1
|
Fu X, Guo X, Xu H, Li Y, Jin B, Zhang X, Shu C, Fan Y, Yu Y, Tian Y, Tian J, Shu J. Varied cellular abnormalities in thin vs. normal endometrium in recurrent implantation failure by single-cell transcriptomics. Reprod Biol Endocrinol 2024; 22:90. [PMID: 39085925 PMCID: PMC11293141 DOI: 10.1186/s12958-024-01263-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Reduced endometrium thickness and receptivity are two important reasons for recurrent implantation failure (RIF). In order to elucidate differences between these two types of endometrial defects in terms of molecular signatures, cellular interactions, and structural changes, we systematically investigated the single-cell transcriptomic atlas across three distinct groups: RIF patients with thin endometrium (≤ 6 mm, TE-RIF), RIF patients with normal endometrium thickness (≥ 8 mm, NE-RIF), and fertile individuals (Control). METHODS The late proliferative and mid-secretory phases of the endometrium were collected from three individuals in the TE-RIF group, two in the NE-RIF group, and three in the control group. The study employed a combination of advanced techniques. Single-cell RNA sequencing (scRNA-seq) was utilized to capture comprehensive transcriptomic profiles at the single-cell level, providing insights into gene expression patterns within specific cell types. Scanning and transmission electron microscopy were employed to visualize ultrastructural details of the endometrial tissue, while hematoxylin and eosin staining facilitated the examination of tissue morphology and cellular composition. Immunohistochemistry techniques were also applied to detect and localize specific protein markers relevant to endometrial receptivity and function. RESULTS Through comparative analysis of differentially expressed genes among these groups and KEGG pathway analysis, the TE-RIF group exhibited notable dysregulations in the TNF and MAPK signaling pathways, which are pivotal in stromal cell growth and endometrial receptivity. Conversely, in the NE-RIF group, disturbances in energy metabolism emerged as a primary contributor to reduced endometrial receptivity. Additionally, using CellPhoneDB for intercellular communication analysis revealed aberrant interactions between epithelial and stromal cells, impacting endometrial receptivity specifically in the TE-RIF group. CONCLUSION Overall, our findings provide valuable insights into the heterogeneous molecular pathways and cellular interactions associated with RIF in different endometrial conditions. These insights may pave the way for targeted therapeutic interventions aimed at improving endometrial receptivity and enhancing reproductive outcomes in patients undergoing ART. Further research is warranted to validate these findings and translate them into clinical applications for personalized fertility treatments. TRIAL REGISTRATION Not applicable.
Collapse
Affiliation(s)
- Xiaoying Fu
- Center for Reproductive Medicine, Department of Reproductive Endocrinology, Affiliated People's Hospital, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xiaoyan Guo
- Center for Reproductive Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Han Xu
- Center for Reproductive Medicine, Department of Reproductive Endocrinology, Affiliated People's Hospital, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yini Li
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Bihui Jin
- Center for Reproductive Medicine, Department of Reproductive Endocrinology, Affiliated People's Hospital, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xirong Zhang
- Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Chongyi Shu
- Center for Reproductive Medicine, Department of Reproductive Endocrinology, Affiliated People's Hospital, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yuhang Fan
- Center for Reproductive Medicine, Department of Reproductive Endocrinology, Affiliated People's Hospital, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yiqi Yu
- Center for Reproductive Medicine, Department of Reproductive Endocrinology, Affiliated People's Hospital, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yuqing Tian
- Center for Reproductive Medicine, Department of Reproductive Endocrinology, Affiliated People's Hospital, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jiao Tian
- Center for Reproductive Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Shu
- Center for Reproductive Medicine, Department of Reproductive Endocrinology, Affiliated People's Hospital, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.
- Center for Reproductive Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Shangcheng District, Hangzhou, Zhejiang, China.
