1
|
Schor AM, Woolston AM, Kankova K, Harada K, Aljorani LE, Perrier S, Felts PA, Keatch RP, Schor SL. Migration Stimulating Factor (MSF): Its Role in the Tumour Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1329:351-397. [PMID: 34664248 DOI: 10.1007/978-3-030-73119-9_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Migration Stimulating Factor (MSF) is a 70 kDa truncated isoform of fibronectin (FN); its mRNA is generated from the FN gene by an unusual two-stage processing. Unlike full-length FN, MSF is not a matrix molecule but a soluble protein which displays cytokine-like activities not displayed by any other FN isoform due to steric hindrance. There are two isoforms of MSF; these are referred to as MSF+aa and MSF-aa, while the term MSF is used to include both.MSF was first identified as a motogen secreted by foetal and cancer-associated fibroblasts in tissue culture. It is also produced by sprouting (angiogenic) endothelial cells, tumour cells and activated macrophages. Keratinocytes and resting endothelial cells secrete inhibitors of MSF that have been identified as NGAL and IGFBP-7, respectively. MSF+aa and MSF-aa show distinct functionality in that only MSF+aa is inhibited by NGAL.MSF is present in 70-80% of all tumours examined, expressed by the tumour cells as well as by fibroblasts, endothelial cells and macrophages in the tumour microenvironment (TME). High MSF expression is associated with tumour progression and poor prognosis in all tumours examined, including breast carcinomas, non-small cell lung cancer (NSCLC), salivary gland tumours (SGT) and oral squamous cell carcinomas (OSCC). Epithelial and stromal MSF carry independent prognostic value. MSF is also expressed systemically in cancer patients, being detected in serum and produced by fibroblast from distal uninvolved skin. MSF-aa is the main isoform associated with cancer, whereas MSF+aa may be expressed by both normal and malignant tissues.The expression of MSF is not invariant; it may be switched on and off in a reversible manner, which requires precise interactions between soluble factors present in the TME and the extracellular matrix in contact with the cells. MSF expression in fibroblasts may be switched on by a transient exposure to several molecules, including TGFβ1 and MSF itself, indicating an auto-inductive capacity.Acting by both paracrine and autocrine mechanisms, MSF stimulates cell migration/invasion, induces angiogenesis and cell differentiation and alters the matrix and cellular composition of the TME. MSF is also a survival factor for sprouting endothelial cells. IGD tri- and tetra-peptides mimic the motogenic and angiogenic activities of MSF, with both molecules inhibiting AKT activity and requiring αvβ3 functionality. MSF is active at unprecedently low concentrations in a manner which is target cell specific. Thus, different bioactive motifs and extracellular matrix requirements apply to fibroblasts, endothelial cells and tumour cells. Unlike other motogenic and angiogenic factors, MSF does not affect cell proliferation but it stimulates tumour growth through its angiogenic effect and downstream mechanisms.The epithelial-stromal pattern of expression and range of bioactivities displayed puts MSF in the unique position of potentially promoting tumour progression from both the "seed" and the "soil" perspectives.
