1
|
Holt A. Conventional Receptor Radioligand Binding Techniques Applied to the Study of Monoamine Oxidase. Methods Mol Biol 2023; 2558:75-96. [PMID: 36169857 DOI: 10.1007/978-1-0716-2643-6_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Designed to measure binding interactions between small molecules and receptor proteins, radioligand binding approaches may also be applied to interactions between monoamine oxidase (MAO) and its ligands. The technique may be used with tissue homogenates or with mitochondrial membranes and can provide information about binding site density, ligand affinity, binding rate constants, and binding events at sites that do not impact absorbance characteristics of the flavin cofactor and that may not be amenable to spectrophotometric studies. This overview describes the use of a cell harvester in a common filtration approach to measure binding to MAO of radiolabeled substrates, inhibitors, or allosteric ligands in saturation analyses and to take advantage of the principles of competition to obtain quantitative binding data for unlabeled ligands that may bind with much lower affinity. The quality and reproducibility of data are impacted by factors such as choice of ligand concentrations, pipetting technique, graphing and regression approaches, and scintillation counting parameters, and consideration is given to these and other factors that may influence the results.
Collapse
Affiliation(s)
- Andrew Holt
- Neurochemical Research Unit, Department of Psychiatry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
2
|
UnbiasedDTI: Mitigating Real-World Bias of Drug-Target Interaction Prediction by Using Deep Ensemble-Balanced Learning. Molecules 2022; 27:molecules27092980. [PMID: 35566330 PMCID: PMC9100109 DOI: 10.3390/molecules27092980] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 01/27/2023] Open
Abstract
Drug-target interaction (DTI) prediction through in vitro methods is expensive and time-consuming. On the other hand, computational methods can save time and money while enhancing drug discovery efficiency. Most of the computational methods frame DTI prediction as a binary classification task. One important challenge is that the number of negative interactions in all DTI-related datasets is far greater than the number of positive interactions, leading to the class imbalance problem. As a result, a classifier is trained biased towards the majority class (negative class), whereas the minority class (interacting pairs) is of interest. This class imbalance problem is not widely taken into account in DTI prediction studies, and the few previous studies considering balancing in DTI do not focus on the imbalance issue itself. Additionally, they do not benefit from deep learning models and experimental validation. In this study, we propose a computational framework along with experimental validations to predict drug-target interaction using an ensemble of deep learning models to address the class imbalance problem in the DTI domain. The objective of this paper is to mitigate the bias in the prediction of DTI by focusing on the impact of balancing and maintaining other involved parameters at a constant value. Our analysis shows that the proposed model outperforms unbalanced models with the same architecture trained on the BindingDB both computationally and experimentally. These findings demonstrate the significance of balancing, which reduces the bias towards the negative class and leads to better performance. It is important to note that leaning on computational results without experimentally validating them and by relying solely on AUROC and AUPRC metrics is not credible, particularly when the testing set remains unbalanced.
Collapse
|
3
|
Thafar M, Raies AB, Albaradei S, Essack M, Bajic VB. Comparison Study of Computational Prediction Tools for Drug-Target Binding Affinities. Front Chem 2019; 7:782. [PMID: 31824921 PMCID: PMC6879652 DOI: 10.3389/fchem.2019.00782] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 10/30/2019] [Indexed: 12/30/2022] Open
Abstract
The drug development is generally arduous, costly, and success rates are low. Thus, the identification of drug-target interactions (DTIs) has become a crucial step in early stages of drug discovery. Consequently, developing computational approaches capable of identifying potential DTIs with minimum error rate are increasingly being pursued. These computational approaches aim to narrow down the search space for novel DTIs and shed light on drug functioning context. Most methods developed to date use binary classification to predict if the interaction between a drug and its target exists or not. However, it is more informative but also more challenging to predict the strength of the binding between a drug and its target. If that strength is not sufficiently strong, such DTI may not be useful. Therefore, the methods developed to predict drug-target binding affinities (DTBA) are of great value. In this study, we provide a comprehensive overview of the existing methods that predict DTBA. We focus on the methods developed using artificial intelligence (AI), machine learning (ML), and deep learning (DL) approaches, as well as related benchmark datasets and databases. Furthermore, guidance and recommendations are provided that cover the gaps and directions of the upcoming work in this research area. To the best of our knowledge, this is the first comprehensive comparison analysis of tools focused on DTBA with reference to AI/ML/DL.
Collapse
Affiliation(s)
- Maha Thafar
- Computer, Electrical and Mathematical Science and Engineering (CEMSE) Division, Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- College of Computers and Information Technology, Taif University, Taif, Saudi Arabia
| | - Arwa Bin Raies
- Computer, Electrical and Mathematical Science and Engineering (CEMSE) Division, Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Somayah Albaradei
- Computer, Electrical and Mathematical Science and Engineering (CEMSE) Division, Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Magbubah Essack
- Computer, Electrical and Mathematical Science and Engineering (CEMSE) Division, Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Vladimir B. Bajic
- Computer, Electrical and Mathematical Science and Engineering (CEMSE) Division, Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
4
|
Gupta M, Sharma R, Kumar A. Docking techniques in pharmacology: How much promising? Comput Biol Chem 2018; 76:210-217. [PMID: 30067954 DOI: 10.1016/j.compbiolchem.2018.06.005] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 02/21/2018] [Accepted: 06/30/2018] [Indexed: 01/01/2023]
|
5
|
|
6
|
Curtidor H, Reyes C, Bermúdez A, Vanegas M, Varela Y, Patarroyo ME. Conserved Binding Regions Provide the Clue for Peptide-Based Vaccine Development: A Chemical Perspective. Molecules 2017; 22:molecules22122199. [PMID: 29231862 PMCID: PMC6149789 DOI: 10.3390/molecules22122199] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 11/24/2017] [Accepted: 11/27/2017] [Indexed: 12/17/2022] Open
Abstract
Synthetic peptides have become invaluable biomedical research and medicinal chemistry tools for studying functional roles, i.e., binding or proteolytic activity, naturally-occurring regions’ immunogenicity in proteins and developing therapeutic agents and vaccines. Synthetic peptides can mimic protein sites; their structure and function can be easily modulated by specific amino acid replacement. They have major advantages, i.e., they are cheap, easily-produced and chemically stable, lack infectious and secondary adverse reactions and can induce immune responses via T- and B-cell epitopes. Our group has previously shown that using synthetic peptides and adopting a functional approach has led to identifying Plasmodium falciparumconserved regions binding to host cells. Conserved high activity binding peptides’ (cHABPs) physicochemical, structural and immunological characteristics have been taken into account for properly modifying and converting them into highly immunogenic, protection-inducing peptides (mHABPs) in the experimental Aotus monkey model. This article describes stereo–electron and topochemical characteristics regarding major histocompatibility complex (MHC)-mHABP-T-cell receptor (TCR) complex formation. Some mHABPs in this complex inducing long-lasting, protective immunity have been named immune protection-inducing protein structures (IMPIPS), forming the subunit components in chemically synthesized vaccines. This manuscript summarizes this particular field and adds our recent findings concerning intramolecular interactions (H-bonds or π-interactions) enabling proper IMPIPS structure as well as the peripheral flanking residues (PFR) to stabilize the MHCII-IMPIPS-TCR interaction, aimed at inducing long-lasting, protective immunological memory.
Collapse
Affiliation(s)
- Hernando Curtidor
- Colombian Institute of Immunology Foundation (FIDIC Nonprofit-Making Organisation), Bogotá 111321, Colombia.
- School of Medicine and Health Sciences, University of Rosario, Bogotá 111321, Colombia.
| | - César Reyes
- Colombian Institute of Immunology Foundation (FIDIC Nonprofit-Making Organisation), Bogotá 111321, Colombia.
| | - Adriana Bermúdez
- Colombian Institute of Immunology Foundation (FIDIC Nonprofit-Making Organisation), Bogotá 111321, Colombia.
- School of Medicine and Health Sciences, University of Rosario, Bogotá 111321, Colombia.
| | - Magnolia Vanegas
- Colombian Institute of Immunology Foundation (FIDIC Nonprofit-Making Organisation), Bogotá 111321, Colombia.
- School of Medicine and Health Sciences, University of Rosario, Bogotá 111321, Colombia.
| | - Yahson Varela
- Colombian Institute of Immunology Foundation (FIDIC Nonprofit-Making Organisation), Bogotá 111321, Colombia.