| |
Collapse
|
2
|
Jiang H, Si M, Tian T, Shi H, Huang N, Chi H, Yang R, Long X, Qiao J. Adiposity and lipid metabolism indicators mediate the adverse effect of glucose metabolism indicators on oogenesis and embryogenesis in PCOS women undergoing IVF/ICSI cycles. Eur J Med Res 2023; 28:216. [PMID: 37400924 DOI: 10.1186/s40001-023-01174-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/14/2023] [Indexed: 07/05/2023] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) women have high incidences of dyslipidemia, obesity, impaired glucose tolerance (IGT), diabetes, and insulin resistance (IR) and are fragile to female infertility. Obesity and dyslipidemia may be the intermediate biological mechanism for the associations between glucose metabolism dysfunction and abnormal oogenesis and embryogenesis. METHODS This retrospective cohort study was performed at a university-affiliated reproductive center. A total of 917 PCOS women aged between 20 and 45 undergoing their first IVF/ICSI embryo transfer cycles from January 2018 to December 2020 were involved. Associations between glucose metabolism indicators, adiposity and lipid metabolism indicators, and IVF/ICSI outcomes were explored using multivariable generalized linear models. Mediation analyses were further performed to examine the potential mediation role of adiposity and lipid metabolism indicators. RESULTS Significant dose-dependent relationships were found between glucose metabolism indicators and IVF/ICSI early reproductive outcomes and between glucose metabolism indicators and adiposity and lipid metabolism indicators (all P < 0.05). Also, we found significant dose-dependent relationships between adiposity and lipid metabolism indicators and IVF/ICSI early reproductive outcomes (all P < 0.05). The mediation analysis indicated that elevated FPG, 2hPG, FPI, 2hPI, HbA1c, and HOMA2-IR were significantly associated with decreased retrieved oocyte count, MII oocyte count, normally fertilized zygote count, normally cleaved embryo count, high-quality embryo count, or blastocyst formation count after controlling for adiposity and lipid metabolism indicators. Serum TG mediated 6.0-31.0% of the associations; serum TC mediated 6.1-10.8% of the associations; serum HDL-C mediated 9.4-43.6% of the associations; serum LDL-C mediated 4.2-18.2% of the associations; and BMI mediated 26.7-97.7% of the associations. CONCLUSIONS Adiposity and lipid metabolism indicators (i.e., serum TG, serum TC, serum HDL-C, serum LDL-C, and BMI) are significant mediators of the effect of glucose metabolism indicators on IVF/ICSI early reproductive outcomes in PCOS women, indicating the importance of preconception glucose and lipid management and the dynamic equilibrium of glucose and lipid metabolism in PCOS women.
Collapse
Affiliation(s)
- Huahua Jiang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Key Laboratory of Assisted Reproduction, Peking University, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Manfei Si
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Key Laboratory of Assisted Reproduction, Peking University, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Tian Tian
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Key Laboratory of Assisted Reproduction, Peking University, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Huifeng Shi
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Centre for Healthcare Quality Management in Obstetrics, Beijing, China
| | - Ning Huang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Key Laboratory of Assisted Reproduction, Peking University, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Hongbin Chi
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Key Laboratory of Assisted Reproduction, Peking University, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Rui Yang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Key Laboratory of Assisted Reproduction, Peking University, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Xiaoyu Long
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China.
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.
- Key Laboratory of Assisted Reproduction, Peking University, Ministry of Education, Beijing, China.
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China.
| | - Jie Qiao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China.
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.
- Key Laboratory of Assisted Reproduction, Peking University, Ministry of Education, Beijing, China.
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China.
- Beijing Advanced Innovation Center for Genomics, Peking University, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
| |
Collapse
|
3
|
Zhao XM, Jiang XR, Xia T, Arévalo Sureda E, Schroyen M, Everaert N, Li XL. Effect of dietary protein and energy intake on embryonic survival and gene expression in the uterine endometrium of early pregnant gilts. Animal 2022; 16:100540. [PMID: 35594693 DOI: 10.1016/j.animal.2022.100540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 11/29/2022] Open
Abstract
Porcine embryonic loss during early gestation is a serious problem in swine production. Improving embryonic survival can be achieved by maternal manipulation. Protein and energy are two major components of the diet, which play decisive roles in embryonic survival. This study was performed to evaluate the effects of enhancing maternal protein or energy intake on embryonic survival during early gestation in gilts and to explore the underlying mechanism. From day (d) 0 to 30 of gestation, 40 gilts (Landrace × York) were randomly allocated to 5 diets according to daily intake of low (L, National Research Council (NRC) recommendation for gestation gilts), medium (M, 20% higher than NRC) or high (H, 40% higher than NRC) CP or metabolisable energy (ME) (LCPLME, MCPLME, HCPLME, LCPHME, HCPHME). Gilts were sacrificed on d 30 of gestation, and number of foetuses and corpora lutea, embryonic survival rate, uterine weight, and total volume of allantoic fluid were recorded or calculated. Gene expression was determined by Quantitative Real-time PCR (qPCR), western blot or immunohistochemistry. Results showed that increasing protein or ME intake significantly increased embryonic survival rate. Compared with diet LCPLME, plasma progesterone (P4) concentration in diet LCPHME increased at d 14 and d 30 of gestation. Progesterone receptor (PGR) was found not to be expressed in the epithelia but was strongly expressed in the stroma of the endometrium. Increasing protein or ME intake did not alter PGR expression in the endometrium. There was also no change in the amount of P4, hepatocyte growth factor, and fibroblast growth factor-7 in the endometrium. The mRNA abundance of cationic amino acid transporter 1 in the endometrium in diet LCPHME and HCPHME was significantly lower than in diet LCPLME. Diet HCPLME showed a tendency to increase neutral amino acid transporter 1 mRNA expression in the endometrium compared to diet LCPLME (P = 0.087). In conclusion, increasing maternal protein or ME intake had a positive effect on the embryonic survival. Increased protein intake by 20 or 40% did not alter plasma P4 level, but increasing ME intake by 40% improved plasma P4 concentration at d 14 and 30 of gestation. Increasing maternal protein or ME intake did not induce PGR expression in the endometrium. Maternal protein and energy intake likely mediate transportation of cationic and neutral amino acids from mother to foetus to affect embryonic survival and development.
