1
|
Voicu SN, Scărlătescu AI(A, Apetroaei MM, Nedea MI(I, Blejan IE, Udeanu DI, Velescu BȘ, Ghica M, Nedea OA, Cobelschi CP, Arsene AL. Evaluation of Neuro-Hormonal Dynamics after the Administration of Probiotic Microbial Strains in a Murine Model of Hyperthyroidism. Nutrients 2024; 16:1077. [PMID: 38613110 PMCID: PMC11013872 DOI: 10.3390/nu16071077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
The microbiota-gut-brain axis has received increasing attention in recent years through its bidirectional communication system, governed by the ability of gut microorganisms to generate and regulate a wide range of neurotransmitters in the host body. In this research, we delve into the intricate area of microbial endocrinology by exploring the dynamic oscillations in neurotransmitter levels within plasma and brain samples. Our experimental model involved inducing hyperthyroidism in mice after a "probiotic load" timeframe using two strains of probiotics (Lactobacillus acidophilus, Saccharomyces boulardii, and their combination). These probiotic interventions continued throughout the experiment and were intended to uncover potential modulatory effects on neurotransmitter levels and discern if certain probiotic strains exhibit any protection from hyperthyroidism. Moreover, we aimed to outline the eventual connections between the gut microbiota and the hypothalamus-pituitary-thyroid axis. As our study reveals, there are significant fluctuations in crucial neurotransmitters within the hyperthyroidism model, related to the specific probiotic strain or combination. These findings could support future therapeutic approaches, help healthcare professionals choose between different probiotic therapies, and also allow us proceed with caution when administering such treatments, depending on the health status of hyperthyroid patients.
Collapse
Affiliation(s)
- Sorina Nicoleta Voicu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Splaiul Independenței 91–95, 050095 Bucharest, Romania;
| | - Anca Ioana (Amzăr) Scărlătescu
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania; (A.I.S.); (M.I.N.); (D.I.U.); (B.Ș.V.); (M.G.); (A.L.A.)
| | - Miruna-Maria Apetroaei
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania; (A.I.S.); (M.I.N.); (D.I.U.); (B.Ș.V.); (M.G.); (A.L.A.)
| | - Marina Ionela (Ilie) Nedea
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania; (A.I.S.); (M.I.N.); (D.I.U.); (B.Ș.V.); (M.G.); (A.L.A.)
| | - Ionuț Emilian Blejan
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania; (A.I.S.); (M.I.N.); (D.I.U.); (B.Ș.V.); (M.G.); (A.L.A.)
| | - Denisa Ioana Udeanu
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania; (A.I.S.); (M.I.N.); (D.I.U.); (B.Ș.V.); (M.G.); (A.L.A.)
| | - Bruno Ștefan Velescu
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania; (A.I.S.); (M.I.N.); (D.I.U.); (B.Ș.V.); (M.G.); (A.L.A.)
| | - Manuela Ghica
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania; (A.I.S.); (M.I.N.); (D.I.U.); (B.Ș.V.); (M.G.); (A.L.A.)
| | - Octavian Alexandru Nedea
- Faculty of Biotechnical Systems Engineering, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania;
| | - Călin Pavel Cobelschi
- Faculty of Medicine, Transilvania University, Bulevardul Eroilor 29, 500036 Brașov, Romania
| | - Andreea Letiția Arsene
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania; (A.I.S.); (M.I.N.); (D.I.U.); (B.Ș.V.); (M.G.); (A.L.A.)
| |
Collapse
|
2
|
Paul EN, Shubitidze S, Rahim R, Rucker I, Valin L, Apostle S, Pospisilik JA, Racicot KE, Smith AL. Exogenous corticosterone administration during pregnancy in mice alters placental and fetal thyroid hormone availability in females. Placenta 2023; 142:1-11. [PMID: 37579594 PMCID: PMC10763606 DOI: 10.1016/j.placenta.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/16/2023]
Abstract
INTRODUCTION Maternal prenatal psychological stress is associated with adverse pregnancy outcomes and increased risk of adverse health outcomes in children. While the molecular mechanisms that govern these associations has not been fully teased apart, stress-induced changes in placental function can drive sex-specific phenotypes in offspring. We sought to identify and examine molecular pathways in the placenta that are altered in response to maternal prenatal stress. METHODS We previously employed a mouse model of maternal prenatal stress where pregnant dams were treated with stress hormone (CORT) beginning in mid-gestation. Using this model, we conducted RNAseq analysis of whole placenta at E18.5. We used qRT-PCR to validate gene expression changes in the placenta and in a trophoblast cell line. ELISAs were used to measure the abundance of thyroid hormones in maternal and fetal serum and in the placenta. RESULTS Dio2 was amongst the top differentially expressed genes in response to exogenous stress hormone. Dio2 expression was more downregulated in placenta of female fetuses from CORT-treated dams than both control placenta from females and placenta from male fetuses. Consistent with Dio2's role in production of bioactive thyroid hormone (T3), we found that there was a reduction of T3 in placenta and serum of female embryos from CORT-treated dams at E18.5. Both T3 and T4 were reduced in the fetal compartment of the placenta of female fetuses from CORT-treated dams at E16.5. Exogenous stress hormone induced reduction in thyroid hormone in females was independent of circulating levels of TH in the dams. DISCUSSION The placental thyroid hormone synthesis pathway may be a target of elevated maternal stress hormone and modulate fetal programming of health and disease of offspring in a sex-specific fashion.
