacity (0.5-2.0 pmol/mg prot.). The fast excitatory paralysis induced by AaIT is a result of a presynaptic effect, namely the induction of a repetitive firing in the terminal branches of the insect's motor nerves resulting in a massive and uncoordinated stimulation of the respective skeletal muscles. The neuronal repetitive activity is attributed to an exclusive and specific perturbation of sodium conductance as a consequence of toxin binding to external loops of the insect voltage-dependent sodium channel and modification of its gating mechanism. From a strictly agrotechnical point of view AaIT involvement in plant protection has taken the following two complementary forms: firstly, as a factor for the genetic engineering of insect infective baculoviruses resulting in potent and selective bio-insecticides. The efficacy of the AaIT-expressing, recombinant baculovirus is attributed mainly to its ability to continuously provide and translocate the gene of the expressed toxin to the insect central nervous system; secondly, based on the pharmacological flexibility of the voltage-gated sodium channel, as a device for insecticide resistance management. Channel mutations conferring resistance to a given class of insecticidal agents (such as the KDR phenomenon) may greatly increase susceptibility to the AaIT expressing bioinsecticides. Thus the AaIT is a pharmacological tool for the study of insect neuronal excitability and chemical ecology and the development of new approaches to insect control.
Collapse
Affiliation(s)
- E Zlotkin
- Department of Animal and Cell Biology, Institute of Life Sciences, The Hebrew University of Jerusalem, 91904, Jerusalem, Israel.
| | | | | |
Collapse
|
25
|
Fant F, Vranken WF, Borremans FA. The three-dimensional solution structure ofAesculus hippocastanum antimicrobial protein 1 determined by1H nuclear magnetic resonance. Proteins 1999. [DOI: 10.1002/(sici)1097-0134(19991115)37:3<388::aid-prot7>3.0.co;2-f] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
26
|
Selisko B, Licea AF, Becerril B, Zamudio F, Possani LD, Horjales E. Antibody BCF2 against scorpion toxin cn2 fromCentruroides noxius hoffmann: Primary structure and three-dimensional model as free fv fragment and complexed with its antigen. Proteins 1999. [DOI: 10.1002/(sici)1097-0134(19991001)37:1<130::aid-prot13>3.0.co;2-s] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
27
|
He XL, Li HM, Zeng ZH, Liu XQ, Wang M, Wang DC. Crystal structures of two alpha-like scorpion toxins: non-proline cis peptide bonds and implications for new binding site selectivity on the sodium channel. J Mol Biol 1999; 292:125-35. [PMID: 10493862 DOI: 10.1006/jmbi.1999.3036] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The crystal structures of two group III alpha-like toxins from the scorpion Buthus martensii Karsch, BmK M1 and BmK M4, were determined at 1.7 A and 1.3 A resolution and refined to R factors of 0.169 and 0.166, respectively. The first high-resolution structures of the alpha-like scorpion toxin show some striking features compared with structures of the "classical" alpha-toxin. Firstly, a non-proline cis peptide bond between residues 9 and 10 unusually occurs in the five-member reverse turn 8-12. Secondly, the cis peptide 9-10 mediates the spatial relationship between the turn 8-12 and the C-terminal stretch 58-64 through a pair of main-chain hydrogen bonds between residues 10 and 64 to form a unique tertiary arrangement which features the special orientation of the terminal residues 62-64. Finally, in consequence of the peculiar orientation of the C-terminal residues, the functional groups of Arg58, which are crucial for the toxin-receptor interaction, are exposed and accessible in BmK M1 and M4 rather than buried as in the classical alpha-toxins. Sequence alignment and characteristics analysis suggested that the above structural features observed in BmK M1 and M4 occur in all group III alpha-like toxins. Recently, some group III alpha-like toxins were demonstrated to occupy a receptor site different from the classical alpha-toxin. Therefore, the distinct structural features of BmK M1 and M4 presented here may provide the structural basis for the newly recognized toxin-receptor binding site selectivity. Besides, the non-proline cis peptide bonds found in these two structures play a role in the formation of the structural characteristics and in keeping accurate positions of the functionally crucial residues. This manifested a way to achieve high levels of molecular specificity and atomic precision through the strained backbone geometry.
Collapse
Affiliation(s)
- X L He
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, P.R. China
| | | | | | | | | | | |
Collapse
|
28
|
Possani LD, Becerril B, Delepierre M, Tytgat J. Scorpion toxins specific for Na+-channels. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 264:287-300. [PMID: 10491073 DOI: 10.1046/j.1432-1327.1999.00625.x] [Citation(s) in RCA: 477] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Na+-channel specific scorpion toxins are peptides of 60-76 amino acid residues in length, tightly bound by four disulfide bridges. The complete amino acid sequence of 85 distinct peptides are presently known. For some toxins, the three-dimensional structure has been solved by X-ray diffraction and NMR spectroscopy. A constant structural motif has been found in all of them, consisting of one or two short segments of alpha-helix plus a triple-stranded beta-sheet, connected by variable regions forming loops (turns). Physiological experiments have shown that these toxins are modifiers of the gating mechanism of the Na+-channel function, affecting either the inactivation (alpha-toxins) or the activation (beta-toxins) kinetics of the channels. Many functional variations of these peptides have been demonstrated, which include not only the classical alpha- and beta-types, but also the species specificity of their action. There are peptides that bind or affect the function of Na+-channels from different species (mammals, insects or crustaceans) or are toxic to more than one group of animals. Based on functional and structural features of the known toxins, a classification containing 10 different groups of toxins is proposed in this review. Attempts have been made to correlate the presence of certain amino acid residues or 'active sites' of these peptides with Na+-channel functions. Segments containing positively charged residues in special locations, such as the five-residue turn, the turn between the second and the third beta-strands, the C-terminal residues and a segment of the N-terminal region from residues 2-11, seems to be implicated in the activity of these toxins. However, the uncertainty, and the limited success obtained in the search for the site through which these peptides bind to the channels, are mainly due to the lack of an easy method for expression of cloned genes to produce a well-folded, active peptide. Many scorpion toxin coding genes have been obtained from cDNA libraries and from polymerase chain reactions using fragments of scorpion DNAs, as templates. The presence of an intron at the DNA level, situated in the middle of the signal peptide, has been demonstrated.
