1
|
Davidsen LI, Hagberg CE, Goitea V, Lundby SM, Larsen S, Ebbesen MF, Stanic N, Topel H, Kornfeld JW. Mouse vascularized adipose spheroids: an organotypic model for thermogenic adipocytes. Front Endocrinol (Lausanne) 2024; 15:1396965. [PMID: 38982992 PMCID: PMC11231189 DOI: 10.3389/fendo.2024.1396965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/30/2024] [Indexed: 07/11/2024] Open
Abstract
Adipose tissues, particularly beige and brown adipose tissue, play crucial roles in energy metabolism. Brown adipose tissues' thermogenic capacity and the appearance of beige cells within white adipose tissue have spurred interest in their metabolic impact and therapeutic potential. Brown and beige fat cells, activated by environmental factors like cold exposure or by pharmacology, share metabolic mechanisms that drive non-shivering thermogenesis. Understanding these two cell types requires advanced, yet broadly applicable in vitro models that reflect the complex microenvironment and vasculature of adipose tissues. Here we present mouse vascularized adipose spheroids of the stromal vascular microenvironment from inguinal white adipose tissue, a tissue with 'beiging' capacity in mice and humans. We show that adding a scaffold improves vascular sprouting, enhances spheroid growth, and upregulates adipogenic markers, thus reflecting increased adipocyte maturity. Transcriptional profiling via RNA sequencing revealed distinct metabolic pathways upregulated in our vascularized adipose spheroids, with increased expression of genes involved in glucose metabolism, lipid metabolism, and thermogenesis. Functional assessment demonstrated increased oxygen consumption in vascularized adipose spheroids compared to classical 2D cultures, which was enhanced by β-adrenergic receptor stimulation correlating with elevated β-adrenergic receptor expression. Moreover, stimulation with the naturally occurring adipokine, FGF21, induced Ucp1 mRNA expression in the vascularized adipose spheroids. In conclusion, vascularized inguinal white adipose tissue spheroids provide a physiologically relevant platform to study how the stromal vascular microenvironment shapes adipocyte responses and influence activated thermogenesis in beige adipocytes.
Collapse
Affiliation(s)
- Laura Ingeborg Davidsen
- Functional Genomics and Metabolism Research Unit, Institute of Biochemistry and Molecular Biology, Faculty of Science, University of Southern Denmark, Odense, Denmark
| | - Carolina E. Hagberg
- Division of Cardiovascular Medicine, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Victor Goitea
- Functional Genomics and Metabolism Research Unit, Institute of Biochemistry and Molecular Biology, Faculty of Science, University of Southern Denmark, Odense, Denmark
- Novo Nordisk Foundation Center for Adipocyte Signaling (ADIPOSIGN), University of Southern Denmark, Odense, Denmark
| | - Stine Meinild Lundby
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Steen Larsen
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Morten Frendø Ebbesen
- Danish Molecular Biomedical Imaging Center (DaMBIC), Institute of Biochemistry and Molecular Biology, Faculty of Science, University of Southern Denmark, Odense, Denmark
| | - Natasha Stanic
- Functional Genomics and Metabolism Research Unit, Institute of Biochemistry and Molecular Biology, Faculty of Science, University of Southern Denmark, Odense, Denmark
| | - Hande Topel
- Functional Genomics and Metabolism Research Unit, Institute of Biochemistry and Molecular Biology, Faculty of Science, University of Southern Denmark, Odense, Denmark
- Novo Nordisk Foundation Center for Adipocyte Signaling (ADIPOSIGN), University of Southern Denmark, Odense, Denmark
| | - Jan-Wilhelm Kornfeld
- Functional Genomics and Metabolism Research Unit, Institute of Biochemistry and Molecular Biology, Faculty of Science, University of Southern Denmark, Odense, Denmark
- Novo Nordisk Foundation Center for Adipocyte Signaling (ADIPOSIGN), University of Southern Denmark, Odense, Denmark
| |
Collapse
|
2
|
Chaurasiya V, Pham DD, Harju J, Juuti A, Penttilä A, Emmagouni SKG, Nguyen VD, Zhang B, Perttunen S, Keskitalo S, Zhou Y, Pietiläinen KH, Haridas PAN, Olkkonen VM. Human visceral adipose tissue microvascular endothelial cell isolation and establishment of co-culture with white adipocytes to analyze cell-cell communication. Exp Cell Res 2023; 433:113819. [PMID: 37852349 DOI: 10.1016/j.yexcr.2023.113819] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/20/2023]
Abstract
Communication between adipocytes and endothelial cells (EC) is suggested to play an important role in the metabolic function of white adipose tissue. In order to generate tools to investigate in detail the physiology and communication of EC and adipocytes, a method for isolation of adipose microvascular EC from visceral adipose tissue (VAT) biopsies of subjects with obesity was developed. Moreover, mature white adipocytes were isolated from the VAT biopsies by a method adapted from a previously published Membrane aggregate adipocytes culture (MAAC) protocol. The identity and functionality of the cultivated and isolated adipose microvascular EC (AMvEC) was validated by imaging their morphology, analyses of mRNA expression, fluorescence activated cell sorting (FACS), immunostaining, low-density lipoprotein (LDL) uptake, and in vitro angiogenesis assays. Finally, we established a new trans filter co-culture system (membrane aggregate adipocyte and endothelial co-culture, MAAECC) for the analysis of communication between the two cell types. EC-adipocyte communication in this system was validated by omics analyses, revealing several altered proteins belonging to pathways such as metabolism, intracellular transport and signal transduction in adipocytes co-cultured with AMvEC. In reverse experiments, induction of several pathways including endothelial development and functions was found in AMvEC co-cultured with adipocytes. In conclusion, we developed a robust method to isolate EC from small quantities of human VAT. Furthermore, the MAAECC system established during the study enables one to study the communication between primary white adipocytes and EC or vice-versa and could also be employed for drug screening.
Collapse
Affiliation(s)
- Vaishali Chaurasiya
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, Helsinki, Finland; Doctoral Programme in Biomedicine, University of Helsinki, Finland.
| | - Dan Duc Pham
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, Helsinki, Finland
| | - Jukka Harju
- Department of Gastrointestinal Surgery, Abdominal Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Anne Juuti
- Department of Gastrointestinal Surgery, Abdominal Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Anne Penttilä
- Department of Gastrointestinal Surgery, Abdominal Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | | | - Van Dien Nguyen
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK; Systems Immunity Research Institute, Cardiff University, Cardiff, CF14 4XN, UK
| | - Birong Zhang
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK; Systems Immunity Research Institute, Cardiff University, Cardiff, CF14 4XN, UK
| | - Sanni Perttunen
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, Helsinki, Finland
| | - Salla Keskitalo
- Molecular Systems Biology Research Group & Proteomics Unit, HiLIFE Helsinki Institute of Life Science, Institute of Biotechnology, University of Helsinki, Finland
| | - You Zhou
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK; Systems Immunity Research Institute, Cardiff University, Cardiff, CF14 4XN, UK
| | - Kirsi H Pietiläinen
- Obesity Research Unit, Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland; HealthyWeightHub, Endocrinology, Abdominal Center, Helsinki University Hospital, Helsinki, Finland
| | - P A Nidhina Haridas
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, Helsinki, Finland
| | - Vesa M Olkkonen
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, Helsinki, Finland; Department of Anatomy, Faculty of Medicine, University of Helsinki, Finland.
| |
Collapse
|
3
|
Zhu Z, Ali A, Wang J, Qi S, Hua Z, Ren H, Zhang L, Gu H, Molenaar A, Babar ME, Bi Y. Myostatin increases the expression of matrix metalloproteinase genes to promote preadipocytes differentiation in pigs. Adipocyte 2022; 11:266-275. [PMID: 35443856 PMCID: PMC9037494 DOI: 10.1080/21623945.2022.2065715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
ABSTACTMyostatin (MSTN) resulted in reduced backfat thickness in MSTN-knockout (MSTN-KO) pigs, whereas the underlying mechanism remains elusive. In this study, RNA sequencing (RNA-seq) was used to screen differentially expressed genes (DEGs) in porcine fat tissues. We identified 285 DEGs, including 4 adipocyte differentiation-related genes (ADRGs). Matrix Metalloproteinase-2/7 (MMP-2/7), fibronectin (FN), and laminin (LN) were differentially expressed in MSTN-KO pigs compared with wild-type (WT) pigs. To investigate the molecular mechanism, we treated the preadipocytes with siRNA and recombinant MSTN protein. The results indicated that MSTN increased the expression of MMP-2/7/9 and promoted the preadipocyte differentiation. To further validate the effect of MSTN on MMP-2/7/9 expression, we treated MSTN-KO PK15 cells with recombinant MSTN protein and detected the expression of MMP-2/7/9. The data showed that MSTN increases the expression of MMP-2/7/9 in PK15. This study revealed that MSTN promoted preadipocyte differentiation and provided the basis for the mechanism of fatty deposition in pigs.
Collapse
Affiliation(s)
- Zhe Zhu
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, China
| | - Akhtar Ali
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, China
- Department of Biotechnology, Virtual University of Pakistan, Lahore, Pakistan
| | - Jing Wang
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, China
- College of Life Science, South-Central University for Nationalities, Wuhan, China
| | - Shijin Qi
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, China
| | - Zaidong Hua
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, China
| | - Hongyan Ren
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, China
| | - Liping Zhang
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, China
| | - Hao Gu
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, China
| | - Adrian Molenaar
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, China
- Rumen Microbiology and Animal Nutrition and Physiology AgResearch, Grasslands Campus, Fitzherbert Research Centre, Palmerston North, New Zealand
| | | | - Yanzhen Bi
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, China
| |
Collapse
|
4
|
Adipose Tissue Development Relies on Coordinated Extracellular Matrix Remodeling, Angiogenesis, and Adipogenesis. Biomedicines 2022; 10:biomedicines10092227. [PMID: 36140327 PMCID: PMC9496222 DOI: 10.3390/biomedicines10092227] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 11/24/2022] Open
Abstract
Despite developing prenatally, the adipose tissue is unique in its ability to undergo drastic growth even after reaching its mature size. This development and subsequent maintenance rely on the proper coordination between the vascular niche and the adipose compartment. In this review, the process of adipose tissue development is broken down to explain (1) the ultrastructural matrix remodeling that is undertaken during simultaneous adipogenesis and angiogenesis, (2) the paracrine crosstalk involved during adipose development, (3) the mechanical regulators involved in adipose growth, and (4) the proteolytic and paracrine oversight for matrix remodeling during adipose development. It is crucial to gain a better understanding of the complex relationships that exist between adipose tissue and the vasculature during tissue development to provide insights into the pathological tissue expansion of obesity and to develop improved soft-tissue reconstruction techniques.