Collapse
Affiliation(s)
- Emmanuel N Paul
- Dept of Obstetrics, Gynecology and Reproductive Sciences, Michigan State University, College of Human Medicine, Grand Rapids, MI, 49503, USA
| | | | - Rodaba Rahim
- Biology Department, Kenyon College, Gambier, OH, 43050, USA
| | - Imani Rucker
- Biology Department, Kenyon College, Gambier, OH, 43050, USA
| | - Liana Valin
- Biology Department, Kenyon College, Gambier, OH, 43050, USA
| | - Stefanos Apostle
- Department of Epigenetics, Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | - J Andrew Pospisilik
- Department of Epigenetics, Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | - Karen E Racicot
- Dept of Obstetrics, Gynecology and Reproductive Sciences, Michigan State University, College of Human Medicine, Grand Rapids, MI, 49503, USA
| | - Arianna L Smith
- Biology Department, Kenyon College, Gambier, OH, 43050, USA.
| |
Collapse
|
3
|
Redei EE, Udell ME, Solberg Woods LC, Chen H. The Wistar Kyoto Rat: A Model of Depression Traits. Curr Neuropharmacol 2023; 21:1884-1905. [PMID: 36453495 PMCID: PMC10514523 DOI: 10.2174/1570159x21666221129120902] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/19/2022] [Accepted: 10/21/2022] [Indexed: 12/05/2022] Open
Abstract
There is an ongoing debate about the value of animal research in psychiatry with valid lines of reasoning stating the limits of individual animal models compared to human psychiatric illnesses. Human depression is not a homogenous disorder; therefore, one cannot expect a single animal model to reflect depression heterogeneity. This limited review presents arguments that the Wistar Kyoto (WKY) rats show intrinsic depression traits. The phenotypes of WKY do not completely mirror those of human depression but clearly indicate characteristics that are common with it. WKYs present despair- like behavior, passive coping with stress, comorbid anxiety, and enhanced drug use compared to other routinely used inbred or outbred strains of rats. The commonly used tests identifying these phenotypes reflect exploratory, escape-oriented, and withdrawal-like behaviors. The WKYs consistently choose withdrawal or avoidance in novel environments and freezing behaviors in response to a challenge in these tests. The physiological response to a stressful environment is exaggerated in WKYs. Selective breeding generated two WKY substrains that are nearly isogenic but show clear behavioral differences, including that of depression-like behavior. WKY and its substrains may share characteristics of subgroups of depressed individuals with social withdrawal, low energy, weight loss, sleep disturbances, and specific cognitive dysfunction. The genomes of the WKY and WKY substrains contain variations that impact the function of many genes identified in recent human genetic studies of depression. Thus, these strains of rats share characteristics of human depression at both phenotypic and genetic levels, making them a model of depression traits.
Collapse
Affiliation(s)
- Eva E. Redei
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Mallory E. Udell
- Department of Pharmacology, Addiction Science, and Toxicology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Leah C. Solberg Woods
- Section on Molecular Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Hao Chen
- Department of Pharmacology, Addiction Science, and Toxicology, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
4
|
Shekhar S, McGlotten R, Auh S, Rother KI, Nieman LK. The Hypothalamic-Pituitary-Thyroid Axis in Cushing Syndrome Before and After Curative Surgery. J Clin Endocrinol Metab 2021; 106:e1316-e1331. [PMID: 33236107 PMCID: PMC7947758 DOI: 10.1210/clinem/dgaa858] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND We do not fully understand how hypercortisolism causes central hypothyroidism or what factors influence recovery of the hypothalamic-pituitary-thyroid axis. We evaluated thyroid function during and after cure of Cushing syndrome (CS). METHODS We performed a retrospective cohort study of adult patients with CS seen from 2005 to 2018 (cohort 1, c1, n = 68) or 1985 to 1994 (cohort 2, c2, n = 55) at a clinical research center. Urine (UFC) and diurnal serum cortisol (F: ~8 am and ~midnight [pm]), morning 3,5,3'-triiodothyronine (T3), free thyroxine (FT4), and thyrotropin (TSH) (c1) or hourly TSH from 1500 to 1900 h (day) and 2400 to 04000 h (night) (c2), were measured before and after curative surgery. RESULTS While hypercortisolemic, 53% of c1 had central hypothyroidism (low/low normal FT4 + unelevated TSH). Of those followed long term, 31% and 44% had initially subnormal FT4 and T3, respectively, which normalized 6 to 12 months after cure. Hypogonadism was more frequent in hypothyroid (69%) compared to euthyroid (13%) patients. Duration of symptoms, morning and midnight F, adrenocorticotropin, and UFC were inversely related to TSH, FT4, and/or T3 levels (r = -0.24 to -0.52, P < .001 to 0.02). In c2, the nocturnal surge of TSH (mIU/L) was subnormal before (day 1.00 ± 0.04 vs night 1.08 ± 0.05, P = .3) and normal at a mean of 8 months after cure (day 1.30 ± 0.14 vs night 2.17 ± 0.27, P = .01). UFC greater than or equal to 1000 μg/day was an independent adverse prognostic marker of time to thyroid hormone recovery. CONCLUSIONS Abnormal thyroid function, likely mediated by subnormal nocturnal TSH, is prevalent in Cushing syndrome and is reversible after cure.