Collapse
Affiliation(s)
- L D Possani
- Department of Molecular Recognition and Structural Biology, Institute of Biotechnology, National Autonomous University of Mexico, Avenida Universidad 2001, Cuernavaca, Mexico.
| | | | | | | |
Collapse
|
29
|
Khandelwal P, Seth S, Hosur RV. CD and NMR investigations on trifluoroethanol-induced step-wise folding of helical segment from scorpion neurotoxin. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 264:468-78. [PMID: 10491093 DOI: 10.1046/j.1432-1327.1999.00641.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A 14 amino acid residue peptide from the helical region of Scorpion neurotoxin has been structurally characterized using CD and NMR spectroscopy in different solvent conditions. 2,2,2-Trifluoroethanol (TFE) titration has been carried out in 11 steps from 0 to 90% TFE and the gradual stabilization of the conformation to form predominantly alpha-helix covering all of the 14 residues has been studied by 1H and 13C NMR spectroscopy. Detailed information such as coupling constants, chemical shift indices, NOESY peak intensities and amide proton temperature coefficients at each TFE concentration has been extracted and analysed to derive the step-wise preferential stabilization of the helical segments along the length of the peptide. It was found that there is a finite amount of the helical conformation in the middle residues 5-11 even at low TFE concentrations. It was also observed that > 75% TFE (v/v) is required for the propagation of the helix to the N and C termini and for correct packing of the side chains of all of the residues. These observations are significant to understanding the folding of this segment in the protein and may throw light on the inherent preferences and side chain interactions in the formation of the helix in the peptide.
Collapse
Affiliation(s)
- P Khandelwal
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | | | | |
Collapse
|
30
|
Calderon-Aranda ES, Selisko B, York EJ, Gurrola GB, Stewart JM, Possani LD. Mapping of an epitope recognized by a neutralizing monoclonal antibody specific to toxin Cn2 from the scorpion Centruroides noxius, using discontinuous synthetic peptides. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 264:746-55. [PMID: 10491120 DOI: 10.1046/j.1432-1327.1999.00620.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The Na+-channel-affecting toxin Cn2 represents the major and one of the most toxic components of the venom of the Mexican scorpion Centruroides noxius Hoffmann. A monoclonal antibody BCF2 raised against Cn2 has been shown previously to be able to neutralize the toxic effect of Cn2 and of the whole venom of C. noxius. In the present study the epitope was mapped to a surface region comprising the N- and C-terminal segments of Cn2, using continuous and discontinuous synthetic peptides, designed on the basis of the sequence and a three-dimensional model of Cn2. The study of peptides of varying length resulted in the identification of segments 5-14 and 56-65 containing residues essential for recognition by BCF2. The peptide (abbreviated SP7) with the highest affinity to BCF2 (IC50 = 5.1 microM) was a synthetic heterodimer comprising the amino acid sequence from position 3-15 (amidated) of Cn2, bridged by disulfide to peptide from position 54-66, acetylated and amidated. Similar affinity was found with peptide SP1 [heterodimer comprising residues 1-14 (amidated) of Cn2, bridged with synthetic peptide 52-66 (acetylated)]. SP1 and SP7 were used to induce anti-peptide antibodies in mouse and rabbit. Both peptides were highly immunogenic. The sera obtained were able to recognize Cn2 and to neutralize Cn2 in vitro. The most efficient protection (8.3 microgram Cn2 neutralized per mL of serum) was induced by rabbit anti-SP1 serum.
Collapse
Affiliation(s)
- E S Calderon-Aranda
- Department of Molecular Recognition, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | | | | | | | | | | |
Collapse
|
31
|
Burrows GG, Chang JW, Bächinger HP, Bourdette DN, Offner H, Vandenbark AA. Design, engineering and production of functional single-chain T cell receptor ligands. PROTEIN ENGINEERING 1999; 12:771-8. [PMID: 10506287 DOI: 10.1093/protein/12.9.771] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Major histocompatibility complex (MHC) class II molecules are membrane-anchored heterodimers on the surface of antigen presenting cells (APCs) that bind the T cell receptor, initiating a cascade of interactions that results in antigen-specific activation of clonal populations of T cells. The peptide binding/T cell recognition domains of rat MHC class II (alpha-1 and beta-1 domains) were expressed as a single exon for structural and functional characterization. These recombinant single-chain T cell receptor ligands (termed 'beta1alpha1' molecules) of approximately 200 amino acid residues were designed using the structural backbone of MHC class II molecules as template, and have been produced in Escherichia coli with and without N-terminal extensions containing antigenic peptides. Structural characterization using circular dichroism predicted that these molecules retained the antiparallel beta-sheet platform and antiparallel alpha-helices observed in the native MHC class II heterodimer. The proteins exhibited a cooperative two-state thermal folding-unfolding transition. Beta1alpha1 molecules with a covalently linked MBP-72-89 peptide showed increased stability to thermal unfolding relative to the empty beta1alpha1 molecules. This new class of small soluble polypeptide provides a template for designing and refining human homologues useful in detecting and regulating pathogenic T cells.
