1
|
Carter CW, Tang GQ, Patra SK, Betts L, Dieckhaus H, Kuhlman B, Douglas J, Wills PR, Bouckaert R, Popovic M, Ditzler MA. WITHDRAWN: Structural Enzymology, Phylogenetics, Differentiation, and Symbolic Reflexivity at the Dawn of Biology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.17.628912. [PMID: 39763899 PMCID: PMC11702779 DOI: 10.1101/2024.12.17.628912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
This manuscript was posted without the final consent of all authors. The authors have therefore withdrawn it. The authors do not wish this work to be cited as reference for the project. If you have any questions, please contact the corresponding author, carter@med.unc.edu .
Collapse
Affiliation(s)
- Charles W. Carter
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7260
| | - Guo Qing Tang
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7260
| | - Sourav Kumar Patra
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7260
| | - Laurie Betts
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7260
| | - Henry Dieckhaus
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7260
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Brian Kuhlman
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7260
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Jordan Douglas
- Department of Physics, Auckland University, Auckland, NZ
- Department of Computer Science, Auckland University, Auckland, NZ
| | - Peter R. Wills
- Department of Physics, Auckland University, Auckland, NZ
| | - Remco Bouckaert
- Department of Computer Science, Auckland University, Auckland, NZ
| | | | | |
Collapse
|
2
|
Rose GD. The Iconic α-Helix: From Pauling to the Present. Methods Mol Biol 2025; 2867:1-17. [PMID: 39576572 DOI: 10.1007/978-1-0716-4196-5_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2024]
Abstract
The protein folding problem dates back to Pauling's insights almost a century ago, but the first venture into actual protein structure was the Pauling-Corey-Brandson α-helix in 1951, a proposed model that was confirmed almost immediately using X-ray crystallography. Many subsequent efforts to predict protein helices from the amino acid sequence met with only partial success, as discussed here. Surprisingly, in 2021, these efforts were superseded by deep-learning artificial intelligence, especially AlphaFold2, a machine learning program based on neural nets. This approach can predict most protein structures successfully at or near atomic resolution. Deservedly, deep-learning artificial intelligence was named Science magazine's 2021 "breakthrough of the year." Today, ~200 million predicted protein structures can be downloaded from the AlphaFold2 Protein Structure Database. Deep learning represents a deep conundrum because these successfully predicted macromolecular structures are based on methods that are completely devoid of a hypothesis or of any physical chemistry. Perhaps we are now poised to transcend five centuries of reductive science.
Collapse
|
3
|
Mohammadzadehmarandi A, Zydney AL. Buffer effects on protein sieving losses in ultrafiltration and their relationship to biophysical properties. Biotechnol Prog 2024; 40:e3481. [PMID: 38780204 PMCID: PMC11659806 DOI: 10.1002/btpr.3481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/05/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024]
Abstract
The design of effective ultrafiltration/diafiltration processes for protein formulation requires the use of membranes with very high protein retention. The objective of this study was to examine the effects of specific buffers on the retention of a model protein (bovine serum albumin) during ultrafiltration. Albumin retention at pH 4.8 was significantly reduced in phosphate buffer compared with that in acetate, citrate, and histidine. This behavior was consistent with a small change in the effective albumin hydrodynamic diameter as determined by dynamic light scattering. The underlying conformational changes leading to this change in diameter were explored using circular dichroism spectroscopy and differential scanning calorimetry. These results provide important insights into the factors controlling protein retention during ultrafiltration and diafiltration.
Collapse
Affiliation(s)
| | - Andrew L. Zydney
- Department of Chemical EngineeringThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| |
Collapse
|
4
|
Bhatt MR, Ganguly HK, Zondlo NJ. Acyl Capping Group Identity Effects on α-Helicity: On the Importance of Amide·Water Hydrogen Bonds to α-Helix Stability. Biochemistry 2024; 63:1118-1130. [PMID: 38623827 DOI: 10.1021/acs.biochem.3c00646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Acyl capping groups stabilize α-helices relative to free N-termini by providing one additional C═Oi···Hi+4-N hydrogen bond. The electronic properties of acyl capping groups might also directly modulate α-helix stability: electron-rich N-terminal acyl groups could stabilize the α-helix by strengthening both i/i + 4 hydrogen bonds and i/i + 1 n → π* interactions. This hypothesis was tested in peptides X-AKAAAAKAAAAKAAGY-NH2, where X = different acyl groups. Surprisingly, the most electron-rich acyl groups (pivaloyl and iso-butyryl) strongly destabilized the α-helix. Moreover, the formyl group induced nearly identical α-helicity to that of the acetyl group, despite being a weaker electron donor for hydrogen bonds and for n → π* interactions. Other acyl groups exhibited intermediate α-helicity. These results indicate that the electronic properties of the acyl carbonyl do not directly determine the α-helicity in peptides in water. In order to understand these effects, DFT calculations were conducted on α-helical peptides. Using implicit solvation, α-helix stability correlated with acyl group electronics, with the pivaloyl group exhibiting closer hydrogen bonds and n → π* interactions, in contrast to the experimental results. However, DFT and MD calculations with explicit water solvation revealed that hydrogen bonding to water was impacted by the sterics of the acyl capping group. Formyl capping groups exhibited the closest water-amide hydrogen bonds, while pivaloyl groups exhibited the longest. In α-helices in the PDB, the highest frequency of close amide-water hydrogen bonds is observed when the N-cap residue is Gly. The combination of experimental and computational results indicates that solvation (hydrogen bonding of water) to the N-terminal amide groups is a central determinant of α-helix stability.
Collapse
Affiliation(s)
- Megh R Bhatt
- Department of Chemistry and Biochemistry, University of Delaware Newark, Delaware 19716, United States
| | - Himal K Ganguly
- Department of Chemistry and Biochemistry, University of Delaware Newark, Delaware 19716, United States
| | - Neal J Zondlo
- Department of Chemistry and Biochemistry, University of Delaware Newark, Delaware 19716, United States
| |
Collapse
|
5
|
Fersht AR. From covalent transition states in chemistry to noncovalent in biology: from β- to Φ-value analysis of protein folding. Q Rev Biophys 2024; 57:e4. [PMID: 38597675 DOI: 10.1017/s0033583523000045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Solving the mechanism of a chemical reaction requires determining the structures of all the ground states on the pathway and the elusive transition states linking them. 2024 is the centenary of Brønsted's landmark paper that introduced the β-value and structure-activity studies as the only experimental means to infer the structures of transition states. It involves making systematic small changes in the covalent structure of the reactants and analysing changes in activation and equilibrium-free energies. Protein engineering was introduced for an analogous procedure, Φ-value analysis, to analyse the noncovalent interactions in proteins central to biological chemistry. The methodology was developed first by analysing noncovalent interactions in transition states in enzyme catalysis. The mature procedure was then applied to study transition states in the pathway of protein folding - 'part (b) of the protein folding problem'. This review describes the development of Φ-value analysis of transition states and compares and contrasts the interpretation of β- and Φ-values and their limitations. Φ-analysis afforded the first description of transition states in protein folding at the level of individual residues. It revealed the nucleation-condensation folding mechanism of protein domains with the transition state as an expanded, distorted native structure, containing little fully formed secondary structure but many weak tertiary interactions. A spectrum of transition states with various degrees of structural polarisation was then uncovered that spanned from nucleation-condensation to the framework mechanism of fully formed secondary structure. Φ-analysis revealed how movement of the expanded transition state on an energy landscape accommodates the transition from framework to nucleation-condensation mechanisms with a malleability of structure as a unifying feature of folding mechanisms. Such movement follows the rubric of analysis of classical covalent chemical mechanisms that began with Brønsted. Φ-values are used to benchmark computer simulation, and Φ and simulation combine to describe folding pathways at atomic resolution.
Collapse
Affiliation(s)
- Alan R Fersht
- MRC Laboratory of Molecular Biology, Cambridge, UK
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- Gonville and Caius College, University of Cambridge, Cambridge, UK
| |
Collapse
|
6
|
Bork A, Smits SHJ, Schmitt L. Calcium binding of AtCBL1: Structural and functional insights. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2024; 1872:140967. [PMID: 37757925 DOI: 10.1016/j.bbapap.2023.140967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023]
Abstract
CBL1 is an EF hand Ca2+ binding protein from A. thaliana that is involved in the detection of cellular Ca2+ signals and the downstream signal transmission by interaction with the protein kinase CIPK23. So far, the structure and calcium ion binding affinities of CBL1 remain elusive. In this study it was observed that CBL1 tends to form higher oligomeric states due to an intrinsic hydrophobicity and the presence of the detergent BriJ35 was required for the purification of monomeric and functional protein. Functional insights into the in vitro Ca2+ binding capabilities of CBL1 were obtained by isothermal titration calorimetry (ITC) of the wildtype protein as well as single site EF hand mutants. Based on our results, a binding model of CBL1 for Ca2+in vivo is proposed. Additionally, upon both, ITC measurements and the analysis of an AlphaFold2 model of CBL1, we could gain first insights into the formation of the dimer interface. We could identify an area around EF hand 4 to be relevant for the structural and functional integrity of monomeric CBL1 and likely EF hand 1 to be involved in the dimer interface.
