1
|
Jaszczyk A, Juszczak GR. Glucocorticoids, metabolism and brain activity. Neurosci Biobehav Rev 2021; 126:113-145. [PMID: 33727030 DOI: 10.1016/j.neubiorev.2021.03.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 03/04/2021] [Accepted: 03/07/2021] [Indexed: 12/17/2022]
Abstract
The review integrates different experimental approaches including biochemistry, c-Fos expression, microdialysis (glutamate, GABA, noradrenaline and serotonin), electrophysiology and fMRI to better understand the effect of elevated level of glucocorticoids on the brain activity and metabolism. The available data indicate that glucocorticoids alter the dynamics of neuronal activity leading to context-specific changes including both excitation and inhibition and these effects are expected to support the task-related responses. Glucocorticoids also lead to diversification of available sources of energy due to elevated levels of glucose, lactate, pyruvate, mannose and hydroxybutyrate (ketone bodies), which can be used to fuel brain, and facilitate storage and utilization of brain carbohydrate reserves formed by glycogen. However, the mismatch between carbohydrate supply and utilization that is most likely to occur in situations not requiring energy-consuming activities lead to metabolic stress due to elevated brain levels of glucose. Excessive doses of glucocorticoids also impair the production of energy (ATP) and mitochondrial oxidation. Therefore, glucocorticoids have both adaptive and maladaptive effects consistently with the concept of allostatic load and overload.
Collapse
Affiliation(s)
- Aneta Jaszczyk
- Department of Animal Behavior and Welfare, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05-552 Jastrzebiec, 36a Postepu str., Poland
| | - Grzegorz R Juszczak
- Department of Animal Behavior and Welfare, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05-552 Jastrzebiec, 36a Postepu str., Poland.
| |
Collapse
|
2
|
Reddy DS, Thompson W, Calderara G. Does Stress Trigger Seizures? Evidence from Experimental Models. Curr Top Behav Neurosci 2021; 55:41-64. [PMID: 33547597 DOI: 10.1007/7854_2020_191] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
This chapter describes the experimental evidence of stress modulation of epileptic seizures and the potential role of corticosteroids and neurosteroids in regulating stress-linked seizure vulnerability. Epilepsy is a chronic neurological disorder that is characterized by repeated seizures. There are many potential causes for epilepsy, including genetic predispositions, infections, brain injury, and neurotoxicity. Stress is a known precipitating factor for seizures in individuals suffering from epilepsy. Severe acute stress and persistent exposure to stress may increase susceptibility to seizures, thereby resulting in a higher frequency of seizures. This occurs through the stress-mediated release of cortisol, which has both excitatory and proconvulsant properties. Stress also causes the release of endogenous neurosteroids from central and adrenal sources. Neurosteroids such as allopregnanolone and THDOC, which are allosteric modulators of GABA-A receptors, are powerful anticonvulsants and neuroprotectants. Acute stress increases the release of neurosteroids, while chronic stress is associated with severe neurosteroid depletion and reduced inhibition in the brain. This diminished inhibition occurs largely as a result of neurosteroid deficiencies. Thus, exogenous administration of neurosteroids (neurosteroid replacement therapy) may offer neuroprotection in epilepsy. Synthetic neurosteroid could offer a rational approach to control neurosteroid-sensitive, stress-related epileptic seizures.
Collapse
Affiliation(s)
- Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX, USA.