Collapse
Affiliation(s)
- X M Zhao
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Precision Livestock and Nutrition Unit, TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liège, Gembloux 5030, Belgium
| | - X R Jiang
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - T Xia
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - E Arévalo Sureda
- Precision Livestock and Nutrition Unit, TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liège, Gembloux 5030, Belgium
| | - M Schroyen
- Precision Livestock and Nutrition Unit, TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liège, Gembloux 5030, Belgium
| | - N Everaert
- Precision Livestock and Nutrition Unit, TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liège, Gembloux 5030, Belgium
| | - X L Li
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
4
|
Vrhovac Madunić I, Karin-Kujundžić V, Madunić J, Šola IM, Šerman L. Endometrial Glucose Transporters in Health and Disease. Front Cell Dev Biol 2021; 9:703671. [PMID: 34552924 PMCID: PMC8450505 DOI: 10.3389/fcell.2021.703671] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/09/2021] [Indexed: 11/16/2022] Open
Abstract
Pregnancy loss is a frequent occurrence during the peri-implantation period, when there is high glucose demand for embryonic development and endometrial decidualization. Glucose is among the most essential uterine fluid components required for those processes. Numerous studies associate abnormal glucose metabolism in the endometrium with a higher risk of adverse pregnancy outcomes. The endometrium is incapable of synthesizing glucose, which thus must be delivered into the uterine lumen by glucose transporters (GLUTs) and/or the sodium-dependent glucose transporter 1 (SGLT1). Among the 26 glucose transporters (14 GLUTs and 12 SGLTs) described, 10 (9 GLUTs and SGLT1) are expressed in rodents and 8 (7 GLUTs and SGLT1) in the human uterus. This review summarizes present knowledge on the most studied glucose transporters in the uterine endometrium (GLUT1, GLUT3, GLUT4, and GLUT8), whose data regarding function and regulation are still lacking. We present the recently discovered SGLT1 in the mouse and human endometrium, responsible for controlling glycogen accumulation essential for embryo implantation. Moreover, we describe the epigenetic regulation of endometrial GLUTs, as well as signaling pathways included in uterine GLUT’s expression. Further investigation of the GLUTs function in different endometrial cells is of high importance, as numerous glucose transporters are associated with infertility, polycystic ovary syndrome, and gestational diabetes.
Collapse
Affiliation(s)
- Ivana Vrhovac Madunić
- Molecular Toxicology Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Valentina Karin-Kujundžić
- Department of Biology, School of Medicine, University of Zagreb, Zagreb, Croatia.,Centre of Excellence in Reproductive and Regenerative Medicine, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Josip Madunić
- Biochemistry and Organic Analytical Chemistry Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Ida Marija Šola
- Department of Gynecology and Obstetrics, Sisters of Charity University Hospital, Zagreb, Croatia
| | - Ljiljana Šerman
- Department of Biology, School of Medicine, University of Zagreb, Zagreb, Croatia.,Centre of Excellence in Reproductive and Regenerative Medicine, University of Zagreb School of Medicine, Zagreb, Croatia
| |
Collapse
|
5
|
Dean M. Glycogen in the uterus and fallopian tubes is an important source of glucose during early pregnancy†. Biol Reprod 2020; 101:297-305. [PMID: 31201425 DOI: 10.1093/biolre/ioz102] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/16/2019] [Accepted: 06/06/2019] [Indexed: 01/02/2023] Open
Abstract
Pregnancy loss is common during the peri-implantation period in mammals when glucose is required for both embryonic development and decidualization of the endometrium. As the uterus cannot synthesize glucose, all glucose must come directly from maternal circulation as needed or transiently stored as the macromolecule glycogen. Glycogen acts as a glucose reservoir, storing up to 55 000 glucose moieties per molecule. Endometrial glycogen concentrations are correlated with fertility in humans, indicating that glycogen is an essential source of glucose during early pregnancy. In humans and primates, endometrial glycogen concentrations peak during the luteal phase due to progesterone. In contrast, in rats and mink, estradiol triggers an accumulation of uterine glycogen during proestrus and estrus. In mated rats, the glycogen content of the endometrium increases again after implantation due to high levels of glycogen stored in the decidua. In mink, endometrial glycogen reserves are localized in the uterine epithelia at estrus. These reserves are mobilized before implantation, suggesting they are used to support embryonic growth. Uterine glycogen concentrations continue to decrease after implantation in mink, probably due to a lack of decidualization. How ovarian steroids stimulate glycogenesis in the endometrium is unclear, but current evidence suggests that estradiol/progesterone interacts with insulin or insulin-like growth factor signaling. In summary, endometrial glycogen is an essential source of glucose during the peri-implantation period. More work is needed to characterize differences among species, elucidate the fate of the glucose liberated from glycogen, and understand how ovarian steroids regulate glycogen metabolism in the uterus.