Collapse
|
5
|
Impact of Bariatric Surgery on Adipose Tissue Biology. J Clin Med 2021; 10:jcm10235516. [PMID: 34884217 PMCID: PMC8658722 DOI: 10.3390/jcm10235516] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 02/07/2023] Open
Abstract
Bariatric surgery (BS) procedures are actually the most effective intervention to help subjects with severe obesity achieve significant and sustained weight loss. White adipose tissue (WAT) is increasingly recognized as the largest endocrine organ. Unhealthy WAT expansion through adipocyte hypertrophy has pleiotropic effects on adipocyte function and promotes obesity-associated metabolic complications. WAT dysfunction in obesity encompasses an altered adipokine secretome, unresolved inflammation, dysregulated autophagy, inappropriate extracellular matrix remodeling and insufficient angiogenic potential. In the last 10 years, accumulating evidence suggests that BS can improve the WAT function beyond reducing the fat depot sizes. The causal relationships between improved WAT function and the health benefits of BS merits further investigation. This review summarizes the current knowledge on the short-, medium- and long-term outcomes of BS on the WAT composition and function.
Collapse
|
6
|
De Luca M, Mandala M, Rose G. Towards an understanding of the mechanoreciprocity process in adipocytes and its perturbation with aging. Mech Ageing Dev 2021; 197:111522. [PMID: 34147549 DOI: 10.1016/j.mad.2021.111522] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/29/2021] [Accepted: 06/15/2021] [Indexed: 12/25/2022]
Abstract
Adipose tissue (AT) is a complex organ, with multiple functions that are essential for maintaining metabolic health. A feature of AT is its capability to expand in response to physiological challenges, such as pregnancy and aging, and during chronic states of positive energy balance occurring throughout life. AT grows through adipogenesis and/or an increase in the size of existing adipocytes. One process that is required for healthy AT growth is the remodeling of the extracellular matrix (ECM), which is a necessary step to restore mechanical homeostasis and maintain tissue integrity and functionality. While the relationship between mechanobiology and adipogenesis is now well recognized, less is known about the role of adipocyte mechanosignaling pathways in AT growth. In this review article, we first summarize evidence linking ECM remodelling to AT expansion and how its perturbation is associated to a metabolically unhealthy phenotype. Subsequently, we highlight findings suggesting that molecules involved in the dynamic, bidirectional process (mechanoreciprocity) enabling adipocytes to sense changes in the mechanical properties of the ECM are interconnected to pathways regulating lipid metabolism. Finally, we discuss processes through which aging may influence the ability of adipocytes to appropriately respond to alterations in ECM composition.
Collapse
Affiliation(s)
- Maria De Luca
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Maurizio Mandala
- Department of Biology, Ecology and Earth Science, University of Calabria, Rende, 87036, Italy
| | - Giuseppina Rose
- Department of Biology, Ecology and Earth Science, University of Calabria, Rende, 87036, Italy
| |
Collapse
|
7
|
The role of vascular niche and endothelial cells in organogenesis and regeneration. Exp Cell Res 2020; 398:112398. [PMID: 33271129 DOI: 10.1016/j.yexcr.2020.112398] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/21/2020] [Accepted: 11/22/2020] [Indexed: 02/08/2023]
Abstract
The term vascular niche indicate the physical and biochemical microenvironment around blood vessel where endothelial cells, pericytes, and smooth muscle cells organize themselves to form blood vessels and release molecules involved in the recruitment of hematopoietic stem cells, endothelial progenitor cells and mesenchymal stem cells. The vascular niche creates a permissive environment that enables different cell types to realize their developmental or regenerative programs. In this context, the proximity between the endothelium and the new-forming cellular components of organs suggests an essential role of endothelial cells in the organs maturation. Dynamic interactions between specific organ endothelial cells and different cellular conponents are crucial for different organ morphogenesis and function. Conversely, organs provide cues shaping vascular network structure.
Collapse
|
8
|
Shin SS, Yoon M. Regulation of Obesity by Antiangiogenic Herbal Medicines. Molecules 2020; 25:molecules25194549. [PMID: 33020443 PMCID: PMC7582783 DOI: 10.3390/molecules25194549] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 09/30/2020] [Accepted: 10/02/2020] [Indexed: 12/11/2022] Open
Abstract
Obesity is the result of an energy imbalance caused by an increased ratio of caloric intake to energy expenditure. In conjunction with obesity, related metabolic disorders, such as dyslipidemia, atherosclerosis, and type 2 diabetes, have become global health problems. Obesity progression is thought to be associated with angiogenesis and extracellular matrix (ECM) remodeling. Angiogenesis occurs in growing adult adipose tissues, which are similar to neoplastic tissues. Adipose tissue is highly vascularized, and each adipocyte is nourished by an extensive capillary network. Adipocytes produce proangiogenic factors, such as vascular endothelial growth factor A and fibroblast growth factor 2, which promote neovascularization within the adipose tissue. Furthermore, matrix metalloproteinases (MMPs), including MMP-2 and MMP-9, play important roles in adipose tissue development and microvessel maturation by modifying the ECM. Thus, modulation of angiogenesis and MMP activity provides a promising therapeutic approach for controlling human obesity and its related disorders. Over the past decade, there has been a great increase in the use of alternative treatments, such as herbal remedies, for these diseases. This review will focus on the role of angiogenesis in adipose tissue growth and the regulation of obesity by antiangiogenic herbal medicines.
Collapse
Affiliation(s)
- Soon Shik Shin
- Department of Formula Sciences, College of Oriental Medicine, Dongeui University, Busan 47340, Korea;
| | - Michung Yoon
- Department of Biomedical Engineering, Mokwon University, Daejeon 35349, Korea;
- Correspondence: ; Tel.: +8242-829-7581; Fax: 8242-829-7580
| |
Collapse
|
9
|
Post MJ, Levenberg S, Kaplan DL, Genovese N, Fu J, Bryant CJ, Negowetti N, Verzijden K, Moutsatsou P. Scientific, sustainability and regulatory challenges of cultured meat. ACTA ACUST UNITED AC 2020. [DOI: 10.1038/s43016-020-0112-z] [Citation(s) in RCA: 140] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
10
|
Rationale for the design of 3D-printable bioresorbable tissue-engineering chambers to promote the growth of adipose tissue. Sci Rep 2020; 10:11779. [PMID: 32678237 PMCID: PMC7367309 DOI: 10.1038/s41598-020-68776-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 06/30/2020] [Indexed: 11/16/2022] Open
Abstract
Tissue engineering chambers (TECs) bring great hope in regenerative medicine as they allow the growth of adipose tissue for soft tissue reconstruction. To date, a wide range of TEC prototypes are available with different conceptions and volumes. Here, we addressed the influence of TEC design on fat flap growth in vivo as well as the possibility of using bioresorbable polymers for optimum TEC conception. In rats, adipose tissue growth is quicker under perforated TEC printed in polylactic acid than non-perforated ones (growth difference 3 to 5 times greater within 90 days). Histological analysis reveals the presence of viable adipocytes under a moderate (less than 15% of the flap volume) fibrous capsule infiltrated with CD68+ inflammatory cells. CD31-positive vascular cells are more abundant at the peripheral zone than in the central part of the fat flap. Cells in the TEC exhibit a specific metabolic profile of functional adipocytes identified by 1H-NMR. Regardless of the percentage of TEC porosity, the presence of a flat base allowed the growth of a larger fat volume (p < 0.05) as evidenced by MRI images. In pigs, bioresorbable TEC in poly[1,4-dioxane-2,5-dione] (polyglycolic acid) PURASORB PGS allows fat flap growth up to 75 000 mm3 at day 90, (corresponding to more than a 140% volume increase) while at the same time the TEC is largely resorbed. No systemic inflammatory response was observed. Histologically, the expansion of adipose tissue resulted mainly from an increase in the number of adipocytes rather than cell hypertrophy. Adipose tissue is surrounded by perfused blood vessels and encased in a thin fibrous connective tissue containing patches of CD163+ inflammatory cells. Our large preclinical evaluation defined the appropriate design for 3D-printable bioresorbable TECs and thus opens perspectives for further clinical applications.
Collapse
|
11
|
Ben-Arye T, Levenberg S. Tissue Engineering for Clean Meat Production. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2019. [DOI: 10.3389/fsufs.2019.00046] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
12
|
Kim W, Kim G. Intestinal Villi Model with Blood Capillaries Fabricated Using Collagen-Based Bioink and Dual-Cell-Printing Process. ACS APPLIED MATERIALS & INTERFACES 2018; 10:41185-41196. [PMID: 30419164 DOI: 10.1021/acsami.8b17410] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The human intestine, a vital organ in our digestive system, shows an anatomically complex architecture. The fabrication of three-dimensional (3D) intestinal models containing villus structures has been an important topic for intestine regeneration or organ-on-a-chip, because a 3D model can provide broad surface area and help absorption and transportation of digested nutrients. In this study, we developed a 3D intestinal villi model containing an epithelium layer and a blood capillary structure, using an innovative cell-printing process. The epithelium and capillary network of the 3D model were fabricated using two collagen-based bioinks laden with Caco-2 cells and human umbilical vein endothelial cells (HUVECs). The fabricating conditions were optimized to obtain a unique 3D villus structure, with capillary in the core and high cell viability. A fabricated single villus was 183 ± 12 μm in diameter and 770 ± 42 μm in height, which means the aspect ratio of the structure was 4.2 ± 0.3. The results indicate that the cell-laden intestinal villi successfully mimicked the 3D geometry of human intestinal villi. In vitro cellular activity of the 3D villi model containing epithelium and capillary demonstrated significantly higher cell growth and expression of enzymes and MUC17, compared to those of 2D models and a 3D villi model without the capillary network. The suggested 3D intestinal villi also exhibited the enhancement of the barrier function as compared to those of the others, and even demonstrated an increase of the permeability coefficient of FITC-dextran and glucose uptake ability (FITC, fluorescein isothiocyanate). These results indicate that a 3D intestinal villi model would be a highly promising for mimicking the human intestine.