| | - Wesley Thompson
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Gianmarco Calderara
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX, USA
| |
Collapse
|
3
|
Sarahian N, Mohammadi MT, Darabi S, Faghihi N. Fenofibrate protects the neurovascular unit and ameliorates plasma corticosterone levels in pentylenetetrazole-induced kindling seizure in mice. Brain Res 2021; 1758:147343. [PMID: 33556377 DOI: 10.1016/j.brainres.2021.147343] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 01/03/2021] [Accepted: 01/31/2021] [Indexed: 02/07/2023]
Abstract
Epileptic seizures are the most common neurological diseases that change the function of neurovascular unit at molecular levels accompanied by activation of a wide variety of neurodegenerative cascades. Based on the pleiotropic functions of peroxisome proliferator-activated receptor-alpha (PPARα), the current study evaluated the neuroprotective effects of fenofibrate (an effective PPARα agonist) on the brain injuries induced by pentylenetetrazole (PTZ)-induced kindling seizure. Adult male NMRI mice were randomly assigned into four groups (n = 14) as follows; control, untreated kindled mice (PTZ) and two fenofibrate-treated kindled groups. Repeated intraperitoneal injections of PTZ (45 mg/kg) were used to develop kindling seizure every 48 h for 21 days. Treated mice were administered orally fenofibrate at doses of 30 and 50 mg/kg/day during the study. Plasma corticosterone and brain levels of brain-derived neurotrophic factor (BDNF), malondialdehyde (MDA) and mRNA transcription of p53, as well as blood-brain barrier (BBB) permeability, were determined at termination of the study. Fenofibrate considerably improved seizure latency and anxiety-like behaviors in treated kindled mice. Fenofibrate at doses of 30 and 50 mg/kg significantly (P < 0.001) decreased plasma corticosterone (56.88 ± 0.80 and 54.81 ± 0.29 ng/mL, respectively) compared to PTZ group (74.96 ± 1.60 ng/mL). It also significantly (P < 0.05) decreased BDNF levels in both treatment groups (8.13 ± 0.14 and 8.74 ± 0.09 ng/mL, respectively) compared to PTZ group (9.68 ± 0.20 ng/mL). Fenofibrate particularly at higher dose significantly (P < 0.01) decreased MDA content and mRNA expression levels of p53 in treated kindled mice by 67% and 28%, respectively, compared to PTZ group. Similarly, 50 mg/kg fenofibrate significantly (P < 0.05) decreased Evans blue extravasation into brain in treated kindled mice (8.72 ± 0.96 µg/g) compared to PTZ group (15.31 ± 2.18 µg/g). Our results revealed the anticonvulsive and neuroprotective effects of fenofibrate in PTZ-induced kindling seizure in mice. Fenofibrate also improved the neurovascular functions at molecular levels in kindling seizure that might be associated with ameliorating the seizure behaviors.
Collapse
Affiliation(s)
- Nahid Sarahian
- Student Research Committee, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohammad Taghi Mohammadi
- Student Research Committee, Baqiyatallah University of Medical Sciences, Tehran, Iran; Department of Physiology and Medical Physics, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran; Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Shamsi Darabi
- Department of Physiology, Faculty of Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Nastaran Faghihi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
4
|
Basu T, Maguire J, Salpekar JA. Hypothalamic-pituitary-adrenal axis targets for the treatment of epilepsy. Neurosci Lett 2021; 746:135618. [PMID: 33429002 DOI: 10.1016/j.neulet.2020.135618] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/25/2020] [Accepted: 12/29/2020] [Indexed: 12/20/2022]
Abstract
Stress is a common seizure trigger in persons with epilepsy. The body's physiological response to stress is mediated by the hypothalamic-pituitary-adrenal (HPA) axis and involves a hormonal cascade that includes corticotropin releasing hormone (CRH), adrenocorticotropin releasing hormone (ACTH) and the release of cortisol (in humans and primates) or corticosterone (in rodents). The prolonged exposure to stress hormones may not only exacerbate pre-existing medical conditions including epilepsy, but may also increase the predisposition to psychiatric comorbidities. Hyperactivity of the HPA axis negatively impacts the structure and function of the temporal lobe of the brain, a region that is heavily involved in epilepsy and mood disorders like anxiety and depression. Seizures themselves damage temporal lobe structures, further disinhibiting the HPA axis, setting off a vicious cycle of neuronal damage and increasing susceptibility for subsequent seizures and psychiatric comorbidity. Treatments targeting the HPA axis may be beneficial both for epilepsy and for associated stress-related comorbidities such as anxiety or depression. This paper will highlight the evidence demonstrating dysfunction in the HPA axis associated with epilepsy which may contribute to the comorbidity of psychiatric disorders and epilepsy, and propose treatment strategies that may dually improve seizure control as well as alleviate stress related psychiatric comorbidities.