Collapse
Affiliation(s)
- Alexandra Bork
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sander H J Smits
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Center for Structural Studies, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
7
|
Holler CV, Petersson NM, Brohus M, Niemelä MA, Iversen ED, Overgaard MT, Iwaï H, Wimmer R. Allosteric changes in protein stability and dynamics as pathogenic mechanism for calmodulin variants not affecting Ca 2+ coordinating residues. Cell Calcium 2024; 117:102831. [PMID: 37995470 DOI: 10.1016/j.ceca.2023.102831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/10/2023] [Accepted: 11/12/2023] [Indexed: 11/25/2023]
Abstract
Mutations in the small, calcium-sensing, protein calmodulin cause cardiac arrhythmia and can ultimately prove lethal. Here, we report the impact of the G113R variant on the structure and dynamics of the calmodulin molecule, both in the presence and in the absence of calcium. We show that the mutation introduces minor changes into the structure of calmodulin and that it changes the thermostability and thus the degree of foldedness at human body temperature. The mutation also severely impacts the intramolecular mobility of calmodulin, especially in the apo form. Glycine 113 acts as an alpha-helical C-capping residue in both apo/ - and Ca2+/calmodulin, but its exchange to arginine has very different effects on the apo and Ca2+ forms. The majority of arrhythmogenic calmodulin variants identified affects residues in the Ca2+ coordinating loops of the two C-domain EF-Hands, causing a 'direct impact on Ca2+ binding'. However, G113R lies outside a Ca2+ coordinating loop and acts differently and more similar to the previously characterized arrhythmogenic N53I. Therefore, we suggest that altered apo/CaM dynamics may be a novel general disease mechanism, defining low-calcium target affinity - or Ca2+ binding kinetics - critical for timely coordination of essential ion-channels in the excitation-contraction cycle.
Collapse
Affiliation(s)
- Christina Vallentin Holler
- Department of Chemistry and Bioscience, Aalborg University, Frederik Bajers vej 7H, 9220 Aalborg, Denmark
| | - Nina Møller Petersson
- Department of Chemistry and Bioscience, Aalborg University, Frederik Bajers vej 7H, 9220 Aalborg, Denmark
| | - Malene Brohus
- Department of Chemistry and Bioscience, Aalborg University, Frederik Bajers vej 7H, 9220 Aalborg, Denmark
| | | | - Emil Drivsholm Iversen
- Department of Chemistry and Bioscience, Aalborg University, Frederik Bajers vej 7H, 9220 Aalborg, Denmark
| | - Michael Toft Overgaard
- Department of Chemistry and Bioscience, Aalborg University, Frederik Bajers vej 7H, 9220 Aalborg, Denmark
| | - Hideo Iwaï
- Institute of Biotechnology, University of Helsinki, PO Box 65, Helsinki, FIN-00014, Finland
| | - Reinhard Wimmer
- Department of Chemistry and Bioscience, Aalborg University, Frederik Bajers vej 7H, 9220 Aalborg, Denmark.
| |
Collapse
|
8
|
Rothfuss MT, Becht DC, Zeng B, McClelland LJ, Yates-Hansen C, Bowler BE. High-Accuracy Prediction of Stabilizing Surface Mutations to the Three-Helix Bundle, UBA(1), with EmCAST. J Am Chem Soc 2023; 145:22979-22992. [PMID: 37815921 PMCID: PMC10626973 DOI: 10.1021/jacs.3c04966] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
The accurate modeling of energetic contributions to protein structure is a fundamental challenge in computational approaches to protein analysis and design. We describe a general computational method, EmCAST (empirical Cα stabilization), to score and optimize the sequence to the structure in proteins. The method relies on an empirical potential derived from the database of the Cα dihedral angle preferences for all possible four-residue sequences, using the data available in the Protein Data Bank. Our method produces stability predictions that naturally correlate one-to-one with the experimental results for solvent-exposed mutation sites. EmCAST predicted four mutations that increased the stability of a three-helix bundle, UBA(1), from 2.4 to 4.8 kcal/mol by optimizing residues in both helices and turns. For a set of eight variants, the predicted and experimental stabilizations correlate very well (R2 = 0.97) with a slope near 1 and with a 0.16 kcal/mol standard error for EmCAST predictions. Tests against literature data for the stability effects of surface-exposed mutations show that EmCAST outperforms the existing stability prediction methods. UBA(1) variants were crystallized to verify and analyze their structures at an atomic resolution. Thermodynamic and kinetic folding experiments were performed to determine the magnitude and mechanism of stabilization. Our method has the potential to enable the rapid, rational optimization of natural proteins, expand the analysis of the sequence/structure relationship, and supplement the existing protein design strategies.
Collapse
Affiliation(s)
- Michael T. Rothfuss
- Department of Chemistry and Biochemistry, University of Montana, Missoula, MT 59812, United States
| | - Dustin C. Becht
- Department of Chemistry and Biochemistry, University of Montana, Missoula, MT 59812, United States
| | - Baisen Zeng
- Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT 59812, United States
| | - Levi J. McClelland
- Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT 59812, United States
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, United States
| | - Cindee Yates-Hansen
- Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT 59812, United States
| | - Bruce E. Bowler
- Department of Chemistry and Biochemistry, University of Montana, Missoula, MT 59812, United States
- Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT 59812, United States
| |
Collapse
|
9
|
Nacar C. Propensities of Some Amino Acid Pairings in α-Helices Vary with Length. Protein J 2022; 41:551-562. [PMID: 36169766 DOI: 10.1007/s10930-022-10076-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2022] [Indexed: 11/29/2022]
Abstract
The results of secondary structure prediction methods are widely used in applications in biotechnology and bioinformatics. However, the accuracy limit of these methods could be improved up to 92%. One approach to achieve this goal is to harvest information from the primary structure of the peptide. This study aims to contribute to this goal by investigating the variations in propensity of amino acid pairings to α-helices in globular proteins depending on helix length. (n):(n + 4) residue pairings were determined using a comprehensive peptide data set according to backbone hydrogen bond criterion which states that backbone hydrogen bond is the dominant driving force of protein folding. Helix length is limited to 13 to 26 residues. Findings of this study show that propensities of ALA:GLY and GLY:GLU pairings to α-helix in globular protein increase with increasing helix length but of ALA:ALA and ALA:VAL decrease. While the frequencies of ILE:ALA, LEU:ALA, LEU:GLN, LEU:GLU, LEU:LEU, MET:ILE and VAL:LEU pairings remain roughly constant with length, the 25 residue pairings have varying propensities in narrow helix lengths. The remaining pairings have no prominent propensity to α-helices.
Collapse
Affiliation(s)
- Cevdet Nacar
- Department of Biophysics, School of Medicine, Marmara University, Istanbul, Turkey.
| |
Collapse
|
10
|
García-Cebollada H, López A, Sancho J. Protposer: the web server that readily proposes protein stabilizing mutations with high PPV. Comput Struct Biotechnol J 2022; 20:2415-2433. [PMID: 35664235 PMCID: PMC9133766 DOI: 10.1016/j.csbj.2022.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/05/2022] [Accepted: 05/05/2022] [Indexed: 01/23/2023] Open
Abstract
Protein stability is a requisite for most biotechnological and medical applications of proteins. As natural proteins tend to suffer from a low conformational stability ex vivo, great efforts have been devoted toward increasing their stability through rational design and engineering of appropriate mutations. Unfortunately, even the best currently used predictors fail to compute the stability of protein variants with sufficient accuracy and their usefulness as tools to guide the rational stabilisation of proteins is limited. We present here Protposer, a protein stabilising tool based on a different approach. Instead of quantifying changes in stability, Protposer uses structure- and sequence-based screening modules to nominate candidate mutations for subsequent evaluation by a logistic regression model, carefully trained to avoid overfitting. Thus, Protposer analyses PDB files in search for stabilization opportunities and provides a ranked list of promising mutations with their estimated success rates (eSR), their probabilities of being stabilising by at least 0.5 kcal/mol. The agreement between eSRs and actual positive predictive values (PPV) on external datasets of mutations is excellent. When Protposer is used with its Optimal kappa selection threshold, its PPV is above 0.7. Even with less stringent thresholds, Protposer largely outperforms FoldX, Rosetta and PoPMusiC. Indicating the PDB file of the protein suffices to obtain a ranked list of mutations, their eSRs and hints on the likely source of the stabilization expected. Protposer is a distinct, straightforward and highly successful tool to design protein stabilising mutations, and it is freely available for academic use at http://webapps.bifi.es/the-protposer.
Collapse
|
11
|
Pulavarti SVSRK, Maguire JB, Yuen S, Harrison JS, Griffin J, Premkumar L, Esposito EA, Makhatadze GI, Garcia AE, Weiss TM, Snell EH, Kuhlman B, Szyperski T. From Protein Design to the Energy Landscape of a Cold Unfolding Protein. J Phys Chem B 2022; 126:1212-1231. [PMID: 35128921 PMCID: PMC9281400 DOI: 10.1021/acs.jpcb.1c10750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Understanding protein folding is crucial for protein sciences. The conformational spaces and energy landscapes of cold (unfolded) protein states, as well as the associated transitions, are hardly explored. Furthermore, it is not known how structure relates to the cooperativity of cold transitions, if cold and heat unfolded states are thermodynamically similar, and if cold states play important roles for protein function. We created the cold unfolding 4-helix bundle DCUB1 with a de novo designed bipartite hydrophilic/hydrophobic core featuring a hydrogen bond network which extends across the bundle in order to study the relative importance of hydrophobic versus hydrophilic protein-water interactions for cold unfolding. Structural and thermodynamic characterization resulted in the discovery of a complex energy landscape for cold transitions, while the heat unfolded state is a random coil. Below ∼0 °C, the core of DCUB1 disintegrates in a largely cooperative manner, while a near-native helical content is retained. The resulting cold core-unfolded state is compact and features extensive internal dynamics. Below -5 °C, two additional cold transitions are seen, that is, (i) the formation of a water-mediated, compact, and highly dynamic dimer, and (ii) the onset of cold helix unfolding decoupled from cold core unfolding. Our results suggest that cold unfolding is initiated by the intrusion of water into the hydrophilic core network and that cooperativity can be tuned by varying the number of core hydrogen bond networks. Protein design has proven to be invaluable to explore the energy landscapes of cold states and to robustly test related theories.