Collapse
Affiliation(s)
- Skand Shekhar
- Section on Genetics and Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Raven McGlotten
- Section on Translational Endocrinology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Sunyoung Auh
- Office of the Clinical Director, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Kristina I Rother
- Section on Genetics and Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Lynnette K Nieman
- Section on Translational Endocrinology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
- Correspondence and Reprint Requests: Lynnette K. Nieman, MD, Section on Translational Endocrinology, National Institute of Diabetes and Digestive and Kidney Diseases, Bldg 10-CRC, Rm 1-3140, 10 Center Dr, Bethesda, MD 20892, USA. E-mail:
| |
Collapse
|
5
|
Graves' disease and mental disorders. JOURNAL OF CLINICAL AND TRANSLATIONAL ENDOCRINOLOGY 2019; 19:100207. [PMID: 31763175 PMCID: PMC6864135 DOI: 10.1016/j.jcte.2019.100207] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 10/04/2019] [Accepted: 10/04/2019] [Indexed: 11/23/2022]
Abstract
Mental disorders merge highly with thyroid diseases. Because of its regulatory effects on serotonin and noradrenalin, T3 has been linked closely to depression and anxiety. It has known that in many cases, the mental symptoms persist even after normalization of thyroid function by treatment. Psychosocial factors including stress have been associated with mental symptoms even after thyroid function normalization in Graves’ disease and a combination of mental disorders have been related to the exacerbation of hyperthyroidism. These findings suggest that psychosomatic approaches based on the bio-psycho-social medical model are important for the treatment of mental disorders associated with Graves’ disease.
Collapse
|
6
|
Shallie PD, Naicker T. The placenta as a window to the brain: A review on the role of placental markers in prenatal programming of neurodevelopment. Int J Dev Neurosci 2019; 73:41-49. [PMID: 30634053 DOI: 10.1016/j.ijdevneu.2019.01.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 12/26/2018] [Accepted: 01/04/2019] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND During development, the placenta can be said to be the most important organ, however, the most poorly researched. There is currently a broader understanding of how specific insults during development affect the fetal brain, and also the importance of placental signaling in neurodevelopmental programming. Epigenetic responses to maternal and fetal signals are an obvious candidate for transforming early life inputs into long-term programmatic outcomes. As a mediator of maternal and environmental signals to the developing fetus, epigenetic processes within the placenta are particularly powerful such that alterations of placental gene expression, downstream function, and signalling during foetal development have the potential for dramatic changes in developmental programming. SUMMARY In this article, we reviewed emerging evidence for a placental role in prenatal neurodevelopmental programming with a specific focus on nutrient and prenatal stress signals integration into chromatin changes; this new understanding, we hope will provide the means for lowering developmentally based disorder risk, and new therapeutic targets for treatment in adulthood. KEY MESSAGES Based on this review, the placenta is a potent micro-environmental player in neurodevelopment as it orchestrates a series of complex maternal-foetal interactions. Maternal insults to this microenvironment will impair these processes and disrupt foetal brain development resulting in the prenatal programming of neurodevelopmental disorders. These findings should inspire advance animal model and human research drive to appraise gene-environment impacts during pregnancy that will target the developmental cause of adult-onset mental disorders.
Collapse
Affiliation(s)
- Philemon Dauda Shallie
- Optics and Imaging Centre, School of Laboratory Medicine and Medical Sciences, Nelson Mandela Medical School, University of KwaZulu-Natal, Durban, South Africa.