- Faculty of Health Sciences, Applied and Environmental Sciences University (UDCA), Bogotá 111321, Colombia.
| | - Manuel E Patarroyo
- Colombian Institute of Immunology Foundation (FIDIC Nonprofit-Making Organisation), Bogotá 111321, Colombia.
- Faculty of Medicine, National University of Colombia, Bogotá 111321, Colombia.
| |
Collapse
|
7
|
On the validity and errors of the pseudo-first-order kinetics in ligand–receptor binding. Math Biosci 2017; 287:3-11. [DOI: 10.1016/j.mbs.2016.09.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 08/04/2016] [Accepted: 09/19/2016] [Indexed: 11/20/2022]
|
8
|
Díaz DP, Ocampo M, Pabón L, Herrera C, Patarroyo MA, Munoz M, Patarroyo ME. Mycobacterium tuberculosis PE9 protein has high activity binding peptides which inhibit target cell invasion. Int J Biol Macromol 2016; 86:646-55. [DOI: 10.1016/j.ijbiomac.2015.12.081] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 12/03/2015] [Accepted: 12/26/2015] [Indexed: 10/22/2022]
|
9
|
Design strategies to address kinetics of drug binding and residence time. Bioorg Med Chem Lett 2015; 25:2019-27. [DOI: 10.1016/j.bmcl.2015.02.027] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 02/06/2015] [Accepted: 02/11/2015] [Indexed: 02/06/2023]
|
10
|
Kanno DM, Levitus M. Protein Oligomerization Equilibria and Kinetics Investigated by Fluorescence Correlation Spectroscopy: A Mathematical Treatment. J Phys Chem B 2014; 118:12404-15. [DOI: 10.1021/jp507741r] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- David M. Kanno
- Department
of Chemistry and Biochemistry and the Biodesign Institute, Arizona State University, PO Box 875601, Tempe, Arizona 85287, United States
| | - Marcia Levitus
- Department
of Chemistry and Biochemistry and the Biodesign Institute, Arizona State University, PO Box 875601, Tempe, Arizona 85287, United States
| |
Collapse
|
11
|
|
12
|
Rodríguez DM, Ocampo M, Curtidor H, Vanegas M, Patarroyo ME, Patarroyo MA. Mycobacterium tuberculosis surface protein Rv0227c contains high activity binding peptides which inhibit cell invasion. Peptides 2012; 38:208-16. [PMID: 23000473 DOI: 10.1016/j.peptides.2012.08.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 08/27/2012] [Accepted: 08/27/2012] [Indexed: 10/27/2022]
Abstract
Mycobacterium tuberculosis surface proteins involved in target cell invasion may be identified as a strategy for developing subunit-based, chemically-synthesized vaccines. The Rv0227c protein was thus selected to assess its role in the invasion and infection of Mycobacterium tuberculosis target cells. Results revealed Rv0227c localization on mycobacterial surface by immunoelectron microscopy and Western blot. Receptor-ligand assays using 20-mer, non-overlapping peptides covering the complete Rv0227c protein sequence revealed three high activity binding peptides for U937 phagocytic cells and seven for A549 cells. Peptide 16944 significantly inhibited mycobacterial entry to both cell lines while 16943 and 16949 only managed to inhibit entrance to U937 cells and 16951 to A549 cells. The Jnet bioinformatics tool predicted secondary structure elements for the complete protein, agreeing with elements determined for such chemically-synthesized peptides. It was thus concluded that high activity binding peptides which were able to inhibit mycobacterial entry to target cells are of great importance when selecting peptide candidates for inclusion in an anti-tuberculosis vaccine.
Collapse
|
13
|
Sykes DA, Charlton SJ. Slow receptor dissociation is not a key factor in the duration of action of inhaled long-acting β2-adrenoceptor agonists. Br J Pharmacol 2012; 165:2672-83. [PMID: 21883146 DOI: 10.1111/j.1476-5381.2011.01639.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND AND PURPOSE β(2) -Adrenoceptor agonists are important bronchodilators used for the treatment of chronic obstructive pulmonary disease and asthma. Clinical data on β(2) -adrenoceptor agonists show a range of onset and duration of action. We have investigated whether the receptor binding kinetics of β(2) -adrenoceptor agonists can explain their observed onset of action and duration of effect in the clinic. EXPERIMENTAL APPROACH [(3) H]-DHA was used to label β(2) -adrenoceptors expressed in CHO-cell membranes (K(d) of 0.084 nM). Competition kinetic experiments were performed in the presence of unlabelled β(2) agonists at 37°C in HBSS containing GTP. To determine the kinetic parameters, three concentrations (10, 3 and 1 ×K(i) ) of the unlabelled compound were employed against a fixed concentration of [(3) H]-DHA (0.6 nM). KEY RESULTS The clinically used β(2) -adrenoceptor agonists exhibited a range of association and dissociation rates. The kinetic K(d) and the competition K(i) values of the eight β(2) -adrenoceptor agonists examined were strongly correlated, suggesting that the method had produced accurate k(off) and k(on) rates. The kinetic on-rate was highly correlated with equilibrium binding affinity. CONCLUSIONS AND IMPLICATIONS Although the β(2) -adrenoceptor agonists displayed a range of kinetic rate parameters, simulations at relevant drug concentrations suggest that receptor kinetics do not play an important role in determining onset of action in the clinic. In addition, it is unlikely that receptor kinetics exert an important influence on the duration of action of these agonists, as indacaterol (once daily dosing) had a shorter residency time at the receptor than salmeterol (twice daily dosing).
Collapse
Affiliation(s)
- David A Sykes
- Novartis Institutes for Biomedical Research, West Sussex, UK
| | | |
Collapse
|
14
|
COMMUNICATIONS. Br J Pharmacol 2012. [DOI: 10.1111/j.1476-5381.1985.tb14736.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
15
|
Abstract
G-protein-coupled receptor activation is generally analyzed under equilibrium conditions. However, real-life receptor functions are often dependent on very short, transient stimuli that may not allow the achievement of a steady state. This is particularly true for synaptic receptors such as the α(2A)-adrenergic receptor (α(2A)-AR). Therefore, we developed a fluorescence resonance energy transfer-based technology to study nonequilibrium α(2A)-AR function in living cells. To examine the effects of increasing concentrations of the endogenous agonist norepinephrine on the speed and extent of α(2A)-AR activation with very high temporal resolution, we took advantage of a fluorophore-containing α(2A)-AR sensor. The results indicated that the efficacy of norepinephrine in eliciting receptor activation increased in a time-dependent way, reaching the maximum with a half-life of ~60 ms. The EC(50) values under nonequilibrium conditions start at ~26 μM (at 40 ms) and show a 10-fold decrease until the steady state is achieved. To analyze the ability of norepinephrine to trigger a downstream intracellular response after α(2A)-AR stimulation, we monitored the kinetics and amplitude of G(i) activation in real time by using a fluorophore-containing G(i) sensor. The results show that both the efficacy and the potency of norepinephrine in inducing G(i) activation achieve a steady state more slowly, compared with receptor activation, and that the initial EC(50) value of ~100 nM decreases in an exponential way, reaching the minimal value of ~10 nM at equilibrium. Therefore, both the efficacy and the potency of norepinephrine increase ~10-fold over a few seconds of agonist stimulation, which illustrates that receptor and G-protein signaling and signal amplification are highly time-dependent phenomena.