Collapse
Affiliation(s)
- Surya V S R K Pulavarti
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Jack B Maguire
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Shirley Yuen
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Joseph S Harrison
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jermel Griffin
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Lakshmanane Premkumar
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Edward A Esposito
- Malvern Panalytical Inc, Northhampton, Massachsetts 01060, United States
| | - George I Makhatadze
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York 08544, United States
| | - Angel E Garcia
- Center for Non Linear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Thomas M Weiss
- Stanford Synchrotron Radiation Lightsource, Stanford Linear Accelerator Center, Stanford University, Menlo Park, California 94025, United States
| | - Edward H Snell
- Hauptman-Woodward Medical Research Institute, 700 Ellicott Street, Buffalo, New York 14203, United States.,Department of Materials Design and Innovation, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Brian Kuhlman
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Thomas Szyperski
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| |
Collapse
|
12
|
An LY, Dai Z, Di B, Xu LL. Advances in Cryochemistry: Mechanisms, Reactions and Applications. Molecules 2021; 26:750. [PMID: 33535547 PMCID: PMC7867104 DOI: 10.3390/molecules26030750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 01/28/2021] [Accepted: 01/28/2021] [Indexed: 01/23/2023] Open
Abstract
It is counterintuitive that chemical reactions can be accelerated by freezing, but this amazing phenomenon was discovered as early as the 1960s. In frozen systems, the increase in reaction rate is caused by various mechanisms and the freeze concentration effect is the main reason for the observed acceleration. Some accelerated reactions have great application value in the chemistry synthesis and environmental fields; at the same time, certain reactions accelerated at low temperature during the storage of food, medicine, and biological products should cause concern. The study of reactions accelerated by freezing will overturn common sense and provide a new strategy for researchers in the chemistry field. In this review, we mainly introduce various mechanisms for accelerating reactions induced by freezing and summarize a variety of accelerated cryochemical reactions and their applications.
Collapse
Affiliation(s)
- Lu-Yan An
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; (L.-Y.A.); (Z.D.)
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Zhen Dai
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; (L.-Y.A.); (Z.D.)
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Bin Di
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; (L.-Y.A.); (Z.D.)
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Li-Li Xu
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; (L.-Y.A.); (Z.D.)
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
13
|
Zhang Y, Wu Y, Jia W, Li W, Cheng P, Bu W, Li C. Novel keratin 16 mutation in a Chinese family with focal palmoplantar keratoderma. Int J Dermatol 2020; 60:e187-e189. [PMID: 33377179 DOI: 10.1111/ijd.15386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 11/26/2020] [Accepted: 12/02/2020] [Indexed: 11/30/2022]
Affiliation(s)
- Yuanyuan Zhang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Yingda Wu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Weixue Jia
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Wenrui Li
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Ping Cheng
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Wenbo Bu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Chengrang Li
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| |
Collapse
|
14
|
Huang Y, Soliakov A, Le Brun AP, Macdonald C, Johnson CL, Solovyova AS, Waller H, Moore GR, Lakey JH. Helix N-Cap Residues Drive the Acid Unfolding That Is Essential in the Action of the Toxin Colicin A. Biochemistry 2019; 58:4882-4892. [PMID: 31686499 PMCID: PMC6899464 DOI: 10.1021/acs.biochem.9b00705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/31/2019] [Indexed: 11/28/2022]
Abstract
Numerous bacterial toxins and other virulence factors use low pH as a trigger to convert from water-soluble to membrane-inserted states. In the case of colicins, the pore-forming domain of colicin A (ColA-P) has been shown both to undergo a clear acidic unfolding transition and to require acidic lipids in the cytoplasmic membrane, whereas its close homologue colicin N shows neither behavior. Compared to that of ColN-P, the ColA-P primary structure reveals the replacement of several uncharged residues with aspartyl residues, which upon replacement with alanine induce an unfolded state at neutral pH. Here we investigate ColA-P's structural requirement for these critical aspartyl residues that are largely situated at the N-termini of α helices. As previously shown in model peptides, the charged carboxylate side chain can act as a stabilizing helix N-Cap group by interacting with free amide hydrogen bond donors. Because this could explain ColA-P destabilization when the aspartyl residues are protonated or replaced with alanyl residues, we test the hypothesis by inserting asparagine, glutamine, and glutamate residues at these sites. We combine urea (fluorescence and circular dichroism) and thermal (circular dichroism and differential scanning calorimetry) denaturation experiments with 1H-15N heteronuclear single-quantum coherence nuclear magnetic resonance spectroscopy of ColA-P at different pH values to provide a comprehensive description of the unfolding process and confirm the N-Cap hypothesis. Furthermore, we reveal that, in urea, the single domain ColA-P unfolds in two steps; low pH destabilizes the first step and stabilizes the second.
Collapse
Affiliation(s)
- Yan Huang
- Institute
for Cell and Molecular Biosciences, The Medical School, Newcastle University, Framlington Place, Newcastle-upon-Tyne NE2 4HH, U.K.
- College
of Chemistry and Molecular Sciences, Wuhan
University, Wuhan 430072, People’s Republic of China
| | - Andrei Soliakov
- Institute
for Cell and Molecular Biosciences, The Medical School, Newcastle University, Framlington Place, Newcastle-upon-Tyne NE2 4HH, U.K.
| | - Anton P. Le Brun
- Institute
for Cell and Molecular Biosciences, The Medical School, Newcastle University, Framlington Place, Newcastle-upon-Tyne NE2 4HH, U.K.
- Australian
Centre for Neutron Scattering, Australian
Nuclear Science and Technology Organisation, Kirrawee DC, NSW 2232, Australia
| | - Colin Macdonald
- Department
of Chemistry Centre for Structural & Molecular Biology, School
of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K.
| | - Christopher L. Johnson
- Institute
for Cell and Molecular Biosciences, The Medical School, Newcastle University, Framlington Place, Newcastle-upon-Tyne NE2 4HH, U.K.
| | - Alexandra S. Solovyova
- Institute
for Cell and Molecular Biosciences, The Medical School, Newcastle University, Framlington Place, Newcastle-upon-Tyne NE2 4HH, U.K.
| | - Helen Waller
- Institute
for Cell and Molecular Biosciences, The Medical School, Newcastle University, Framlington Place, Newcastle-upon-Tyne NE2 4HH, U.K.
| | - Geoffrey R. Moore
- Department
of Chemistry Centre for Structural & Molecular Biology, School
of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K.
| | - Jeremy H. Lakey
- Institute
for Cell and Molecular Biosciences, The Medical School, Newcastle University, Framlington Place, Newcastle-upon-Tyne NE2 4HH, U.K.
| |
Collapse
|
15
|
Bayse CA, Pollard DB. Conformation dynamics of cyclic disulfides and selenosulfides in CXXC(U) (X = Gly, Ala) tetrapeptide redox motifs. J Pept Sci 2019; 25:e3160. [PMID: 30873692 DOI: 10.1002/psc.3160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/26/2019] [Accepted: 02/05/2019] [Indexed: 02/01/2023]
Abstract
Thioredoxin fold proteins often contain a Cys-(Xxx)n -Cys(Sec) or CXn C(U) motif, where the active cysteine (C) or selenocysteine (U) is bridged by X residues, which vary with protein function. The effect of the X residues on the conformation space of the oxidized disulfide and selenosulfide forms of the CXXC(U) motif has been investigated using molecular dynamics (MD) and density functional theory. Multi-microsecond-length MD simulations of the CGGC, CGAC, and CAGC cyclic peptides show that CGGC rings readily exchange between several conformations over the course of the simulation, but steric interactions with the methyl group of Ala limit the conformation space available to the cyclic peptide, especially for CGAC. The potential for the motif to be reduced, as measured by the energy of the lowest unoccupied molecular orbitals, is dependent upon the ring conformation. These results suggest that control of available conformations by the bridging residues and the protein tertiary structure may be important for defining the function of the CXXC motif. Theoretical 77 Se chemical shifts of the selenosulfide moiety are dependent upon the conformation and/or intramolecular Se···O interactions with the backbone carbonyl group of the C-terminal U residue.
Collapse
Affiliation(s)
- Craig A Bayse
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA, 23529
| | - Deanna B Pollard
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA, 23529
| |
Collapse
|
16
|
Bhattacharya S, Banerjee A, Sah PP, Mal C, Ray S. Mutations and functional analysis of 14-3-3 stress response protein from Triticum aestivum: An evolutionary analysis through in silico structural biochemistry approach. Comput Biol Chem 2018; 77:343-353. [PMID: 30466043 DOI: 10.1016/j.compbiolchem.2018.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 09/08/2018] [Accepted: 09/19/2018] [Indexed: 10/28/2022]
Abstract
Wheat (Triticum aestivum), having high nutritional values is one of the staple food of most of the countries in the world. The productivity of the crop decreases drastically when it encounters various abiotic stresses, most common of which are heat, drought, flood and salinity. There is a crucial role of stress response proteins for the survival of the crops in stress conditions. So the study of wheat stress response proteins is of great importance to raise wheat production in different stress conditions. In this study, we analysed 14-3-3 protein, a stress response protein that is expressed in three major stresses, for example heat, drought and salinity and helps the plants to survive in those conditions. Effect of mutations in the 14-3-3 sequence was predicted using its domain, secondary structure and multiple sequence alignment of amino acid sequences from wheat and its related species. The functional diversity of the protein in different species was correlated with mutations, change in secondary structure and the evolutionary relatedness of the protein in different species. This is the first novel work for analysing the mutational effect on the structure and function of a stress response protein (14-3-3) from Triticum aestivum and its related species.