| | - Thajasvarie Naicker
- Optics and Imaging Centre, School of Laboratory Medicine and Medical Sciences, Nelson Mandela Medical School, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
7
|
Parmentier T, Sienaert P. The use of triiodothyronine (T3) in the treatment of bipolar depression: A review of the literature. J Affect Disord 2018; 229:410-414. [PMID: 29331701 DOI: 10.1016/j.jad.2017.12.071] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 11/18/2017] [Accepted: 12/31/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND There is a paucity of treatment options for bipolar depression. The use of triiodothyronine (T3) has been suggested as adjunctive treatment. METHODS A search on Medline, Limo and ScienceDirect was performed using the search terms bipolar disorder, bipolar depression, treatment resistant, treatment refractory, thyroid hormones, triiodothyronine, T3, acceleration and augmentation. RESULTS We retrieved three open studies, one comparative study, two double blind and one retrospective chart review. The three open studies observed improvement in respectively 56%, 75% and 79% of patients, the retrospective chart review noted improvement in 89% of cases and the mirror design showed improvement in 66%. In the comparative study T3 performed significantly better than placebo. The only randomized double blind study could not prove any substantial difference between T3 and placebo. LIMITATIONS Available studies are scarce and flawed. All have (very) low number of subjects: overall, only 353 subjects and only 194 of which in prospective trials. In only two of the prospective trials bipolar patients were analyzed separately. Comparing the studies is hampered by a high variability in assessment tools, baseline medication and degree of treatment-resistance. CONCLUSIONS The few available studies are small and flawed. They do show promising results. We found many clues suggesting that T3 could augment and accelerate treatment response not only with antidepressants, but also with lithium and perhaps with other treatment options, that it might protect against rapid cycling bipolar disorder, as well as against relapse during the first few years of treatment.
Collapse
Affiliation(s)
- T Parmentier
- KU Leuven, University of Leuven, University Psychiatric Center KU Leuven, Leuvensesteenweg 517, 3070 Kortenberg, Belgium
| | - P Sienaert
- KU Leuven, University of Leuven, University Psychiatric Center KU Leuven, Leuvensesteenweg 517, 3070 Kortenberg, Belgium; KU Leuven, Department of Neurosciences, Psychiatry, Herestraat 49, 3000 Leuven, Belgium.
| |
Collapse
|
8
|
Miranda A, Sousa N. Maternal hormonal milieu influence on fetal brain development. Brain Behav 2018; 8:e00920. [PMID: 29484271 PMCID: PMC5822586 DOI: 10.1002/brb3.920] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 11/15/2017] [Accepted: 12/06/2017] [Indexed: 12/23/2022] Open
Abstract
An adverse maternal hormonal environment during pregnancy can be associated with abnormal brain growth. Subtle changes in fetal brain development have been observed even for maternal hormone levels within the currently accepted physiologic ranges. In this review, we provide an update of the research data on maternal hormonal impact on fetal neurodevelopment, giving particular emphasis to thyroid hormones and glucocorticoids. Thyroid hormones are required for normal brain development. Despite serum TSH appearing to be the most accurate indicator of thyroid function in pregnancy, maternal serum free T4 levels in the first trimester of pregnancy are the major determinant of postnatal psychomotor development. Even a transient period of maternal hypothyroxinemia at the beginning of neurogenesis can confer a higher risk of expressive language and nonverbal cognitive delays in offspring. Nevertheless, most recent clinical guidelines advocate for targeted high-risk case finding during first trimester of pregnancy despite universal thyroid function screening. Corticosteroids are determinant in suppressing cell proliferation and stimulating terminal differentiation, a fundamental switch for the maturation of fetal organs. Not surprisingly, intrauterine exposure to stress or high levels of glucocorticoids, endogenous or synthetic, has a molecular and structural impact on brain development and appears to impair cognition and increase anxiety and reactivity to stress. Limbic regions, such as hippocampus and amygdala, are particularly sensitive. Repeated doses of prenatal corticosteroids seem to have short-term benefits of less respiratory distress and fewer serious health problems in offspring. Nevertheless, neurodevelopmental growth in later childhood and adulthood needs further clarification. Future studies should address the relevance of monitoring the level of thyroid hormones and corticosteroids during pregnancy in the risk stratification for impaired postnatal neurodevelopment.
Collapse
Affiliation(s)
- Alexandra Miranda
- Life and Health Sciences Research Institute (ICVS)School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B's ‐ PT Government Associate LaboratoryBraga/GuimarãesPortugal
- Department of Obstetrics and GynecologyHospital de BragaBragaPortugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS)School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B's ‐ PT Government Associate LaboratoryBraga/GuimarãesPortugal
- Clinic Academic Center ‐ 2CABragaPortugal
| |
Collapse
|
9
|
Moog NK, Entringer S, Heim C, Wadhwa PD, Kathmann N, Buss C. Influence of maternal thyroid hormones during gestation on fetal brain development. Neuroscience 2017; 342:68-100. [PMID: 26434624 PMCID: PMC4819012 DOI: 10.1016/j.neuroscience.2015.09.070] [Citation(s) in RCA: 243] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 09/22/2015] [Accepted: 09/25/2015] [Indexed: 01/09/2023]
Abstract
Thyroid hormones (THs) play an obligatory role in many fundamental processes underlying brain development and maturation. The developing embryo/fetus is dependent on maternal supply of TH. The fetal thyroid gland does not commence TH synthesis until mid gestation, and the adverse consequences of severe maternal TH deficiency on offspring neurodevelopment are well established. Recent evidence suggests that even more moderate forms of maternal thyroid dysfunction, particularly during early gestation, may have a long-lasting influence on child cognitive development and risk of neurodevelopmental disorders. Moreover, these observed alterations appear to be largely irreversible after birth. It is, therefore, important to gain a better understanding of the role of maternal thyroid dysfunction on offspring neurodevelopment in terms of the nature, magnitude, time-specificity, and context-specificity of its effects. With respect to the issue of context specificity, it is possible that maternal stress and stress-related biological processes during pregnancy may modulate maternal thyroid function. The possibility of an interaction between the thyroid and stress systems in the context of fetal brain development has, however, not been addressed to date. We begin this review with a brief overview of TH biology during pregnancy and a summary of the literature on its effect on the developing brain. Next, we consider and discuss whether and how processes related to maternal stress and stress biology may interact with and modify the effects of maternal thyroid function on offspring brain development. We synthesize several research areas and identify important knowledge gaps that may warrant further study. The scientific and public health relevance of this review relates to achieving a better understanding of the timing, mechanisms and contexts of thyroid programing of brain development, with implications for early identification of risk, primary prevention and intervention.