Collapse
Affiliation(s)
- Trina Basu
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, United States
| | - Jamie Maguire
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, United States
| | - Jay A Salpekar
- Kennedy Krieger Institute, Johns Hopkins University Medical School, Baltimore, MD 21205, United States.
| |
Collapse
|
5
|
Maguire J, Salpekar JA. Stress, seizures, and hypothalamic-pituitary-adrenal axis targets for the treatment of epilepsy. Epilepsy Behav 2013; 26:352-62. [PMID: 23200771 PMCID: PMC3874873 DOI: 10.1016/j.yebeh.2012.09.040] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 09/27/2012] [Indexed: 10/27/2022]
Abstract
Epilepsy is a heterogeneous condition with varying etiologies including genetics, infection, trauma, vascular, neoplasms, and toxic exposures. The overlap of psychiatric comorbidity adds to the challenge of optimal treatment for people with epilepsy. Seizure episodes themselves may have varying triggers; however, for decades, stress has been commonly and consistently suspected to be a trigger for seizure events. This paper explores the relationship between stress and seizures and reviews clinical data as well as animal studies that increasingly corroborate the impact of stress hormones on neuronal excitability and seizure susceptibility. The basis for enthusiasm for targeting glucocorticoid receptors for the treatment of epilepsy and the mixed results of such treatment efforts are reviewed. In addition, this paper will highlight recent findings identifying a regulatory pathway controlling the body's physiological response to stress which represents a novel therapeutic target for modulation of the hypothalamic-pituitary-adrenal (HPA) axis. Thus, the HPA axis may have important clinical implications for seizure control and imply use of anticonvulsants that influence this neuronal pathway.
Collapse
Affiliation(s)
- Jamie Maguire
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, U.S.A
| | - Jay A. Salpekar
- Center for Neuroscience and Behavioral Medicine, Children’s National Medical Center, Washington, DC, U.S.A
| |
Collapse
|
6
|
Dubrovsky B, Filipini D, Gijsbers K, Birmingham MK. Early and late effects of steroid hormones on the central nervous system. CIBA FOUNDATION SYMPOSIUM 2007; 153:240-57; discussion 257-60. [PMID: 1963399 DOI: 10.1002/9780470513989.ch14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Steroids have fast and probably partly GABA-mediated central anaesthetic effects for which a strict structure-function correlation is required. They also affect short- and long-term activity in the CNS in other ways. One of these is long-term potentiation (the persistent facilitation of synaptic transmission), which occurs particularly in the hippocampus after repetitive stimulation of a fibre pathway. Two clearly distinguished components of the evoked response can be studied in the hippocampus: the excitatory postsynaptic potential (EPSP) which denotes the graded depolarization of the somadendritic region of the neuron and the population spike (PS), a manifestation of the all-or-none discharge of the cell action potential. Corticosterone had a significant depressant effect on the EPSP component of the evoked response immediately and 15 min after injection. Thereafter EPSP amplitudes were within normal values. Corticosterone significantly decreased the PS immediately after the train, the component remaining low 30 min after the train. 5 alpha-Dihydrocorticosterone (a ring A-reduced metabolite of corticosterone) significantly reduced the PS component of the response at all times after injection. 18-Hydroxydeoxycorticosterone and deoxycorticosterone significantly decreased both EPSP and PS components of the evoked response from the time of infusion. Contrary to expectation, tetrahydrodeoxycorticosterone was ineffective in decreasing, and if anything, enhanced the development of long-term potentiation. 18-Hydroxydeoxycorticosterone 21-acetate behaved like vehicle, except for the first 30 min after injection, when the EPSP was decreased. Different steroids can selectively affect different parts of a neuron and appear to show a different structure-function correlation for long-term potentiation from that required for anaesthesia.
Collapse
Affiliation(s)
- B Dubrovsky
- Laboratory of Neurophysiology, McGill University, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
7
|
Rogawski MA, Reddy DS. Neurosteroids and infantile spasms: the deoxycorticosterone hypothesis. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2002; 49:199-219. [PMID: 12040893 DOI: 10.1016/s0074-7742(02)49014-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Deoxycorticosterone (DOC) is a mineralocorticoid precursor that has anticonvulsant properties in animals and possibly also in humans. Studies indicate that the anticonvulsant activity of DOC requires its enzymatic conversion to 5 alpha,3 alpha-tetrahydrodeoxycorticosterone (THDOC), a neurosteroid that lacks classical hormonal properties but acts as a powerful positive allosteric modulator of GABAA receptors. DOC can be considered a stress hormone because its synthesis is under the control of ACTH. Therefore, stress-induced fluctuations in seizure susceptibility could in part result from alterations in DOC availability. Also, the therapeutic activity of ACTH in infantile spasms could partially relate to its stimulatory effects on the synthesis of DOC, which then undergoes biotransformation to neurosteroids. The recent demonstration that the synthetic neurosteroid analog ganaxolone reduces spasm frequency in children with intractable infantile spasms suggests that neurosteroid-related anticonvulsants may offer a potential new nonhormonal approach for the treatment of infantile spasms and other developmental epilepsies. In addition, it further confirms the utility of pharmacological enhancement of GABA-mediated inhibition in the control of infantile spasms.