Collapse
Affiliation(s)
- WonJin Kim
- Department of Biomechatronic Engineering, College of Biotechnology and Bioengineering , Sungkyunkwan University (SKKU) , Suwon 16419 , Republic of Korea
| | - GeunHyung Kim
- Department of Biomechatronic Engineering, College of Biotechnology and Bioengineering , Sungkyunkwan University (SKKU) , Suwon 16419 , Republic of Korea
| |
Collapse
|
13
|
Adipose angiotensin II type 1 receptor-associated protein ameliorates metabolic disorders via promoting adipose tissue adipogenesis and browning. Eur J Cell Biol 2017; 96:567-578. [DOI: 10.1016/j.ejcb.2017.05.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 05/12/2017] [Accepted: 05/15/2017] [Indexed: 11/24/2022] Open
|
14
|
Paul NE, Lösel R, Hemmrich K, Goy D, Pallua N, Klee D. L-arginine and arginine ethyl ester enhance proliferation of endothelial cells and preadipocytes - how an arginine ethyl ester-releasing biomaterial could support endothelial cell growth in tissue engineering. Biomed Mater Eng 2016; 25:289-97. [PMID: 26407115 DOI: 10.3233/bme-151275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Adipose tissue engineering is a promising solution for the reconstruction of soft tissue defects. An insufficient neovascularisation within the scaffolds that leads to necrosis and tissue loss is still a major shortcoming of current tissue engineering attempts. Biomaterials, which release angiogenic factors such as L-arginine, could overcome this challenge by supporting the neovascularisation of the constructs. L-arginine is insoluble in organic solvents and thus cannot be incorporated into commonly used polymers in contrast to its ethyl ester. Here, we compared the effects of arginine and its ethyl ester on endothelial cells and preadipocytes, and generated an arginine ethyl ester-releasing, angiogenic polymer. We cultivated adipose tissue-derived endothelial cells and preadipocytes in arginine-free medium supplemented with L-arginine or L-arginine ethyl ester and assayed the proliferation rate and the degree of adipogenic differentiation, respectively. Additionally, we prepared arginine ethyl ester-releasing poly(D,L-lactide) foils, and investigated their impact on endothelial cell proliferation. We could demonstrate that arginine ethyl ester like arginine significantly increased the proliferation of endothelial cells and preadipocytes without inhibiting an induced adipogenic conversion of the preadipocytes. Further, we could show that the arginine ethyl ester-releasing polymer significantly increased endothelial cell growth. The present data are helpful guidance for generating angiogenic biomaterials that promote endothelial cell growth, and thereby could support neovascularisation within tissue engineering approaches.
Collapse
Affiliation(s)
- N E Paul
- Department of Plastic Surgery and Hand Surgery - Burn Center, University Hospital of the RWTH Aachen, Aachen, Germany
| | - R Lösel
- Department of Textile and Macromolecular Chemistry, RWTH Aachen, Aachen, Germany
| | - K Hemmrich
- Department of Plastic Surgery and Hand Surgery - Burn Center, University Hospital of the RWTH Aachen, Aachen, Germany
| | - D Goy
- Department of Plastic Surgery and Hand Surgery - Burn Center, University Hospital of the RWTH Aachen, Aachen, Germany
| | - N Pallua
- Department of Plastic Surgery and Hand Surgery - Burn Center, University Hospital of the RWTH Aachen, Aachen, Germany
| | - D Klee
- Department of Textile and Macromolecular Chemistry, RWTH Aachen, Aachen, Germany
| |
Collapse
|
15
|
Choi Y, Jang S, Choi MS, Ryoo ZY, Park T. Increased expression of FGF1-mediated signaling molecules in adipose tissue of obese mice. J Physiol Biochem 2016; 72:157-67. [DOI: 10.1007/s13105-016-0468-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 01/29/2016] [Indexed: 01/17/2023]
|
16
|
Guo B, Greenwood PL, Cafe LM, Zhou G, Zhang W, Dalrymple BP. Transcriptome analysis of cattle muscle identifies potential markers for skeletal muscle growth rate and major cell types. BMC Genomics 2015; 16:177. [PMID: 25887672 PMCID: PMC4364331 DOI: 10.1186/s12864-015-1403-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 02/24/2015] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND This study aimed to identify markers for muscle growth rate and the different cellular contributors to cattle muscle and to link the muscle growth rate markers to specific cell types. RESULTS The expression of two groups of genes in the longissimus muscle (LM) of 48 Brahman steers of similar age, significantly enriched for "cell cycle" and "ECM (extracellular matrix) organization" Gene Ontology (GO) terms was correlated with average daily gain/kg liveweight (ADG/kg) of the animals. However, expression of the same genes was only partly related to growth rate across a time course of postnatal LM development in two cattle genotypes, Piedmontese x Hereford (high muscling) and Wagyu x Hereford (high marbling). The deposition of intramuscular fat (IMF) altered the relationship between the expression of these genes and growth rate. K-means clustering across the development time course with a large set of genes (5,596) with similar expression profiles to the ECM genes was undertaken. The locations in the clusters of published markers of different cell types in muscle were identified and used to link clusters of genes to the cell type most likely to be expressing them. Overall correspondence between published cell type expression of markers and predicted major cell types of expression in cattle LM was high. However, some exceptions were identified: expression of SOX8 previously attributed to muscle satellite cells was correlated with angiogenesis. Analysis of the clusters and cell types suggested that the "cell cycle" and "ECM" signals were from the fibro/adipogenic lineage. Significant contributions to these signals from the muscle satellite cells, angiogenic cells and adipocytes themselves were not as strongly supported. Based on the clusters and cell type markers, sets of five genes predicted to be representative of fibro/adipogenic precursors (FAPs) and endothelial cells, and/or ECM remodelling and angiogenesis were identified. CONCLUSIONS Gene sets and gene markers for the analysis of many of the major processes/cell populations contributing to muscle composition and growth have been proposed, enabling a consistent interpretation of gene expression datasets from cattle LM. The same gene sets are likely to be applicable in other cattle muscles and in other species.
Collapse
Affiliation(s)
- Bing Guo
- Key Laboratory of Meat Processing and Quality Control, Synergetic Innovation Centre of Food Safety and Nutrition, College of Food Science and Technology, Nanjing Agriculture University, Nanjing, 210095, P. R. China.
- CSIRO Agriculture Flagship, St. Lucia, QLD, 4067, Australia.
| | - Paul L Greenwood
- CSIRO Agriculture Flagship, Armidale, NSW, 2350, Australia.
- NSW Department of Primary Industries, University of New England, Armidale, NSW, 2351, Australia.
| | - Linda M Cafe
- NSW Department of Primary Industries, University of New England, Armidale, NSW, 2351, Australia.
| | - Guanghong Zhou
- Key Laboratory of Meat Processing and Quality Control, Synergetic Innovation Centre of Food Safety and Nutrition, College of Food Science and Technology, Nanjing Agriculture University, Nanjing, 210095, P. R. China.
| | - Wangang Zhang
- Key Laboratory of Meat Processing and Quality Control, Synergetic Innovation Centre of Food Safety and Nutrition, College of Food Science and Technology, Nanjing Agriculture University, Nanjing, 210095, P. R. China.
| | | |
Collapse
|
17
|
Haug V, Torio-Padron N, Stark GB, Finkenzeller G, Strassburg S. Comparison between endothelial progenitor cells and human umbilical vein endothelial cells on neovascularization in an adipogenesis mouse model. Microvasc Res 2015; 97:159-66. [DOI: 10.1016/j.mvr.2014.10.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 10/15/2014] [Accepted: 10/17/2014] [Indexed: 01/22/2023]
|
18
|
Sakurai Y, Kajimoto K, Hatakeyama H, Harashima H. Advances in an active and passive targeting to tumor and adipose tissues. Expert Opin Drug Deliv 2014; 12:41-52. [PMID: 25376864 DOI: 10.1517/17425247.2015.955847] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Data reported during the last decade of the twentieth century indicate that passive targeting is an efficient strategy for delivering nanocarrier systems to tumor tissues. The focus of this review is on active targeting as a next-generation strategy for extending the capacity of a drug delivery system (DDS). AREAS COVERED Tumor vasculature targeting was achieved using arginine- glycine-aspartic acid, asparagine-glycine-arginine and other peptides, which are well-known peptides, as ligand against tumor vasculature. An efficient system for delivering small interfering RNA to the tumor vasculature involved the use of a multifunctional envelope-type nanodevice based on a pH-modified cationic lipid and targeting ligands. The active-targeting system was extended from tumor delivery to adipose tissue delivery, where endothelial cells are tightly linked and are impermeable to nanocarriers. In mice, prohibitin-targeted nanoparticles can be used to successfully deliver macromolecules to induce anti-obese effects. Finally, the successful delivery of nanocarriers to adipose tissue in obese mice via the enhanced permeability and retention-effect is reported, which can be achieved in tumor tissue. EXPERT OPINION Unlike tumor tissues, only a few reports have appeared on how liposomal carriers accumulate in adipose tissues after systemic injection. This finding, as well as active targeting to the adipose vasculature, promises to extend the capacity of DDS to adipose tissue. Since the site of action of nucleic acids is the cytosol, the intracellular trafficking of carriers and their cargoes as well as cellular uptake must be taken into consideration.