Collapse
Affiliation(s)
- Matthew Dean
- Department of Animal Science, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
6
|
Sánchez-Santos A, Martínez-Hernández MG, Contreras-Ramos A, Ortega-Camarillo C, Baiza-Gutman LA. Hyperglycemia-induced mouse trophoblast spreading is mediated by reactive oxygen species. Mol Reprod Dev 2018; 85:303-315. [PMID: 29392783 DOI: 10.1002/mrd.22965] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 01/26/2018] [Accepted: 01/31/2018] [Indexed: 12/13/2022]
Abstract
During embryo implantation, the outer layer of the blastocyst interacts with the endometrium giving rise to the development of the trophoblast cell lineage. The cells in this lineage participate in the penetration of endometrium due to their motility and invasive properties. The mechanisms that regulate the differentiation and invasive ability of these cells are essential for the establishment and maintenance of an efficient exchange between maternal and fetal tissues during pregnancy. In this context, hyperglycemia can induce oxidative stress causing alterations in the placenta. This study evaluated the role of reactive oxygen species (ROS) in the actions of high glucose concentration (HG) on trophoblast spreading and the expression of extracellular proteases in cultured mouse conceptuses. Blastocysts from gestational day 4 (GD4) were cultured until GD7 in HAM-F10 medium and further treated for 48 hr with HG (25 mM glucose) from GD7 to GD9. This treatment induced larger trophoblast outgrowths and increased ROS concentration, which was associated with increased expression levels of urokinase-type plasminogen activator (PLAU), plasminogen activator inhibitor 1 (PAI-1), and matrix metalloproteinase 9 (MMP-9). These effects were prevented by treatment with the non-specific antioxidant N-acetylcysteine (NAC) or apocynin, an inhibitor of NADPH oxidase. Our data suggest that the HG-induced trophoblast spreading and the expression of PLAU, PAI-1, and MMP-9 were mediated by the production of ROS via NADPH oxidase activity. Our results shed light on placental alterations in gestational diabetes mellitus.
Collapse
Affiliation(s)
- Alejandra Sánchez-Santos
- Laboratorio de Biología del Desarrollo, Unidad de Morfología y Función, FES-Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, México.,Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, C.P. Ciudad de México, México
| | - María G Martínez-Hernández
- Laboratorio de Biología del Desarrollo, Unidad de Morfología y Función, FES-Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, México
| | - Alejandra Contreras-Ramos
- Departamento de Biología del Desarrollo y Teratogénesis Experimental, Hospital Infantil de México Federico Gómez, México DF, México
| | - Clara Ortega-Camarillo
- Unidad de Investigación Médica en Bioquímica, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, México DF, México
| | - Luis A Baiza-Gutman
- Laboratorio de Biología del Desarrollo, Unidad de Morfología y Función, FES-Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, México.,Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, C.P. Ciudad de México, México
| |
Collapse
|
7
|
Kim K, Kim CH, Moley KH, Cheon YP. Disordered Meiotic Regulation of Oocytes by Duration of Diabetes Mellitus in BBdp Rat. Reprod Sci 2016; 14:467-74. [PMID: 17913966 DOI: 10.1177/1933719107306228] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Diabetes mellitus (DM) disturbs normal functions from the level of cells to the level of organs. In this study, the authors explore the detrimental effects of type 1 diabetes on meiotic regulation depending on the duration of DM. In non-diabetes-prone BioBreeding (BBdr) control rats, most of the large follicles had germinal vesicle (GV)-intact oocytes. Conversely, a decrease of intact GV that was dependent on the duration of diabetic symptoms was observed; only 54% of the large follicles of diabetes-prone BB (BBdp) rats had GV-intact oocytes at 6 weeks after diabetes induction. Furthermore, some of the secondary follicles in BBdp rats also had germinal vesicle breakdown (GVB) oocytes. The nuclear status of the euglycemia BBdp rat was similar to those of the BBdr rat. In BBdp rats, the rate of meiotic progression to the metaphase II stage was significantly lower; however, the rate of segregated oocytes was significantly increased compared with controls during induction of in vitro maturation. The rate of segregated oocytes was not affected by the presence of the cumulus after chronic symptoms. These results indicate that chronic DM has a detrimental effect on meiotic regulation during folliculogenesis and results in a reduced number of competent oocytes. In addition, these data suggest that the follicle cells can resume supporting the meiotic regulation under euglycemia through insulin administration, independent of the duration of DM.