Collapse
Affiliation(s)
| | - Arundhati Banerjee
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, Nadia, India
| | | | - Chittabrata Mal
- Amity Institute of Biotechnology, Amity University, Kolkata, India
| | - Sujay Ray
- Amity Institute of Biotechnology, Amity University, Kolkata, India.
| |
Collapse
|
17
|
Quantitative tests of a reconstitution model for RNA folding thermodynamics and kinetics. Proc Natl Acad Sci U S A 2017; 114:E7688-E7696. [PMID: 28839094 DOI: 10.1073/pnas.1703507114] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Decades of study of the architecture and function of structured RNAs have led to the perspective that RNA tertiary structure is modular, made of locally stable domains that retain their structure across RNAs. We formalize a hypothesis inspired by this modularity-that RNA folding thermodynamics and kinetics can be quantitatively predicted from separable energetic contributions of the individual components of a complex RNA. This reconstitution hypothesis considers RNA tertiary folding in terms of ΔGalign, the probability of aligning tertiary contact partners, and ΔGtert, the favorable energetic contribution from the formation of tertiary contacts in an aligned state. This hypothesis predicts that changes in the alignment of tertiary contacts from different connecting helices and junctions (ΔGHJH) or from changes in the electrostatic environment (ΔG+/-) will not affect the energetic perturbation from a mutation in a tertiary contact (ΔΔGtert). Consistent with these predictions, single-molecule FRET measurements of folding of model RNAs revealed constant ΔΔGtert values for mutations in a tertiary contact embedded in different structural contexts and under different electrostatic conditions. The kinetic effects of these mutations provide further support for modular behavior of RNA elements and suggest that tertiary mutations may be used to identify rate-limiting steps and dissect folding and assembly pathways for complex RNAs. Overall, our model and results are foundational for a predictive understanding of RNA folding that will allow manipulation of RNA folding thermodynamics and kinetics. Conversely, the approaches herein can identify cases where an independent, additive model cannot be applied and so require additional investigation.
Collapse
|
18
|
Nguyen KV, Naviaux RK, Nyhan WL. Human HPRT1 gene and the Lesch-Nyhan disease: Substitution of alanine for glycine and inversely in the HGprt enzyme protein. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2017; 36:151-157. [PMID: 28045594 DOI: 10.1080/15257770.2016.1231319] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Lesch-Nyhan disease (LND) is a rare X-linked inherited neurogenetic disorder of purine metabolism in which the enzyme, hypoxanthine-guanine phosphoribosyltransferase (HGprt) is defective. The authors report three novel independent mutations in the coding region of the HPRT1 gene from genomic DNA of (a) a carrier sister of two male patients with LND: c.569G>C, p.G190A in exon 8; and (b) two LND affected male patients unrelated to her who had two mutations: c.648delC, p.Y216X, and c.653C>G, p.A218G in exon 9. Molecular analysis reveals the heterogeneity of genetic mutation of the HPRT1 gene responsible for the HGprt deficiency. It allows fast, accurate detection of carriers and genetic counseling.
Collapse
Affiliation(s)
- Khue Vu Nguyen
- a Department of Medicine , Biochemical Genetics and Metabolism, The Mitochondrial and Metabolic Disease Center, School of Medicine, University of California, San Diego , San Diego , CA , USA.,b Department of Pediatrics , University of California, San Diego, School of Medicine , San Diego, La Jolla , CA , USA
| | - Robert K Naviaux
- a Department of Medicine , Biochemical Genetics and Metabolism, The Mitochondrial and Metabolic Disease Center, School of Medicine, University of California, San Diego , San Diego , CA , USA.,b Department of Pediatrics , University of California, San Diego, School of Medicine , San Diego, La Jolla , CA , USA.,c Department of Pathology , University of California, San Diego, School of Medicine , San Diego, La Jolla , CA , USA
| | - William L Nyhan
- b Department of Pediatrics , University of California, San Diego, School of Medicine , San Diego, La Jolla , CA , USA
| |
Collapse
|
19
|
Saucedo AL, Hernández-Domínguez EE, de Luna-Valdez LA, Guevara-García AA, Escobedo-Moratilla A, Bojorquéz-Velázquez E, del Río-Portilla F, Fernández-Velasco DA, Barba de la Rosa AP. Insights on Structure and Function of a Late Embryogenesis Abundant Protein from Amaranthus cruentus: An Intrinsically Disordered Protein Involved in Protection against Desiccation, Oxidant Conditions, and Osmotic Stress. FRONTIERS IN PLANT SCIENCE 2017; 8:497. [PMID: 28439280 PMCID: PMC5384071 DOI: 10.3389/fpls.2017.00497] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 03/22/2017] [Indexed: 05/06/2023]
Abstract
Late embryogenesis abundant (LEA) proteins are part of a large protein family that protect other proteins from aggregation due to desiccation or osmotic stresses. Recently, the Amaranthus cruentus seed proteome was characterized by 2D-PAGE and one highly accumulated protein spot was identified as a LEA protein and was named AcLEA. In this work, AcLEA cDNA was cloned into an expression vector and the recombinant protein was purified and characterized. AcLEA encodes a 172 amino acid polypeptide with a predicted molecular mass of 18.34 kDa and estimated pI of 8.58. Phylogenetic analysis revealed that AcLEA is evolutionarily close to the LEA3 group. Structural characteristics were revealed by nuclear magnetic resonance and circular dichroism methods. We have shown that recombinant AcLEA is an intrinsically disordered protein in solution even at high salinity and osmotic pressures, but it has a strong tendency to take a secondary structure, mainly folded as α-helix, when an inductive additive is present. Recombinant AcLEA function was evaluated using Escherichia coli as in vivo model showing the important protection role against desiccation, oxidant conditions, and osmotic stress. AcLEA recombinant protein was localized in cytoplasm of Nicotiana benthamiana protoplasts and orthologs were detected in seeds of wild and domesticated amaranth species. Interestingly AcLEA was detected in leaves, stems, and roots but only in plants subjected to salt stress. This fact could indicate the important role of AcLEA protection during plant stress in all amaranth species studied.
Collapse
Affiliation(s)
- Alma L. Saucedo
- Department of Molecular Biology, Instituto Potosino de Investigación Científica y Tecnológica, A.C.San Luis Potosí, México
| | - Eric E. Hernández-Domínguez
- Department of Molecular Biology, Instituto Potosino de Investigación Científica y Tecnológica, A.C.San Luis Potosí, México
| | | | | | - Abraham Escobedo-Moratilla
- Department of Molecular Biology, Instituto Potosino de Investigación Científica y Tecnológica, A.C.San Luis Potosí, México
| | - Esaú Bojorquéz-Velázquez
- Department of Molecular Biology, Instituto Potosino de Investigación Científica y Tecnológica, A.C.San Luis Potosí, México
| | | | - Daniel A. Fernández-Velasco
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de MéxicoCiudad de México, México
| | - Ana P. Barba de la Rosa
- Department of Molecular Biology, Instituto Potosino de Investigación Científica y Tecnológica, A.C.San Luis Potosí, México
- *Correspondence: Ana P. Barba de la Rosa,
| |
Collapse
|
20
|
Ho AK, Wagstaff JL, Manna PT, Wartosch L, Qamar S, Garman EF, Freund SMV, Roberts RC. The topology, structure and PE interaction of LITAF underpin a Charcot-Marie-Tooth disease type 1C. BMC Biol 2016; 14:109. [PMID: 27927196 PMCID: PMC5142333 DOI: 10.1186/s12915-016-0332-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 11/16/2016] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Mutations in Lipopolysaccharide-induced tumour necrosis factor-α factor (LITAF) cause the autosomal dominant inherited peripheral neuropathy, Charcot-Marie-Tooth disease type 1C (CMT1C). LITAF encodes a 17 kDa protein containing an N-terminal proline-rich region followed by an evolutionarily-conserved C-terminal 'LITAF domain', which contains all reported CMT1C-associated pathogenic mutations. RESULTS Here, we report the first structural characterisation of LITAF using biochemical, cell biological, biophysical and NMR spectroscopic approaches. Our structural model demonstrates that LITAF is a monotopic zinc-binding membrane protein that embeds into intracellular membranes via a predicted hydrophobic, in-plane, helical anchor located within the LITAF domain. We show that specific residues within the LITAF domain interact with phosphoethanolamine (PE) head groups, and that the introduction of the V144M CMT1C-associated pathogenic mutation leads to protein aggregation in the presence of PE. CONCLUSIONS In addition to the structural characterisation of LITAF, these data lead us to propose that an aberrant LITAF-PE interaction on the surface of intracellular membranes contributes to the molecular pathogenesis that underlies this currently incurable disease.
Collapse
Affiliation(s)
- Anita K Ho
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0XY, UK
| | - Jane L Wagstaff
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK
| | - Paul T Manna
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0XY, UK
| | - Lena Wartosch
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0XY, UK
| | - Seema Qamar
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0XY, UK
| | - Elspeth F Garman
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Stefan M V Freund
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK
| | - Rhys C Roberts
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0XY, UK.
| |
Collapse
|
21
|
Adaptive thermostability of light-harvesting complexes in marine picocyanobacteria. ISME JOURNAL 2016; 11:112-124. [PMID: 27458784 DOI: 10.1038/ismej.2016.102] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 04/21/2016] [Accepted: 04/24/2016] [Indexed: 11/08/2022]
Abstract
Marine Synechococcus play a key role in global oceanic primary productivity. Their wide latitudinal distribution has been attributed to the occurrence of lineages adapted to distinct thermal niches, but the physiological and molecular bases of this ecotypic differentiation remain largely unknown. By comparing six strains isolated from different latitudes, we showed that the thermostability of their light-harvesting complexes, called phycobilisomes (PBS), varied according to the average sea surface temperature at strain isolation site. Comparative analyses of thermal unfolding curves of the three phycobiliproteins (PBP) constituting PBS rods suggested that the differences in thermostability observed on whole PBSs relied on the distinct molecular flexibility and stability of their individual components. Phycocyanin was the least thermostable of all rod PBP, constituting a fragility point of the PBS under heat stress. Amino-acid composition analyses and structural homology modeling notably revealed the occurrence of two amino-acid substitutions, which might have a role in the observed differential thermotolerance of this phycobiliprotein among temperature ecotypes. We hypothesize that marine Synechococcus ancestors occurred first in warm niches and that during the colonization of cold, high latitude thermal niches, their descendants have increased the molecular flexibility of PBP to maintain optimal light absorption capacities, this phenomenon likely resulting in a decreased stability of these proteins. This apparent thermoadaptability of marine Synechococcus has most probably contributed to the remarkable ubiquity of these picocyanobacteria in the ocean.