Collapse
Affiliation(s)
- Yu Sakurai
- Hokkaido University, Laboratory of Innovative Nanomedicine, Faculty of Pharmaceutical Sciences , Kita 12, Nishi 6, Kita-ku, Sapporo, Hokkaido 060-0812 , Japan
| | | | | | | |
Collapse
|
19
|
Tsuji T, Yamaguchi K, Kikuchi R, Itoh M, Nakamura H, Nagai A, Aoshiba K. Promotion of adipogenesis by an EP2 receptor agonist via stimulation of angiogenesis in pulmonary emphysema. Prostaglandins Other Lipid Mediat 2014; 112:9-15. [PMID: 24911647 DOI: 10.1016/j.prostaglandins.2014.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 05/15/2014] [Accepted: 05/15/2014] [Indexed: 02/07/2023]
Abstract
Body weight loss is a common manifestation in patients with chronic obstructive pulmonary disease (COPD), particularly those with severe emphysema. Adipose angiogenesis is a key mediator of adipogenesis and use of pro-angiogenic agents may serve as a therapeutic option for lean COPD patients. Since angiogenesis is stimulated by PGE2, we examined whether ONO-AE1-259, a selective E-prostanoid (EP) 2 receptor agonist, might promote adipose angiogenesis and adipogenesis in a murine model of elastase-induced pulmonary emphysema (EIE mice). Mice were intratracheally instilled with elastase or saline, followed after 4 weeks by intraperitoneal administration of ONO-AE1-259 for 4 weeks. The subcutaneous adipose tissue (SAT) weight decreased in the EIE mice, whereas in the EIE mice treated with ONO-AE1-259, the SAT weight was largely restored, which was associated with significant increases in SAT adipogenesis, angiogenesis, and VEGF protein production. In contrast, ONO-AE1-259 administration induced no alteration in the weight of the visceral adipose tissue. These results suggest that in EIE mice, ONO-AE1-259 stimulated adipose angiogenesis possibly via VEGF production, and thence, adipogenesis. Our data pave the way for the development of therapeutic interventions for weight loss in emphysema patients, e.g., use of pro-angiogenic agents targeting the adipose tissue vascular component.
Collapse
Affiliation(s)
- Takao Tsuji
- Department of Respiratory Medicine, Tokyo Medical University Ibaraki Medical Center, 3-20-1 Chuou, Ami, Inashiki, Ibaraki 300-0395, Japan.
| | - Kazuhiro Yamaguchi
- Comprehensive and Internal Medicine, Tokyo Women's Medical University Medical Center East, 2-1-10 Nishi-ogu, Arakawa-ku 116-8567, Japan.
| | - Ryota Kikuchi
- Department of Respiratory Medicine, Tokyo Medical University Ibaraki Medical Center, 3-20-1 Chuou, Ami, Inashiki, Ibaraki 300-0395, Japan.
| | - Masayuki Itoh
- Department of Respiratory Medicine, Tokyo Medical University Ibaraki Medical Center, 3-20-1 Chuou, Ami, Inashiki, Ibaraki 300-0395, Japan.
| | - Hiroyuki Nakamura
- Department of Respiratory Medicine, Tokyo Medical University Ibaraki Medical Center, 3-20-1 Chuou, Ami, Inashiki, Ibaraki 300-0395, Japan.
| | - Atsushi Nagai
- The First Department of Medicine, Tokyo Women's Medical University, 8-1 Kawata-cho, Shinjyuku-ku 162-8666, Japan.
| | - Kazutetsu Aoshiba
- Department of Respiratory Medicine, Tokyo Medical University Ibaraki Medical Center, 3-20-1 Chuou, Ami, Inashiki, Ibaraki 300-0395, Japan.
| |
Collapse
|
20
|
The adipogenic potential of various extracellular matrices under the influence of an angiogenic growth factor combination in a mouse tissue engineering chamber. Acta Biomater 2014; 10:1907-18. [PMID: 24296126 DOI: 10.1016/j.actbio.2013.11.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Revised: 10/01/2013] [Accepted: 11/22/2013] [Indexed: 11/21/2022]
Abstract
The extracellular matrix (ECM) Matrigel™ has frequently and successfully been used to generate new adipose tissue experimentally, but is unsuitable for human application. This study sought to compare the adipogenic potential of a number of alternative, biologically derived or synthetic ECMs with potential for human application, with and without growth factors and a small fat autograft. Eight groups, with six severe combined immunodeficient (SCID) mice per group, were created with bilateral chambers (silicone tubes) implanted around the epigastric vascular pedicle, with one chamber/animal containing a 5mg fat autograft. Two animal groups were created for each of four ECMs (Matrigel™, Myogel, Cymetra® and PuraMatrix™) which filled the bilateral chambers. One group/ECM had no growth factors added to chambers whilst the other group had growth factors (GFs) (vascular endothelial growth factor-A (VEGF-A) plus fibroblast growth factor-2 (FGF-2) plus platelet-derived growth factor-BB (PDGF-BB)) added to both chambers. At 6weeks, chamber tissue was morphometrically assessed for percent and absolute adipose tissue volume. Overall, the triple GF regime significantly increased percent(∗) and absolute(#) adipose tissue volume (p<0.0005(∗#)) compared to chambers without triple GF treatment. The fat autograft also significantly increased percent (p<0.0005) and absolute (p<0.011) adipose tissue volume. Cymetra® (human collagen) constructs yielded the largest total tissue and absolute adipose tissue volume. We found that the pro-angiogenic FGF-2, VEGF-A and PDGF-BB combination in ECMs of synthetic and biological origin produced an overall significantly increased adipose tissue volume at 6weeks and may have clinical application, particularly with Cymetra.
Collapse
|
21
|
Taylor S, Markesbery M, Harding P. Heparin-binding epidermal growth factor-like growth factor (HB-EGF) and proteolytic processing by a disintegrin and metalloproteinases (ADAM): A regulator of several pathways. Semin Cell Dev Biol 2014; 28:22-30. [DOI: 10.1016/j.semcdb.2014.03.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 02/25/2014] [Accepted: 03/03/2014] [Indexed: 12/11/2022]
|
22
|
Pellegrinelli V, Rouault C, Veyrie N, Clément K, Lacasa D. Endothelial cells from visceral adipose tissue disrupt adipocyte functions in a three-dimensional setting: partial rescue by angiopoietin-1. Diabetes 2014; 63:535-49. [PMID: 24130331 DOI: 10.2337/db13-0537] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
During obesity, chronic inflammation of human white adipose tissue (WAT) is associated with metabolic and vascular alterations. Endothelial cells from visceral WAT (VAT-ECs) exhibit a proinflammatory and senescent phenotype and could alter adipocyte functions. We aimed to determine the contribution of VAT-ECs to adipocyte dysfunction related to inflammation and to rescue these alterations by anti-inflammatory strategies. We developed an original three-dimensional setting allowing maintenance of unilocular adipocyte functions. Coculture experiments demonstrated that VAT-ECs provoked a decrease in the lipolytic activity, adipokine secretion, and insulin sensitivity of adipocytes from obese subjects, as well as an increased production of several inflammatory molecules. Interleukin (IL)-6 and IL-1β were identified as potential actors in these adipocyte alterations. The inflammatory burst was not observed in cocultured cells from lean subjects. Interestingly, pericytes, in functional interactions with ECs, exhibited a proinflammatory phenotype with diminished angiopoietin-1 (Ang-1) secretion in WAT from obese subjects. Using the anti-inflammatory Ang-1, we corrected some deleterious effects of WAT-ECs on adipocytes, improving lipolytic activity and insulin sensitivity and reducing the secretion of proinflammatory molecules. In conclusion, we identified a negative impact of VAT-ECs on adipocyte functions during human obesity. Therapeutic options targeting EC inflammation could prevent adipocyte alterations that contribute to obesity comorbidities.
Collapse
|
23
|
Scroyen I, Vranckx C, Lijnen HR. FGF receptor antagonism does not affect adipose tissue development in nutritionally induced obesity. Adipocyte 2014; 3:46-9. [PMID: 24575368 DOI: 10.4161/adip.27233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 11/07/2013] [Accepted: 11/16/2013] [Indexed: 11/19/2022] Open
Abstract
The fibroblast growth factor (FGF)-FGF receptor (FGFR) system plays a role in angiogenesis and maintenance of vascular integrity, but its potential role in adipose tissue related angiogenesis and development is still unknown. Administration of SSR, a low molecular weight inhibitor of multiple FGFRs, did not significantly affect body weight nor weight of subcutaneous or gonadal (GON) fat, as compared with pair-fed control mice. Adipocyte hypertrophy and reduced adipocyte density were only observed in GON adipose tissues of treated mice. Adipose tissue angiogenesis was not affected by SSR treatment, as normalized blood vessel density was comparable in adipose tissues of both groups. Blocking the FGF-FGFR system in vivo does not markedly affect adipose tissue development in mice with nutritionally induced obesity.
Collapse
|
24
|
Lijnen HR, Scroyen I. Effect of vascular endothelial growth factor receptor 2 antagonism on adiposity in obese mice. J Mol Endocrinol 2013; 50:319-24. [PMID: 23427287 DOI: 10.1530/jme-12-0244] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Development and maintenance of fat depots require angiogenesis, in which vascular endothelial growth factor (VEGF) and its receptors play a crucial role. We have evaluated the effect of blocking VEGF receptor 2 (VEGF-R2) with a MAB (DC101) on adipose tissue of mice with established obesity. Therefore, obese male wild-type C57B1/6 mice were treated with i.p. injection of DC101 (40 mg/kg body weight, twice weekly during 13 weeks) or of the control antibody 1C8. Treatment with DC101 resulted in a slightly lower body weight but had no effect on subcutaneous (SC) or gonadal (GON) white adipose tissue mass, as monitored by MRI. Histochemical analysis of isolated SC and GON fat pads did not reveal significant effects of DC101 treatment on adipocyte or blood vessel size or density. Plasma levels of the liver enzymes aspartate aminotransferase and alanine aminotransferase as well as liver triglyceride levels were significantly decreased following DC101 treatment. Plasma glucose levels were markedly lower upon DC101 treatment, whereas insulin and adiponectin levels were not affected. Furthermore, Akt phosphorylation in adipose tissues was not affected. Thus, in vivo VEGF-R2 blockade in mice with established nutritionally induced obesity did not significantly affect insulin signaling in adipose tissue or adiposity.
Collapse
Affiliation(s)
- H Roger Lijnen
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, KU Leuven, Campus Gasthuisberg, Onderwijs & Navorsing 1, Herestraat 49, Box 911, B-3000 Leuven, Belgium.
| | | |
Collapse
|
25
|
Lee YH, Mottillo EP, Granneman JG. Adipose tissue plasticity from WAT to BAT and in between. Biochim Biophys Acta Mol Basis Dis 2013; 1842:358-69. [PMID: 23688783 DOI: 10.1016/j.bbadis.2013.05.011] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 04/21/2013] [Accepted: 05/06/2013] [Indexed: 01/09/2023]
Abstract
Adipose tissue plays an essential role in regulating energy balance through its metabolic, cellular and endocrine functions. Adipose tissue has been historically classified into anabolic white adipose tissue and catabolic brown adipose tissue. An explosion of new data, however, points to the remarkable heterogeneity among the cells types that can become adipocytes, as well as the inherent metabolic plasticity of mature cells. These data indicate that targeting cellular and metabolic plasticity of adipose tissue might provide new avenues for treatment of obesity-related diseases. This review will discuss the developmental origins of adipose tissue, the cellular complexity of adipose tissues, and the identification of progenitors that contribute to adipogenesis throughout development. We will touch upon the pathological remodeling of adipose tissue and discuss how our understanding of adipose tissue remodeling can uncover new therapeutic targets. This article is part of a Special Issue entitled: Modulation of Adipose Tissue in Health and Disease.