Collapse
Affiliation(s)
- KilSoo Kim
- College of Veterinary Medicine, Kyungpook National University, Daegu, Korea
| | | | | | | |
Collapse
|
8
|
Pantaleon M. The Role of Hexosamine Biosynthesis and Signaling in Early Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 843:53-76. [DOI: 10.1007/978-1-4939-2480-6_3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
9
|
Rosenfeld CS. Effects of Maternal Diet and Exposure to Bisphenol A on Sexually Dimorphic Responses in Conceptuses and Offspring. Reprod Domest Anim 2012; 47 Suppl 4:23-30. [DOI: 10.1111/j.1439-0531.2012.02051.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
10
|
Bermejo-Alvarez P, Roberts RM, Rosenfeld CS. Effect of glucose concentration during in vitro culture of mouse embryos on development to blastocyst, success of embryo transfer, and litter sex ratio. Mol Reprod Dev 2012; 79:329-36. [PMID: 22461414 DOI: 10.1002/mrd.22028] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 01/28/2012] [Indexed: 01/31/2023]
Abstract
A high-glucose concentration in the reproductive tract during early development may result in aberrant embryo or fetal development, with effects that could have a greater impact on one sex than the other. Here, we determine if a high-glucose concentration impacts embryo development and pregnancy outcomes in a sex-specific manner in the mouse. Zygotes were cultured in potassium simple optimized medium, which typically contains 0.2 mM D-glucose, with and without additional glucose supplementation to a concentration of 28 mM. Zygote cleavage and blastocyst rate did not differ between treatments, but total and trophectoderm cell counts were reduced in blastocysts cultured in a high glucose. No differences between sexes nor inner cell mass cell number were observed within each treatment. Blastocysts developed in both media were transferred to recipients. The percentage of blastocysts resulting in viable pups was significantly reduced when the blastocysts were cultured in 28 mM glucose (74 ± 4%, controls vs. 55.8 ± 7.1%, 28 mM glucose), but conceptus loss affected both sexes equally as litter sex ratio did not differ between treatments (52.7% and 52.2% males for controls and high glucose, respectively). Pup body weight at birth was higher for males than females, but was not affected by earlier culture in high glucose. In conclusion, in vitro culture in medium with a glucose concentration approximating that of diabetic serum reduces total and trophectoderm cell numbers at the blastocyst stage and conceptus development to term, but these detrimental effects are not sex-specific.
Collapse
Affiliation(s)
- P Bermejo-Alvarez
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211, USA.
| | | | | |
Collapse
|
11
|
Ahmed RG. Evolutionary interactions between diabetes and development. Diabetes Res Clin Pract 2011; 92:153-67. [PMID: 21111504 DOI: 10.1016/j.diabres.2010.10.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 10/12/2010] [Accepted: 10/19/2010] [Indexed: 12/19/2022]
Abstract
Because of the complications of diabetes affecting the mothers and their fetus/newborns are less known, this review examined the epidemiologic and mechanistic issues involved in the developmental programming of diabetic mothers. This overview showed that sperm, egg, zygote or blastocyst derived from diabetic parents may develop into offspring with high risk of any type of diabetes, even if placed in a normal uterus, producing developmental delay, embryopathy, geno- and cyto-toxicity, teratogenic changes, free radicals and apoptosis. These early insults may then lead to an increased rate of miscarriage and congenital anomalies depending on free radicals signaling and cell-death pathways involved by the diabetogenic agents. Furthermore, sperm, egg, zygote or blastocyst from normal parents will have an increased risk of diabetes if placed in a diabetic uterus. Interestingly, diabetes has deleterious effect on male/female reproductive functions and on the development of the blastocysts/embryos. Indeed, this review hypothesized that the long-term effects of diabetes during the pregnancy (gestational diabetes) may influence, generally, on the health of the embryos, newborns (perinatal life) and adulthood. However, there are obvious species differences between pregnant women and animal models. Thus, maintaining normoglycaemia during pregnancy may play an important role in a healthy life for the newborns.
Collapse
Affiliation(s)
- R G Ahmed
- Department of Zoology, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt.
| |
Collapse
|
12
|
Wang Q, Moley KH. Maternal diabetes and oocyte quality. Mitochondrion 2010; 10:403-10. [PMID: 20226883 DOI: 10.1016/j.mito.2010.03.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Revised: 02/10/2010] [Accepted: 03/04/2010] [Indexed: 02/07/2023]
Abstract
Maternal diabetes has been demonstrated to adversely affect preimplantation embryo development and pregnancy outcomes. Emerging evidence has implicated that these effects are associated with compromised oocyte competence. Several developmental defects during oocyte maturation in diabetic mice have been reported over past decades. Most recently, we further identified the structural, spatial and metabolic dysfunction of mitochondria in oocytes from diabetic mice, suggesting the impaired oocyte quality. These defects in the oocyte may be maternally transmitted to the embryo and then manifested later as developmental abnormalities in preimplantation embryo, congenital malformations, and even metabolic disease in the offspring. In this paper, we briefly review the effects of maternal diabetes on oocyte quality, with a particular emphasis on the mitochondrial dysfunction. The possible connection between dysfunctional oocyte mitochondria and reproductive failure of diabetic females, and the mechanism(s) by which maternal diabetes exerts its effects on the oocyte are also discussed.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St Louis, MO 63110, USA