Collapse
Affiliation(s)
- A M Schor
- School of Science and Engineering, University of Dundee, Dundee, UK
| | - A M Woolston
- School of Dentistry, University of Dundee, Dundee, UK
| | - K Kankova
- Department of Pathophysiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - K Harada
- Department of Oral and Maxillofacial Surgery, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - L E Aljorani
- School of Dentistry, University of Dundee, Dundee, UK
| | - S Perrier
- School of Dentistry, University of Dundee, Dundee, UK
| | - P A Felts
- School of Science and Engineering, University of Dundee, Dundee, UK
| | - R P Keatch
- School of Science and Engineering, University of Dundee, Dundee, UK
| | - S L Schor
- School of Science and Engineering, University of Dundee, Dundee, UK
| |
Collapse
|
2
|
Nelson AR, Sagare MA, Wang Y, Kisler K, Zhao Z, Zlokovic BV. Channelrhodopsin Excitation Contracts Brain Pericytes and Reduces Blood Flow in the Aging Mouse Brain in vivo. Front Aging Neurosci 2020; 12:108. [PMID: 32410982 PMCID: PMC7201096 DOI: 10.3389/fnagi.2020.00108] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/30/2020] [Indexed: 01/02/2023] Open
Abstract
Brains depend on blood flow for the delivery of oxygen and nutrients essential for proper neuronal and synaptic functioning. French physiologist Rouget was the first to describe pericytes in 1873 as regularly arranged longitudinal amoeboid cells on capillaries that have a muscular coat, implying that these are contractile cells that regulate blood flow. Although there have been >30 publications from different groups, including our group, demonstrating that pericytes are contractile cells that can regulate hemodynamic responses in the brain, the role of pericytes in controlling cerebral blood flow (CBF) has not been confirmed by all studies. Moreover, recent studies using different optogenetic models to express light-sensitive channelrhodopsin-2 (ChR2) cation channels in pericytes were not conclusive; one, suggesting that pericytes expressing ChR2 do not contract after light stimulus, and the other, demonstrating contraction of pericytes expressing ChR2 after light stimulus. Since two-photon optogenetics provides a powerful tool to study mechanisms of blood flow regulation at the level of brain capillaries, we re-examined the contractility of brain pericytes in vivo using a new optogenetic model developed by crossing our new inducible pericyte-specific CreER mouse line with ChR2 mice. We induced expression of ChR2 in pericytes with tamoxifen, excited ChR2 by 488 nm light, and monitored pericyte contractility, brain capillary diameter changes, and red blood cell (RBC) velocity in aged mice by in vivo two-photon microscopy. Excitation of ChR2 resulted in pericyte contraction followed by constriction of the underlying capillary leading to approximately an 8% decrease (p = 0.006) in capillary diameter. ChR2 excitation in pericytes substantially reduced capillary RBC flow by 42% (p = 0.03) during the stimulation period compared to the velocity before stimulation. Our data suggests that pericytes contract in vivo and regulate capillary blood flow in the aging mouse brain. By extension, this might have implications for neurological disorders of the aging human brain associated with neurovascular dysfunction and pericyte loss such as stroke and Alzheimer's disease.
Collapse
Affiliation(s)
| | | | | | | | | | - Berislav V. Zlokovic
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
3
|
Malek G, Busik J, Grant MB, Choudhary M. Models of retinal diseases and their applicability in drug discovery. Expert Opin Drug Discov 2018; 13:359-377. [PMID: 29382242 DOI: 10.1080/17460441.2018.1430136] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION The impact of vision debilitating diseases is a global public health concern, which will continue until effective preventative and management protocols are developed. Two retinal diseases responsible for the majority of vision loss in the working age adults and elderly populations are diabetic retinopathy (DR) and age-related macular degeneration (AMD), respectively. Model systems, which recapitulate aspects of human pathology, are valid experimental modalities that have contributed to the identification of signaling pathways involved in disease development and consequently potential therapies. Areas covered: The pathology of DR and AMD, which serve as the basis for designing appropriate models of disease, is discussed. The authors also review in vitro and in vivo models of DR and AMD and evaluate the utility of these models in exploratory and pre-clinical studies. Expert opinion: The complex nature of non-Mendelian diseases such as DR and AMD has made identification of effective therapeutic treatments challenging. However, the authors believe that while in vivo models are often criticized for not being a 'perfect' recapitulation of disease, they have been valuable experimentally when used with consideration of the strengths and limitations of the experimental model selected and have a place in the drug discovery process.