Collapse
|
22
|
Shammas SL, Crabtree MD, Dahal L, Wicky BIM, Clarke J. Insights into Coupled Folding and Binding Mechanisms from Kinetic Studies. J Biol Chem 2016; 291:6689-95. [PMID: 26851275 PMCID: PMC4807256 DOI: 10.1074/jbc.r115.692715] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Intrinsically disordered proteins (IDPs) are characterized by a lack of persistent structure. Since their identification more than a decade ago, many questions regarding their functional relevance and interaction mechanisms remain unanswered. Although most experiments have taken equilibrium and structural perspectives, fewer studies have investigated the kinetics of their interactions. Here we review and highlight the type of information that can be gained from kinetic studies. In particular, we show how kinetic studies of coupled folding and binding reactions, an important class of signaling event, are needed to determine mechanisms.
Collapse
Affiliation(s)
- Sarah L Shammas
- From the Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Michael D Crabtree
- From the Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Liza Dahal
- From the Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Basile I M Wicky
- From the Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Jane Clarke
- From the Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
23
|
The leukotriene B 4 receptor BLT1 is stabilized by transmembrane helix capping mutations. Biochem Biophys Rep 2015; 4:243-249. [PMID: 29124210 PMCID: PMC5668910 DOI: 10.1016/j.bbrep.2015.09.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 09/12/2015] [Accepted: 09/14/2015] [Indexed: 11/29/2022] Open
Abstract
In this study, we introduced structure-based rational mutations in the guinea pig leukotriene B4 receptor (gpBLT1) in order to enhance the stabilization of the protein. Elements thought to be unfavorable for the stability of gpBLT1 were extracted based on the stabilization elements established in soluble proteins, determined crystal structures of G-protein-coupled receptors (GPCRs), and multiple sequence alignment. The two unfavorable residues His832.67 and Lys883.21, located at helix capping sites, were replaced with Gly (His83Gly2.67 and Lys88Gly3.21). The modified protein containing His83Gly2.67/Lys88Gly3.21 was highly expressed, solubilized, and purified and exhibited improved thermal stability by 4 °C in comparison with that of the original gpBLT1 construct. Owing to the double mutation, the expression level increased by 6-fold (Bmax=311 pmol/mg) in the membrane fraction of Pichia pastoris. The ligand binding affinity was similar to that of the original gpBLT1 without the mutations. Similar unfavorable residues have been observed at helix capping sites in many other GPCRs; therefore, the replacement of such residues with more favorable residues will improve stabilization of the GPCR structure for the crystallization. Point mutations were rationally designed to stabilize LTB4 receptor (BLT1). The stability of mutant His83Gly2.67/Lys88Gly3.21 improved by 5 °C. BLT1 expression by P. pastoris was increased 6-fold. Mutations were designed to replace unfavorable residues at the helix capping site. This method would be useful for the stabilization of the other membrane proteins.
Collapse
|
24
|
Abstract
Background Interactions that involve one or more amino acid side chains near the ends of protein helices stabilize helix termini and shape the geometry of the adjacent loops, making a substantial contribution to overall protein structure. Previous work has identified key helix-terminal motifs, such as Asx/ST N-caps, the capping box, and hydrophobic and electrostatic interactions, but important questions remain, including: 1) What loop backbone geometries are favoured by each motif? 2) To what extent are multi-amino acid motifs likely to represent genuine cooperative interactions? 3) Can new motifs be identified in a large, recent dataset using the latest bioinformatics tools? Results Three analytical tools are applied here to answer these questions. First, helix-terminal structures are partitioned by loop backbone geometry using a new 3D clustering algorithm. Next, Cascade Detection, a motif detection algorithm recently published by the author, is applied to each cluster to determine which sequence motifs are overrepresented in each geometry. Finally, the results for each motif are presented in a CapMap, a 3D conformational heatmap that displays the distribution of the motif’s overrepresentation across loop geometries, enabling the rapid isolation and characterization of the associated side chain interaction. This work identifies a library of geometry-specific side chain interactions that provides a new, detailed picture of loop structure near the helix terminus. Highlights include determinations of the favoured loop geometries for the Asx/ST N-cap motifs, capping boxes, “big” boxes, and other hydrophobic, electrostatic, H-bond, and pi stacking interactions, many of which have not been described before. Conclusions This work demonstrates that the combination of structural clustering and motif detection in the sequence space can efficiently identify side chain motifs and map them to the loop geometries which they support. Protein designers should find this study useful, because it identifies side chain interactions which are good candidates for inclusion in synthetic helix-terminal loops with specific desired geometries, since they are used in nature to support these geometries. The techniques described here can also be applied to map side chain interactions associated with other structural components of proteins such as beta and gamma turns. Electronic supplementary material The online version of this article (doi:10.1186/s12859-015-0671-4) contains supplementary material, which is available to authorized users.
Collapse
|
25
|
McAleer MA, Pohler E, Smith FJD, Wilson NJ, Cole C, MacGowan S, Koetsier JL, Godsel LM, Harmon RM, Gruber R, Crumrine D, Elias PM, McDermott M, Butler K, Broderick A, Sarig O, Sprecher E, Green KJ, McLean WHI, Irvine AD. Severe dermatitis, multiple allergies, and metabolic wasting syndrome caused by a novel mutation in the N-terminal plakin domain of desmoplakin. J Allergy Clin Immunol 2015; 136:1268-76. [PMID: 26073755 PMCID: PMC4649901 DOI: 10.1016/j.jaci.2015.05.002] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 05/01/2015] [Accepted: 05/02/2015] [Indexed: 11/19/2022]
Abstract
Background Severe dermatitis, multiple allergies, and metabolic wasting (SAM) syndrome is a recently recognized syndrome caused by mutations in the desmoglein 1 gene (DSG1). To date, only 3 families have been reported. Objective We studied a new case of SAM syndrome known to have no mutations in DSG1 to detail the clinical, histopathologic, immunofluorescent, and ultrastructural phenotype and to identify the underlying molecular mechanisms in this rare genodermatosis. Methods Histopathologic, electron microscopy, and immunofluorescent studies were performed. Whole-exome sequencing data were interrogated for mutations in desmosomal and other skin structural genes, followed by Sanger sequencing of candidate genes in the patient and his parents. Results No mutations were identified in DSG1; however, a novel de novo heterozygous missense c.1757A>C mutation in the desmoplakin gene (DSP) was identified in the patient, predicting the amino acid substitution p.His586Pro in the desmoplakin polypeptide. Conclusions SAM syndrome can be caused by mutations in both DSG1 and DSP. Knowledge of this genetic heterogeneity is important for both analysis of patients and genetic counseling of families. This condition and these observations reinforce the importance of heritable skin barrier defects, in this case desmosomal proteins, in the pathogenesis of atopic disease.
Collapse
Affiliation(s)
- Maeve A McAleer
- Clinical Medicine, Trinity College Dublin, Dublin, Ireland; Pediatric Dermatology, Our Lady's Children's Hospital Crumlin, Dublin, Ireland; National Children's Research Centre, Our Lady's Children's Hospital Crumlin, Dublin, Ireland
| | - Elizabeth Pohler
- Dermatology and Genetic Medicine, University of Dundee, Dundee, United Kingdom
| | - Frances J D Smith
- Dermatology and Genetic Medicine, University of Dundee, Dundee, United Kingdom
| | - Neil J Wilson
- Dermatology and Genetic Medicine, University of Dundee, Dundee, United Kingdom
| | - Christian Cole
- Division of Computational Biology, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Stuart MacGowan
- Division of Computational Biology, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Jennifer L Koetsier
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Lisa M Godsel
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Ill; Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Robert M Harmon
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Robert Gruber
- Department of Dermatology and Venereology, Innsbruck Medical University, Innsbruck, Austria
| | - Debra Crumrine
- Dermatology Service, Veterans Affairs Medical Center, San Francisco, and the Department of Dermatology, University of California, San Francisco, Calif
| | - Peter M Elias
- Dermatology Service, Veterans Affairs Medical Center, San Francisco, and the Department of Dermatology, University of California, San Francisco, Calif
| | - Michael McDermott
- National Children's Research Centre, Our Lady's Children's Hospital Crumlin, Dublin, Ireland
| | - Karina Butler
- Infectious Disease Department, Our Lady's Children's Hospital Crumlin, Dublin, Ireland
| | - Annemarie Broderick
- Department of Gastroenterology, Our Lady's Children's Hospital Crumlin and School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | - Ofer Sarig
- Department of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Department of Human Molecular Genetics & Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eli Sprecher
- Department of Gastroenterology, Our Lady's Children's Hospital Crumlin and School of Medicine and Medical Science, University College Dublin, Dublin, Ireland; Department of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Department of Human Molecular Genetics & Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Kathleen J Green
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Ill; Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - W H Irwin McLean
- Dermatology and Genetic Medicine, University of Dundee, Dundee, United Kingdom
| | - Alan D Irvine
- Clinical Medicine, Trinity College Dublin, Dublin, Ireland; Pediatric Dermatology, Our Lady's Children's Hospital Crumlin, Dublin, Ireland; National Children's Research Centre, Our Lady's Children's Hospital Crumlin, Dublin, Ireland.
| |
Collapse
|
26
|
Lamazares E, Clemente I, Bueno M, Velázquez-Campoy A, Sancho J. Rational stabilization of complex proteins: a divide and combine approach. Sci Rep 2015; 5:9129. [PMID: 25774740 PMCID: PMC4360737 DOI: 10.1038/srep09129] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 02/19/2015] [Indexed: 11/09/2022] Open
Abstract
Increasing the thermostability of proteins is often crucial for their successful use as analytic, synthetic or therapeutic tools. Most rational thermostabilization strategies were developed on small two-state proteins and, unsurprisingly, they tend to fail when applied to the much more abundant, larger, non-fully cooperative proteins. We show that the key to stabilize the latter is to know the regions of lower stability. To prove it, we have engineered apoflavodoxin, a non-fully cooperative protein on which previous thermostabilizing attempts had failed. We use a step-wise combination of structure-based, rationally-designed, stabilizing mutations confined to the less stable structural region, and obtain variants that, according to their van't Hoff to calorimetric enthalpy ratios, exhibit fully-cooperative thermal unfolding with a melting temperature of 75°C, 32 degrees above the lower melting temperature of the non-cooperative wild type protein. The ideas introduced here may also be useful for the thermostabilization of complex proteins through formulation or using specific stabilizing ligands (e.g. pharmacological chaperones).