| | | |
Collapse
|
13
|
Han Z, Mtango NR, Zhong Z, Vassena R, Latham KE. Early transcription from the maternal genome controlling blastomere integrity in mouse two-cell-stage embryos. Am J Physiol Cell Physiol 2010; 298:C1235-44. [PMID: 20107036 DOI: 10.1152/ajpcell.00393.2009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Blastomere cytofragmentation in mammalian embryos poses a significant problem in applied and clinical embryology. Mouse two-cell-stage embryos display strain-dependent differences in the rate of cytofragmentation, with a high rate observed in C3H/HeJ embryos and a lower rate observed in C57BL/6 embryos. The maternally inherited genome exerts the strongest effect on the process, with lesser effects mediated by the paternally inherited genome and the ooplasm. The effect of the maternal genome is transcription dependent and independent of the mitochondrial strain of origin. To identify molecular mechanisms that underlie cytofragmentation, we evaluated transcriptional activities of embryos possessing maternal pronuclei (mPN) of different origins. The mPN from C57BL/6 and C3H/HeJ strains directed specific transcription at the two-cell stage of mRNAs corresponding to 935 and 864 Affymetrix probe set IDs, respectively. Comparing transcriptomes of two-cell-stage embryos with different mPN revealed 64 transcribed genes with differential expression (1.4-fold or greater). Some of these genes occupy molecular pathways that may regulate cytofragmentation via a combination of effects related to apoptosis and effects on the cytoskeleton. These results implicate specific molecular mechanisms that may regulate cytofragmentation in early mammalian embryos. The most striking effect of mPN strain of origin on gene expression was on adenylate cyclase 2 (Adcy2). Treatment with dibutyryl cAMP (dbcAMP) elicits a high rate and severe form of cytofragmentation, and the effective dbcAMP concentration varies with maternal genotype. An activator of exchange proteins directly activated by cAMP (EPACs, or RAPGEF 3 and 4) 8-pCPT-2'-O-methyl-cAMP, elicits a high level of fragmentation while the PKA-specific activator N6-benzoyl-cAMP does not. Inhibition of A kinase anchor protein activities with st-Ht31 induces fragmentation. Inhibition of phosphatidylinositol 3-kinase signaling also induces fragmentation. These results reveal novel mechanisms by which maternal genotype affects cytofragmentation, including a system of opposing signaling pathways that most likely operate by controlling cytoskeletal function.
Collapse
Affiliation(s)
- Zhiming Han
- The Fels Institute for Cancer Research and Molecular Biology, Temple Univ. School of Medicine, Philadelphia, PA 19140, USA
| | | | | | | | | |
Collapse
|
14
|
Abstract
Birth defects resulting from diabetic pregnancy are associated with apoptosis of a critical mass of progenitor cells early during the formation of the affected organ(s). Insufficient expression of genes that regulate viability of the progenitor cells is responsible for the apoptosis. In particular, maternal diabetes inhibits expression of a gene, Pax3, that encodes a transcription factor which is expressed in neural crest and neuroepithelial cells. As a result of insufficient Pax3, cardiac neural crest and neuroepithelial cells undergo apoptosis by a process dependent on the p53 tumor suppressor protein. This, then provides a cellular explanation for the cardiac outflow tract and neural tube and defects induced by diabetic pregnancy.
Collapse
Affiliation(s)
- James H. Chappell
- Section on Developmental and Stem Cell Biology, Joslin Diabetes Center, One Joslin Place, Boston, MA 02215, USA
| | - Xiao Dan Wang
- Section on Developmental and Stem Cell Biology, Joslin Diabetes Center, One Joslin Place, Boston, MA 02215, USA
| | - Mary R. Loeken
- Section on Developmental and Stem Cell Biology, Joslin Diabetes Center, One Joslin Place, Boston, MA 02215, USA
| |
Collapse
|
15
|
Bell CE, Larivière NMK, Watson PH, Watson AJ. Mitogen-activated protein kinase (MAPK) pathways mediate embryonic responses to culture medium osmolarity by regulating Aquaporin 3 and 9 expression and localization, as well as embryonic apoptosis. Hum Reprod 2009; 24:1373-86. [PMID: 19258345 DOI: 10.1093/humrep/dep010] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND In order to advance the development of culture conditions and increase the potential for supporting normal preimplantation embryo development in vitro, it is critical to define the mechanisms that early embryos utilize to survive in culture. We investigated the mechanisms that embryos employ in response to culture medium osmolarity. We hypothesized that mitogen-activated protein kinase (MAPK) pathways mediate responses to hyperosmotic stress by regulating Aquaporin (AQP) 3 and 9 expression as well as embryonic apoptosis. METHODS Real-time reverse transcription and polymerase chain reaction and whole-mount immunofluorescence were used to determine the relative mRNA levels and protein localization patterns of AQP 3 and 9 after hyperosmotic medium treatment. RESULTS At 6 and 24 h, a significant increase in Aqp 3 and 9 mRNA was observed in the sucrose hyperosmotic treatment compared with standard medium and glycerol controls. Blockade of MAPK14/11 negated the increase in Aqp 3 and 9 mRNA levels, whereas culture in a MAPK8 blocker did not. Hyperosmotic sucrose treatment significantly increased embryonic apoptosis which was negated in the presence of MAPK8 blocker, but not MAPK14/11 blocker. CONCLUSIONS MAPK14/11 activation is a component of the rapid adaptive stress response mechanism that includes the effects of AQP mRNA expression and protein localization, whereas the MAPK8 pathway is a regulator of apoptosis.