Collapse
Affiliation(s)
- Goldis Malek
- a Department of Ophthalmology , Duke University School of Medicine , Durham , NC , USA.,b Department of Pathology , Duke University School of Medicine , Durham , NC , USA
| | - Julia Busik
- c Department of Physiology , Michigan State University , East Lansing , MI , USA
| | - Maria B Grant
- d Department of Ophthalmology , University of Alabama at Birmingham , Birmingham , Al , USA
| | - Mayur Choudhary
- a Department of Ophthalmology , Duke University School of Medicine , Durham , NC , USA
| |
Collapse
|
4
|
Liu G, Meng C, Pan M, Chen M, Deng R, Lin L, Zhao L, Liu X. Isolation, Purification, and Cultivation of Primary Retinal Microvascular Pericytes: A Novel Model Using Rats. Microcirculation 2014; 21:478-89. [PMID: 24495210 DOI: 10.1111/micc.12121] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 01/30/2014] [Indexed: 12/13/2022]
Affiliation(s)
- Guanghui Liu
- School of Optometry and Ophthalmology and Eye Hospital; Wenzhou Medical University; Wenzhou China
- Department of Ophthalmology; Affiliated People's Hospital (People's Hospital of Fujian Province); Fujian University of Traditional Chinese Medicine; Fuzhou China
| | - Chun Meng
- Department of Bioengineering; College of Biological Science and Biotechnology; Fuzhou University; Fuzhou China
| | - Mingdong Pan
- Department of Ophthalmology; Affiliated People's Hospital (People's Hospital of Fujian Province); Fujian University of Traditional Chinese Medicine; Fuzhou China
| | - Meng Chen
- Department of Ophthalmology; Baylor College of Medicine; Houston Texas USA
| | - Ruzhi Deng
- School of Optometry and Ophthalmology and Eye Hospital; Wenzhou Medical University; Wenzhou China
| | - Ling Lin
- Department of Bioengineering; College of Biological Science and Biotechnology; Fuzhou University; Fuzhou China
| | - Li Zhao
- Department of Cardiology; Affiliated People's Hospital (People's Hospital of Fujian Province); Fujian University of Traditional Chinese Medicine; Fuzhou China
| | - Xiaoling Liu
- School of Optometry and Ophthalmology and Eye Hospital; Wenzhou Medical University; Wenzhou China
| |
Collapse
|
5
|
Aljorani LE, Bankfalvi A, Carey FA, Harada K, Ohe G, Jones SJ, Ellis IR, Schor SL, Schor AM. Migration-stimulating factor as a novel biomarker in salivary gland tumours. J Oral Pathol Med 2011; 40:747-54. [DOI: 10.1111/j.1600-0714.2011.01044.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Lai P, Li T, Yang J, Xie C, Zhu X, Xie H, Ding X, Lin S, Tang S. Upregulation of stromal cell–derived factor 1 (SDF-1) expression in microvasculature endothelial cells in retinal ischemia-reperfusion injury. Graefes Arch Clin Exp Ophthalmol 2008; 246:1707-13. [DOI: 10.1007/s00417-008-0907-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Revised: 06/18/2008] [Accepted: 07/07/2008] [Indexed: 11/29/2022] Open
|
7
|
Brachvogel B, Pausch F, Farlie P, Gaipl U, Etich J, Zhou Z, Cameron T, von der Mark K, Bateman JF, Pöschl E. Isolated Anxa5+/Sca-1+ perivascular cells from mouse meningeal vasculature retain their perivascular phenotype in vitro and in vivo. Exp Cell Res 2007; 313:2730-43. [PMID: 17543301 DOI: 10.1016/j.yexcr.2007.04.031] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Revised: 04/18/2007] [Accepted: 04/27/2007] [Indexed: 01/27/2023]
Abstract
Pericytes are closely associated with endothelial cells, contribute to vascular stability and represent a potential source of mesenchymal progenitor cells. Using the specifically expressed annexin A5-LacZ fusion gene (Anxa5-LacZ), it became possible to isolate perivascular cells (PVC) from mouse tissues. These cells proliferate and can be cultured without undergoing senescence for multiple passages. PVC display phenotypic characteristics of pericytes, as they express pericyte-specific markers (NG2-proteoglycan, desmin, alphaSMA, PDGFR-beta). They also express stem cell marker Sca-1, whereas endothelial (PECAM), hematopoietic (CD45) or myeloid (F4/80, CD11b) lineage markers are not detectable. These characteristics are in common with the pericyte-like cell line 10T1/2. PVC also display a phagocytoic activity higher than 10T1/2 cells. During coculture with endothelial cells both cell types stimulate angiogenic processes indicated by an increased expression of PECAM in endothelial cells and specific deposition of basement membrane proteins. PVC show a significantly increased induction of endothelial specific PECAM expression compared to 10T1/2 cells. Accordingly, in vivo grafts of PVC aggregates onto chorioallantoic membranes of quail embryos recruit endothelial cells, get highly vascularized and deposit basement membrane components. These data demonstrate that isolated Anxa5-LacZ(+) PVC from mouse meninges retain their capacity for differentiation to pericyte-like cells and contribute to angiogenic processes.