Collapse
Affiliation(s)
- G G Burrows
- Department of Neurology, Department of Biochemistry and Molecular Biology and Department of Molecular Microbiology and Immunology, Oregon Health Sciences University, Portland, OR 97201, USA
| | | | | | | | | | | |
Collapse
|
32
|
Polikarpov I, Junior MS, Marangoni S, Toyama MH, Teplyakov A. Crystal structure of neurotoxin Ts1 from Tityus serrulatus provides insights into the specificity and toxicity of scorpion toxins. J Mol Biol 1999; 290:175-84. [PMID: 10388565 DOI: 10.1006/jmbi.1999.2868] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The crystal structure of neurotoxin Ts1, a major component of the venom of the Brazilian scorpion Tityus serrulatus, has been determined at 1.7 A resolution. It is the first X-ray structure of a highly toxic anti-mammalian beta-toxin. The folding of the polypeptide chain of Ts1 is similar to that of other scorpion toxins. A cysteine-stabilised alpha-helix/beta-sheet motif forms the core of the flattened molecule. All residues identified as functionally important by chemical modification and site-directed mutagenesis are located on one side of the molecule, which is therefore considered as the Na+channel recognition site. The distribution of charged and non-polar residues over this surface determines the specificity of the toxin-channel interaction. Comparison to other scorpion toxins shows that positively charged groups at positions 1 and 12 as well as a negative charge at position 2 are likely determinants of the specificity of beta-toxins. In contrast, the contribution of the conserved aromatic cluster to the interaction might be relatively small. Comparison of Ts1 to weak beta-toxins from Centruroides sculpturatus Ewing reveals that a number of basic amino acid residues located on the face of the molecule opposite to the binding surface may account for the high toxicity of Ts1.
Collapse
Affiliation(s)
- I Polikarpov
- Laboratório Nacional de Luz Síncrotron (LNLS), Campinas SP, CEP 13083-970, Brazil.
| | | | | | | | | |
Collapse
|
33
|
Yamamoto H, Sejbal J, York E, Stewart JM, Possani LD, Kotovych G. An nmr conformational analysis of a synthetic peptide Cn2(1-15)NH2-S-S-acetyl-Cn2(52-66)NH2 from the New World Centruroides noxius 2 (Cn2) scorpion toxin: comparison of the structure with those of the Centruroides scorpion toxins. Biopolymers 1999; 49:277-86. [PMID: 10079767 DOI: 10.1002/(sici)1097-0282(19990405)49:4<277::aid-bip2>3.0.co;2-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The solution structure of a synthetic peptide, Cn2(1-15)NH2-S-S-acetyl-Cn2(52-66)NH2 from toxin 2 (Cn2) of the New World scorpion Centruroides noxius was determined using nmr and molecular dynamics calculations. The peptide has no significant secondary structure such as an alpha-helix or a beta-sheet, yet it has a fixed conformation for the first chain. The backbone secondary structure involving residues 6-12 in this peptide shows an excellent overlap with the structures of natural neurotoxins from Centruroides sculpturatus Ewing. Residues 6-9 form a distorted type I beta-turn and residues 10-12 form a gamma-turn. As residues 7-10 in the Centruroides toxins correspond to one of the regions of highest sequence variability, it may account for the species specificity and/or selectivity of toxic action. The conformation of this region evidently plays an important role in receptor recognition and in binding to the neutralizing monoclonal antibody BCF2 raised against the intact toxin.
Collapse
Affiliation(s)
- H Yamamoto
- Department of Chemistry, University of Alberta, Edmonton, Canada
| | | | | | | | | | | |
Collapse
|
34
|
Pintar A, Possani LD, Delepierre M. Solution structure of toxin 2 from centruroides noxius Hoffmann, a beta-scorpion neurotoxin acting on sodium channels. J Mol Biol 1999; 287:359-67. [PMID: 10080898 DOI: 10.1006/jmbi.1999.2611] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have determined the solution structure of Cn2, a beta-toxin extracted from the venom of the New World scorpion Centruroides noxius Hoffmann. Cn2 belongs to the family of scorpion toxins that affect the sodium channel activity, and is very toxic to mammals (LD50=0.4 microg/20 g mouse mass). The three-dimensional structure was determined using 1H-1H two-dimensional NMR spectroscopy, torsion angle dynamics, and restrained energy minimization. The final set of 15 structures was calculated from 876 experimental distance constraints and 58 angle constraints. The structures have a global r. m.s.d. of 1.38 A for backbone atoms and 2.21 A for all heavy atoms. The overall fold is similar to that found in the other scorpion toxins acting on sodium channels. It is made of a triple-stranded antiparallel beta-sheet and an alpha-helix, and is stabilized by four disulfide bridges. A cis-proline residue at position 59 induces a kink of the polypeptide chain in the C-terminal region. The hydrophobic core of the protein is made up of residues L5, V6, L51, A55, and by the eight cysteine residues. A hydrophobic patch is defined by the aromatic residues Y4, Y40, Y42, W47 and by V57 on the side of the beta-sheet facing the solvent. A positively charged patch is formed by K8 and K63 on one edge of the molecule in the C-terminal region. Another positively charged spot is represented by the highly exposed K35. The structure of Cn2 is compared with those of other scorpion toxins acting on sodium channels, in particular Aah II and CsE-v3. This is the first structural report of an anti-mammal beta-scorpion toxin and it provides the necessary information for the design of recombinant mutants that can be used to probe structure-function relationships in scorpion toxins affecting sodium channel activity.