Collapse
Affiliation(s)
- Emilio Lamazares
- 1] Biocomputation and Complex Systems Physics Institute (BIFI)-Joint Unit BIFI-IQFR (CSIC), Universidad de Zaragoza, Zaragoza, Spain [2] Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain
| | - Isabel Clemente
- 1] Biocomputation and Complex Systems Physics Institute (BIFI)-Joint Unit BIFI-IQFR (CSIC), Universidad de Zaragoza, Zaragoza, Spain [2] Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain
| | - Marta Bueno
- 1] Biocomputation and Complex Systems Physics Institute (BIFI)-Joint Unit BIFI-IQFR (CSIC), Universidad de Zaragoza, Zaragoza, Spain [2] Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain
| | - Adrián Velázquez-Campoy
- 1] Biocomputation and Complex Systems Physics Institute (BIFI)-Joint Unit BIFI-IQFR (CSIC), Universidad de Zaragoza, Zaragoza, Spain [2] Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain [3] Fundación ARAID, Gobierno de Aragón, Spain
| | - Javier Sancho
- 1] Biocomputation and Complex Systems Physics Institute (BIFI)-Joint Unit BIFI-IQFR (CSIC), Universidad de Zaragoza, Zaragoza, Spain [2] Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain
| |
Collapse
|
27
|
Johnson AR, Dilger JM, Glover MS, Clemmer DE, Carlson EE. Negatively-charged helices in the gas phase. Chem Commun (Camb) 2014; 50:8849-51. [DOI: 10.1039/c4cc03257h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
28
|
Dai L, Wu J, Guo H, Huang Y, Zhang K, Liu D, Fu L, Wu Y, Guan X, Bai Y, Liao Q. Mutation p.Leu128Pro in the 1A domain of K16 causes pachyonychia congenita with focal palmoplantar keratoderma in a Chinese family. Eur J Pediatr 2014; 173:737-41. [PMID: 24357266 DOI: 10.1007/s00431-013-2236-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 11/25/2013] [Accepted: 12/02/2013] [Indexed: 12/25/2022]
Abstract
UNLABELLED Pachyonychia congenita (PC), a rare autosomal dominant disorder characterized by hypertrophic nail dystrophy, is classified into two main clinical subtypes: PC-1 and PC-2. PC-1 is associated with mutations in the KRT6A or KRT16 genes, whereas PC-2 is linked to KRT6B or KRT17 mutations. Blood samples were collected from three generations of a new Chinese PC-1 family, including three PC patients and five unaffected family members. A novel missense mutation p.Leu128Pro (c.383T>C) was identified in a highly conserved helix motif in domain 1A of K16. The disease haplotype carried the mutation and cosegregated with the affection status. PolyPhen2 and SIFTS analysis rated the substitution as probably damaging; Swiss-Model analysis indicated that the structure of the mutant protein contained an unnormal α-helix. Overexpression of mutant protein in cultured cells led to abnormal cell morphology. CONCLUSION The wider spectrum of KRT16 mutations suggests that changes in codons 125, 127, and 132 are most commonly responsible for PC-1 and that proline substitution mutations at codons 127 or 128 may produce more severe disease. This study extends the KRT16 mutation spectrum and adds new information on the clinical and genetic diversity of PC.
Collapse
Affiliation(s)
- Limeng Dai
- Department of Medical Genetics, College of Basic Medical Science, Third Military Medical University, Chongqing, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Turega S, Cullen W, Whitehead M, Hunter CA, Ward MD. Mapping the Internal Recognition Surface of an Octanuclear Coordination Cage Using Guest Libraries. J Am Chem Soc 2014; 136:8475-83. [DOI: 10.1021/ja504269m] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Simon Turega
- Department of Chemistry, University of Sheffield, Sheffield S3 7HF, U.K
| | - William Cullen
- Department of Chemistry, University of Sheffield, Sheffield S3 7HF, U.K
| | - Martina Whitehead
- Department of Chemistry, University of Sheffield, Sheffield S3 7HF, U.K
| | | | - Michael D. Ward
- Department of Chemistry, University of Sheffield, Sheffield S3 7HF, U.K
| |
Collapse
|
30
|
Elbaum MB, Zondlo NJ. OGlcNAcylation and phosphorylation have similar structural effects in α-helices: post-translational modifications as inducible start and stop signals in α-helices, with greater structural effects on threonine modification. Biochemistry 2014; 53:2242-60. [PMID: 24641765 PMCID: PMC4004263 DOI: 10.1021/bi500117c] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
![]()
OGlcNAcylation
and phosphorylation are the major competing intracellular
post-translational modifications of serine and threonine residues.
The structural effects of both post-translational modifications on
serine and threonine were examined within Baldwin model α-helical
peptides (Ac-AKAAAAKAAAAKAAGY-NH2 or Ac-YGAKAAAAKAAAAKAA-NH2). At the N-terminus of an α-helix, both phosphorylation
and OGlcNAcylation stabilized the α-helix relative to the free
hydroxyls, with a larger induced structure for phosphorylation than
for OGlcNAcylation, for the dianionic phosphate than for the monoanionic
phosphate, and for modifications on threonine than for modifications
on serine. Both phosphoserine and phosphothreonine resulted in peptides
more α-helical than alanine at the N-terminus, with dianionic
phosphothreonine the most α-helix-stabilizing residue here.
In contrast, in the interior of the α-helix, both post-translational
modifications were destabilizing with respect to the α-helix,
with the greatest destabilization seen for threonine OGlcNAcylation
at residue 5 and threonine phosphorylation at residue 10, with peptides
containing either post-translational modification existing as random
coils. At the C-terminus, both OGlcNAcylation and phosphorylation
were destabilizing with respect to the α-helix, though the induced
structural changes were less than in the interior of the α-helix.
In general, the structural effects of modifications on threonine were
greater than the effects on serine, because of both the lower α-helical
propensity of Thr and the more defined induced structures upon modification
of threonine than serine, suggesting threonine residues are particularly
important loci for structural effects of post-translational modifications.
The effects of serine and threonine post-translational modifications
are analogous to the effects of proline on α-helices, with the
effects of phosphothreonine being greater than those of proline throughout
the α-helix. These results provide a basis for understanding
the context-dependent structural effects of these competing protein
post-translational modifications.
Collapse
Affiliation(s)
- Michael B Elbaum
- Department of Chemistry and Biochemistry, University of Delaware , Newark, Delaware 19716, United States
| | | |
Collapse
|
31
|
Communie G, Ruigrok RWH, Jensen MR, Blackledge M. Intrinsically disordered proteins implicated in paramyxoviral replication machinery. Curr Opin Virol 2014; 5:72-81. [DOI: 10.1016/j.coviro.2014.02.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 02/01/2014] [Accepted: 02/04/2014] [Indexed: 10/25/2022]
|
32
|
Iešmantavičius V, Jensen MR, Ozenne V, Blackledge M, Poulsen FM, Kjaergaard M. Modulation of the Intrinsic Helix Propensity of an Intrinsically Disordered Protein Reveals Long-Range Helix–Helix Interactions. J Am Chem Soc 2013; 135:10155-63. [DOI: 10.1021/ja4045532] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
| | - Malene Ringkjøbing Jensen
- Institut de Biologie Structurale Jean-Pierre Ebel, CEA-CNRS-UJF UMR 5075,
41 rue Jules Horowitz, 38027 Grenoble, France
| | - Valéry Ozenne
- Institut de Biologie Structurale Jean-Pierre Ebel, CEA-CNRS-UJF UMR 5075,
41 rue Jules Horowitz, 38027 Grenoble, France
| | - Martin Blackledge
- Institut de Biologie Structurale Jean-Pierre Ebel, CEA-CNRS-UJF UMR 5075,
41 rue Jules Horowitz, 38027 Grenoble, France
| | - Flemming M. Poulsen
- Department
of Biology, University of Copenhagen, 1017
København K, Copenhagen,
Denmark
| | - Magnus Kjaergaard
- Department
of Biology, University of Copenhagen, 1017
København K, Copenhagen,
Denmark
| |
Collapse
|
33
|
Johnston MA, Farrell D, Nielsen JE. A collaborative environment for developing and validating predictive tools for protein biophysical characteristics. J Comput Aided Mol Des 2012; 26:387-96. [DOI: 10.1007/s10822-012-9564-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 03/18/2012] [Indexed: 11/29/2022]
|
34
|
Yoshida S, Murata D, Taira S, Iguchi K, Takano M, Nakano Y, Minakuchi K. Rational design and engineering of protein A to obtain the controlled elution profile in monoclonal antibody purification. CHEM-BIO INFORMATICS JOURNAL 2012. [DOI: 10.1273/cbij.12.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Shinichi Yoshida
- Frontier Biochemical & Medical Research Laboratories, Kaneka Corp
| | - Dai Murata
- Frontier Biochemical & Medical Research Laboratories, Kaneka Corp
| | - Shunichi Taira
- Frontier Biochemical & Medical Research Laboratories, Kaneka Corp
| | - Keita Iguchi
- Frontier Biochemical & Medical Research Laboratories, Kaneka Corp
| | - Masayuki Takano
- Frontier Biochemical & Medical Research Laboratories, Kaneka Corp
| | | | | |
Collapse
|
35
|
Abstract
The genome of measles virus is encapsidated by multiple copies of the nucleoprotein (N), forming helical nucleocapsids of molecular mass approaching 150 Megadalton. The intrinsically disordered C-terminal domain of N (N(TAIL)) is essential for transcription and replication of the virus via interaction with the phosphoprotein P of the viral polymerase complex. The molecular recognition element (MoRE) of N(TAIL) that binds P is situated 90 amino acids from the folded RNA-binding domain (N(CORE)) of N, raising questions about the functional role of this disordered chain. Here we report the first in situ structural characterization of N(TAIL) in the context of the entire N-RNA capsid. Using nuclear magnetic resonance spectroscopy, small angle scattering, and electron microscopy, we demonstrate that N(TAIL) is highly flexible in intact nucleocapsids and that the MoRE is in transient interaction with N(CORE). We present a model in which the first 50 disordered amino acids of N(TAIL) are conformationally restricted as the chain escapes to the outside of the nucleocapsid via the interstitial space between successive N(CORE) helical turns. The model provides a structural framework for understanding the role of N(TAIL) in the initiation of viral transcription and replication, placing the flexible MoRE close to the viral RNA and, thus, positioning the polymerase complex in its functional environment.