Collapse
Affiliation(s)
- Manuela Ambrosio
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
| | | |
Collapse
|
16
|
Niessen KV, Tattersall JEH, Timperley CM, Bird M, Green C, Thiermann H, Worek F. Competition radioligand binding assays for the investigation of bispyridinium compound affinities to the human muscarinic acetylcholine receptor subtype 5 (hM5). Drug Test Anal 2012; 4:292-7. [DOI: 10.1002/dta.410] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 12/02/2011] [Accepted: 12/02/2011] [Indexed: 11/08/2022]
Affiliation(s)
- K. V. Niessen
- Bundeswehr Institute of Pharmacology and Toxicology; Munich; Germany
| | | | | | - M. Bird
- Detection Department; Dstl Porton Down; Salisbury; UK
| | - C. Green
- Biomedical Sciences Department; Dstl Porton Down; Salisbury; UK
| | - H. Thiermann
- Bundeswehr Institute of Pharmacology and Toxicology; Munich; Germany
| | - F. Worek
- Bundeswehr Institute of Pharmacology and Toxicology; Munich; Germany
| |
Collapse
|
17
|
Peptides derived from Mycobacterium tuberculosis Rv2301 protein are involved in invasion to human epithelial cells and macrophages. Amino Acids 2011; 42:2067-77. [DOI: 10.1007/s00726-011-0938-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Accepted: 05/09/2011] [Indexed: 10/18/2022]
|
18
|
Cáceres SM, Ocampo M, Arévalo-Pinzón G, Jimenez RA, Patarroyo ME, Patarroyo MA. The Mycobacterium tuberculosis membrane protein Rv0180c: Evaluation of peptide sequences implicated in mycobacterial invasion of two human cell lines. Peptides 2011; 32:1-10. [PMID: 20883740 DOI: 10.1016/j.peptides.2010.09.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 09/21/2010] [Accepted: 09/21/2010] [Indexed: 01/14/2023]
Abstract
The identification and characterization of hypothetical membrane proteins from Mycobacterium tuberculosis have led to a better understanding of the mechanisms used by this pathogen to invade and survive inside host cells. This study assessed the presence, transcription, localization and possible biological activity of the conserved hypothetical protein Rv0180c from M. tuberculosis. Bioinformatics analyses indicated that Rv0180c contains a signal peptide, six possible transmembrane helices and a Plasmodium Export Element (PEXEL)-like motif. PCR analyses showed the presence of the Rv0180c gene in strains from the M. tuberculosis complex; but transcription was not detected in Mycobacterium microti. Sera against synthetic peptides of Rv0180c recognized two protein bands in M. tuberculosis H37Rv sonicate: a ∼48-kDa band close to the predicted molecular mass of Rv0180c (47.6 kDa), and a 63-kDa band probably caused by protein modifications. Moreover, the same sera located the protein on the surface of M. tuberculosis H37Rv bacilli by immunoelectron microscopy. Twenty-three synthetic peptides spanning the entire length of Rv0180c were tested for their ability to bind to U937 and A549 cells, finding nine high-activity binding peptides (HABPs) specific for both cell types, two HABPs specific for A549 cells (namely 31032 and 31044) and two HABPs specific for U937 cells (namely 31025 and 31041). HABPs inhibited invasion of M. tuberculosis H37Rv into A549 or U937 cells by significant percentages and facilitated internalization of latex beads in A549 cells. The Rv0180c HABPs herein reported could be preliminary candidates to be assessed as components of a multiepitope, chemically synthesized, subunit-based vaccine against tuberculosis.
Collapse
|
19
|
The energetic contribution of induced electrostatic asymmetry to DNA bending by a site-specific protein. J Mol Biol 2010; 406:285-312. [PMID: 21167173 DOI: 10.1016/j.jmb.2010.12.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 11/30/2010] [Accepted: 12/04/2010] [Indexed: 11/21/2022]
Abstract
DNA bending can be promoted by reducing the net negative electrostatic potential around phosphates on one face of the DNA, such that electrostatic repulsion among phosphates on the opposite face drives bending toward the less negative surface. To provide the first assessment of energetic contribution to DNA bending when electrostatic asymmetry is induced by a site-specific DNA binding protein, we manipulated the electrostatics in the EcoRV endonuclease-DNA complex by mutation of cationic side chains that contact DNA phosphates and/or by replacement of a selected phosphate in each strand with uncharged methylphosphonate. Reducing the net negative charge at two symmetrically located phosphates on the concave DNA face contributes -2.3 kcal mol(-1) to -0.9 kcal mol(-1) (depending on position) to complex formation. In contrast, reducing negative charge on the opposing convex face produces a penalty of +1.3 kcal mol(-1). Förster resonance energy transfer experiments show that the extent of axial DNA bending (about 50°) is little affected in modified complexes, implying that modification affects the energetic cost but not the extent of DNA bending. Kinetic studies show that the favorable effects of induced electrostatic asymmetry on equilibrium binding derive primarily from a reduced rate of complex dissociation, suggesting stabilization of the specific complex between protein and markedly bent DNA. A smaller increase in the association rate may suggest that the DNA in the initial encounter complex is mildly bent. The data imply that protein-induced electrostatic asymmetry makes a significant contribution to DNA bending but is not itself sufficient to drive full bending in the specific EcoRV-DNA complex.
Collapse
|
20
|
Rodríguez D, Vizcaíno C, Ocampo M, Curtidor H, Pinto M, Elkin Patarroyo M, Alfonso Patarroyo M. Peptides from the Mycobacterium tuberculosis Rv1980c protein involved in human cell infection: insights into new synthetic subunit vaccine candidates. Biol Chem 2010; 391:207-217. [PMID: 20030583 DOI: 10.1515/bc.2010.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Mycobacterium tuberculosis infection continues to be a major cause of morbidity and mortality throughout the world. The vast complexity of the intracellular pathogen M. tuberculosis and the diverse mechanisms by which it can invade host cells highlight the importance of developing a fully protective vaccine. Our vaccine development strategy consists of including fragments from multiple mycobacterial proteins involved in cell invasion. The aim of this study was to identify high activity binding peptides (HABPs) in the immunogenic protein Rv1980c from M. tuberculosis H37Rv with the ability to inhibit mycobacterial invasion into U937 monocyte-derived macrophages and A549 cells. The presence and transcription of the Rv1980c gene was assessed in members belonging to the M. tuberculosis complex and other nontuberculous mycobacteria by PCR and RT-PCR, respectively. Cell surface localization was confirmed by immuno-electron microscopy. Three peptides binding with high activity to U937 cells and one to A549 cells were identified. HABPs 31100, 31101, and 31107 inhibited invasion of M. tuberculosis into A549 and U937 cells and therefore could be promising candidates for the design of a subunit-based antituberculous vaccine.
Collapse
Affiliation(s)
- Diana Rodríguez
- Fundación Instituto de Inmunología de Colombia (FIDIC), Cra. 50 No. 26-20, Bogotá, Colombia.,School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Carolina Vizcaíno
- Fundación Instituto de Inmunología de Colombia (FIDIC), Cra. 50 No. 26-20, Bogotá, Colombia.,School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Marisol Ocampo
- Fundación Instituto de Inmunología de Colombia (FIDIC), Cra. 50 No. 26-20, Bogotá, Colombia.,School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Hernando Curtidor
- Fundación Instituto de Inmunología de Colombia (FIDIC), Cra. 50 No. 26-20, Bogotá, Colombia.,School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Marta Pinto
- Fundación Instituto de Inmunología de Colombia (FIDIC), Cra. 50 No. 26-20, Bogotá, Colombia.,School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Manuel Elkin Patarroyo
- Fundación Instituto de Inmunología de Colombia (FIDIC), Cra. 50 No. 26-20, Bogotá, Colombia.,School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Manuel Alfonso Patarroyo
- Fundación Instituto de Inmunología de Colombia (FIDIC), Cra. 50 No. 26-20, Bogotá, Colombia.,School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
21
|
Watelet JB, Gillard M, Benedetti MS, Lelièvre B, Diquet B. Therapeutic management of allergic diseases. Drug Metab Rev 2009; 41:301-43. [PMID: 19601717 DOI: 10.1080/10837450902891204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Allergic diseases are characterized by the activation of inflammatory cells and by a massive release of mediators. The aim of this chapter was to describe succinctly the modes of action, indications, and side effects of the major antiallergic and antiasthmatic drugs. When considering the ideal pharmacokinetic characteristics of a drug, a poorly metabolized drug may confer a lower variability in plasma concentrations and metabolism-based drug interactions, although poorly metabolized drugs may be prone to transporter-based disposition and interactions. The ideal pharmacological properties of a drug include high binding affinity, high selectivity, and appropriate association and dissociation rates. Finally, from a patient perspective, the frequency and route of administration are important considerations for ease of use.