Collapse
Affiliation(s)
- Michael A Rogawski
- Epilepsy Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
8
|
Stress-induced deoxycorticosterone-derived neurosteroids modulate GABA(A) receptor function and seizure susceptibility. J Neurosci 2002. [PMID: 11978855 DOI: 10.1523/jneurosci.22-09-03795.2002] [Citation(s) in RCA: 200] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Stress affects seizure susceptibility in animals and humans, but the underlying mechanisms are obscure. Here, we provide evidence that GABA(A) receptor-modulating neurosteroids derived from deoxycorticosterone (DOC) play a role in stress-related changes in seizure control. DOC, an adrenal steroid whose synthesis is enhanced during stress, undergoes sequential metabolic reduction by 5alpha-reductase and 3alpha-hydroxysteroid oxidoreductase to form 5alpha-dihydrodeoxycorticosterone (DHDOC) and allotetrahydrodeoxycorticosterone (THDOC), a GABA(A) receptor-modulating neurosteroid with anticonvulsant properties. Acute swim stress in rats significantly elevated plasma THDOC concentrations and raised the pentylenetetrazol (PTZ) seizure threshold. Small systemic doses of DOC produced comparable increases in THDOC and PTZ seizure threshold. Pretreatment with finasteride, a 5alpha-reductase inhibitor that blocks the conversion of DOC to DHDOC, reversed the antiseizure effects of stress. DOC also elevated plasma THDOC levels and protected mice against PTZ, methyl-6,7-dimethoxy-4-ethyl-beta-carboline-3-carboxylate, picrotoxin, and amygdala-kindled seizures in mice (ED50 values, 84-97 mg/kg). Finasteride reversed the antiseizure activity of DOC (ED50, 7.2 mg/kg); partial antagonism was also obtained with indomethacin (100 mg/kg), an inhibitor of 3alpha-hydroxysteroid oxidoreductase. Finasteride had no effect on seizure protection by DHDOC and THDOC, whereas indomethacin partially reversed DHDOC but not THDOC. DHDOC, like THDOC, potentiated GABA-activated Cl- currents in cultured hippocampal neurons (< or =1 microm) and directly activated GABA(A) receptor currents (> or =1 microm), compatible with a role for DHDOC in the antiseizure activity of DOC. DOC is a mediator of the physiological effects of acute stress that could contribute to stress-induced changes in seizure susceptibility through its conversion to neurosteroids with modulatory actions on GABA(A) receptors including THDOC and possibly also DHDOC.
Collapse
|
9
|
Spector S, Munjal I, Schmidt DE. Endogenous morphine and codeine. Possible role as endogenous anticonvulsants. Brain Res 2001; 915:155-60. [PMID: 11595204 DOI: 10.1016/s0006-8993(01)02837-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Exogenously administered morphine can have both convulsive or anticonvulsive effects, depending on the dose and species. The levels of the endogenous opiate alkaloids morphine and codeine were significantly elevated in specific rat brain regions by the convulsive drug, pentylenetetrazole, as well as by the anticonvulsant drugs, carbamazepine and phenytoin. Morphine and codeine levels in peripheral tissues (heart, lung, spleen and adrenal) were unaffected by these drugs. Maximal increases in morphine levels were seen in the hypothalamus and striatum (2-10-fold), while lesser increases occurred in the midbrain and brain stem (2-4-fold). Codeine levels were also markedly increased in hypothalamus (5-10 fold), In contrast to morphine, codeine levels were also increased in the hippocampus (2-10-fold), but were unchanged in the striatum. These studies suggest that the endogenous alkaloids morphine and codeine are involved in the modulation of convulsions and that morphine and/or codeine may act as an endogenous anticonvulsant.