Collapse
Affiliation(s)
- Christine E Bell
- Department of Obstetrics and Gynaecology, The University of Western Ontario, London, Ontario, Canada
| | | | | | | |
Collapse
|
16
|
Eriksson UJ, Cederberg J, Wentzel P. Congenital malformations in offspring of diabetic mothers--animal and human studies. Rev Endocr Metab Disord 2003; 4:79-93. [PMID: 12618562 DOI: 10.1023/a:1021879504372] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Ulf J Eriksson
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden.
| | | | | |
Collapse
|
17
|
Biggers JD, McGinnis LK. Evidence that glucose is not always an inhibitor of mouse preimplantation development in vitro. Hum Reprod 2001; 16:153-163. [PMID: 11139555 DOI: 10.1093/humrep/16.1.153] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A factorial experimental design was used to examine the effects of 16 combinations of four concentrations of glucose (0.20, 0.60, 1.8, 5.4 mmol/l) and four concentrations of potassium dihydrogen phosphate (KH(2)PO(4); 0.05, 0.15, 0.45, 1.35 mmol/l) on the development in vitro of outbred CF1 mouse zygotes. Three responses were measured: (i) the number of zona-enclosed blastocysts; (ii) the number of blastocysts that started to hatch; and (iii) the total cell counts in the blastocysts. General linear modelling was used to estimate the most parsimonious two-dimensional concentration-response surfaces that represent the three responses to the different concentrations of glucose and KH(2)PO(4). There were no significant interactions between the effects of glucose and KH(2)PO(4) in all cases. Thus, the effects of glucose and phosphate are independent. No significant effects of glucose on blastocyst formation and the initiation of hatching were observed. Increasing the concentration of KH(2)PO(4) inhibited slightly (</=20%) the development of zygotes into blastocysts and the initiation of hatching. The slight inhibitory effects of KH(2)PO(4) appeared to be due to the inhibition of the development of a few sensitive embryos. No significant effects of glucose and KH(2)PO(4) were observed on the total cell counts.
Collapse
Affiliation(s)
- J D Biggers
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA.
| | | |
Collapse
|
18
|
Eriksson UJ, Borg LA, Cederberg J, Nordstrand H, Simán CM, Wentzel C, Wentzel P. Pathogenesis of diabetes-induced congenital malformations. Ups J Med Sci 2000; 105:53-84. [PMID: 11095105 DOI: 10.1517/03009734000000055] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The increased rate of fetal malformation in diabetic pregnancy represents both a clinical problem and a research challenge. In recent years, experimental and clinical studies have given insight into the teratological mechanisms and generated suggestions for improved future treatment regimens. The teratological role of disturbances in the metabolism of inositol, prostaglandins, and reactive oxygen species has been particularly highlighted, and the beneficial effect of dietary addition of inositol, arachidonic acid and antioxidants has been elucidated in experimental work. Changes in gene expression and induction of apoptosis in embryos exposed to a diabetic environment have been investigated and assigned roles in the teratogenic processes. The diabetic environment appears to simultaneously induce alterations in several interrelated teratological pathways. The complex pathogenesis of diabetic embryopathy has started to unravel, and future research efforts will utilize both clinical intervention studies and experimental work that aim to characterize the human applicability and the cell biological components of the discovered teratological mechanisms.
Collapse
Affiliation(s)
- U J Eriksson
- Department of Medical Cell Biology, Uppsala University, Sweden.
| | | | | | | | | | | | | |
Collapse
|
19
|
McEvoy TG, Robinson JJ, Aitken RP, Findlay PA, Robertson IS. Dietary excesses of urea influence the viability and metabolism of preimplantation sheep embryos and may affect fetal growth among survivors. Anim Reprod Sci 1997; 47:71-90. [PMID: 9233507 DOI: 10.1016/s0378-4320(96)01627-2] [Citation(s) in RCA: 162] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In the first of two experiments investigating the effect of dietary urea on the survival and metabolism of ovine embryos, 30 Border Leicester x Scottish Blackface ewes received a maintenance diet (milled hay, molasses, minerals, vitamins) with no urea (control, C; n = 10) or with added urea at 15 g (low urea, LU; n = 10) or 30 g (high urea, HU; n = 10) kg-1 feed for a 12 week period. The degraded nitrogen (N) status relative to estimated rumen microbial N requirements was -2, +9 and +20 g per day, respectively. One week after allocation to diets, progesterone priming (12 days) commenced. Ewes received 800 IU of equine chorionic gonadotrophin at progesterone withdrawal, were inseminated 52 h later (Day 0) and embryos were collected from five ewes per group at Day 4 and from five ewes at Day 11. If available, one embryo was returned to each ewe; the rest were cultured in vitro. There was no effect of treatment on progesterone, luteinizing hormone (LH), or time of oestrus onset C, LU and HU plasma urea (P < 0.001) and ammonia levels (C vs. HU, P < 0.01; LU vs. HU, P < 0.05) differed. Day 4 HU embryos were retarded relative to C and LU embryos. After 3 days of culture, 70%, 66% and 0% of C, LU and HU embryos, respectively, were viable. Mid-term pregnancy rates following transfer were 63%, 43% and 33%. Only one HU lamb (male) was born following embryo transfer, its birthweight (10.1 kg) exceeded that of its C (n = 3; 7.0, 7.0, 7.5 kg) and LU (n = 2; 7.3, 8.2 kg) counterparts (P < 0.025). In the second experiment, C2 (2.5 g urea kg-1; n = 5) and HU2 (30 g kg-1; n = 7) diets which provided similar intakes of degraded N relative to microbial requirements as those for C and HU ewes in Experiment 1 were fed to Border Leicester x Scottish Blackface ewes superovulated with 16 mg of porcine follicle-stimulating hormone. Urea and ammonia levels in utero-oviductal samples were elevated in HU2 ewes (P < 0.05). At collection (Day 3), HU2 embryos used more glucose (P < 0.01) and, following culture, some exhibited up to a 2.8-fold increase in metabolism. In conclusion, excess rumen degradable N in ewe diets elevates urea and ammonia in plasma and in utero, with an associated increase in embryo mortality. Nevertheless, metabolism appears to be up-regulated in some embryos and, among those that survive, fetal growth appears to be enhanced.