Collapse
Affiliation(s)
- A Pintar
- Nuclear Magnetic Resonance Laboratory, URA1129 Aids-Retrovirus Department, Pasteur Institute, 28 Rue du Dr Roux, Paris, 75015, France
| | | | | |
Collapse
|
35
|
Hassani O, Mansuelle P, Cestèle S, Bourdeaux M, Rochat H, Sampieri F. Role of lysine and tryptophan residues in the biological activity of toxin VII (Ts gamma) from the scorpion Tityus serrulatus. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 260:76-86. [PMID: 10091586 DOI: 10.1046/j.1432-1327.1999.00152.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Toxin VII (TsVII), also known as Ts gamma, is the most potent neurotoxin in the venom of the Brazilian scorpion Tityus serrulatus. It has been purified to homogeneity using a new fast and efficient method. Chemical modification of TsVII with the tryptophan-specific reagent o-nitrophenylsulfenyl chloride yielded three modified derivatives (residues Trp39, Trp50 and Trp54). Acetylation of TsVII mostly generated the monoacetylated Lys12 derivative. No side reactions were detected, as indicated by endoproteinase Lys-C peptide mapping, Edman degradation and electrospray mass spectrometry. Circular dichroism and fluorimetric measurements showed that none of the chemical modifications altered the overall structure of the derivatives. The acetylation of Lys12 or the sulfenylation of Trp39 or Trp54 led to a loss of both toxicity in mice and apparent binding affinity for rat brain and cockroach synaptosomal preparations. Sulfenylation of Trp50, however, moderately affected the toxicity of TsVII in mice and had almost no effect on its binding properties. A 3-dimensional model of TsVII was constructed by homology modeling. It suggests that the most reactive residues (Lys12 and Trp39 and Trp54) are all important in the functional disruption of neuronal sodium channels by TsVII, and are close to each other in the hydrophobic conserved region.
Collapse
Affiliation(s)
- O Hassani
- Faculté de Médecine, Université de la Méditerranée, Marseille, France
| | | | | | | | | | | |
Collapse
|
36
|
Krimm I, Gilles N, Sautière P, Stankiewicz M, Pelhate M, Gordon D, Lancelin JM. NMR structures and activity of a novel alpha-like toxin from the scorpion Leiurus quinquestriatus hebraeus. J Mol Biol 1999; 285:1749-63. [PMID: 9917409 DOI: 10.1006/jmbi.1998.2418] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
NMR structures of a new toxin from the scorpion Leiurus quinquestriatus hebraeus (Lqh III) have been investigated in conjunction with its pharmacological properties. This toxin is proposed to belong to a new group of scorpion toxins, the alpha-like toxins that target voltage-gated sodium channels with specific properties compared with the classical alpha-scorpion toxins. Electrophysiological analysis showed that Lqh III inhibits a sodium current inactivation in the cockroach axon, but induces in addition a resting depolarization due to a slowly decaying tail current atypical to other alpha-toxin action. Binding studies indicated that radiolabeled Lqh III binds with a high degree of affinity (Ki=2.2 nM) on cockroach sodium channels and that the alpha-toxin from L quinquestriatus hebraeus highly active on insects (LqhalphaIT) and alpha-like toxins compete at low concentration for its receptor binding site, suggesting that the alpha-like toxin receptor site is partially overlapping with the receptor site 3. Conversely, in rat brain, Lqh III competes for binding of the most potent anti-mammal alpha-toxin from Androctonus australis Hector venom (AaH II) only at very high concentration. The NMR structures were used for the scrutiny of the similarities and differences with representative scorpion alpha-toxins targeting the voltage-gated sodium channels of either mammals or insects. Three turn regions involved in the functional binding site of the anti-insect LqhalphaIT toxin reveal significant differences in the Lqh III structure. The electrostatic charge distribution in the Lqh III toxin is also surprisingly different when compared with the anti-mammal alpha-toxin AaH II. Similarities in the electrostatic charge distribution are, however, recognized between alpha-toxins highly active on insects and the alpha-like toxin Lqh III. This affords additional important elements to the definition of the new alpha-like group of scorpion toxins and the mammal versus insect scorpion toxin selectivities.
Collapse
Affiliation(s)
- I Krimm
- Laboratoire de RMN Biomoléculaire Associé au CNRS, Université Claude Bernard - Lyon 1 et CPE-Lyon, Villeurbanne, France
| | | | | | | | | | | | | |
Collapse
|
37
|
Jablonsky MJ, Jackson PL, Trent JO, Watt DD, Krishna NR. Solution structure of a beta-neurotoxin from the New World scorpion Centruroides sculpturatus Ewing. Biochem Biophys Res Commun 1999; 254:406-12. [PMID: 9918851 DOI: 10.1006/bbrc.1998.9904] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We report the detailed solution structure of the 7.2 kDa protein CsE-I, a beta-neurotoxin from the New World scorpion Centruroides sculpturatus Ewing. This toxin binds to sodium channels, but unlike the alpha-neurotoxins, shifts the voltage of activation toward more negative potentials causing the membrane to fire spontaneously. Sequence-specific proton NMR assignments were made using 600 MHz 2D-NMR data. Distance geometry and dynamical simulated annealing refinements were performed using experimental distance and torsion angle constraints from NOESY and pH-COSY data. A family of 40 structures without constraint violations was generated, and an energy-minimized average structure was computed. The backbone conformation of the CsE-I toxin shows similar secondary structural features as the prototypical alpha-neurotoxin, CsE-v3, and is characterized by a short 2(1/2)-turn alpha-helix and a 3-strand antiparallel beta-sheet, both held together by disulfide bridges. The RMSD for the backbone atoms between CsE-I and CsE-v3 is 1.48 A. Despite this similarity in the overall backbone folding, the these two proteins show some important differences in the primary structure (sequence) and electrostatic potential surfaces. Our studies provide a basis for unravelling the role of these differences in relation to the known differences in the receptor sites on the voltage sensitive sodium channel for the alpha- and beta-neurotoxins.