Collapse
|
36
|
Kumauchi M, Kaledhonkar S, Philip AF, Wycoff J, Hara M, Li Y, Xie A, Hoff WD. A conserved helical capping hydrogen bond in PAS domains controls signaling kinetics in the superfamily prototype photoactive yellow protein. J Am Chem Soc 2011; 132:15820-30. [PMID: 20954744 DOI: 10.1021/ja107716r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PAS domains form a divergent protein superfamily with more than 20 000 members that perform a wide array of sensing and regulatory functions in all three domains of life. Only nine residues are well-conserved in PAS domains, with an Asn residue at the start of α-helix 3 showing the strongest conservation. The molecular functions of these nine conserved residues are unknown. We use static and time-resolved visible and FTIR spectroscopy to investigate receptor activation in the photosensor photoactive yellow protein (PYP), a PAS domain prototype. The N43A and N43S mutants allow an investigation of the role of side-chain hydrogen bonding at this conserved position. The mutants exhibit a blue-shifted visible absorbance maximum and up-shifted chromophore pK(a). Disruption of the hydrogen bonds in N43A PYP causes both a reduction in protein stability and a 3400-fold increase in the lifetime of the signaling state of this photoreceptor. A significant part of this increase in lifetime can be attributed to the helical capping interaction of Asn43. This extends the known importance of helical capping for protein structure to regulating functional protein kinetics. A model for PYP activation has been proposed in which side-chain hydrogen bonding of Asn43 is critical for relaying light-induced conformational changes. However, FTIR spectroscopy shows that both Asn43 mutants retain full allosteric transmission of structural changes. Analysis of 30 available high-resolution structures of PAS domains reveals that the side-chain hydrogen bonding of residue 43 but not residue identity is highly conserved and suggests that its helical cap affects signaling kinetics in other PAS domains.
Collapse
Affiliation(s)
- Masato Kumauchi
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Warshaviak DT, Serbulea L, Houk KN, Hubbell WL. Conformational analysis of a nitroxide side chain in an α-helix with density functional theory. J Phys Chem B 2011; 115:397-405. [PMID: 21162593 PMCID: PMC3267783 DOI: 10.1021/jp108871m] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In site directed spin labeling, a nitroxide side chain is introduced at a selected site in a protein; the most commonly used is a disulfide-linked side chain designated R1. The electron paramagnetic resonance (EPR) spectra of R1, and the interspin distance between pairs of R1 residues as determined by dipolar EPR spectroscopy, encode a wealth of information on the protein structure and dynamics. However, extracting this information requires structural and dynamical models of the R1 side chain, that is, the favored rotamers, the intraresidue interactions that stabilize them, and the internal modes of motion. X-ray crystal structures of R1 in proteins have revealed a set of preferred rotamers in the crystal lattice. To identify the intraresidue interactions that stabilize particular rotamers of R1 in the absence of interactions with nearby side chains in a helix, and to evaluate models for the internal motion of the side chain, quantum mechanical calculations were performed on a relevant fragment of R1 in a 10-residue α-helix. Relative rotamer energies were determined in the gas phase, and solvation energies were estimated from a continuum solvent model that includes both electrostatic and hydrophobic contributions. The results identified preferred rotamers that are in agreement with the X-ray crystallographic studies. The rotamers are apparently stabilized by intraresidue sulfur-backbone interactions, suggesting that the preferred rotamers may be the same at all solvent-exposed helix sites.
Collapse
Affiliation(s)
- Dora Toledo Warshaviak
- Jules Stein Eye Institute, UCLA School of Medicine, Los Angeles, CA 90095
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
| | - Laura Serbulea
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
| | - K. N. Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
| | - Wayne L. Hubbell
- Jules Stein Eye Institute, UCLA School of Medicine, Los Angeles, CA 90095
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
| |
Collapse
|
38
|
Ravindranath MH, Pham T, El-Awar N, Kaneku H, Terasaki PI. Anti-HLA-E mAb 3D12 mimics MEM-E/02 in binding to HLA-B and HLA-C alleles: Web-tools validate the immunogenic epitopes of HLA-E recognized by the antibodies. Mol Immunol 2011; 48:423-30. [PMID: 21145594 DOI: 10.1016/j.molimm.2010.09.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 07/29/2010] [Accepted: 09/17/2010] [Indexed: 01/08/2023]
Abstract
HLA-E shares several peptide sequences with HLA-class Ia molecules. Therefore, anti-HLA-E antibodies that recognize the shared sequences may bind to HLA-class Ia alleles. This hypothesis was validated with a murine anti-HLA-E monoclonal antibody (mAb) MEM-E/02, which reacted with microbeads coated with several HLA-B and HLA-C antigens. In this report, the hypothesis was reexamined with another mAb 3D12, considered to be specific for HLA-E. The antibody binding is evaluated by measuring mean fluorescence index [MFI] with Luminex Multiplex Flow-Cytometric technology. The peptide-inhibition experiments are carried out with synthetic shared peptides, most prevalent to HLA-E and HLA-Ia alleles. The results showed that mAb 3D12 simulated MEM-E/02 in recognizing several HLA-B and HLA-C antigens. Both 3D12 and MEM-E/02 did not bind to HLA-A, HLA-F and HLA-G molecules. As observed with MEM-E/02, binding of 3D12 to HLA-E is inhibited by the peptides sequences (115)QFAYDGKDY(123) and (137)DTAAQI(142). Decrease in binding of mAb 3D12 to HLA class Ia, after heat treatment of antigen coated microbeads, supports the contention that the epitope may be located at the outside of the "thermodynamically stable" α-helix conformations of HLA-E. Several sequence and structure-based web-tools were employed to validate the discontinuous epitopes recognized by the mAbs. The scores obtained by these web-tools distinguished the shared peptide sequences that inhibited the mAb binding to HLA-E. Furthermore, ElliPro web tool points out that both mAbs recognize the conformational discontinuous epitopes (the shared inhibitory peptide sequences) in the secondary structure of the HLA-E molecule. The study favors the contention that the domain of the shared inhibitory peptide sequences may be the most immunogenic site of HLA-E molecule. It also postulates and clarifies that amino acid substitution on or near the binding domains may account for the lack of cross reactivity of 3D12 and MEM-E/02 with HLA-A, HLA-F and HLA-G molecules.
Collapse
Affiliation(s)
- Mepur H Ravindranath
- Terasaki Foundation Laboratory, 11570 W Olympic Blvd, Los Angeles, CA 90064, United States.
| | | | | | | | | |
Collapse
|
39
|
Genotype-phenotype correlations among pachyonychia congenita patients with K16 mutations. J Invest Dermatol 2010; 131:1025-8. [PMID: 21160496 DOI: 10.1038/jid.2010.373] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Pachyonychia congenita (PC) is a rare, autosomal dominant keratin disorder caused by mutations in four genes (KRT6A, KRT6B, KRT16, or KRT17). The International PC Research Registry is a database with information on patients' symptoms as well as genotypes. We sought to describe the heterogeneity of clinical symptoms and to investigate possible genotype-phenotype correlations in patients with two types of K16 mutations, p.Asn125 and p.Arg127, causing the PC-16 subtype of PC. We found that clinical symptoms depended on the type of amino-acid substitution. Patients with p.Asn125Asp and p.Arg127Pro mutations exhibited more severe disease than patients carrying p.Asn125Ser and p.Arg127Cys mutations in terms of age of onset of symptoms, extent of nail involvement, and impact on daily quality of life. We speculate that amino-acid substitutions causing larger, more disruptive changes to the K16 protein structure, such as a change in amino-acid charge in the p.Asn125Asp mutation or a bulky proline substitution in the p.Arg127Pro mutation, may also lead to more severe disease phenotypes. The variation in phenotypes seen with different substitutions at the same mutation site suggests a genotype-phenotype correlation. Knowledge of the exact gene defect is likely to assist in predicting disease prognosis and clinical management.