Collapse
Affiliation(s)
- N K Moog
- Department of Medical Psychology, Charité University Medicine Berlin, Luisenstrasse 57, 10117 Berlin, Germany
| | - S Entringer
- Department of Medical Psychology, Charité University Medicine Berlin, Luisenstrasse 57, 10117 Berlin, Germany; University of California, Irvine, Development, Health, and Disease Research Program, 333 The City Drive West, Suite 1200, Orange, CA 92868, USA; Department of Pediatrics, University of California, Irvine, School of Medicine, 505 South Main Street, Suite 525, Orange, CA 92868, USA
| | - C Heim
- Department of Medical Psychology, Charité University Medicine Berlin, Luisenstrasse 57, 10117 Berlin, Germany; Department of Biobehavioral Health, Pennsylvania State University, College of Health and Human Development, 219 Biobehavioral Health Building, University Park, PA 16802, USA
| | - P D Wadhwa
- University of California, Irvine, Development, Health, and Disease Research Program, 333 The City Drive West, Suite 1200, Orange, CA 92868, USA; Department of Pediatrics, University of California, Irvine, School of Medicine, 505 South Main Street, Suite 525, Orange, CA 92868, USA; Department of Psychiatry and Human Behavior, University of California, Irvine, School of Medicine, 3117 Gillespie Neuroscience Research Facility, 837 Health Sciences Drive, Irvine, CA 92697, USA; Department of Obstetrics and Gynecology, University of California, Irvine, School of Medicine, 3117 Gillespie Neuroscience Research Facility, 837 Health Sciences Drive, Irvine, CA 92697, USA; Department of Epidemiology, University of California, Irvine, School of Medicine, 3117 Gillespie Neuroscience Research Facility, 837 Health Sciences Drive, Irvine, CA 92697, USA
| | - N Kathmann
- Department of Clinical Psychology, Humboldt-Universität zu Berlin, Rudower Chaussee 18, 12489 Berlin, Germany
| | - C Buss
- Department of Medical Psychology, Charité University Medicine Berlin, Luisenstrasse 57, 10117 Berlin, Germany; University of California, Irvine, Development, Health, and Disease Research Program, 333 The City Drive West, Suite 1200, Orange, CA 92868, USA; Department of Pediatrics, University of California, Irvine, School of Medicine, 505 South Main Street, Suite 525, Orange, CA 92868, USA.
| |
Collapse
|
10
|
Toyoda N, Yasuzawa-Amano S, Nomura E, Yamauchi A, Nishimura K, Ukita C, Morimoto S, Kosaki A, Iwasaka T, Harney JW, Larsen PR, Nishikawa M. Thyroid hormone activation in vascular smooth muscle cells is negatively regulated by glucocorticoid. Thyroid 2009; 19:755-63. [PMID: 19508118 PMCID: PMC2857441 DOI: 10.1089/thy.2009.0044] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Type 2 iodothyronine deiodinase (D2) catalyzes the production of triiodothyronine from thyroxine. D2 is present in rat aorta media, and there is a circadian variation in the D2 expression. In rat aorta media, the D2 activity exhibited the maximal value at 1200 hour and low value between 1800 and 2400 hour. To understand the mechanisms that induce the circadian variation in the D2 expression, we examined the effects of glucocorticoid on the D2 activity and mRNA in rat aorta media and cultured vascular smooth muscle cells (VSMCs). METHODS The effects of intrinsic and extrinsic glucocorticoid on the D2 activity and mRNA in rat aorta media were studied using metyrapone, a corticosterone synthesis inhibitor, and dexamethasone (DEX). Further, the effects of DEX on D2 expression were studied using the cultured rat VSMCs. RESULTS The trough values of D2 activity and mRNA at 2100 hour were increased by the treatment with metyrapone. On the other hand, the peak values of D2 activity and mRNA were decreased by the treatment with DEX. D2 activity and mRNA in cultured rat VSMCs were increased by the addition of 10(-3) M dibutyryl cyclic adenosine monophosphate [(Bu)(2)cAMP]. The increments were reduced by coincubation with 10(-6) M DEX. CONCLUSIONS These results suggest that glucocorticoids might directly suppress the D2 expression in rat VSMCs induced by a cAMP-dependent mechanism.