Collapse
Affiliation(s)
- T G McEvoy
- Rowett Research Institute, Bucksburn, Aberdeen, UK
| | | | | | | | | |
Collapse
|
20
|
Liu Z, Foote RH, Yang X. Development of early bovine embryos in co-culture with ksom and taurine, superoxide dismutase or insulin. Theriogenology 1995; 44:741-50. [PMID: 16727771 DOI: 10.1016/0093-691x(95)00253-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/1994] [Accepted: 04/28/1995] [Indexed: 11/21/2022]
Abstract
Three experiments, utilizing 2578 embryos, were designed to test the effects of media, taurine, Superoxide dismutase and insulin on the development of embryos produced by in vitro maturation and in vitro fertilization (IVM/IVF). Embryos showing at least 1 cleavage during culture for 40 to 44 h after IVM/IVF were selected for further culture under various conditions for 6 d at 39 degrees C in 5% C0(2):95% air. A Buffalo rat liver (BRL) cell co-culture was used in all 3 experiments. Experiment 1 was a 3 x 2 factorial arrangement with KSOM (a high potassium simplex optimization-derived medium containing only 12 ingredients), Menezo B(2) and TCM-199 media with or without 7 mM taurine. Blastocyst production in the 3 media, respectively, was 48, 36 and 29% (P<0.05). Addition of 7 mM taurine increased the percentage of blastocysts from 34 to 42 (P<0.05). In Experiment 2, Superoxide dismutase (SOD) did not improve blastocyst development (P>0.05). In Experiment 3, insulin (75 ng/ml) added to KSOM resulted in 46% morulae plus blastocysts compared with 35% for the control (P<0.05). These results indicate that the co-culture of embryos in KSOM with taurine or insulin added is superior to commonly used complex media for efficient production of blastocysts following IVM/IVF.
Collapse
Affiliation(s)
- Z Liu
- Department of Animal Science, Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
21
|
Eriksson UJ. The pathogenesis of congenital malformations in diabetic pregnancy. DIABETES/METABOLISM REVIEWS 1995; 11:63-82. [PMID: 7600908 DOI: 10.1002/dmr.5610110106] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- U J Eriksson
- Department of Medical Cell Biology, University of Uppsala, Sweden
| |
Collapse
|
22
|
Penzias AS, Rossi G, Gutmann JN, Haj-Hassan L, Leykin L, Diamond MP. Dichloroacetic acid accelerates initial development of 2-cell murine embryos in vitro. Metabolism 1993; 42:1077-80. [PMID: 8412755 DOI: 10.1016/0026-0495(93)90260-u] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Preimplantation embryos up to the 8-cell stage of development use lactate and pyruvate but not glucose or Krebs cycle intermediates to support growth, development, and cleavage. The dominant effect of dichloroacetic acid (DCA) is the irreversible stimulation of pyruvate dehydrogenase (PDH) activity, thus accelerating the oxidative metabolism of pyruvate and lactate. To test the hypothesis that early induction of oxidative metabolism in 2-cell murine embryos accelerates preimplantation embryo cleavage rates, female B6C3F1 mice at 6 to 8 weeks of age were superovulated with pregnant mare serum gonadotropin (PMSG) and human chorionic gonadotropin (hCG) and mated. All 2-cell stage embryos were randomly assigned to culture media with or without 130 micrograms/mL DCA. The developmental stage of all embryos was then noted every 24 hours for a total of 72 hours. Chi-square analysis and the method of average rank sum were used to compare the distribution of embryos at each observation point. At 24 hours, DCA-exposed embryos had achieved an advanced stage of growth and development relative to controls (average rank sum, P = .026; chi-square distribution, P = .047). Subsequently, at 48 and 72 hours, neither the average rank sum nor the chi-square distribution was different. Our data suggest that DCA accelerates early growth and development of murine embryos before implantation, possibly through the early induction of oxidative metabolism.
Collapse
Affiliation(s)
- A S Penzias
- Department of Obstetrics and Gynecology, Yale University School of Medicine, New Haven, CT
| | | | | | | | | | | |
Collapse
|