Collapse
Affiliation(s)
- M J Jablonsky
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, 35294, USA
| | | | | | | | | |
Collapse
|
38
|
Ali SA, Stoeva S, Schütz J, Kayed R, Abassi A, Zaidi ZH, Voelter W. Purification and primary structure of low molecular mass peptides from scorpion (Buthus sindicus) venom. Comp Biochem Physiol A Mol Integr Physiol 1998; 121:323-32. [PMID: 10048185 DOI: 10.1016/s1095-6433(98)10140-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The primary structures of four low molecular mass peptides (Bs 6, 8, 10 and 14) from scorpion Buthus sindicus were elucidated via combination of Edman degradation and matrix-assisted laser desorption ionization mass spectrometry. Bs 8 and 14 are cysteine-rich, thermostable peptides composed of 35-36 residues with molecular weights of 3.7 and 3.4 kDa, respectively. These peptides show close sequence homologies (55-78%) with other scorpion chlorotoxin-like short-chain neurotoxins (SCNs) containing four intramolecular disulfide bridges. Despite the sequence variation between these two peptides (37% heterogeneity) their general structural organization is very similar as shown by their clearly related circular dichroism spectra. Furthermore, Bs6 is a minor component, composed of 38 residues (4.1 kDa) containing six half-cystine residues and having close sequence identities (40-80%) with charybdotoxin-like SCNs containing three disulfide bridges. The non-cysteinic, bacic and thermolabile Bs10 is composed of 34 amino acid residues (3.7 kDa), and belongs to a new class of peptides, with no sequence resemblance to any other so far reported sequence isolated from scorpions. Surprisingly, Bs10 shows some limited sequence analogy with oocyte zinc finger proteins. Results of these studies are discussed with respect to their structural similarities within the scorpion LCNs, SCNs and other biologically active peptides.
Collapse
Affiliation(s)
- S A Ali
- International Centre for Chemical Sciences, University of Karachi, Pakistan.
| | | | | | | | | | | | | |
Collapse
|
39
|
Burrows GG, Bebo BF, Adlard KL, Vandenbark AA, Offner H. Two-Domain MHC Class II Molecules Form Stable Complexes with Myelin Basic Protein 69–89 Peptide That Detect and Inhibit Rat Encephalitogenic T Cells and Treat Experimental Autoimmune Encephalomyelitis. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.161.11.5987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
We designed and expressed in bacteria a single-chain two-domain MHC class II molecule capable of binding and forming stable complexes with antigenic peptide. The prototype “β1α1” molecule included the β1 domain of the rat RT1.B class II molecule covalently linked to the amino terminus of the α1 domain. In association with the encephalitogenic myelin basic protein (MBP) 69–89 peptide recognized by Lewis rat T cells, the β1α1/MBP-69–89 complex specifically labeled and inhibited activation of MBP-69–89 reactive T cells in an IL-2-reversible manner. Moreover, this complex both suppressed and treated clinical signs of experimental autoimmune encephalomyelitis and inhibited delayed-type hypersensitivity reactions and lymphocyte proliferation in an Ag-specific manner. These data indicate that the β1α1/MBP-69–89 complex functions as a simplified natural TCR ligand with potent inhibitory activity that does not require additional signaling from the β2 and α2 domains. This new class of small soluble polypeptide may provide a template for designing human homologues useful in detecting and regulating potentially autopathogenic T cells.
Collapse
Affiliation(s)
- Gregory G. Burrows
- *Neuroimmunology Research, Veterans Affairs Medical Center, Portland, OR 97201; and
- †Department of Neurology,
- ‡Department of Biochemistry and Molecular Biology, and
| | - Bruce F. Bebo
- *Neuroimmunology Research, Veterans Affairs Medical Center, Portland, OR 97201; and
- †Department of Neurology,
| | - Kirsten L. Adlard
- *Neuroimmunology Research, Veterans Affairs Medical Center, Portland, OR 97201; and
| | - Arthur A. Vandenbark
- *Neuroimmunology Research, Veterans Affairs Medical Center, Portland, OR 97201; and
- †Department of Neurology,
- §Department of Molecular Microbiology and Immunology, Oregon Health Sciences University, Portland, OR 97201
| | - Halina Offner
- *Neuroimmunology Research, Veterans Affairs Medical Center, Portland, OR 97201; and
- †Department of Neurology,
| |
Collapse
|
40
|
Liang J, Edelsbrunner H, Fu P, Sudhakar PV, Subramaniam S. Analytical shape computation of macromolecules: I. molecular area and volume through alpha shape. Proteins 1998. [DOI: 10.1002/(sici)1097-0134(19981001)33:1%3c1::aid-prot1%3e3.0.co;2-o] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
41
|
Liang J, Edelsbrunner H, Fu P, Sudhakar PV, Subramaniam S. Analytical shape computation of macromolecules: I. molecular area and volume through alpha shape. Proteins 1998. [DOI: 10.1002/(sici)1097-0134(19981001)33:1<1::aid-prot1>3.0.co;2-o] [Citation(s) in RCA: 220] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
42
|
Oren DA, Froy O, Amit E, Kleinberger-Doron N, Gurevitz M, Shaanan B. An excitatory scorpion toxin with a distinctive feature: an additional alpha helix at the C terminus and its implications for interaction with insect sodium channels. Structure 1998; 6:1095-103. [PMID: 9753689 DOI: 10.1016/s0969-2126(98)00111-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Scorpion neurotoxins, which bind and modulate sodium channels, have been divided into two groups, the alpha and beta toxins, according to their activities. The beta-toxin class includes the groups of excitatory and depressant toxins, which differ in their mode of action and are highly specific against insects. The three-dimensional structures of several alpha and beta toxins have been determined at high resolution, but no detailed 3D structure of an excitatory toxin has been presented so far. RESULTS The crystal structure of an anti-insect excitatory toxin from the scorpion Buthotus judaicus, Bj-xtrIT, has been determined at 2.1 A resolution and refined to an R factor of 0.209. The first 59 residues form a closely packed module, structurally similar to the conserved alpha and beta toxins ('long toxins') affecting sodium channels. The last 17 residues form a C-terminal extension not previously seen in scorpion toxins. It comprises a short alpha helix anchored to the N-terminal module by a disulfide bridge and is followed by a highly mobile stretch of seven residues, of which only four are seen in the electron-density map. This mobile peptide covers part of a conserved hydrophobic surface that is thought to be essential for interaction with the channel in several long toxins. CONCLUSIONS Replacement of the last seven residues by a single glycine abolishes the activity of Bj-xtrIT, strongly suggesting that these residues are intimately involved in the interaction with the channel. Taken together with the partial shielding of the conserved hydrophobic surface and the proximity of the C terminus to an adjacent surface rich in charged residues, it seems likely that the bioactive surface of Bj-xtrIT is formed by residues surrounding the C terminus. The 3D structure and a recently developed expression system for Bj-xtrIT pave the way for identifying the structural determinants involved in the bioactivity and anti-insect specificity of excitatory toxins.