Collapse
Affiliation(s)
- Nagaoki Toyoda
- Department of Internal Medicine II, Kansai Medical University, Hirakata-City, Osaka, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Kabadi UM. Role of thyrotropin in metabolism of thyroid hormones in nonthyroidal tissues. Metabolism 2006; 55:748-50. [PMID: 16713433 DOI: 10.1016/j.metabol.2006.01.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2005] [Accepted: 01/18/2006] [Indexed: 11/22/2022]
Abstract
T(4) conversion into T(3) in peripheral tissues is the major source of circulating T(3). However, the exact mechanism of this process is ill defined. Several in vitro studies have demonstrated that thyrotropin facilitates deiodination of T(4) into T(3) in liver and kidneys. However, there is a paucity of in vitro studies confirming this activity of thyrotropin. Therefore, this study was conducted to examine the influence of thyrotropin on thyroid hormone metabolism in nonthyroidal tissues. We assessed T(4), T(3), reverse T(3) (rT(3)), and T(3) resin uptake (T(3)RU) responses up to 12 hours at intervals of 4 hours in 6 thyroidectomized female mongrel dogs rendered euthyroid with LT(4) replacement therapy before and after subcutaneous (SC) administration of bovine thyrotropin (5 U) on one day and normal saline (0.5 mL) on another in a randomized sequence between 08:00 and 09:00 am. Euthyroid state after LT(4) replacement was confirmed before thyrotropin administration. Serum T(4), T(3), rT(3), and T(3)RU all remained unaltered after SC administration of normal saline. No significant alteration was noted in serum T(3)RU values on SC administration of thyrotropin. However, serum T(3) rose progressively reaching a peak at 12 hours with simultaneous declines being noted in both serum T(4) and rT(3) concentrations (P < .05 vs prethyrotropin values for all determinations). The changes after SC administration were significantly different (P < .001) in comparison to those noted on SC administration of normal saline. Thyrotropin may promote both the conversion of T(4) to T(3) and metabolism of rT(3) into T(2) in nonthyroidal tissues via enhancement of the same monodeionase.
Collapse
|
12
|
Kalsbeek A, Buijs RM, van Schaik R, Kaptein E, Visser TJ, Doulabi BZ, Fliers E. Daily variations in type II iodothyronine deiodinase activity in the rat brain as controlled by the biological clock. Endocrinology 2005; 146:1418-27. [PMID: 15550511 DOI: 10.1210/en.2004-0763] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Type II deiodinase (D2) plays a key role in regulating thyroid hormone-dependent processes in, among others, the central nervous system (CNS) by accelerating the intracellular conversion of T4 into active T3. Just like the well-known daily rhythm of the hormones of the hypothalamo-pituitary-thyroid axis, D2 activity also appears to show daily variations. However, the mechanisms involved in generating these daily variations, especially in the CNS, are not known. Therefore, we decided to investigate the role the master biological clock, located in the hypothalamus, plays with respect to D2 activity in the rat CNS as well as the role of one of its main hormonal outputs, i.e. plasma corticosterone. D2 activity showed a significant daily rhythm in the pineal and pituitary gland as well as hypothalamic and cortical brain tissue, albeit with a different timing of its acrophase in the different tissues. Ablation of the biological clock abolished the daily variations of D2 activity in all four tissues studied. The main effect of the knockout of the suprachiasmatic nuclei (SCN) was a reduction of nocturnal peak levels in D2 activity. Moreover, contrary to previous observations in SCN-intact animals, in SCN-lesioned animals, the decreased levels of D2 activity are accompanied by decreased plasma levels of the thyroid hormones, suggesting that the SCN separately stimulates D2 activity as well as the hypothalamo-pituitary-thyroid axis.