Collapse
Affiliation(s)
- S Spector
- Department of Psychiatry, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | | | | |
Collapse
|
10
|
Kábová R, Liptáková S, Slamberová R, Pometlová M, Velísek L. Age-specific N-methyl-D-aspartate-induced seizures: perspectives for the West syndrome model. Epilepsia 1999; 40:1357-69. [PMID: 10528930 DOI: 10.1111/j.1528-1157.1999.tb02006.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE With intraperitoneal N-methyl-D-aspartate (NMDA; 15-200 mg/kg) administration, we attempted to develop an animal model of age-specific West syndrome to serve for testing of putative anticonvulsant drugs and to determine the mechanisms of this disorder. METHODS Experiments were performed in 12-, 18-, and 60-day-old (adult) rats. The effects of systemic pretreatment with hydrocortisone (5-25 mg/kg), pyridoxine (20-250 mg/kg), and sodium valproate (VPA; 200 and 400 mg/kg) against the NMDA-induced automatisms, emprosthotonic (hyperflexion), and clonic-tonic seizures were determined. NMDA-induced EEG changes and alterations of the performance in horizontal bar, rotorod, open field, and elevated plus-maze tests were recorded. RESULTS In young rats, hydrocortisone had proconvulsant effects. High doses of pyridoxine induced epileptiform activity independent of and distinct from that induced by NMDA. Only VPA had moderate effects against the NMDA-induced syndrome. EEG consisted of periods of suppression mixed with ictal activity of serrated waves and high-voltage chaotic EEG activity. In adult rats, EEG alterations involved spike and spike-and-wave activity. NMDA also deteriorated performance of young rats in the open field, rotorod, and elevated plus maze tests. CONCLUSIONS NMDA syndrome in rats fulfills some, but not all, criteria of the West syndrome model, such as occurrence of flexion seizures, nonspecific diffuse EEG changes, refractoriness to antiepileptic therapy (but a response to VPA), as well as long-term alteration of behavioral tasks. However, NMDA-induced seizures represent an acute model without the occurrence of spontaneous seizures, whereas in the clinical situation, both the seizures and neurologic deterioration are chronic. Further, in the West syndrome and the NMDA seizure model, there is an incongruent response to therapy with antiepileptic drugs.
Collapse
Affiliation(s)
- R Kábová
- Department of Pathological Physiology, Third Faculty of Medicine, Charles University, Praha, Czech Republic
| | | | | | | | | |
Collapse
|
11
|
|
12
|
de Vicente F, Rodriguez-Perez M, Gomez-Jarabo G. The effects of protein malnutrition and cortisol treatment on motor activity of rats. Behav Processes 1991; 25:1-14. [DOI: 10.1016/0376-6357(91)90041-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/1991] [Indexed: 12/01/2022]
|
13
|
Beaumont K, Vaughn DA, Fanestil DD. Effect of adrenocorticoid receptors on potassium and sodium flux in rat C6 glioma cells. JOURNAL OF STEROID BIOCHEMISTRY 1987; 28:593-8. [PMID: 2826917 DOI: 10.1016/0022-4731(87)90385-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
C6 glioma cells contain two types of receptors for adrenocorticoids. Glucocorticoid (Type II) receptors are present at higher density and mediate increases in glycerol phosphate dehydrogenase and glutamine synthetase activity. The function of mineralocorticoid (Type I) receptors present at low density in C6 cells is unknown. Since mineralocorticoid (Type I) receptors in renal epithelial cells regulate cation transport, we sought to determine whether adrenocorticoid receptors located in glioma cells are similarly linked to electrolyte transporting activity. Occupation of mineralocorticoid receptors in C6 glioma by adrenocorticoids did not alter Na+ or K+ transport, in contrast to their effects on renal epithelial and vascular smooth muscle cells. Occupation of glucocorticoid receptors produced a 20-25% decrease in K+ uptake into C6 cells, but did not alter Na+ influx. Stimulation of Na+ influx with the ionophore monensin produced a large ouabain-sensitive increase in glucose utilization, as measured by 2-deoxyglucose uptake. However, mineralocorticoid receptor occupation did not alter glucose utilization, providing further evidence that these receptors do not influence Na+ transport in C6 cells. These studies provide evidence that mineralocorticoid receptors in glioma cells do not regulate Na+ or K+ transport. Glial glucocorticoid receptors have an inhibitory effect on glial K+ influx, which may contribute to glucocorticoid hormone effects on brain excitability.