Collapse
Affiliation(s)
- D A Oren
- The Wolfson Centre for Applied Structural Biology Institute of Life Sciences The Hebrew University of Jerusalem Givat Ram, Jerusalem, 91904, Israel
| | | | | | | | | | | |
Collapse
|
43
|
Bloch C, Patel SU, Baud F, Zvelebil MJ, Carr MD, Sadler PJ, Thornton JM. 1H NMR structure of an antifungal gamma-thionin protein SIalpha1: similarity to scorpion toxins. Proteins 1998; 32:334-49. [PMID: 9715910 DOI: 10.1002/(sici)1097-0134(19980815)32:3<334::aid-prot9>3.0.co;2-h] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The three-dimensional structure of the Sorghum bicolor seed protein gamma-thionin SIalpha1 has been determined by 2D 1H nuclear magnetic resonance (NMR) spectroscopy. The secondary structure of this 47-residue antifungal protein with four disulphide bridges consists of a three-stranded antiparallel sheet and one helix. The helix is tethered to the sheet by two disulphide bridges which link two successive turns of the helix to alternate residues i, i+2 in one strand. Possible binding sites for antifungal activity are discussed. The same fold has been observed previously in several scorpion toxins.
Collapse
Affiliation(s)
- C Bloch
- Department of Biochemistry and Molecular Biology, University College, London, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
44
|
Fant F, Vranken W, Broekaert W, Borremans F. Determination of the three-dimensional solution structure of Raphanus sativus antifungal protein 1 by 1H NMR. J Mol Biol 1998; 279:257-70. [PMID: 9636715 DOI: 10.1006/jmbi.1998.1767] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Raphanus sativus Antifungal Protein 1 (Rs-AFP1) is a 51 amino acid residue plant defensin isolated from radish (Raphanus sativus L.) seeds. The three-dimensional structure in aqueous solution has been determined from two-dimensional 1H NMR data recorded at 500 MHz using the DIANA/REDAC calculation protocols. Experimental constraints consisted of 787 interproton distances extracted from NOE cross-peaks, 89 torsional constraints from 106 vicinal interproton coupling constants and 32 stereospecific assignments of prochiral protons. Further refinement by simulated annealing resulted in a set of 20 structures having pairwise root-mean-square differences of 1.35(+/- 0.35) A over the backbone heavy atoms and 2.11(+/- 0.46) A over all heavy atoms. The molecule adopts a compact globular fold comprising an alpha-helix from Asn18 till Leu28 and a triple-stranded beta-sheet (beta 1 = Lys2-Arg6, beta 2 = His33-Tyr38 and beta 3 = His43-Pro50). The central strand of this beta-sheet is connected by two disulfide bridges (Cys21-Cys45 and Cys25-Cys47) to the alpha-helix. The connection between beta-strand 2 and 3 is formed by a type VIa beta-turn. Even the loop (Pro7 to Asn17) between beta-strand 1 and the alpha-helix is relatively well defined. The structure of Raphanus sativus Antifungal Protein 1 features all the characteristics of the "cysteine stabilized alpha beta motif". A comparison of the complete structure and of the regions important for interaction with the fungal receptor according to a mutational study, is made with the structure of gamma-thionin, a plant defensin that has no antifungal activity. It is concluded that this interaction is both electrostatic and specific, and some possible scenarios for the mode of action are given.