Collapse
Affiliation(s)
- Andries Kalsbeek
- Netherlands Institute for Brain Research, Department of Endocrinology and Metabolism, 1105 AZ Amsterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
13
|
Song S, Oka T. Regulation of type II deiodinase expression by EGF and glucocorticoid in HC11 mouse mammary epithelium. Am J Physiol Endocrinol Metab 2003; 284:E1119-24. [PMID: 12582014 DOI: 10.1152/ajpendo.00571.2002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Thyroid hormones are important for mammary gland growth and development. The iodothyronine deiodinases play a key role in thyroid hormone metabolism. We have showed that type II 5'-deiodinase (5'D2) activity and mRNA are present in the mouse mammary gland and that their levels are reduced in the lactating gland. To investigate the regulatory mechanism of mouse 5'D2 gene (mdio2) expression in mammary epithelium, we employed the HC11 cell line, which is derived from mouse mammary epithelial cells and retains the ability to express differentiated function. HC11 cells were treated with combinations of insulin, glucocorticoid (GC, dexamethasone), prolactin, and epidermal growth factor (EGF), and 5'D2 activity and the D2-to-GAPDH mRNA ratio were measured by (125)I(-) release from (125)I-labeled thyroxine and semiquantitative RT-PCR, respectively. EGF increased both 5'D2 activity and mRNA levels about twofold. GC reduced both 5'D2 activity and mRNA in a dose-dependent manner, and their levels were decreased to approximately one-tenth and one-fifth, respectively, of control levels. These data demonstrated that mdio2 expression in HC11 cells is upregulated by EGF mainly at the pretranslational level and downregulated by GC at both pre- and posttranslational levels. Furthermore, we showed that GC reduced the promoter activity of the 627- bp 5'-upstream region of the mdio2/luciferase chimeric reporter gene, suggesting that GC exerts its effect, at least in part, at the transcriptional level.
Collapse
Affiliation(s)
- Shigeaki Song
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
14
|
Leonard JL, Leonard DM, Safran M, Wu R, Zapp ML, Farwell AP. The mammalian homolog of the frog type II selenodeiodinase does not encode a functional enzyme in the rat. Endocrinology 1999; 140:2206-15. [PMID: 10218973 DOI: 10.1210/endo.140.5.6727] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Type II iodothyronine deiodinase is a short-lived, membrane-bound enzyme found in rat brain, brown adipose tissue, and cAMP-stimulated astrocytes. Recently, a full-length complementary DNA (cDNA) encoding a 30-kDa, type II-like selenodeiodinase was cloned from frog, and a homologous partial cDNA (rBAT 1.1), containing two in-frame selenocysteine codons (UGA), was isolated from rat brown adipose tissue. Importantly, the rBAT 1.1 cDNA was derived from a 7.5-kb messenger RNA (mRNA) and did not encode a functional selenoenzyne unless an enabling selenocysteine insertion sequence was appended to the presumed coding region and this cDNA. In this study we determined whether the native 7.5-kb SeD2 mRNA in rat tissues programmed the synthesis of the native type II deiodinase using specific antibodies that were raised against the C-terminus of full-length, 30-kDa SeD2 protein and against the catalytic core of SeD2. Direct analysis of the translation products programmed by the native SeD2 mRNA in cAMP-stimulated astrocytes was performed using antisense deoxynucleotides and hybrid selection strategies. (Bu)2cAMP-stimulated rat astrocytes expressed both type II deiodinase activity (approximately 2500 U/mg protein) and contained abundant levels of the 7.5-kb SeD2 mRNA. However, no immunoreactive 30-kDa SeD2 protein was identified by Western analysis, immunoprecipitation, or immunocytochemistry, and the specific C-terminus antiserum failed to immunoprecipitate deiodinase activity from (Bu)2cAMP-stimulated astrocytes, brown adipose tissue or brain. Instead, the native 7.5-kb SeD2 mRNA encoded a 15-kDa protein that terminated at the first UGA codon and contained the catalytically inactive, N-terminal 129 amino acids of SeD2. These data show that the native 7.5-kb SeD2 mRNA in stimulated astrocytes does not encode D2.
Collapse
Affiliation(s)
- J L Leonard
- Molecular Endocrinology Laboratories, University of Massachusetts Medical School, Worcester 01655, USA.
| | | | | | | | | | | |
Collapse
|
15
|
Abstract
Hypothyroidism may give rise to frank depression that usually responds to thyroxine therapy. Depressed subjects with subclinical hypothyroidism and/or autoimmune thyroiditis should probably also be treated similarly. Most patients with depression, although generally viewed as chemically euthyroid, have alterations in their thyroid function including slight elevation of the serum thyroxine (T4), blunted thyrotropin (TSH) response to thyrotropin-releasing hormone (TRH) stimulation, and loss of the nocturnal TSH rise. These changes are generally reversed following alleviation of the depression. The role of adjuvant triiodothyronine (T3) treatment in resistant depression has not been established, but the data suggest that it will be beneficial in about 25% of cases. However, controlled trials to establish this approach are needed. The underlying mechanism leading to the beneficial response from T3 is unknown, but may reflect brain hypothyroidism in the context of systemic euthyroidism. The hypothalamus in culture, which is analogous to a deafferentated hypothalamus in vivo, shows a paradoxic increase in TRH production after glucocorticoid stimulation. It is known that in human depression there is a functional disconnection of the hypothalamus with impairment of the inhibitory glucocorticoid feedback pathway from the hippocampus to the hypothalamus that results in the typical elevated cortisol levels and impaired dexamethasone suppression. It is postulated that a similar situation prevails with regards to the thyroid axis and that the increased T4 in depression, as well as the blunted TSH response to exogenous TRH, reflects glucocorticoid activation of the TRH neuron leading to increased TRH secretion with resultant down regulation of the TRH receptor on the thyrotrope. Normalization of thyroid function after treatment may result in part from an inhibitory response of the TRH neuron to antidepressant medication, although other effects may also be responsible.