Collapse
Affiliation(s)
- Jean-Baptiste Watelet
- Department of Otohinolaryngology, Head and Neck Surgery, Ghent University Hospital, Ghent University, Belgium.
| | | | | | | | | |
Collapse
|
22
|
Church MK, Gillard M, Sargentini-Maier ML, Poggesi I, Campbell A, Benedetti MS. From pharmacokinetics to therapeutics. Drug Metab Rev 2009; 41:455-74. [PMID: 19601722 DOI: 10.1080/10837450902891535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Whilst pharmacokinetics describe the relationship between dose levels and concentration-time profiles of a drug in the body and pharmacodynamics describe the concentration-response relationships, pharmacokinectics-pharmacodynamics(PK-PD) models link these two items providing a framework for modelling the time course of drug response. In this chapter, PK-PD models, describing the therapeutic effects of drugs used for the therapy of allergic diseases have been reviewed. Emphasis was given also to the description of the receptor occupancy, which is tightly related to the downstream clinical response. PK - PD models describing unwanted effects were also commented. An integrated use of these models allows choosing appropriate dosing regimens and providing an objective evaluation of the benefit/risk balance.
Collapse
Affiliation(s)
- Martin K Church
- Charité - Universitätsmedizini Berlin, Germany. mkc@ southampton.ac.uk
| | | | | | | | | | | |
Collapse
|
23
|
García J, Curtidor H, Pinzón CG, Vanegas M, Moreno A, Patarroyo ME. Identification of conserved erythrocyte binding regions in members of the Plasmodium falciparum Cys6 lipid raft-associated protein family. Vaccine 2009; 27:3953-62. [PMID: 19389446 DOI: 10.1016/j.vaccine.2009.04.039] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Revised: 04/03/2009] [Accepted: 04/15/2009] [Indexed: 11/15/2022]
Abstract
Detergent-resistant lipid raft membrane-associated Pf12, Pf38 and Pf41 proteins belong to the Cys(6) family, whose members are implicated in Plasmodium falciparum invasion to erythrocytes. We have analyzed the interaction between 20-mer-long synthetic peptides spanning the entire Pf12, Pf38 and Pf41 sequences and erythrocytes. Eight high-activity binding peptides (HABPs) were identified in these proteins, which presented saturable bindings susceptible to erythrocytes' enzymatic treatment, and beta-turn, random coil and alpha-helical elements as principal structural features. Some of these HABPs inhibited merozoite invasion in vitro, suggesting a possible role of Pf12, Pf38 and Pf41 during erythrocyte invasion and supporting their inclusion in the design of a fully effective antimalarial vaccine.
Collapse
Affiliation(s)
- Jeison García
- Fundación Instituto de Inmunología de Colombia FIDIC, Bogotá, Colombia
| | | | | | | | | | | |
Collapse
|
24
|
Pedersen KE. The influence of calcium antagonists on plasma digoxin concentration. ACTA MEDICA SCANDINAVICA. SUPPLEMENTUM 2009; 681:31-6. [PMID: 6587754 DOI: 10.1111/j.0954-6820.1984.tb08674.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Several investigators have independently discovered that the calcium antagonist, verapamil, causes a 60-80% increase in plasma digoxin. Pharmacokinetic studies indicate, that the elevated plasma digoxin level is due to verapamil-induced inhibition of both renal and extrarenal digoxin clearance. No significant changes in single-dose digoxin pharmacokinetics were observed during nifedipine coadministration . To elucidate the clinical relevance of this interaction, we investigated the influence of verapamil on digoxin-induced inotropism as assessed from systolic time intervals. In single-dose trials, the verapamil-induced elevation of plasma digoxin was associated with a more sustained reduction in left ventricular ejection time as compared to control. Correspondingly, the concentration-response relationship of digoxin inotropism was unaffected by verapamil. In-vitro studies showed that verapamil had no influence on the number of digitalis receptors on human lymphocytes. In accordance, verapamil enhanced the digoxin-induced elevation of intracellular sodium concentration possibly reflecting an increased receptor effect. The plasma digoxin elevation resulting from verapamil coadministration seems cardioactive with regard to both inotropism and toxic effects.
Collapse
|
25
|
Nilvebrant L. ON THE MUSCARINIC RECEPTORS IN THE URINARY BLADDER AND THE PUTATIVE SUBCLASSIFICATION OF MUSCARINIC RECEPTORS. ACTA ACUST UNITED AC 2009. [DOI: 10.1111/j.1600-0773.1986.tb03647.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
26
|
|
27
|
Jecklin MC, Touboul D, Jain R, Toole EN, Tallarico J, Drueckes P, Ramage P, Zenobi R. Affinity Classification of Kinase Inhibitors by Mass Spectrometric Methods and Validation Using Standard IC50 Measurements. Anal Chem 2008; 81:408-19. [DOI: 10.1021/ac801782c] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Matthias Conradin Jecklin
- Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland, Novartis Institutes for Biomedical Research, 250 Mass Avenue, Cambridge, Massachusettts 02139, and Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - David Touboul
- Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland, Novartis Institutes for Biomedical Research, 250 Mass Avenue, Cambridge, Massachusettts 02139, and Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Rishi Jain
- Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland, Novartis Institutes for Biomedical Research, 250 Mass Avenue, Cambridge, Massachusettts 02139, and Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Estee Naggar Toole
- Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland, Novartis Institutes for Biomedical Research, 250 Mass Avenue, Cambridge, Massachusettts 02139, and Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - John Tallarico
- Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland, Novartis Institutes for Biomedical Research, 250 Mass Avenue, Cambridge, Massachusettts 02139, and Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Peter Drueckes
- Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland, Novartis Institutes for Biomedical Research, 250 Mass Avenue, Cambridge, Massachusettts 02139, and Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Paul Ramage
- Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland, Novartis Institutes for Biomedical Research, 250 Mass Avenue, Cambridge, Massachusettts 02139, and Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Renato Zenobi
- Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland, Novartis Institutes for Biomedical Research, 250 Mass Avenue, Cambridge, Massachusettts 02139, and Novartis Institutes for Biomedical Research, Basel, Switzerland
| |
Collapse
|
28
|
Curtidor H, García J, Vanegas M, Puentes F, Forero M, Patarroyo ME. Identification of peptides with high red blood cell and hepatocyte binding activity in the Plasmodium falciparum multi-stage invasion proteins: PfSPATR and MCP-1. Biochimie 2008; 90:1750-9. [DOI: 10.1016/j.biochi.2008.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Accepted: 08/25/2008] [Indexed: 11/30/2022]
|
29
|
Billich A, Aziz A, Lehr P, Charpiot B, Gstach H, Scholz D. Kinetic and Binding Studies on [125I]SDZ-283471, A Radiolabeled Inhibitor of Hiv-1 Proteinase. ACTA ACUST UNITED AC 2008. [DOI: 10.3109/14756369309040764] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
30
|
Morin D, Zini R, Urien S, Sapena R, Tillement JP. Labelling of Rat Brain ß-Adrenoceptors: (3H)CGP-12177 or (125I)Iodocyanopindolol? ACTA ACUST UNITED AC 2008; 12:369-87. [PMID: 1354747 DOI: 10.3109/10799899209074801] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Binding of (125I)iodocyanopindolol (ICYP) and (3H)CGP-12177 to rat brain homogenates was characterized and compared. ICYP was shown to bind to both beta-adrenergic and serotonin1B (5HT1B) receptors whereas (3H)CGP-12177 only labelled the first ones. The addition of 10 microM serotonin (5HT) prevented ICYP binding to 5HT receptors and under these experimental conditions both ligands labelled a similar total number of beta-adrenoceptors in the different rat brain regions. ICYP displayed a higher affinity for cerebellar (mainly beta 2-subtype) than for cerebral cortex beta-adrenoceptors (mainly beta 1-subtype) suggesting a subtype selectivity. A multiple displacement binding approach using CGP-20712A, a beta 1-subtype ligand, as competitor revealed a 2.6 fold selectivity of ICYP for the beta 2-adrenoceptor subtype. On the other hand, (3H)CGP-12177 binds only to beta-adrenoceptors and is not subtype selective in the rat brain homogenate. Considering both its high specificity and its lack of subtype selectivity (3H)CGP-12177 seems to be a more suitable ligand than ICYP to non-selectively label beta-adrenoceptors in rat brain.