Collapse
|
40
|
Otzen DE. Mapping the folding pathway of the transmembrane protein DsbB by protein engineering. Protein Eng Des Sel 2010; 24:139-49. [DOI: 10.1093/protein/gzq079] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
41
|
Cheng RP, Girinath P, Suzuki Y, Kuo HT, Hsu HC, Wang WR, Yang PA, Gullickson D, Wu CH, Koyack MJ, Chiu HP, Weng YJ, Hart P, Kokona B, Fairman R, Lin TE, Barrett O. Positional Effects on Helical Ala-Based Peptides. Biochemistry 2010; 49:9372-84. [DOI: 10.1021/bi101156j] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Richard P. Cheng
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Prashant Girinath
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260-3000
| | - Yuta Suzuki
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260-3000
| | - Hsiou-Ting Kuo
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Hao-Chun Hsu
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Wei-Ren Wang
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Po-An Yang
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Donald Gullickson
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260-3000
| | - Cheng-Hsun Wu
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Marc J. Koyack
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260-3000
| | - Hsien-Po Chiu
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260-3000
| | - Yi-Jen Weng
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Pier Hart
- Department of Biology, Haverford College, Haverford, Pennsylvania 19041
| | - Bashkim Kokona
- Department of Biology, Haverford College, Haverford, Pennsylvania 19041
| | - Robert Fairman
- Department of Biology, Haverford College, Haverford, Pennsylvania 19041
| | - Tzu-En Lin
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Olivia Barrett
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260-3000
| |
Collapse
|
42
|
Seeliger D, de Groot BL. Protein thermostability calculations using alchemical free energy simulations. Biophys J 2010; 98:2309-16. [PMID: 20483340 DOI: 10.1016/j.bpj.2010.01.051] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Revised: 01/15/2010] [Accepted: 01/21/2010] [Indexed: 12/29/2022] Open
Abstract
Thermal stability of proteins is crucial for both biotechnological and therapeutic applications. Rational protein engineering therefore frequently aims at increasing thermal stability by introducing stabilizing mutations. The accurate prediction of the thermodynamic consequences caused by mutations, however, is highly challenging as thermal stability changes are caused by alterations in the free energy of folding. Growing computational power, however, increasingly allows us to use alchemical free energy simulations, such as free energy perturbation or thermodynamic integration, to calculate free energy differences with relatively high accuracy. In this article, we present an automated protocol for setting up alchemical free energy calculations for mutations of naturally occurring amino acids (except for proline) that allows an unprecedented, automated screening of large mutant libraries. To validate the developed protocol, we calculated thermodynamic stability differences for 109 mutations in the microbial Ribonuclease Barnase. The obtained quantitative agreement with experimental data illustrates the potential of the approach in protein engineering and design.
Collapse
Affiliation(s)
- Daniel Seeliger
- Computational Biomolecular Dynamics Group, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | | |
Collapse
|
43
|
Worth CL, Blundell TL. On the evolutionary conservation of hydrogen bonds made by buried polar amino acids: the hidden joists, braces and trusses of protein architecture. BMC Evol Biol 2010; 10:161. [PMID: 20513243 PMCID: PMC2892493 DOI: 10.1186/1471-2148-10-161] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Accepted: 05/31/2010] [Indexed: 11/10/2022] Open
Abstract
Background The hydrogen bond patterns between mainchain atoms in protein structures not only give rise to regular secondary structures but also satisfy mainchain hydrogen bond potential. However, not all mainchain atoms can be satisfied through hydrogen bond interactions that arise in regular secondary structures; in some locations sidechain-to-mainchain hydrogen bonds are required to provide polar group satisfaction. Buried polar residues that are hydrogen-bonded to mainchain amide atoms tend to be highly conserved within protein families, confirming that mainchain architecture is a critical restraint on the evolution of proteins. We have investigated the stabilizing roles of buried polar sidechains on the backbones of protein structures by performing an analysis of solvent inaccessible residues that are entirely conserved within protein families and superfamilies and hydrogen bonded to an equivalent mainchain atom in each family member. Results We show that polar and sometimes charged sidechains form hydrogen bonds to mainchain atoms in the cores of proteins in a manner that has been conserved in evolution. Although particular motifs have previously been identified where buried polar residues have conserved roles in stabilizing protein structure, for example in helix capping, we demonstrate that such interactions occur in a range of architectures and highlight those polar amino acid types that fulfil these roles. We show that these buried polar residues often span elements of secondary structure and provide stabilizing interactions of the overall protein architecture. Conclusions Conservation of buried polar residues and the hydrogen-bond interactions that they form implies an important role for maintaining protein structure, contributing strong restraints on amino acid substitutions during divergent protein evolution. Our analysis sheds light on the important stabilizing roles of these residues in protein architecture and provides further insight into factors influencing the evolution of protein families and superfamilies.
Collapse
Affiliation(s)
- Catherine L Worth
- Biocomputing Group, Biochemistry Department, University of Cambridge, Cambridge, CB2 1GA, UK
| | | |
Collapse
|
44
|
Tuncbag N, Salman FS, Keskin O, Gursoy A. Analysis and network representation of hotspots in protein interfaces using minimum cut trees. Proteins 2010; 78:2283-94. [DOI: 10.1002/prot.22741] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
45
|
Alías M, Ayuso-Tejedor S, Fernández-Recio J, Cativiela C, Sancho J. Helix propensities of conformationally restricted amino acids. Non-natural substitutes for helix breaking proline and helix forming alanine. Org Biomol Chem 2010; 8:788-92. [DOI: 10.1039/b919671d] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
46
|
Worth CL, Gong S, Blundell TL. Structural and functional constraints in the evolution of protein families. Nat Rev Mol Cell Biol 2009; 10:709-20. [PMID: 19756040 DOI: 10.1038/nrm2762] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
47
|
Folding by numbers: primary sequence statistics and their use in studying protein folding. Int J Mol Sci 2009; 10:1567-1589. [PMID: 19468326 PMCID: PMC2680634 DOI: 10.3390/ijms10041567] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Revised: 03/30/2009] [Accepted: 04/02/2009] [Indexed: 11/16/2022] Open
Abstract
The exponential growth over the past several decades in the quantity of both primary sequence data available and the number of protein structures determined has provided a wealth of information describing the relationship between protein primary sequence and tertiary structure. This growing repository of data has served as a prime source for statistical analysis, where underlying relationships between patterns of amino acids and protein structure can be uncovered. Here, we survey the main statistical approaches that have been used for identifying patterns within protein sequences, and discuss sequence pattern research as it relates to both secondary and tertiary protein structure. Limitations to statistical analyses are discussed, and a context for their role within the field of protein folding is given. We conclude by describing a novel statistical study of residue patterning in β-strands, which finds that hydrophobic (i,i+2) pairing in β-strands occurs more often than expected at locations near strand termini. Interpretations involving β-sheet nucleation and growth are discussed.
Collapse
|
48
|
Gushchina LV, Gabdulkhakov AG, Nikonov SV, Mateo PL, Filimonov VV. Structural and thermodynamic studies of Bergerac-SH3 chimeras. Biophys Chem 2008; 139:106-15. [PMID: 19042078 DOI: 10.1016/j.bpc.2008.10.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Revised: 10/24/2008] [Accepted: 10/24/2008] [Indexed: 11/18/2022]
Abstract
Bergerac-type chimeras of spectrin SH3 were designed by extending a beta-hairpin by eight amino acids so that the extension protruded from the domain body like a "nose" being exposed to the solvent. A calorimetric study of several Bergerac-SH3 variants was carried out over a wide range of pH values and protein concentrations and the three-dimensional structure of one of them, SHH, was determined. X-ray studies confirmed that the nose had a well defined beta-structure whilst the chimera formed a stable tetramer within the crystal unit because of four tightly packed noses. In the pH range of 4-7 the heat-induced unfolding of some chimeras was complex and concentration dependent, whilst at pH values below 3.5, low protein concentrations of all the chimeras studied, including SHH, seemed to obey a monomolecular two-state unfolding model. The best set of data was obtained for the SHA variant, the unfolding heat effects of which were systematically higher than those of the WT protein (about 16.4 kJ/mol at 323 K), which may be close to the upper limit of the enthalpy gain due to 10 residue beta-hairpin folding. At the same time, the chimeras with high nose stability, which, like SHH, have a hydrophobic (IVY) cluster on their surface, showed a lower apparent unfolding heat effect, much closer to that of the WT protein. The possible reasons for this difference are discussed.
Collapse
Affiliation(s)
- Liubov' V Gushchina
- Institute of Protein Research of the Russian Academy of Sciences, Pushchino, Russia
| | | | | | | | | |
Collapse
|
49
|
Sharpe TD, Ferguson N, Johnson CM, Fersht AR. Conservation of Transition State Structure in Fast Folding Peripheral Subunit-Binding Domains. J Mol Biol 2008; 383:224-37. [DOI: 10.1016/j.jmb.2008.06.081] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2008] [Revised: 06/24/2008] [Accepted: 06/27/2008] [Indexed: 11/26/2022]
|
50
|
Haliloglu T, Ben-Tal N. Cooperative transition between open and closed conformations in potassium channels. PLoS Comput Biol 2008; 4:e1000164. [PMID: 18769593 PMCID: PMC2528004 DOI: 10.1371/journal.pcbi.1000164] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Accepted: 07/21/2008] [Indexed: 11/19/2022] Open
Abstract
Potassium (K+) ion channels switch between open and closed conformations. The nature of this important transition was revealed by comparing the X-ray crystal structures of the MthK channel from Methanobacterium thermoautotrophicum, obtained in its open conformation, and the KcsA channel from Streptomyces lividans, obtained in its closed conformation. We analyzed the dynamic characteristics and energetics of these homotetrameric structures in order to study the role of the intersubunit cooperativity in this transition. For this, elastic models and in silico alanine-scanning mutagenesis were used, respectively. Reassuringly, the calculations manifested motion from the open (closed) towards the closed (open) conformation. The calculations also revealed a network of dynamically and energetically coupled residues. Interestingly, the network suggests coupling between the selectivity filter and the gate, which are located at the two ends of the channel pore. Coupling between these two regions was not observed in calculations that were conducted with the monomer, which emphasizes the importance of the intersubunit interactions within the tetrameric structure for the cooperative gating behavior of the channel.
Collapse
Affiliation(s)
- Turkan Haliloglu
- Polymer Research Center, Bogazici University, Bebek-Istanbul, Turkey.
| | | |
Collapse
|