Collapse
Affiliation(s)
- I M Jackson
- Division of Endocrinology, Rhode Island Hospital, Brown University School of Medicine, Providence 02903, USA
| |
Collapse
|
16
|
Affiliation(s)
- G Desoye
- Department of Obstetrics and Gynecology, University of Graz, Austria
| | | |
Collapse
|
17
|
Kabadi UM, Dragstedt LR. Glucagon-induced changes in plasma thyroid hormone concentrations in healthy dogs resemble "euthyroid sick syndrome". J Endocrinol Invest 1991; 14:269-75. [PMID: 1865078 DOI: 10.1007/bf03346810] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We recently demonstrated that glucagon infusion induced a decline in T3 and a rise in rT3 in anesthetized dogs. These changes in T3 and rT3 may be attributed, at least in part, to anesthesia itself, since general anesthesia is known to cause lowering of T3 and an elevation in rT3 during the perioperative period. Therefore, to eliminate the contribution, if any, of anesthesia to these changes in T3 and rT3, we assessed plasma glucose, T3 resin uptake (T3RU), T4, free T4, T3 and rT3 concentrations following intravenous glucagon (0.5 mg) or normal saline (0.5 ml) administration at frequent intervals for 3 h in 6 conscious dogs fasted for 16 h. No significant alterations were noted in T4, free T4, and T3RU levels during either study. However, glucagon infusion alone induced a significant fall in T3 (0.33 +/- 0.06 in nmol/l vs -0.03 +/- 0.03 nmol/l with normal saline; p less than 0.01) and marked elevations in glucose (3.66 +/- 0.22 mmol/l vs 0.61 +/- 0.11 nmol/l with normal saline, p less than 0.001) and rT3 concentrations (0.11 +/- 0.02 nmol/l vs 0.005 nmol/l; p less than 0.001). Furthermore, the integrated responses of T3 and rT3 as assessed by cumulative changes and areas under the curves were markedly greater during glucagon infusion when compared with saline administration (p less than 0.01 for all comparisons). Since the elevations in levels of stress hormones known to ensue during anesthesia do not occur during a conscious resting state, we believe that hyperglucagonemia may be a major contributor of thyroid hormone alterations observed in several euthyroid sick states, not associated with stress, and may enhance these changes during euthyroid sick syndrome associated with stressful crises. Finally, these changes may be attributed to altered metabolism of iodothyronines in peripheral tissues as reflected by lowered T3/T4 and increased rT3/T4 ratios.
Collapse
Affiliation(s)
- U M Kabadi
- Endocrinology Section, VA Medical Center, Phoenix, AZ 85012
| | | |
Collapse
|
18
|
Gavin LA, Moeller M, McMahon F, Gulli R, Cavalieri RR. Cyclic adenosine 3',5'-monophosphate and glucose stimulate thyroxine 5'-deiodinase type II in cultured mouse neuroblastoma cells. Metabolism 1990; 39:474-9. [PMID: 2159588 DOI: 10.1016/0026-0495(90)90005-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Nutrient modulation increases mouse neuroblastoma (NB) T4-5'-deiodinase II (T4-5'-D II) activity. Carbohydrates are more potent than either amino acids or glycerol as nutrient sources. Glucose rapidly (2 to 4 hours) enhances NB enzyme activity and the response is dependent on new protein synthesis. The present study was performed to further characterize this glucose effect and explore its relationship to the cyclic adenosine monophosphate (cAMP) system in these cells. NB T4-5'-D II activity reached a maximum level (sixfold) in response to glucose (10 mmol/L) at 16 hours and thereafter remained constant up to 22 hours before reverting back to basal level between 24 and 30 hours. This pattern of response allowed the performance of detailed studies on maximum glucose activated NB T4-5'-D II under transient equilibrium conditions during the 16- to 22-hour period. Addition of dibutyryl cAMP (dbcAMP) (1 mmol/L) at this stage significantly increased enzyme activity (twofold at 2 hours and fourfold at 4 and 6 hours) compared with glucose alone. There was an additive response to dbcAMP under these maximum glucose-activated conditions. Nonactivated NB T4-5'-D II showed a twofold response to dbcAMP (1 mmol/L) at 4 hours in a glucose-free medium. Under these conditions, glucose (10 mmol/L) also increased enzyme activity twofold. Combined studies with dbcAMP and glucose increased enzyme activity fourfold at 4 hours. Subsequent studies were performed with forskolin (10 mumol/L) and cholera toxin (1 nmol/L), modulators of endogenous cAMP.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- L A Gavin
- Division of Endocrinology-Metabolism, Veterans Administration Medical Center, San Francisco, CA 94121
| | | | | | | | | |
Collapse
|