Collapse
Affiliation(s)
- D Morin
- Département de Pharmacologie, Faculté de Médecine de Paris XII, Creteil, France
| | | | | | | | | |
Collapse
|
31
|
Patarroyo MA, Curtidor H, Plaza DF, Ocampo M, Reyes C, Saboya O, Barrera G, Patarroyo ME. Peptides derived from the Mycobacterium tuberculosis Rv1490 surface protein implicated in inhibition of epithelial cell entry: potential vaccine candidates? Vaccine 2008; 26:4387-95. [PMID: 18585422 DOI: 10.1016/j.vaccine.2008.05.092] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2007] [Revised: 05/24/2008] [Accepted: 05/26/2008] [Indexed: 10/21/2022]
Abstract
This study reports the Rv1490 gene presence and transcription in members of the Mycobacterium tuberculosis complex, and characterises the encoded Rv1490 putative membrane protein in M. tuberculosis H37Rv. Rv1490 derived peptides were synthesised and their A549 and U937 cell binding ability was tested, finding five high activity binding peptides (HABPs) for A549 and five for U937. Only two HABPs (11060 and 11073) were shared by both cell lines, both of which affected M. tuberculosis' invading ability to target cells, thus indicating an important role for these sequences in M. tuberculosis entry to A549 alveolar epithelial cells and supporting their inclusion in further studies on the development of a subunit-based multi-epitopic, chemically synthesised anti-tuberculosis vaccine.
Collapse
|
32
|
Patarroyo MA, Plaza DF, Ocampo M, Curtidor H, Forero M, Rodriguez LE, Patarroyo ME. Functional characterization of Mycobacterium tuberculosis Rv2969c membrane protein. Biochem Biophys Res Commun 2008; 372:935-40. [PMID: 18539140 DOI: 10.1016/j.bbrc.2008.05.157] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2008] [Accepted: 05/29/2008] [Indexed: 11/24/2022]
Abstract
Identifying Mycobacterium tuberculosis membrane proteins involved in binding to and invasion of host cells is important in designing subunit-based anti-tuberculosis vaccines. The Rv2969c gene sequence was identified by PCR in M. tuberculosis complex strains, being transcribed in M. tuberculosis H37Rv, M. tuberculosis H37Ra, and M. bovis BCG. Rabbits immunized with synthetic peptides from highly specific conserved regions of this protein produced antibodies recognizing 27 and 29 kDa bands in M. tuberculosis lysate, which is consistent with the molecular weight of the Rv2969c gene product in M. tuberculosis H37Rv. Immunoelectron microscopy revealed the protein was localized on the bacillus surface. Four and three specific high activity binding peptides (HABPs) to the A549 alveolar epithelial and U937 monocyte cell lines were found, respectively. Two of the HABPs found inhibited M. tuberculosis invasion of A549 cells, suggesting that these peptides might be good candidates to be included in a multiepitopic, subunit-based anti-tuberculosis vaccine.
Collapse
Affiliation(s)
- Manuel A Patarroyo
- Fundacion Instituto de Inmunología de Colombia, Molecular Biology, Carrera 50 # 26-00, Bogotá, Colombia.
| | | | | | | | | | | | | |
Collapse
|
33
|
Lohse MJ, Hein P, Hoffmann C, Nikolaev VO, Vilardaga JP, Bünemann M. Kinetics of G-protein-coupled receptor signals in intact cells. Br J Pharmacol 2008; 153 Suppl 1:S125-32. [PMID: 18193071 DOI: 10.1038/sj.bjp.0707656] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
G-protein-coupled receptors (GPCRs) are the largest group of cell surface receptors. They are stimulated by a variety of stimuli and signal to different classes of effectors, including several types of ion channels and second messenger-generating enzymes. Recent technical advances, most importantly in the optical recording with energy transfer techniques--fluorescence and bioluminescence resonance energy transfer, FRET and BRET--, have permitted a detailed kinetic analysis of the individual steps of the signalling chain, ranging from ligand binding to the production of second messengers in intact cells. The transfer of information, which is initiated by ligand binding, triggers a signalling cascade that displays various rate-controlling steps at different levels. This review summarizes recent findings illustrating the speed and the complexity of this signalling system.
Collapse
Affiliation(s)
- M J Lohse
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany.
| | | | | | | | | | | |
Collapse
|
34
|
Plaza DF, Curtidor H, Patarroyo MA, Chapeton-Montes JA, Reyes C, Barreto J, Patarroyo ME. The Mycobacterium tuberculosis membrane protein Rv2560 − biochemical and functional studies. FEBS J 2007; 274:6352-64. [DOI: 10.1111/j.1742-4658.2007.06153.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Pacheco-Domínguez RL, Palma-Nicolas JP, López E, López-Colomé AM. The activation of MEK-ERK1/2 by glutamate receptor-stimulation is involved in the regulation of RPE proliferation and morphologic transformation. Exp Eye Res 2007; 86:207-19. [PMID: 18061165 DOI: 10.1016/j.exer.2007.10.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2007] [Revised: 10/15/2007] [Accepted: 10/18/2007] [Indexed: 10/22/2022]
Abstract
Retinal pigment epithelial (RPE) cells are the main cell type involved in the pathogenesis of proliferative vitreoretinopathy (PVR). As a result from retinal detachment or surgical procedures, RPE comes in contact with glutamate from serum, glial release and the injured retina. The purpose of this study was to explore a possible role for glutamate in the development of PVR, mediated by the receptor-stimulated activation of the ERK1/2 MAPK pathway, the alteration of cell proliferation and the transdifferentiation of RPE cells, using rat RPE cells in culture as a model system. We demonstrated the expression in these cells of Group I metabotropic-and ionotropic AMPA/KA and NMDA glutamate receptors (GluRs), predominantly of the NMDA subtype, which are targeted to the membrane, and exhibit pharmacological and biochemical characteristics equivalent to those previously established in brain tissue. Proliferation was measured by MTS-reduction colorimetric assay, and actin cytoskeleton dynamics was visualized by immunoflurescence using alpha-sma specific antibodies. Activation of metabotropic, AMPA and NMDA receptors by glutamate induced the time-and dose-dependent phosphorylation of ERK1/2, assessed by Western blot analysis, in parallel to a significant increase in cell proliferation and a decrease in alpha-sma expression and its recruitment into stress fibers. These effects were all prevented by the inhibition of MEK. Hence, results suggest that glutamate could be involved in the generation of PVR, through a GluR-mediated increase in proliferation and phenotypic transformation, cause-effect related to the activation of ERK1/2.
Collapse
Affiliation(s)
- Reyna Lizette Pacheco-Domínguez
- Departamento de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), México, DF, Mexico
| | | | | | | |
Collapse
|
36
|
Ioja E, Tourwé D, Kertész I, Tóth G, Borsodi A, Benyhe S. Novel diastereomeric opioid tetrapeptides exhibit differing pharmacological activity profiles. Brain Res Bull 2007; 74:119-29. [PMID: 17683797 DOI: 10.1016/j.brainresbull.2007.05.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2007] [Revised: 05/12/2007] [Accepted: 05/16/2007] [Indexed: 11/28/2022]
Abstract
A novel opioid peptide antagonist analogue, [3H]Dmt-Tic-(2S,3R)betaMePhe-Phe, derived from the potent, delta-receptor selective TIPP tetrapeptide (Tyr-Tic-Phe-Phe) series was synthesized and radiolabeled by catalytic tritiation of its iodinated precursor peptide. The purified radioprobe exhibited a specific activity of 2.15 TBq/mmol (58 Ci/mmol). The novelty of this compound is that it contains structurally modified tyrosine residue (2',6'-dimethyltyrosine, Dmt1) replacing tyrosine (Tyr1) at the N-terminus, and beta-methyl substituted phenylalanine (betaMePhe3) at the third position. As the configuration of betaMePhe3 side-chain might be different due to diastereomerism, and accordingly can alter the biological activity, both unlabeled threo (2S,3R and 2R,3S) diastereomeric analogues were also prepared and included in this study. The affinity and selectivity (delta-opioid versus mu-opioid receptor) were evaluated by radioreceptor binding assays. Agonist or antagonist potencies were determined in [35S]GTPgammaS binding experiments using Chinese Hamster Ovary (CHO) cells selectively expressing delta- or mu-opioid receptors. The equilibrium binding of the radiolabeled peptide derivative [3H]Dmt-Tic-(2S,3R)betaMePhe-Phe to rat brain membranes was saturable and the Scatchard analysis indicated a single binding site with a Kd of 0.3 nM and a Bmax of 127 fmol/mg protein. A study of [3H]Dmt-Tic-(2S,3R)betaMePhe-Phe binding displacement by various receptor-type specific opioid ligands showed the rank order of competitor's potency delta > mu > kappa, suggesting selective labeling of opioid delta-sites. In the functional tests, the (2S,3R) and (2R,3S) peptides exhibited partial agonist behaviour by weakly stimulating regulatory G-proteins in CHO cell membranes transfected with different receptors. Both isomers were quite weak partial agonists at the delta-receptor and reasonable partial agonists at the mu-receptor, with a prevalence of (2S,3R) over (2R,3S) for the mu-receptor. Consistent with these observations both stereomers competitively inhibited the stimulation of [35S]GTPgammaS binding induced by the prototype delta-agonist peptide (pClPhe4)-DPDPE in delta(m) CHO cell membranes, and still the (2S,3R) compound exerted more potent delta-antagonist effect. [3H]Dmt-Tic-(2S,3R)betaMePhe-Phe represents a high affinity new radioligand and also constitute further example of the influence of beta-methyl substitution on the potency and selectivity of TIPP analogues, thus becoming a valuable biochemical and pharmacological tool in opioid research.