Collapse
Affiliation(s)
- Bent Brachvogel
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Sobke ACS, Selimovic D, Orlova V, Hassan M, Chavakis T, Athanasopoulos AN, Schubert U, Hussain M, Thiel G, Preissner KT, Herrmann M. The extracellular adherence protein fromStaphylococcus aureusabrogates angiogenic responses of endothelial cells by blocking Ras activation. FASEB J 2006; 20:2621-3. [PMID: 17077291 DOI: 10.1096/fj.06-5764fje] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The extracellular adherence protein (Eap), a broad-spectrum adhesin secreted by Staphylococcus aureus, was previously shown to curb acute inflammatory responses, presumably through its binding to endothelial cell (EC) ICAM-1. Examining the effect of Eap on endothelial function in more detail, we here show that, in addition, Eap functions as a potent angiostatic agent. Concomitant treatment of EC with purified Eap resulted in the complete blockage of the mitogenic and sprouting responses elicited by vascular endothelial growth factor (VEGF)165 or basic fibroblast growth factor (bFGF). Moreover, the induction of tissue factor and decay-accelerating factor were repressed by Eap, as determined by qRT-polymerase chain reaction (qRT-PCR), with a corresponding reduction in Egr-1 protein up-regulation seen. This angiostatic activity was accompanied by a corresponding inhibition in ERK1/2 phosphorylation, while activation of p38 was not affected. Inhibition occurred downstream of tyrosine kinase receptor activation, as comparable effects were seen on TPA-induced ERK1/2 phosphorylation. Similar to previously described angiostatic agents like angiopoietin-1 or the 16-kDa prolactin fragment, Eap blockage of the Ras/Raf/MEK/ERK cascade was localized by pull-down assay at the level of Ras activation. Eap's combined anti-inflammatory and antiangiogenic properties render this bacterial protein not only an important virulence factor during S. aureus infection but open new perspectives for therapeutic applications in pathological neovascularization.
Collapse
Affiliation(s)
- Astrid C S Sobke
- Institute of Medical Microbiology and Hygiene, University of Saarland Hospital, D-66421 Homburg/Saar, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Sato E, Hashimoto H, Kamoi H, Tachibana T, Ishikawa H, Kamoi K. Proliferation and tube formation of periodontal endothelial cells. Hum Cell 2005; 18:83-91. [PMID: 16146206 DOI: 10.1111/j.1749-0774.2005.tb00088.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Angiogenesis is indispensable to guide a regeneration of good periodontal tissue in the wound healing after periodontal surgery. Hepatocyte growth factor is well known for a strong angiogenic factor and it may play important roles in the periodontal tissue during periodontal wound healing. In exploring the promotion of angiogenesis in the periodontal ligament, proliferative and tubulogenic responses of endothelial cells to hepatocyte growth factor and to soluble factors secreted by fibroblasts were investigated. Pavement-shaped cells isolated from a human periodontal ligament were identified as the endothelial cell by their granular immunoreactivity for factor VIII. The proliferation of the endothelial cells was accelerated by the addition of hepatocyte growth factor or fibroblast-conditioned medium, and far more by adding both than either. The endothelial cells seeded on the agar containing both hepatocyte growth factor and fibroblast products formed a dense network in a shorter time than on the agar containing either. The endothelial cells in the dense network took a tube-like structure with lumen and were covered with laminin. These results suggest that hepatocyte growth factor administered into the regenerating periodontal tissue may promote, synergistically with local factors produced by the activated fibroblast, the proliferation and tubulogenesis of the remaining endothelial cells.