Collapse
Affiliation(s)
- Yun-Hee Lee
- Center for Integrative Metabolic and Endocrine Research, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Emilio P Mottillo
- Center for Integrative Metabolic and Endocrine Research, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - James G Granneman
- Center for Integrative Metabolic and Endocrine Research, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| |
Collapse
|
26
|
Dietrich I, Cochet O, Villageois P, Rodrigues CJ. Engraftment of human adipose derived stem cells delivered in a hyaluronic acid preparation in mice. Acta Cir Bras 2012; 27:283-9. [PMID: 22534801 DOI: 10.1590/s0102-86502012000400001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 02/15/2012] [Indexed: 01/22/2023] Open
Abstract
PURPOSE To evaluate the implant of human adipose derived stem cells (ADSC) delivered in hyaluronic acid gel (HA), injected in the subcutaneous of athymic mice. METHODS Control implants -HA plus culture media was injected in the subcutaneous of the left sub scapular area of 12 athymic mice. ADSC implants: HA plus ADSC suspended in culture media was injected in the subcutaneous, at the contra lateral area, of the same animals. With eight weeks, animals were sacrificed and the recovered implants were processed for extraction of genomic DNA, and histological study by hematoxilin-eosin staining and immunufluorescence using anti human vimentin and anti von Willebrand factor antibodies. RESULTS CONTROLS Not visualized at the injection site. An amorphous substance was observed in hematoxilin-eosin stained sections. Human vimentin and anti von Willebrand factor were not detected. No human DNA was detected. ADSC implants - A plug was visible at the site of injection. Fusiform cells were observed in sections stained by hematoxilin- eosin and both human vimentin and anti von Willebrand factor were detected by immunofluorescence. The presence of human DNA was confirmed. CONCLUSION The delivery of human adipose derived stem cells in preparations of hyaluronic acid assured cells engraftment at the site of injection.
Collapse
Affiliation(s)
- Isa Dietrich
- Department of Surgery, Laboratory of Surgical Anatomy of Human Structural Topography, School of Medicine, Sao Paulo University, Brazil.
| | | | | | | |
Collapse
|
27
|
Panneerselvan A, Nguyen LTH, Su Y, Teo WE, Liao S, Ramakrishna S, Chan CW. Cell viability and angiogenic potential of a bioartificial adipose substitute. J Tissue Eng Regen Med 2012; 9:702-13. [PMID: 23166045 DOI: 10.1002/term.1633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 06/29/2012] [Accepted: 09/16/2012] [Indexed: 11/08/2022]
Abstract
An implantable scaffold pre-seeded with cells needs to remain viable and encourage rapid angiogenesis in order to replace injured tissues, especially for tissue defect repairs. We created a bioartificial adipose graft composed of an electrospun 3D nanofibrous scaffold and fat tissue excised from New Zealand white rabbits. Cell viability and angiogenesis potential of the bioartificial substitute were examined during four weeks of culture in Dulbecco's Modified Eagle Medium by immunohistochemical staining with LIVE/DEAD® cell kit and PECAM-1 antibody, respectively. In addition, a Matrigel® assay was performed to examine the possibility of blood vessels sprouting from the bioartificial graft. Our results showed that cells within the graft were viable and vascular tubes were present at week 4, while cells in a fat tissue block were dead in vitro. In addition, capillaries were observed sprouting from the graft into the Matrigel, demonstrating its angiogenic potential. We expect that improved cell viability and angiogenesis in the bioartificial substitute, compared to intact autologous graft, could potentially contribute to its survival following implantation.
Collapse
Affiliation(s)
| | - Luong T H Nguyen
- NUS Graduate School for Integrative Sciences and Engineering (NGS), National University of Singapore, Singapore
| | - Yan Su
- College of Chemistry & Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
| | | | - Susan Liao
- School of Materials Science and Engineering, Nanyang Technological University, Singapore
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, National University of Singapore, Singapore.,King Saud University, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Ching Wan Chan
- Department of General Surgery, National University Healthcare System, Singapore
| |
Collapse
|
28
|
Butler MJ, Sefton MV. Cotransplantation of adipose-derived mesenchymal stromal cells and endothelial cells in a modular construct drives vascularization in SCID/bg mice. Tissue Eng Part A 2012; 18:1628-41. [PMID: 22655687 DOI: 10.1089/ten.tea.2011.0467] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
A modular approach to adipose tissue engineering was explored by embedding adipose-derived mesenchymal stromal cells (adMSC) in sub-mm-sized collagen rods or "modules" and coating with human microvascular endothelial cells (HMEC). After subcutaneous injection into a SCID/Bg mouse, HMEC on modules containing embedded adMSC appeared to detach from the modules to form vessels as early as day 3, as confirmed by the human EC-specific UEA-1 lectin stain, and these vessels persisted for up to 90 days. Vessel numbers decreased over 14 days, but vessel size increased suggesting a maturing of the vasculature. Vessel perfusion with the host was confirmed at 21 days by microCT. HMEC on modules without embedded adMSC remained attached to the module surface at day 3 and UEA-1 staining disappeared over 14 days suggesting cell death. It appeared that cotransplantation with adMSC had an anti-apoptotic and proangiogenic effect on HMEC. The early revascularization strategy may be successful in supporting adMSC viability and differentiation, as a preliminary study suggests progressive fat accumulation in the HMEC+adMSC implants: ∼60% of the implant area stained positive for Oil Red O by day 90. adMSC-embedded modules without HMEC surface coating did not show similar levels of Oil Red O staining. All implant volumes decreased over the time course of the experiment, yet HMEC+adMSC module implants were larger than adMSC-only implants at day 90. Collagen gel is mechanically weak and contracts in vivo making it unsuitable as a biomaterial for adipose tissue engineering where volume maintenance is critical. When combined with an appropriate biomaterial, the modular approach to adipose tissue engineering may represent a successful strategy to engineer soft tissue substitutes of clinical relevance.
Collapse
Affiliation(s)
- Mark J Butler
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
29
|
Kurki E, Shi J, Martonen E, Finckenberg P, Mervaala E. Distinct effects of calorie restriction on adipose tissue cytokine and angiogenesis profiles in obese and lean mice. Nutr Metab (Lond) 2012; 9:64. [PMID: 22748184 PMCID: PMC3478179 DOI: 10.1186/1743-7075-9-64] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 06/11/2012] [Indexed: 01/07/2023] Open
Abstract
Background Obesity associates with low-grade inflammation and adipose tissue remodeling. Using sensitive high-throughput protein arrays we here investigated adipose tissue cytokine and angiogenesis-related protein profiles from obese and lean mice, and in particular, the influence of calorie restriction (CR). Methods Tissue samples from visceral fat were harvested from obese mice fed with a high-fat diet (60% of energy), lean controls receiving low-fat control diet as well as from obese and lean mice kept under CR (energy intake 70% of ad libitum intake) for 50 days. Protein profiles were analyzed using mouse cytokine and angiogenesis protein array kits. Results In obese and lean mice, CR was associated with 11.3% and 15.6% reductions in body weight, as well as with 4.0% and 4.6% reductions in body fat percentage, respectively. Obesity induced adipose tissue cytokine expressions, the most highly upregulated cytokines being IL-1ra, IL-2, IL-16, MCP-1, MIG, RANTES, C5a, sICAM-1 and TIMP-1. CR increased sICAM-1 and TIMP-1 expression both in obese and lean mice. Overall, CR showed distinct effects on cytokine expressions; in obese mice CR largely decreased but in lean mice increased adipose tissue cytokine expressions. Obesity was also associated with increased expressions of angiogenesis-related proteins, in particular, angiogenin, endoglin, endostatin, endothelin-1, IGFBP-3, leptin, MMP-3, PAI-1, TIMP-4, CXCL16, platelet factor 4, DPPIV and coagulation factor III. CR increased endoglin, endostatin and platelet factor 4 expressions, and decreased IGFBP-3, NOV, MMP-9, CXCL16 and osteopontin expressions both in obese and lean mice. Interestingly, in obese mice, CR decreased leptin and TIMP-4 expressions, whereas in lean mice their expressions were increased. CR decreased MMP-3 and PAI-1 only in obese mice, whereas CR decreased FGF acidic, FGF basic and coagulation factor III, and increased angiogenin and DPPIV expression only in lean mice. Conclusions CR exerts distinct effects on adipocyte cytokine and angiogenesis profiles in obese and lean mice. Our study also underscores the importance of angiogenesis-related proteins and cytokines in adipose tissue remodeling and development of obesity.
Collapse
Affiliation(s)
- Eveliina Kurki
- Institute of Biomedicine, Pharmacology, Biomedicum Helsinki, University of Helsinki, P,O,Box 63, FI-00014, Helsinki, Finland.
| | | | | | | | | |
Collapse
|
30
|
Urs S, Turner B, Tang Y, Rostama B, Small D, Liaw L. Effect of soluble Jagged1-mediated inhibition of Notch signaling on proliferation and differentiation of an adipocyte progenitor cell model. Adipocyte 2012; 1:46-57. [PMID: 23700510 PMCID: PMC3661121 DOI: 10.4161/adip.19186] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Adipose tissue development is dependent on multiple signaling mechanisms and cell-cell interactions that regulate adipogenesis, angiogenesis and extracellular remodeling. The Notch signaling pathway is an important cell-fate determinant whose role in adipogenesis is not clearly defined. To address this issue, we examined the effect of inhibition of Notch signaling by soluble-Jagged1 in the 3T3-L1 preadipocyte line. In vitro, soluble-Jagged1 expression in 3T3-L1 cells altered cell morphology, increased the rate of cell proliferation and induced an early transcriptional response to differentiation stimuli. However, these cells did not form mature adipocytes due to their inability to exit the cell-cycle in response to serum-starvation and glucocorticoid-induced cell-cycle arrest. In contrast, subcutaneous allografts of soluble-Jagged1 cells formed larger fat pads containing lipid-filled adipocytes with improved neovascularization compared with controls. Since adipogenesis is tightly associated with angiogenesis, we evaluated the influence of soluble-Jagged1 on endothelial cells by culturing them in cell-free conditioned media from preadipocytes. Soluble Jagged1-mediated inhibition of Notch signaling increased levels of secreted cytokines, potentially contributing to the improved cell growth and proliferation observed in these cultures. Our findings demonstrate an initial requirement of Notch signaling inactivation for preadipocyte cell commitment and support the hypothesis that cell-to-cell crosstalk between the preadipocytes and endothelial cells is required for neovascularization and remodeling of the tissue to promote hyperplasia and hypertrophy of differentiating adipocytes.