Collapse
Affiliation(s)
- Eniko Ioja
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, Temesvari krt. 62, H-6726 Szeged, Hungary
| | | | | | | | | | | |
Collapse
|
37
|
Rodriguez LE, Vera R, Valbuena J, Curtidor H, Garcia J, Puentes A, Ocampo M, Lopez R, Rosas J, Lopez Y, Patarroyo MA, Patarroyo ME. Characterisation of Plasmodium falciparum RESA-like protein peptides that bind specifically to erythrocytes and inhibit invasion. Biol Chem 2007; 388:15-24. [PMID: 17214545 DOI: 10.1515/bc.2007.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The Plasmodium falciparum ring-erythrocyte surface antigen (RESA)-like putative protein was identified and characterised. PCR and RT-PCR assays revealed that the gene encoding this protein was both present and being transcribed in P. falciparum strain FCB-2 16 h after erythrocyte invasion. Indirect immunofluorescence studies detected this protein in infected erythrocyte (IE) cytosol in dense fluorescent granules similar to Maurer's clefts at 16-20 h (parasites in ring and trophozoite stages) and very strongly on IE membranes at 22 h, suggesting that it is synthesised during early ring stages (16 h) and transported to the infected red blood cell (RBC) membrane surface during the trophozoite stage (22 h). Western blotting showed that antisera produced against polymerised synthetic peptides of this protein recognised a 72-kDa band in P. falciparum schizont lysate. P. falciparum RESA-like peptides used in normal RBC binding assays revealed that peptides 30326 ((101)NAEKI LGFDD KNILE ALDLFY(120)), 30334 ((281)RVTWK KLRTK MIKAL KKSLTY(300)) and 30342 ((431)SSPQR LKFTA GGGFC GKLRNY(450)) bind with high activity and saturability, presenting nM affinity constants. These peptides contain alpha-helical structural elements, as determined by circular dichroism, and inhibit P. falciparum in vitro invasion of normal RBCs by up to 91%, suggesting that some RESA-like protein regions are involved in intra-erythrocyte stage P. falciparum invasion.
Collapse
Affiliation(s)
- Luis Eduardo Rodriguez
- Fundación Instituto de Inmunologia de Colombia and Universidad Nacional de Colombia, Carrera 50 No. 26-00, Bogotá, Colombia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Carter CMS, Leighton-Davies JR, Charlton SJ. Miniaturized receptor binding assays: complications arising from ligand depletion. ACTA ACUST UNITED AC 2007; 12:255-66. [PMID: 17259589 DOI: 10.1177/1087057106297788] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The advent of miniaturized assay formats has made possible the screening of large numbers of compounds against a single target, known as high-throughput screening. Despite this clear advantage, assay miniaturization also increases the risk of ligand depletion, where the actual concentration of free ligand is significantly lower than that added. This, in turn, complicates the interpretation of data from such assays, potentially introducing significant error if not recognized. In this study, the effects of reducing assay volume on radioligand Kd and competitor Ki values have been investigated, using the muscarinic M(3) receptor as a model system. It was found that assay miniaturization caused dramatic effects, with up to a 30-fold underestimation of ligand affinity. A theoretical model was developed and shown to accurately predict both the degree of ligand depletion in any given assay volume and the effect of this depletion on affinity estimates for competing ligands. Importantly, it was found that in most cases, errors introduced by ligand depletion could be largely corrected for by the use of appropriate analysis methods. In addition to those previously described by others, the authors propose a simple method capable of correcting errors in competition binding experiments performed in conditions of ligand depletion.
Collapse
|
39
|
Clark R, Kerr ID, Callaghan R. Multiple drugbinding sites on the R482G isoform of the ABCG2 transporter. Br J Pharmacol 2006; 149:506-15. [PMID: 16981002 PMCID: PMC2014674 DOI: 10.1038/sj.bjp.0706904] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND & PURPOSE Drug-resistant cancer cells frequently display efflux pumps such as P-glycoprotein (P-gp), the multidrug resistance associated protein (MRP1) or the transporter ABCG2. These transporters are each capable of mediating the active efflux of numerous anticancer drugs and display relatively distinct substrate preferences. The last, most recently discovered member, ABCG2, plays a major role in resistance in several types of cancer and the precise pharmacology of this multidrug transporter remain unresolved as does the nature of substrate binding. EXPERIMENTAL APPROACH Plasma membranes from insect cells expressing ABCG2 were used to characterise binding of [3H]daunomycin to the multidrug transporter. The kinetics of association and dissociation for this substrate and several other compounds were also determined in this experimental system. KEY RESULTS The dissociation constant for [3H]daunomycin binding was 564 +/- 57 nM and a Hill slope of 1.4 suggested cooperative binding. Doxorubicin, prazosin and daunomycin completely displaced the binding of radioligand, while mitoxantrone and Hoechst 33342 produced only a partial displacement. Analysis of the dissociation rates revealed that [3H]daunomycin and doxorubicin bind to multiple sites on the transporter. CONCLUSIONS Both kinetic and equilibrium data support the presence of at least two symmetric drug binding sites on ABCG2, which is distinct from the asymmetry observed for P-gp. The data provide the first molecular details underlying the mechanism by which this transporter is capable of interacting with multiple substrates.
Collapse
Affiliation(s)
- R Clark
- Nuffield Department of Clinical Laboratory Sciences, University of OxfordUK
| | - I D Kerr
- Centre for Biochemistry and Cell Biology, School of Biomedical Sciences, University of NottinghamUK
| | - R Callaghan
- Nuffield Department of Clinical Laboratory Sciences, University of OxfordUK
- Author for correspondence:
| |
Collapse
|
40
|
|
41
|
Cohen L, Gilles N, Karbat I, Ilan N, Gordon D, Gurevitz M. Direct evidence that receptor site-4 of sodium channel gating modifiers is not dipped in the phospholipid bilayer of neuronal membranes. J Biol Chem 2006; 281:20673-20679. [PMID: 16720570 DOI: 10.1074/jbc.m603212200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In a recent note to Nature, R. MacKinnon has raised the possibility that potassium channel gating modifiers are able to partition in the phospholipid bilayer of neuronal membranes and that by increasing their partial concentration adjacent to their receptor, they affect channel function with apparent high affinity (Lee and MacKinnon (2004) Nature 430, 232-235). This suggestion was adopted by Smith et al. (Smith, J. J., Alphy, S., Seibert, A. L., and Blumenthal, K. M. (2005) J. Biol. Chem. 280, 11127-11133), who analyzed the partitioning of sodium channel modifiers in liposomes. They found that certain modifiers were able to partition in these artificial membranes, and on this basis, they have extrapolated that scorpion beta-toxins interact with their channel receptor in a similar mechanism as that proposed by MacKinnon. Since this hypothesis has actually raised a new conception, we examined it in binding assays using a number of pharmacologically distinct scorpion beta-toxins and insect and mammalian neuronal membrane preparations, as well as by analyzing the rate by which the toxin effect on gating of Drosophila DmNa(v)1 and rat brain rNa(v)1.2a develops. We show that in general, scorpion beta-toxins do not partition in neuronal membranes and that in the case in which a depressant beta-toxin partitions in insect neuronal membranes, this partitioning is unrelated to its interaction with the receptor site and the effect on the gating properties of the sodium channel. These results negate the hypothesis that the high affinity of beta-toxins for sodium channels is gained by their ability to partition in the phospholipid bilayer and clearly indicate that the receptor site for scorpion beta-toxins is accessible to the extracellular solvent.