Collapse
Affiliation(s)
- K Beaumont
- Department of Medicine, University of California, San Diego, La Jolla 92093
| | | | | |
Collapse
|
14
|
Reiheld CT, Teyler TJ, Vardaris RM. Effects of corticosterone on the electrophysiology of hippocampal CA1 pyramidal cells in vitro. Brain Res Bull 1984; 12:349-53. [PMID: 6733543 DOI: 10.1016/0361-9230(84)90102-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Modulation of CA1 field potential amplitudes by normal and stress concentrations of corticosterone (CT) was observed in hippocampal slice preparations from adrenalectomized rats. Slices exposed to CT levels characteristic of a morning (4 nM) or evening (7 nM) resting state showed increased population spike amplitudes in the CA1 pyramidal cell field within 10 min. A stress concentration (15 nM) also increased spike amplitudes, but only at the higher stimulus intensities. The effects of these doses were essentially the same 10 and 60 min after administration. The hormone facilitated responding more in morning resting concentrations than in concentrations characteristic of the evening resting state. This occurred, however, only for relatively low intensity stimuli. The data provide some support for the suggestion that circadian fluctuations in magnitude of long-term potentiation result from corresponding changes in CT level. The rapid onset of the observed changes is difficult to account for in terms of generally accepted mechanisms of receptor binding.
Collapse
|
15
|
Abstract
The effects of an intensive 7 day glucocorticoid (e.g. methylprednisolone) regimen have been studied on the electrical properties of cat lumbar spinal motor neurons via intracellular recording. The results reported in this paper have shown that glucocorticoid dosing produces numerous effects on motor neuron excitability and impulse generation and conduction. These include a resting hyperpolarization, a slowed conduction of an antidromic action potential through the initial axon segment and an increased threshold, a slowed rate of depolarization and a prolonged refractoriness of the soma-dendritic portion of the neuron. On the other hand, the excitability of the initial axon segment, where the nerve impulse is physiologically triggered, is increased as demonstrated by a decrease in the rheobasic current and an increased slope of the current-frequency relationship for repetitive discharge. An additional effect of the steroid is to augment the action potential after-depolarization. These results suggest a complex glucocorticoid action on specific ionic mechanisms which is discussed along with possible neurological and psychiatric implications.
Collapse
|
16
|
Belyi VP, Orlov IV. Effect of cortisol microiontophoresis on discharge time structure of dorsal hippocampal neurons in rabbits. NEUROPHYSIOLOGY+ 1982. [DOI: 10.1007/bf01060196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Hall ED. Glucocorticoid effects on central nervous excitability and synaptic transmission. INTERNATIONAL REVIEW OF NEUROBIOLOGY 1982; 23:165-95. [PMID: 6126462 DOI: 10.1016/s0074-7742(08)60625-x] [Citation(s) in RCA: 92] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
18
|
McEwen BS. Influences of adrenocortical hormones on pituitary and brain function. MONOGRAPHS ON ENDOCRINOLOGY 1979; 12:467-92. [PMID: 226872 DOI: 10.1007/978-3-642-81265-1_25] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Adrenocortical secretions influence neuroendocrine function and behavior, and it is possible to recognize separate physiologic actions of gluco- and mineralocorticoids. The search for neuroanatomical sites and cellular modes of adrenocorticoid action has revealed a system of putative glucocorticoid receptors in neurons of the hippocampus, septum, amygdala, and entorhinal cortex, and in the pituitary. No part of the brain is totally devoid of receptor activity, however, and glial cells may also contain glucocorticoid receptors. Mineralocorticoid receptors are less well characterized neuroanatomically or biochemically. One reason for this is the considerable degree to which both gluco- and mineralocorticoids bind to both classes of receptors in vitro. Another reason may be the overwhelming quantitative predominance of glucocorticoid over mineralocorticoid receptors in neural tissue. Glucocorticoid receptors of the pituitary, which have a high avidity for dexamethasone, appear to participate in the delayed negative feedback effects of glucocoticoids. Functional correlates of neural glucocorticoid receptors remain to be clearly established. Among the possibilities are several reported effects on hippocampal neural activity that have an onset latency of 20--30 min and a duration of several hours. The relative rapidity of such effects does not preclude genomic mediation, as genomic effects of glucocorticoids on thymus lymphocytes have been detected within as little as 15 min of steroid application [117]. What are not so far explained by the intracellular receptor mechanism are the extremely rapid effects of glucocorticoids such as the rate-sensitive negative feedback on CRF and ACTH secretion. These may involve a direct action of the steroid on cell membranes in the pituitary and hypothalamus.
Collapse
|