Qian TL, Wang XH, Liu S, Ma L, Lu Y. Fentanyl inhibits glucose-stimulated insulin release from β-cells in rat pancreatic islets.
World J Gastroenterol 2009;
15:4163-9. [PMID:
19725151 PMCID:
PMC2738813 DOI:
10.3748/wjg.15.4163]
[Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To explore the effects of fentanyl on insulin release from freshly isolated rat pancreatic islets in static culture.
METHODS: Islets were isolated from the pancreas of mature Sprague Dawley rats by common bile duct intraductal collagenase V digestion and were purified by discontinuous Ficoll density gradient centrifugation. The islets were divided into four groups according to the fentanyl concentration: control group (0 ng/mL), group I (0.3 ng/mL), group II (3.0 ng/mL), and group III (30 ng/mL). In each group, the islets were co-cultured for 48 h with drugs under static conditions with fentanyl alone, fentanyl + 0.1 μg/mL naloxone or fentanyl + 1.0 μg/mL naloxone. Cell viability was assessed by the MTT assay. Insulin release in response to low and high concentrations (2.8 mmol/L and 16.7 mmol/L, respectively) of glucose was investigated and electron microscopy morphological assessment was performed.
RESULTS: Low- and high-glucose-stimulated insulin release in the control group was significantly higher than in groups II and III (62.33 ± 9.67 μIU vs 47.75 ± 8.47 μIU, 39.67 ± 6.18 μIU and 125.5 ± 22.04 μIU vs 96.17 ± 14.17 μIU, 75.17 ± 13.57 μIU, respectively, P < 0.01) and was lowest in group III (P < 0.01). After adding 1 μg/mL naloxone, insulin release in groups II and III was not different from the control group. Electron microscopy studies showed that the islets were damaged by 30 ng/mL fentanyl.
CONCLUSION: Fentanyl inhibited glucose-stimulated insulin release from rat islets, which could be prevented by naloxone. Higher concentrations of fentanyl significantly damaged β-cells of rat islets.
Collapse