Collapse
Affiliation(s)
- Lior Cohen
- Department of Plant Sciences, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Ramat-Aviv 69978, Tel-Aviv, Israel
| | - Nicolas Gilles
- Commissariat à l'Energie Atomique, Department d'Ingenierie et d'Etudes des Proteines, C.E. Saclay, F-91191 Gif Sur Yvette Cedex, France
| | - Izhar Karbat
- Department of Plant Sciences, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Ramat-Aviv 69978, Tel-Aviv, Israel
| | - Nitza Ilan
- Department of Plant Sciences, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Ramat-Aviv 69978, Tel-Aviv, Israel
| | - Dalia Gordon
- Department of Plant Sciences, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Ramat-Aviv 69978, Tel-Aviv, Israel.
| | - Michael Gurevitz
- Department of Plant Sciences, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Ramat-Aviv 69978, Tel-Aviv, Israel.
| |
Collapse
|
42
|
Neurotox '88- An International Symposium on Neuropharmacology and Pesticide Action. ACTA ACUST UNITED AC 2006. [DOI: 10.1002/ps.2780240405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
43
|
Curtidor H, Ocampo M, Rodríguez LE, López R, García JE, Valbuena J, Vera R, Puentes A, Leiton J, Cortes LJ, López Y, Patarroyo MA, Patarroyo ME. Plasmodium falciparum TryThrA antigen synthetic peptides block in vitro merozoite invasion to erythrocytes. Biochem Biophys Res Commun 2005; 339:888-96. [PMID: 16329993 DOI: 10.1016/j.bbrc.2005.11.089] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2005] [Accepted: 11/14/2005] [Indexed: 11/27/2022]
Abstract
Tryptophan-threonine-rich antigen (TryThrA) is a Plasmodium falciparum homologue of Plasmodium yoelii-infected erythrocyte membrane pypAg-1 antigen. pypAg-1 binds to the surface of uninfected mouse erythrocytes and has been used successfully in vaccine studies. The two antigens are characterized by an unusual tryptophan-rich domain, suggesting similar biological properties. Using synthetic peptides spanning the TryThrA sequence and human erythrocyte we have done binding assays to identify possible TryThrA functional regions. We describe four peptides outside the tryptophan-rich domain having high activity binding to normal human erythrocytes. The peptides termed HABPs (high activity binding peptides) are 30884 ((61)LKEKKKKVLEFFENLVLNKKY(80)) located at the N-terminal and 30901 ((401)RKSLEQQFGDNMDKMNKLKKY(420)), 30902 ((421)KKILKFFPLFNYKSDLESIM(440)) and 30913 ((641)DLESTAEQKAEKKGGKAKAKY(660)) located at the C-terminal. Studies with polyclonal goat antiserum against synthetic peptides chosen to represent the whole length of the protein showed that TryThrA has fluorescence pattern similar to PypAg-1 of P. yoelii. All HABPs inhibited merozoite in vitro invasion, suggesting that TryThrA protein may be participating in merozoite-erythrocyte interaction during invasion.
Collapse
Affiliation(s)
- Hernando Curtidor
- Fundación Instituto de Inmunología de Colombia (FIDIC), Universidad Nacional de Colombia, Colombia.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Napier C, Sale H, Mosley M, Rickett G, Dorr P, Mansfield R, Holbrook M. Molecular cloning and radioligand binding characterization of the chemokine receptor CCR5 from rhesus macaque and human. Biochem Pharmacol 2005; 71:163-72. [PMID: 16298345 DOI: 10.1016/j.bcp.2005.10.024] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2005] [Revised: 10/11/2005] [Accepted: 10/12/2005] [Indexed: 11/23/2022]
Abstract
The aim of this study was to determine if macaque represents a suitable species for the pre-clinical evaluation of novel CCR5 antagonists, such as maraviroc (UK-427,857). To do this we cloned and expressed CCR5 from rhesus macaque and compared the binding properties of [125I]-MIP-1beta and [3H]-maraviroc with human recombinant CCR5. [125I]-MIP-1beta bound with similar high affinity to CCR5 from macaque (K(d) = 0.24 +/- 0.05 nM) and human (K(d) = 0.23 +/- 0.05 nM) and with similar kinetic properties. In competition binding studies the affinity of a range of human chemokines for macaque CCR5 was also similar to human CCR5. Maraviroc inhibited binding of [125I]-MIP-1beta to CCR5 from macaque and human with similar potency (IC50 = 17.50 +/- 1.24 nM and 7.18 +/- 0.93 nM, respectively) and antagonised MIP-1beta induced intracellular calcium release mediated through CCR5 from macaque and human with similar potency (IC50 = 17.50 +/- 3.30 nM and 12.07 +/- 1.89, respectively). [3H]-maraviroc bound with high affinity to CCR5 from macaque (K(d) = 1.36+/-0.07 nM) and human (K(d) = 0.86 +/- 0.08 nM), but was found to dissociate approximately 10-fold more quickly from macaque CCR5. However, as with the human receptor, maraviroc was shown to be a high affinity, potent functional antagonist of macaque CCR5 thereby indicating that the macaque should be a suitable species in which to evaluate the pharmacology, safety and potential mechanism-related toxicology of novel CCR5 antagonists.
Collapse
Affiliation(s)
- Carolyn Napier
- Discovery Biology, Pfizer Global Research and Development, Sandwich Laboratories, Sandwich, Kent. CT13 9NJ UK.
| | | | | | | | | | | | | |
Collapse
|
45
|
Castro M, Nikolaev VO, Palm D, Lohse MJ, Vilardaga JP. Turn-on switch in parathyroid hormone receptor by a two-step parathyroid hormone binding mechanism. Proc Natl Acad Sci U S A 2005; 102:16084-9. [PMID: 16236727 PMCID: PMC1276049 DOI: 10.1073/pnas.0503942102] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Parathyroid hormone (PTH) and its related receptor (PTHR) are essential regulators of calcium homeostasis and bone physiology. PTH activates PTHR by interacting with a ligand-binding site localized within the N-terminal extracellular domain (the N-domain) and the domain comprising the seven transmembrane helices and the connecting extracellular loops (the J-domain). PTH binding triggers a conformational switch in the receptor, leading to receptor activation and subsequent cellular responses. The process of receptor activation occurs rapidly, within approximately 1 s, but the binding event preceding receptor activation is not understood. By recording FRET between tetramethyl-rhodamine in PTH(1-34) and GFP in the N-domain of the receptor, we measured the binding event in real time in living cells. We show that the association time course between PTH(1-34) and PTHR involves a two-step binding process where the agonist initially binds the receptor with a fast time constant (tau approximately 140 ms) and then with slower kinetics (tau approximately 1 s). The fast and slow phases were assigned to hormone association to the receptor N- and J domains, respectively. Our data indicate that the slow binding step to the J-domain coincides with a conformational switch in the receptor, also monitored by FRET between the enhanced cyan fluorescent protein and the enhanced yellow fluorescent protein in the PTHR sensor, PTHR enhanced cyan fluorescent protein/enhanced yellow fluorescent protein (PTHR(CFP/YFP)). These data suggest that the conformational change that switches the receptor into its active state proceeds in a sequential manner, with the first rapid binding step event preceding receptor activation by PTH(1-34).
Collapse
Affiliation(s)
- Marián Castro
- Institute of Pharmacology and Toxicology, University of Würzburg, Versbacher Strasse 9, D-97078 Würzburg, Germany
| | | | | | | | | |
Collapse
|
46
|
Urquiza M, Lopez R, Patiño H, Rosas JE, Patarroyo ME. Identification of Three gp350/220 Regions Involved in Epstein-Barr Virus Invasion of Host Cells. J Biol Chem 2005; 280:35598-605. [PMID: 16087675 DOI: 10.1074/jbc.m504544200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Epstein-Barr virus (EBV) invasion of B-lymphocytes involves EBV gp350/220 binding to B-lymphocyte CR2. The anti-gp350 monoclonal antibody (mAb)-72A1 Fab inhibits this binding and therefore blocks EBV invasion of target cells. However, gp350/220 regions interacting with mAb 72A1 and involved in EBV invasion of target cells have not yet been identified. This work reports three gp350/220 regions, defined by peptide 11382, 11389, and 11416 sequences, that are involved in EBV binding to B-lymphocytes. Peptides 11382, 11389, and 11416 bound to CR2(+) but not to CR2(-) cells, inhibited EBV invasion of cord blood lymphocytes (CBLs), were recognized by mAb 72A1, and inhibited mAb 72A1 binding to EBV. Peptides 11382 and 11416 binding to peripheral blood lymphocytes (PBLs) induced interleukin-6 protein synthesis in these cells, this phenomenon being inhibited by mAb 72A1. The same behavior has been reported for gp350/220 binding to PBLs. Anti-peptide 11382, 11389, and 11416 antibodies inhibited EBV binding and EBV invasion of PBLs and CBLs. Peptide 11382, 11389, and 11416 sequences presented homology with the C3dg regions coming into contact with CR2 (C3dg and gp350 bound to similar CR2 regions). These peptides could be used in designing strategies against EBV infection.