Collapse
Affiliation(s)
- F Fant
- Department of Organic Chemistry, University of Gent, Belgium
| | | | | | | |
Collapse
|
45
|
Nakagawa Y, Sadilek M, Lehmberg E, Herrmann R, Herrmann R, Moskowitz H, Lee YM, Thomas BA, Shimizu R, Kuroda M, Jones AD, Hammock BD. Rapid purification and molecular modeling of AaIT peptides from venom of Androctonus australis. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 1998; 38:53-65. [PMID: 9627406 DOI: 10.1002/(sici)1520-6327(1998)38:2<53::aid-arch1>3.0.co;2-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
As recombinant viruses expressing scorpion toxins are moving closer toward the market, it is important to obtain large amounts of pure toxin for biochemical characterization and the evaluation of biological activity in nontarget organisms. In the past, we purified a large amount of Androctonus australis anti-insect toxin (AaIT) present in the venom of A. australis with an analytical reversed-phase column by repeated runs of crude sample. We now report 20 times improved efficiency and speed of the purification by employing a preparative reversed-phase column. In just two consecutive HPLC steps, almost 1 mg of AaIT was obtained from 70 mg crude venom. Furthermore, additional AaIT was obtained from side fractions in a second HPLC run. Recently discovered insect selective toxin, AaIT5, was isolated simultaneously from the same venom batch. It shows different biological toxicity symptoms than the known excitatory and depressant insect toxins. AaIT5 gave 100% mortality with a dose of less than 1.3 micrograms against fourth-instar tobacco budworms Heliothis virescens 24 h after injection. During the purification process, we implemented mass spectrometry in addition to bioassays to monitor the presence of AaIT and AaIT5 in the HPLC fractions. Mass spectrometric screening can unambiguously follow the purification process and can greatly facilitate and expedite the downstream purification of AaIT and AaIT5 eliminating the number of bioassays required. Further, electrospray ionization was compared with matrix-assisted desorption/ionization and evaluated as a method of choice for mass spectrometric characterization of fractions from the venom purification for it provided higher mass accuracy and relative quantitation capability. Molecular models were built for AaIT5, excitatory toxin AaIT4, and depressant toxin LqhIT2. Three-dimensional structure of AaIT5 was compared with structures of the other two toxins, suggesting that AaIT5 is similar to depressant toxins.
Collapse
Affiliation(s)
- Y Nakagawa
- Department of Entomology, University of California, Davis 95616, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Anderson DH, Weiss MS, Eisenberg D. Charges, hydrogen bonds, and correlated motions in the 1 A resolution refined structure of the mating pheromone Er-1 from Euplotes raikovi. J Mol Biol 1997; 273:479-500. [PMID: 9344754 DOI: 10.1006/jmbi.1997.1318] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A detailed description is given of the structure of the small protein mating pheromone Er-1 at atomic resolution. Emphasis is placed on the locations of charges and hydrogen bonds. The model includes all the protein atoms, anisotropic displacement parameters, four disordered side chains, 22 water molecules, a disordered ethanol, and "riding" hydrogen atoms. Analysis of the model revealed that this dense crystal is perfused by hydrogen-bonding networks of solvent and protein atoms. The termini of helices are capped by hydrogen bonding to solvent and protein atoms, and to symmetry-related molecules. An examination of the valencies and charges of the hydrogen-bonding groups suggests that three of the "water" molecules capping the C termini of two helices, and one other, may instead be NH4 ions. Water molecules mediate all but one of the interhelical hydrogen bonds, and many of the lattice interactions. Regions of the molecule where the atomic vibrations deviate from isotropy are identified. There is almost no overall libration of the molecule allowed by the packing, but the side-chains vibrate relative to the backbone. Four side-chains display alternate conformations. Indirect evidence is presented that the switches between their conformations are correlated and driven by protonation of acidic side-chains. These structural features are discussed in the context of function and stability. Equipped with the analysis of the model, we review the course and results of the refinement of the model against 1 A X-ray diffraction data to a crystallographic R-factor of 12.92%.
Collapse
Affiliation(s)
- D H Anderson
- Molecular Biology Institute Department of Chemistry and Biochemistry and UCLA-DOE Lab of Structural Biology and Molecular Medicine, University of California, Los Angeles, CA 90095-1570, USA
| | | | | |
Collapse
|
47
|
Blanc E, Hassani O, Meunier S, Mansuelle P, Sampieri F, Rochat H, Darbon H. 1H-NMR-derived secondary structure and overall fold of a natural anatoxin from the scorpion Androctonus australis hector. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 247:1118-26. [PMID: 9288938 DOI: 10.1111/j.1432-1033.1997.01118.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The venom of the scorpion Androctonus australis hector contains several protein neurotoxins of which structure and structure/activity relationships have been extensively studied. It also contains polypeptides such as Aah STR1, which are not toxic, while having highly similar sequences to fully active toxins. We have determined the solution structure of Aah STR1 by use of conventional two-dimensional NMR techniques followed by distance-geometry and energy minimization. We have demonstrated that, despite its lack of toxicity, Aah STR1 is structurally highly related to anti-mammal scorpion toxins specific for Na+ channels. The calculated structure is composed of a short alpha-helix (residues 26-33) connected by a tight turn to a three-stranded antiparallel beta-sheet (sequences 3-6, 38-41 and 44-48). This beta-sheet is right-handed twisted as usual for such secondary structures. The beta-turn connecting the strands 38-41 and 44-48 belongs to type II'. The overall fold of Aah STR1 is typical of beta-type scorpion toxins. This is, however, the first example of such a fold in Old World scorpion toxins. Either the absence of a basic residue in position 63 or the high mobility of loops, compared to active beta-type neurotoxins, may explain the lack of activity of this protein.