Collapse
|
31
|
Lijnen HR, Frederix L, Van Hoef B. Fumagillin reduces adipose tissue formation in murine models of nutritionally induced obesity. Obesity (Silver Spring) 2010; 18:2241-6. [PMID: 20094042 DOI: 10.1038/oby.2009.503] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The effect of fumagillin (a methionine aminopeptidase-type 2 (Met-AP2) inhibitor, with antiangiogenic properties) was investigated in murine models of diet-induced obesity. Eleven-week-old male C57Bl/6 mice (group 1) were given fumagillin by oral gavage at a dose of 1 mg/kg/day during 4 weeks while fed a high-fat diet (HFD) (20.1 kJ/g), and control mice (group 2) received solvent and were pair-fed. At the end of the experiment, body weights in group 1 were significantly lower as compared to group 2 (P < 0.0005). The subcutaneous (SC) and gonadal (GON) fat mass was also significantly lower in group 1 (P < 0.005 and P < 0.05, respectively). Adipocytes were smaller in adipose tissues of mice in group 1, associated with higher adipocyte density. Blood vessel density normalized to adipocyte density was lower in group 1 adipose tissues. However, in mice with established obesity monitored to maintain the same body weight and fat mass as controls, short-term fumagillin administration was also associated with adipocyte hypotrophy (P = 0.01) without affecting blood vessel size or density. Thus, treatment with fumagillin impaired diet-induced obesity in mice, associated with adipocyte hypotrophy but without marked effect on adipose tissue angiogenesis.
Collapse
Affiliation(s)
- Henri R Lijnen
- Center for Molecular and Vascular Biology, KU Leuven, Leuven, Belgium.
| | | | | |
Collapse
|
32
|
Christiaens V, Lijnen HR. Angiogenesis and development of adipose tissue. Mol Cell Endocrinol 2010; 318:2-9. [PMID: 19686803 DOI: 10.1016/j.mce.2009.08.006] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Revised: 07/27/2009] [Accepted: 08/07/2009] [Indexed: 01/03/2023]
Abstract
Obesity is a common disorder and related diseases, such as diabetes, atherosclerosis, hypertension, cardiovascular disease and cancer, are a major cause of mortality and morbidity in Western-type societies. Development of obesity is associated with substantial modulation of adipose tissue structure. The plasticity of the adipose tissue is reflected by its remarkable ability to expand or to reduce in size throughout adult lifespan. The expansion of adipose tissue is linked to the development of its vasculature. Indeed, adipogenesis is tightly associated with angiogenesis, as shown by the findings that adipose tissue explants trigger blood vessel formation, whereas in turn adipose tissue endothelial cells promote preadipocyte differentiation. Different components have been identified that play a role in adipose tissue associated angiogenesis. Modulation of angiogenesis may have the potential to impair adipose tissue development and thus may provide a novel therapeutic approach for prevention and treatment of obesity.
Collapse
Affiliation(s)
- V Christiaens
- Center for Molecular and Vascular Biology, KU Leuven, Leuven, Belgium.
| | | |
Collapse
|
33
|
Long-Term Persistence of Tissue-Engineered Adipose Flaps in a Murine Model to 1 Year: An Update. Plast Reconstr Surg 2009; 124:1077-1084. [DOI: 10.1097/prs.0b013e3181b59ff6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
34
|
Patrick CW, Uthamanthil R, Beahm E, Frye C. Animal models for adipose tissue engineering. TISSUE ENGINEERING PART B-REVIEWS 2009; 14:167-78. [PMID: 18544014 DOI: 10.1089/ten.teb.2007.0402] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
There is a critical need for adequate reconstruction of soft tissue defects resulting from tumor resection, trauma, and congenital abnormalities. To be sure, adipose tissue engineering strategies offer promising solutions. However, before clinical translation can occur, efficacy must be proven in animal studies. The aim of this review is to provide an overview of animal models currently employed for adipose tissue engineering.
Collapse
Affiliation(s)
- Charles W Patrick
- Department of Biomedical Engineering, The University of Texas M.D. Anderson Cancer Center, Houston, 77030, USA.
| | | | | | | |
Collapse
|
35
|
Lai N, Jayaraman A, Lee K. Enhanced proliferation of human umbilical vein endothelial cells and differentiation of 3T3-L1 adipocytes in coculture. Tissue Eng Part A 2009; 15:1053-61. [PMID: 18767968 DOI: 10.1089/ten.tea.2008.0101] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The interactions between adipocytes and endothelial cells in adipose tissue development are poorly understood. In this study, we characterized the growth and differentiation of 3T3-L1 preadipocytes and human umbilical vein endothelial cells (HUVECs) in planar and collagen gel cocultures. In planar coculture, preadipocyte proliferation was up to three times as great as in the control culture with only preadipocytes, where the increase was proportional to the HUVEC fraction in the seeding mixture. In the collagen gel coculture, triglyceride (TG) content (per adipocyte) was up to 3.4 times as much as in the control with only adipocytes. This effect depended on the total density and composition of the seeding mixture, with the largest increase observed at the highest density (2 x 10(6) cells/mL collagen) and preadipocyte:HUVEC ratio (90:10) tested in this study. Immunostaining showed that the collagen gel coculture also supported the elongation of endothelial cells. Blockade of vascular endothelial growth factor receptor 2 (VEGFR2) abolished the adipogenesis- and neovascularization-related effects of the coculture. Taken together, our results indicate that endothelial cell-mediated enhancement of adipocyte differentiation requires the activation of VEGFR2.
Collapse
Affiliation(s)
- Ning Lai
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts 02155, USA
| | | | | |
Collapse
|
36
|
García de la Torre N, Rubio MA, Bordiú E, Cabrerizo L, Aparicio E, Hernández C, Sánchez-Pernaute A, Díez-Valladares L, Torres AJ, Puente M, Charro AL. Effects of weight loss after bariatric surgery for morbid obesity on vascular endothelial growth factor-A, adipocytokines, and insulin. J Clin Endocrinol Metab 2008; 93:4276-81. [PMID: 18713823 DOI: 10.1210/jc.2007-1370] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Adipocytes regulate blood vessel formation, and in turn endothelial cells promote preadipocyte differentiation through the expression of proangiogenic factors, such as vascular endothelial growth factor (VEGF)-A. Some adipocytokines and hormones also have an effect on vascular development. OBJECTIVES Our objectives were to analyze the relationship between weight and circulating VEGF-A in morbidly obese subjects before and after bariatric surgery, and investigate the relationship between circulating VEGF-A and certain adipocytokines and hormones regulating adipocytes. METHODS A total of 45 morbidly obese women and nine lean females were included in the study. Patients underwent bariatric surgery: vertical banded gastroplasty (n=17), gastric bypass (n=17), and biliopancreatic diversion (n=11). Serum samples for VEGF-A, adiponectin, leptin, ghrelin, and insulin were obtained preoperatively and 9-12 months after surgery. RESULTS Obese patients showed significantly higher VEGF-A levels than controls (306.3+/-170.3 vs. 187.6+/-91.9 pg/ml; P=0.04), decreasing to 246.1+/-160.4 after surgery (P<0.001), with no differences among surgical procedures. In controls there was an inverse correlation between VEGF-A and ghrelin (r=-0.85; P<.01), but not in obese patients. Leptin and insulin concentrations were increased in obese patients, with a significant decrease shown after weight loss with surgery. Conversely, adiponectin concentrations were lower in obese patients, with a significant increase shown after weight loss with surgery. Ghrelin was higher in controls than obese patients, decreasing after gastric bypass and biliopancreatic diversion, but not after vertical banded gastroplasty. CONCLUSION Serum VEGF-A levels are significantly higher in obese patients than in lean controls, decreasing after weight loss with bariatric surgery, behaving similarly to other hormones related to adipose mass like leptin and insulin.
Collapse
Affiliation(s)
- Nuria García de la Torre
- Department of Endocrinology, Hospital Clínico Universitario San Carlos, Martín Lagos s/n, 28040 Madrid, Spain.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Madonna R, De Caterina R. In vitro neovasculogenic potential of resident adipose tissue precursors. Am J Physiol Cell Physiol 2008; 295:C1271-80. [PMID: 18787077 DOI: 10.1152/ajpcell.00186.2008] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Adipose tissue development is associated with neovascularization, which might be exploited therapeutically. We investigated the neovasculogenesis antigenic profile and kinetics in adipose tissue-derived stromal cells (ADSCs) to understand the potential of ADSCs to generate new vessels. Murine and human visceral adipose tissues were processed with collagenase to obtain ADSCs from the stromal vascular fraction. Freshly isolated murine and human ADSCs featured the expression of early markers of endothelial differentiation [uptake of DiI-labeled acetylated LDL, CD133, CD34, kinase insert domain receptor (KDR)], but not markers for more mature endothelial cells (CD31 and von Willebrand factor). In methylcellulose medium, multilocular cells positive for Oil Red O staining appeared after 6 days. After 10 days, clusters of ADSCs spontaneously formed branched tubelike structures, which were strongly positive for CD34 and CD31, while losing their ability to undergo adipocyte differentiation. In Matrigel, in the presence of endothelial growth factors ADSCs formed branched tubelike structures. By clonal assays in methylcellulose we also determined the frequency of granulocyte-macrophage (CFU-GM) and erythroid (BFU-E) colony-forming units from ADSCs, compared with bone marrow-derived stromal cells (BMSCs) used as a positive control. After 4-14 days, BMSCs formed 8 +/- 3 BFU-E and 40 +/- 10 CFU-GM, while ADSCs never produced colonies of myeloid progenitors. The developing adipose tissue has neovasculogenic potential, based on the recruitment of local rather than circulating progenitors. Adipose tissue might therefore be a viable autonomous source of cells for postnatal neovascularization.