Collapse
Affiliation(s)
- Mauricio Urquiza
- Fundación Instituto de Inmunología de Colombia, Bogotá 030405, Colombia.
| | | | | | | | | |
Collapse
|
47
|
Rodríguez LE, Curtidor H, Ocampo M, Garcia J, Puentes A, Valbuena J, Vera R, López R, Patarroyo ME. Identifying Plasmodium falciparum merozoite surface antigen 3 (MSP3) protein peptides that bind specifically to erythrocytes and inhibit merozoite invasion. Protein Sci 2005; 14:1778-86. [PMID: 15987906 PMCID: PMC2253348 DOI: 10.1110/ps.041304505] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Receptor-ligand interactions between synthetic peptides and normal human erythrocytes were studied to determine Plasmodium falciparum merozoite surface protein-3 (MSP-3) FC27 strain regions that specifically bind to membrane surface receptors on human erythrocytes. Three MSP-3 protein high activity binding peptides (HABPs) were identified; their binding to erythrocytes became saturable, had nanomolar affinity constants, and became sensitive on being treated with neuraminidase and trypsin but were resistant to chymotrypsin treatment. All of them specifically recognized 45-, 55-, and 72-kDa erythrocyte membrane proteins. They all presented alpha-helix structural elements. All HABPs inhibited in vitro P. falciparum merozoite invasion of erythrocytes by ~55%-85%, suggesting that MSP-3 protein's role in the invasion process probably functions by using mechanisms similar to those described for other MSP family antigens.
Collapse
Affiliation(s)
- Luis E Rodríguez
- Fundación Instituto de Immunologia de Colombia, and Universidad Nacional de Columbia.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Vera-Bravo R, Valbuena JJ, Ocampo M, Garcia JE, Rodriguez LE, Puentes A, Lopez R, Curtidor H, Torres E, Trujillo M, Tovar DR, Patarroyo MA, Patarroyo ME. Amino terminal peptides from the Plasmodium falciparum EBA-181/JESEBL protein bind specifically to erythrocytes and inhibit in vitro merozoite invasion. Biochimie 2005; 87:425-36. [PMID: 15820749 DOI: 10.1016/j.biochi.2005.01.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2004] [Accepted: 01/13/2005] [Indexed: 11/21/2022]
Abstract
Several EBA-175 paralogues (EBA-140, EBA-165, EBA-175, EBA-181, and EBL-1) have been described among the Plasmodium falciparum malaria parasite proteins, which are important in the red blood cell (RBC) invasion process. EBA-181/JESEBL is a 181 kDa protein expressed in the late schizont stage and located in the micronemes; it belongs to the Plasmodium Duffy binding-like family and is able to interact with the erythrocyte surface. Here, we describe the synthesis of 78, 20-mer synthetic peptides derived from the reported EBA-181/JESEBL sequence and their ability to bind RBCs in receptor-ligand assays. Five peptides (numbered 30030, 30031, 30045, 30051, and 30060) displayed high specific binding to erythrocytes; their equilibrium binding parameters were then determined. These peptides interacted with 53 and 33 kDa receptor proteins on the erythrocyte surface, this binding being altered when RBCs were pretreated with enzymes. They were able to inhibit P. falciparum merozoite invasion of RBCs when tested in in vitro assays. According to these results, these five EBA-181/JESEBL high specific erythrocyte binding peptides, as well as the entire protein, were seen to be involved in the molecular machinery used by the parasite for invading RBCs. They are thus suggested as potential candidates in designing a multi-sub-unit vaccine able to combat the P. falciparum malaria parasite.
Collapse
Affiliation(s)
- Ricardo Vera-Bravo
- Fundacion Instituto de Inmunologia de Colombia and Universidad Nacional de Colombia, Bogotá, Colombia.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Ocampo M, Rodríguez LE, Curtidor H, Puentes A, Vera R, Valbuena JJ, López R, García JE, Ramírez LE, Torres E, Cortes J, Tovar D, López Y, Patarroyo MA, Patarroyo ME. Identifying Plasmodium falciparum cytoadherence-linked asexual protein 3 (CLAG 3) sequences that specifically bind to C32 cells and erythrocytes. Protein Sci 2005; 14:504-13. [PMID: 15659379 PMCID: PMC2253410 DOI: 10.1110/ps.04883905] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Adhesion of mature asexual stage Plasmodium falciparum parasite-infected erythrocytes (iRBC) to the vascular endothelium is a critical event in the pathology of Plasmodium falciparum malaria. It has been suggested that the clag gene family is essential in cytoadherence to endothelial receptors. Primers used in PCR and RT-PCR assays allowed us to determine that the gene encoding CLAG 3 (GenBank accession no. NP_473155) is transcribed in the Plasmodium falciparum FCB2 strain. Western blot showed that antisera produced against polymerized synthetic peptides from this protein recognized a 142-kDa band in P. falciparum schizont lysate. Seventy-one 20-amino-acid-long nonoverlapping peptides, spanning the CLAG 3 (cytoadherence-linked asexual protein on chromosome 3) sequence were tested in C32 cell and erythrocyte binding assays. Twelve CLAG peptides specifically bound to C32 cells (which mainly express CD36) with high affinity, hereafter referred to as high-affinity binding peptides (HABPs). Five of them also bound to erythrocytes. HABP binding to C32 cells and erythrocytes was independent of peptide charge or peptide structure. Affinity constants were between 100 nM and 800 nM. Cross-linking and SDS-PAGE analysis allowed two erythrocyte binding proteins of around 26 kDa and 59 kDa to be identified, while proteins of around 53 kDa were identified as possible receptor sites for C-32 cells. The HABPs' role in Plasmodium falciparum invasion inhibition was determined. Such an approach analyzing various CLAG 3 regions may elucidate their functions and may help in the search for new antigens important for developing antimalarial vaccines.
Collapse
Affiliation(s)
- Marisol Ocampo
- Fundación Instituto de Immunologia de Colombia and Universidad Nacional de Colombia, Avda. Calle 26 No. 50-00, Bogotá, Colombia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Curtidor H, Rodríguez LE, Ocampo M, López R, García JE, Valbuena J, Vera R, Puentes A, Vanegas M, Patarroyo ME. Specific erythrocyte binding capacity and biological activity of Plasmodium falciparum erythrocyte binding ligand 1 (EBL-1)-derived peptides. Protein Sci 2005; 14:464-73. [PMID: 15659376 PMCID: PMC2254251 DOI: 10.1110/ps.041084305] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Erythrocyte binding ligand 1 (EBL-1) is a member of the ebl multigene family involved in Plasmodium falciparum invasion of erythrocytes. We found that five EBL-1 high-activity binding peptides (HABPs) bound specifically to erythrocytes: 29895 ((41)HKKKSGELNNNKSGILRSTY(60)), 29903 ((201)LYECGK-KIKEMKWICTDNQF(220)), 29923 ((601)CNAILGSYADIGDIVRGLDV(620)), 29924((621)WRDINTNKLSEK-FQKIFMGGY(640)), and 30018 ((2481)LEDIINLSKKKKKSINDTSFY(2500)). We also show that binding was saturable, not sialic acid-dependent, and that all peptides specifically bound to a 36-kDa protein on the erythrocyte membrane. The five HABPs inhibited in vitro merozoite invasion depending on the peptide concentration used, suggesting their possible role in the invasion process.
Collapse
Affiliation(s)
- Hernando Curtidor
- Fundación Instituto de Inmunología de Colombia, Carrera 50 No. 26-00, Bogotá, Colombia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|