Collapse
Affiliation(s)
- E Blanc
- AFMB, CNRS UPR 9039, IFR1, Marseille, France
| | | | | | | | | | | | | |
Collapse
|
48
|
Landon C, Sodano P, Cornet B, Bonmatin JM, Kopeyan C, Rochat H, Vovelle F, Ptak M. Refined solution structure of the anti-mammal and anti-insect LqqIII scorpion toxin: comparison with other scorpion toxins. Proteins 1997; 28:360-74. [PMID: 9223182 DOI: 10.1002/(sici)1097-0134(199707)28:3<360::aid-prot6>3.0.co;2-g] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The solution structure of the anti-mammal and anti-insect LqqIII toxin from the scorpion Leiurus quinquestriatus quinquestriatus was refined and compared with other long-chain scorpion toxins. This structure, determined by 1H-NMR and molecular modeling, involves an alpha-helix (18-29) linked to a three-stranded beta-sheet (2-6, 33-39, and 43-51) by two disulfide bridges. The average RMSD between the 15 best structures and the mean structure is 0.71 A for C alpha atoms. Comparison between LqqIII, the potent anti-mammal AaHII, and the weakly active variant-3 toxins revealed that the LqqIII three-dimensional structure is closer to that of AaHII than to the variant-3 structure. Moreover, striking analogies were observed between the electrostatic and hydrophobic potentials of LqqIII and AaHII. Several residues are well conserved in long-chain scorpion toxin sequences and seem to be important in protein structure stability and function. Some of them are involved in the CS alpha beta (Cysteine Stabilized alpha-helix beta-sheet) motif. A comparison between the sequences of the RII rat brain and the Drosophila extracellular loops forming scorpion toxin binding-sites of Na+ channels displays differences in the subsites interacting with anti-mammal or anti-insect toxins. This suggests that hydrophobic as well as electrostatic interactions are essential for the binding and specificity of long-chain scorpion toxins.
Collapse
Affiliation(s)
- C Landon
- Centre de Biophysique Moléculaire (CNRS), Orléans, France
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Tugarinov V, Kustanovich I, Zilberberg N, Gurevitz M, Anglister J. Solution structures of a highly insecticidal recombinant scorpion alpha-toxin and a mutant with increased activity. Biochemistry 1997; 36:2414-24. [PMID: 9054546 DOI: 10.1021/bi961497l] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The solution structure of a recombinant active alpha-neurotoxin from Leiurus quinquestriatus hebraeus, Lqh(alpha)IT, was determined by proton two-dimensional nuclear magnetic resonance spectroscopy (2D NMR). This toxin is the most insecticidal among scorpion alpha-neurotoxins and, therefore, serves as a model for clarifying the structural basis for their biological activity and selective toxicity. A set of 29 structures was generated without constraint violations exceeding 0.4 A. These structures had root mean square deviations of 0.49 and 1.00 A with respect to the average structure for backbone atoms and all heavy atoms, respectively. Similarly to other scorpion toxins, the structure of Lqh(alpha)IT consists of an alpha-helix, a three-strand antiparallel beta-sheet, three type I tight turns, a five-residue turn, and a hydrophobic patch that includes tyrosine and tryptophan rings in a "herringbone" arrangement. Positive phi angles were found for Ala50 and Asn11, suggesting their proximity to functionally important regions of the molecule. The sample exhibited conformational heterogeneity over a wide range of experimental conditions, and two conformations were observed for the majority of protein residues. The ratio between these conformations was temperature-dependent, and the rate of their interconversions was estimated to be on the order of 1-5 s(-1) at 308 K. The conformation of the polypeptide backbone of Lqh(alpha)IT is very similar to that of the most active antimammalian scorpion alpha-toxin, AaHII, from Androctonus australis Hector (60% amino acid sequence homology). Yet, several important differences were observed at the 5-residue turn comprising residues Lys8-Cys12, the C-terminal segment, and the mutual disposition of these two regions. 2D NMR studies of the R64H mutant, which is 3 times more toxic than the unmodified Lqh(alpha)IT, demonstrated the importance of the spatial orientation of the last residue side chain for toxicity of Lqh(alpha)IT.
Collapse
Affiliation(s)
- V Tugarinov
- Department of Structural Biology, The Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | |
Collapse
|
50
|
De Maeyer M, Desmet J, Lasters I. All in one: a highly detailed rotamer library improves both accuracy and speed in the modelling of sidechains by dead-end elimination. FOLDING & DESIGN 1997; 2:53-66. [PMID: 9080199 DOI: 10.1016/s1359-0278(97)00006-0] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND About a decade ago, the concept of rotamer libraries was introduced to model sidechains given known mainchain coordinates. Since then, several groups have developed methods to handle the challenging combinatorial problem that is faced when searching rotamer libraries. To avoid a combinatorial explosion, the dead-end elimination method detects and eliminates rotamers that cannot be members of the global minimum energy conformation (GMEC). Several groups have applied and further developed this method in the fields of homology modelling and protein design. RESULTS This work addresses at the same time increased prediction accuracy and calculation speed improvements. The proposed enhancements allow the elimination of more than one-third of the possible rotameric states before applying the dead-end elimination method. This is achieved by using a highly detailed rotamer library allowing the safe application of an energy-based rejection criterion without risking the elimination of a GMEC rotamer. As a result, we gain both in modelling accuracy and in computational speed. Being completely automated, the current implementation of the dead-end elimination prediction of protein sidechains can be applied to the modelling of sidechains of proteins of any size on the high-end computer systems currently used in molecular modelling. The improved accuracy is highlighted in a comparative study on a collection of proteins of varying size for which score results have previously been published by multiple groups. Furthermore, we propose a new validation method for the scoring of the modelled structure versus the experimental data based upon the volume overlap of the predicted and observed sidechains. This overlap criterion is discussed in relation to the classic RMSD and the frequently used +/- 40 degrees window in comparing chi 1 and chi 2 angles. CONCLUSIONS We have shown that a very detailed library allows the introduction of a safe energy threshold rejection criterion, thereby increasing both the execution speed and the accuracy of the modelling program. We speculate that the current method will allow the sidechain prediction of medium-sized proteins and complex protein interfaces involving up to 150 residues on low-end desktop computers.
Collapse
Affiliation(s)
- M De Maeyer
- Center for Transgene Technology and Gene Therapy, Flanders Interuniversity Institute for Biotechnology, KU Leuven, Belgium
| | | | | |
Collapse
|