Collapse
Affiliation(s)
- Rosalinda Madonna
- Cardiology Division and Center of Excellence on Aging, "G. d'Annunzio" Univ.-Chieti, C/o Ospedale SS. Annunziata, Via dei Vestini, 66013 Chieti, Italy
| | | |
Collapse
|
38
|
Pang C, Gao Z, Yin J, Zhang J, Jia W, Ye J. Macrophage infiltration into adipose tissue may promote angiogenesis for adipose tissue remodeling in obesity. Am J Physiol Endocrinol Metab 2008; 295:E313-22. [PMID: 18492768 PMCID: PMC2519760 DOI: 10.1152/ajpendo.90296.2008] [Citation(s) in RCA: 152] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Accepted: 05/13/2008] [Indexed: 11/22/2022]
Abstract
The biological role of macrophage infiltration into adipose tissue in obesity remains to be fully understood. We hypothesize that macrophages may act to stimulate angiogenesis in the adipose tissue. This possibility was examined by determining macrophage expression of angiogenic factor PDGF (platelet-derived growth factor) and regulation of tube formation of endothelial cells by PDGF. The data suggest that endothelial cell density was reduced in the adipose tissue of ob/ob mice. Expression of endothelial marker CD31 was decreased in protein and mRNA. The reduction was associated with an increase in macrophage infiltration. In the obese mice, PDGF concentration was elevated in the plasma, and its mRNA expression was increased in adipose tissue. Macrophages were found to be a major source of PDGF in adipose tissue, as deletion of macrophages led to a significant reduction in PDGF mRNA. In cell culture, PDGF expression was induced by hypoxia, and tube formation of endothelial cells was induced by PDGF. The PDGF activity was dependent on S6K, as inhibition of S6K in endothelial cells led to inhibition of the PDGF activity. We conclude that, in response to the reduced vascular density, macrophages may express PDGF in adipose tissue to facilitate capillary formation in obesity. Although the PDGF level is elevated in adipose tissue, its activity in angiogenesis is dependent on the availability of sufficient endothelial cells. The study suggests a new function of macrophages in the adipose tissue in obesity.
Collapse
Affiliation(s)
- Can Pang
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA 70808, USA
| | | | | | | | | | | |
Collapse
|
39
|
FOXC2 controls Ang-2 expression and modulates angiogenesis, vascular patterning, remodeling, and functions in adipose tissue. Proc Natl Acad Sci U S A 2008; 105:10167-72. [PMID: 18621714 DOI: 10.1073/pnas.0802486105] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Adipogenesis is spatiotemporally coupled to angiogenesis throughout adult life, and the interplay between these two processes is communicated by multiple factors. Here we show that in a transgenic mouse model, increased expression of forkhead box C2 (FOXC2) in the adipose tissue affects angiogenesis, vascular patterning, and functions. White and brown adipose tissues contain a considerably high density of microvessels appearing as vascular plexuses, which show redistribution of vascular smooth muscle cells and pericytes. Dysfunction of these primitive vessels is reflected by impairment of skin wound healing. We further provide a mechanistic insight of the vascular phenotype by showing that FOXC2 controls Ang-2 expression by direct activation of its promoter in adipocytes. Remarkably, an Ang-2-specific antagonist almost completely reverses this vascular phenotype. Thus, the FOXC2-Ang-2 signaling system is crucial for controlling adipose vascular function, which is part of an adaptation to increased adipose tissue metabolism.
Collapse
|
40
|
Rayalam S, Della-Fera MA, Krieg PA, Cox CM, Robins A, Baile CA. A putative role for apelin in the etiology of obesity. Biochem Biophys Res Commun 2008; 368:815-9. [PMID: 18275845 DOI: 10.1016/j.bbrc.2008.02.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2008] [Accepted: 02/02/2008] [Indexed: 01/09/2023]
Abstract
Apelin, the endogenous ligand of the G protein-coupled APJ receptor has been shown to promote tumor angiogenesis. However, the effect of apelin on inducing angiogenesis in adipose tissue has not been investigated. In this review, we propose a putative role for apelin in promoting angiogenesis in adipose tissue. We further propose that targeting adipose tissue vasculature by blocking apelin signaling with anti-apelin antibodies will lead not only to inhibition of angiogenesis in adipose tissue but also to decreased adiposity.
Collapse
Affiliation(s)
- Srujana Rayalam
- Department of Animal & Dairy Science, University of Georgia, 444 Animal Science Complex, Athens, GA 30602-2771, USA
| | | | | | | | | | | |
Collapse
|
41
|
Chaubey A, Burg KJ. Extracellular Matrix Components as Modulators of Adult Stem Cell Differentiation in an Adipose System. J BIOACT COMPAT POL 2008. [DOI: 10.1177/0883911507085534] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The viability of a cell-based device may be controlled post-implantation by managing the level of cellular differentiation. Cellular adhesion to extracellular matrix (ECM) proteins is fundamentally linked to tissue development, maintenance of tissue organization, and many pathological conditions. Cellular interaction with ECM regulates the proliferation and differentiation of cells. This study investigates the efficacy of ECM components (laminin and collagen) in modulating the differentiation of adult mouse bone marrow stem cells (D1) to adipocytes. This study should assist in the development of clinically viable soft-tissue implants.
Collapse
Affiliation(s)
- Aditya Chaubey
- Department of Bioengineering, 501 Rhodes Engineering Research Center Clemson University, Clemson, SC 29634
| | - Karen J.L. Burg
- Department of Bioengineering, 501 Rhodes Engineering Research Center Clemson University, Clemson, SC 29634,
| |
Collapse
|
42
|
Cho SW, Song KW, Rhie JW, Park MH, Choi CY, Kim BS. Engineered adipose tissue formation enhanced by basic fibroblast growth factor and a mechanically stable environment. Cell Transplant 2007; 16:421-34. [PMID: 17658132 DOI: 10.3727/000000007783464795] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Engineered adipose tissue can be used in plastic and reconstructive surgery to augment soft tissue lost due to mastectomy or lumpectomy. The three-dimensional space provided by a scaffold capable of withstanding in vivo compressive forces and neovascularization may promote engineered adipose tissue formation. The objective of this study was to determine whether voluminous adipose tissue can be engineered by combining a mechanically stable environment with basic fibroblast growth factor (bFGF). Mechanical support structures, fabricated from biodegradable synthetic polymers, were placed into subcutaneous pockets of athymic mice. Human preadipocytes, containing fibrin matrix, with (group 1) or without (group 2) bFGF were injected into the space created by the support structures. Additionally, human preadipocytes containing fibrin matrix, with (group 3) or without (group 4) bFGF, were injected into subcutaneous spaces without support structures. Six weeks after implantation, the original implant volume was approximately maintained in groups 1 and 2, whereas groups 3 and 4 showed significant implant shrinkage. Adipogenesis and angiogenesis were more extensive in the group 1 than any other group. The fraction of human nuclear antigen-positive adipocytes in the implant was highest in group 1. Mouse adipocyte-specific genes were also expressed in the implants, again at the highest levels in group 1. Implanted preadipocyte apoptosis was significantly reduced in the groups treated with bFGF (groups 1 and 3) as opposed to those without (groups 2 and 4). This study demonstrates that combining a mechanically stable environment with bFGF can promote voluminous adipose tissue regeneration. This adipogenesis was likely promoted by the mechanically stable three-dimensional space, enhanced neovascularization, implanted cell survival, and host adipogenic cell migration. The method described in this study could be useful to augment adipose tissue used in plastic and reconstructive surgery.
Collapse
Affiliation(s)
- Seung-Woo Cho
- Department of Bioengineering, Hanyang University, Seoul 133-791, Korea
| | | | | | | | | | | |
Collapse
|
43
|
Stillaert F, Findlay M, Palmer J, Idrizi R, Cheang S, Messina A, Abberton K, Morrison W, Thompson EW. Host rather than graft origin of Matrigel-induced adipose tissue in the murine tissue-engineering chamber. ACTA ACUST UNITED AC 2007; 13:2291-300. [PMID: 17638518 DOI: 10.1089/ten.2006.0382] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We have recently shown that Matrigel-filled chambers containing fibroblast growth factor-2 (FGF2) and placed around an epigastric pedicle in the mouse were highly adipogenic. Contact of this construct with pre-existing tissue or a free adipose graft was required. To further investigate the mechanisms underpinning formation of new adipose tissue, we seeded these chambers with human adipose biopsies and human adipose-derived cell populations in severe combined immunodeficient mice and assessed the origin of the resultant adipose tissue after 6 weeks using species-specific probes. The tissues were negative for human-specific vimentin labeling, suggesting that the fat originates from the murine host rather than the human graft. This was supported by the strong presence of mouse-specific Cot-1 deoxyribonucleic acid labeling, and the absence of human Cot-1 labeling in the new fat. Even chambers seeded with FGF2/Matrigel containing cultured human stromal-vascular fraction (SVF) labeled strongly only for human vimentin in cells that did not have a mature adipocyte phenotype; the newly formed fat tissue was negative for human vimentin. These findings indicate that grafts placed in the chamber have an inductive function for neo-adipogenesis, rather than supplying adipocyte-precursor cells to generate the new fat tissue, and preliminary observations implicate the SVF in producing inductive factors. This surprising finding opens the door for refinement of current adipose tissue-engineering approaches.
Collapse
Affiliation(s)
- Filip Stillaert
- Bernard Brien Institute for Microsurgery, Melbourne, Victoria, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Crivellato E, Nico B, Ribatti D. Contribution of endothelial cells to organogenesis: a modern reappraisal of an old Aristotelian concept. J Anat 2007; 211:415-27. [PMID: 17683480 PMCID: PMC2375830 DOI: 10.1111/j.1469-7580.2007.00790.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2007] [Indexed: 01/02/2023] Open
Abstract
It is well established that many tissue-derived factors are involved in blood vessel formation, but evidence is now emerging that endothelial cells themselves represent a crucial source of instructive signals to non-vascular tissue cells during organ development. Thus, endothelial cell signalling is currently believed to promote fundamental cues for cell fate specification, embryo patterning, organ differentiation and postnatal tissue remodelling. This review article summarizes some of the recent advances in our understanding of the role of endothelial cells as effector cells in organ formation.
Collapse
Affiliation(s)
- E Crivellato
- Department of Medical and Morphological Research, Anatomy Section, University of Udine, Italy.
| | | | | |
Collapse
|
45
|
Lijnen HR, Van Hoef B, Kemp D, Collen D. Inhibition of vascular endothelial growth factor receptor tyrosine kinases impairs adipose tissue development in mouse models of obesity. Biochim Biophys Acta Gen Subj 2007; 1770:1369-73. [PMID: 17616257 DOI: 10.1016/j.bbagen.2007.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2007] [Revised: 06/05/2007] [Accepted: 06/06/2007] [Indexed: 11/24/2022]
Abstract
We have studied the effect of PTK787 (Vatalanib), an inhibitor of vascular endothelial growth factor receptor (VEGFR) tyrosine kinases, on adipose tissue development. Oral administration of PTK787 for 4 weeks (2 mg/g high fat diet, HFD) to C57Bl/6 mice resulted in a significant reduction in total body weight and of subcutaneous (SC) and gonadal (GON) adipose tissue mass, as compared to control animals fed HFD only (all p<0.0005). In the GON adipose tissue adipocytes were hypertrophic after PTK787 treatment. Blood vessel size and density were not significantly affected by PTK787 treatment. Expression of Flk-1 (VEGFR-2) mRNA was significantly reduced in SC and GON adipose tissues of PTK787 treated mice. De novo fat pad formation following injection of preadipocytes in NUDE mice was significantly (p<0.005) impaired by PTK787 administration (2 mg/g HFD for 4 weeks), without associated effect on blood vessel size or density. Thus, in nutritionally induced murine obesity models, oral administration of the VEGFR tyrosine kinases inhibitor PTK787 resulted in reduced adipose tissue development.
Collapse
Affiliation(s)
- H R Lijnen
- Center for Molecular and Vascular Biology, KU Leuven, Campus Gasthuisberg, O & N1, Herestraat 49, Box 911, 3000 Leuven, Belgium.
| | | | | | | |
Collapse
|
46
|
Abstract
Substantial evidence shows that neoplastic and nonneoplastic tissue growth is dependent on angiogenesis. Neovascularization and adipogenesis are temporally and spatially coupled processes during prenatal life and they continue to reciprocally interact via paracrine signaling systems throughout adult life. Activated adipocytes produce multiple angiogenic factors including leptin, angiopoietins, HGF, GM-CSF, VEGF, FGF-2, and TGF-beta, which either alone or collectively stimulate neovascularization during fat mass expansion. Thus antiangiogenic agents provide a novel therapeutic option for prevention and treatment of human obesity and its related disorders.
Collapse
Affiliation(s)
- Yihai Cao
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
47
|
Dolderer JH, Abberton KM, Thompson EW, Slavin JL, Stevens GW, Penington AJ, Morrison WA. Spontaneous Large Volume Adipose Tissue Generation from a Vascularized Pedicled Fat Flap Inside a Chamber Space. ACTA ACUST UNITED AC 2007; 13:673-81. [PMID: 17335401 DOI: 10.1089/ten.2006.0212] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A novel method of spontaneous generation of new adipose tissue from an existing fat flap is described. A defined volume of fat flap based on the superficial inferior epigastric vascular pedicle in the rat was elevated and inset into a hollow plastic chamber implanted subcutaneously in the groin of the rat. The chamber walls were either perforated or solid and the chambers either contained poly(D,L-lactic-co-glycolic acid) (PLGA) sponge matrix or not. The contents were analyzed after being in situ for 6 weeks. The total volume of the flap tissue in all groups except the control groups, where the flap was not inserted into the chambers, increased significantly, especially in the perforated chambers (0.08 +/- 0.007 mL baseline compared to 1.2 +/- 0.08 mL in the intact ones). Volume analysis of individual component tissues within the flaps revealed that the adipocyte volume increased and was at a maximum in the chambers without PLGA, where it expanded from 0.04 +/- 0.003 mL at insertion to 0.5 +/- 0.08 mL (1250% increase) in the perforated chambers and to 0.16 +/- 0.03 mL (400% increase) in the intact chambers. Addition of PLGA scaffolds resulted in less fat growth. Histomorphometric analysis rather than simple hypertrophy documented an increased number of adipocytes. The new tissue was highly vascularized and no fat necrosis or atypical changes were observed.
Collapse
Affiliation(s)
- Juergen H Dolderer
- The Bernard O'Brien Institute of Microsurgery and Department of Plastic and Reconstructive Surgery, St. Vincent's Hospital, Melbourne, Australia
| | | | | | | | | | | | | |
Collapse
|
48
|
Hemmrich K, Meersch M, Wiesemann U, Salber J, Klee D, Gries T, Pallua N. Polyesteramide-Derived Nonwovens as Innovative Degradable Matrices Support Preadipocyte Adhesion, Proliferation, and Differentiation. ACTA ACUST UNITED AC 2006; 12:3557-65. [PMID: 17518691 DOI: 10.1089/ten.2006.12.3557] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Extended soft tissue defects resulting from injuries or tumor resections are still an unresolved problem in plastic and reconstructive surgery because adequate reconstruction is difficult. Immature adipogenic precursor cells, called preadipocytes, which are located between mature adipocytes in adipose tissue, represent a powerful tool for soft tissue engineering because of their ability to proliferate and differentiate into adipose tissue after transplantation. In previous studies, we compared preadipocyte-loaded hyaluronan or collagen biomaterials and their applicability for adipose tissue engineering. Our findings demonstrated successful de novo formation of adipose tissue in vivo but pore size and stiffness were limiting factors not allowing for sufficient cell distribution in the construct. This study presents a nonwoven made of novel bioabsorbable co-poly(ester amide) based on e-caprolactam, adipic acid, and 1,4-butanediol in an innovative 3-dimensional architecture. The material was formed into nonwovens by textile manufacturing using an aerodynamic web formation process and a needle felting technique. Carriers were seeded with human preadipocytes and examined for cellular proliferation and differentiation. In addition, methods of preparing scaffolds for optimal cell interaction were evaluated. Our findings show that polyesteramide-derived nonwovens allow good adherence, proliferation, and differentiation of preadipocytes. These results are promising guidance toward an optimally designed scaffold for in vivo use.
Collapse
Affiliation(s)
- K Hemmrich
- Department of Plastic Surgery and Hand Surgery-Burn Centre, University Hospital of the RWTH Aachen University, Aachen, Germany.
| | | | | | | | | | | | | |
Collapse
|
49
|
Kelly JL, Findlay MW, Knight KR, Penington A, Thompson EW, Messina A, Morrison WA. Contact with existing adipose tissue is inductive for adipogenesis in matrigel. ACTA ACUST UNITED AC 2006; 12:2041-7. [PMID: 16889532 DOI: 10.1089/ten.2006.12.2041] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The effect of adipose tissue on inductive adipogenesis within Matrigel (BD Biosciences) was assessed by using a murine chamber model containing a vascular pedicle. Three-chamber configurations that varied in the access to an adipose tissue source were used, including sealed- and open-chamber groups that had no access and limited access, respectively, to the surrounding adipose tissue, and a sealed-chamber group in which adipose tissue was placed as an autograft. All groups showed neovascularization, but varied in the amount of adipogenesis seen in direct relation to their access to preexisting adipose tissue: open chambers showed strong adipogenesis, whereas the sealed chambers had little or no adipose tissue; adipogenesis was restored in the autograft chamber group that contained 2- to 5-mg fat autografts. These showed significantly more adipogenesis than the sealed chambers with no autograft ( p < 0.01). Autografts with 1mg of fat were capable of producing adipogenesis but did so less consistently than the larger autografts. These findings have important implications for adipose tissue engineering strategies and for understanding de novo production of adipose tissue.
Collapse
Affiliation(s)
- John L Kelly
- Bernard O'Brien Institute of Microsurgery, Melbourne, Australia
| | | | | | | | | | | | | |
Collapse
|
50
|
Voros G, Sandy JD, Collen D, Lijnen HR. Expression of aggrecan(ases) during murine preadipocyte differentiation and adipose tissue development. Biochim Biophys Acta Gen Subj 2006; 1760:1837-44. [PMID: 17011710 DOI: 10.1016/j.bbagen.2006.08.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Revised: 08/08/2006] [Accepted: 08/08/2006] [Indexed: 11/27/2022]
Abstract
The expression and potential functional role of aggrecan in adipogenesis and adipose tissue development was investigated in murine models of obesity. Aggrecan, as well as the two aggrecanases ADAMTS-4 and ADAMTS-5 (A Disintegrin And Metalloproteinase with Thrombospondin motif) mRNAs, are expressed in subcutaneous (SC) and gonadal (GON) adipose tissues of mice. Their presence was confirmed by western blotting using adipose tissue extracts. In mice with nutritionally induced obesity (high fat diet) as well as in lean controls, aggrecan mRNA expression was downregulated whereas ADAMTS-4 and ADAMTS-5 were upregulated with time. In mice with genetically determined obesity (ob/ob), ADAMTS-5 mRNA was upregulated in both SC and GON adipose tissues, as compared to wild-type (WT) mice (p<0.001). Enhanced aggrecanase expression levels in these tissues were associated with significantly elevated levels of G1-NITEGE, a degradation product of aggrecan. Thus, aggrecan levels were high at the early stages of adipose tissue development in mice, whereas its production decreased and its degradation increased during development of obesity. A functional role of aggrecan in promoting early stages of adipogenesis is supported by the findings that it stimulated the in vitro differentiation of 3T3-F442A preadipocytes and the de novo in vivo accumulation of fat in Matrigel plaques injected into WT mice. Proteoglycans in the extracellular matrix of adipose tissue, such as aggrecan, may contribute to the regulation of lipid uptake and obesity in mice.
Collapse
Affiliation(s)
- Gabor Voros
- Center for Molecular and Vascular Biology, KU Leuven, Campus Gasthuisberg, O&N, Herestraat 49, Leuven, Belgium
| | | | | | | |
Collapse
|