Collapse
Affiliation(s)
- Etsuko Sato
- Department of Anatomy, The Jikei University School of Medicine, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
10
|
Filbrandt CR, Wu Z, Zlokovic B, Opanashuk L, Gasiewicz TA. Presence and functional activity of the aryl hydrocarbon receptor in isolated murine cerebral vascular endothelial cells and astrocytes. Neurotoxicology 2004; 25:605-16. [PMID: 15183014 DOI: 10.1016/j.neuro.2003.08.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2003] [Accepted: 07/11/2003] [Indexed: 10/27/2022]
Abstract
Numerous functions regulated by the central nervous system (CNS) are targeted by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD); however, the cell specific targets and mechanisms of toxicity are unknown. Outside of the brain, the peripheral vascular endothelium has been identified as a significant cellular target of TCDD toxicity resulting in apoptosis, edema, hemorrhaging and vascular dysfunction. Possible effects of TCDD in the vascular endothelium of the CNS have not been examined. Cellular dysfunction in this endothelium may disrupt function of the blood-brain barrier (BBB), which could severely compromise neuronal homeostasis and potentiate neurotoxicity. TCDD toxicity is mediated primarily by the aryl hydrocarbon receptor (AhR), a ligand activated transcription factor that modulates the expression of a large battery of genes. This study examined the presence and functional activity of the AhR in response to TCDD in endothelial cells and astrocytes, the two primary components of the BBB. Primary mouse cortical endothelial cells and astrocytes express the AhR, as shown by immunocytochemical and western blot analyses. AhR activity was assessed by time- and concentration-dependent analyses of CYP1A1 and CYP1B1 protein expression following TCDD treatment. Both CYP1A1 and CYP1B1 proteins were induced in endothelial cells after 4 and 8h, respectively, while only CYP1B1 protein induction was detected in astrocytes after 16h. The CYP450 protein induction was sustained for greater than 72h in both cell types. These changes in protein expression were dependent on AhR activity as indicated by the inhibition of these responses by a receptor antagonist. Together these data indicate endothelial cells and astrocytes are responsive to TCDD through the AhR-mediated pathway and therefore could be targets of toxicity.
Collapse
Affiliation(s)
- Carissa R Filbrandt
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Box EHSC, 575 Elmwood Avenue, Rochester, NY 14642, USA
| | | | | | | | | |
Collapse
|
11
|
Gillard SE, Tzaferis J, Tsui HCT, Kingston AE. Expression of metabotropic glutamate receptors in rat meningeal and brain microvasculature and choroid plexus. J Comp Neurol 2003; 461:317-32. [PMID: 12746871 DOI: 10.1002/cne.10671] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
This study investigated the distribution of metabotropic glutamate receptors (mGluRs) in meningeal and parenchymal microvasculature and in choroid plexus by means of Western blot analysis and immunohistochemistry. Western blot analysis demonstrated mGluR expression in both rat and human leptomeningeal tissues. In the rat, mGluR expression was developmentally regulated, with only mGluR2/3 showing expression at the embryonic day 19 developmental stage. In contrast, mGluR1 alpha, mGluR2/3, mGluR4a, and mGluR7 were expressed in leptomeninges from adult rats. Immunohistochemical analyses showed intense mGluR1 alpha immunoreactivity in the pia mater and blood vessels in the subarachnoid space and in the arachnoid layer of the meninges. mGluR2/3, mGluR4a, mGluR5, and mGluR7 were also expressed in meningeal microvasculature. In addition, the parenchymal microvasculature and choroid plexus were strongly immunoreactive for mGluR1 alpha, mGluR2/3, mGluR4a, mGluR5, and mGluR7. We used antibodies specific for phenotypic markers of microvascular and glial cells to characterize the cell type(s) immunopositive for mGluRs. Comparison of staining with anti-von Willebrand factor antibody and anti-mGluR antibodies revealed that mGluR immunoreactivity was present in cells that surrounded the luminal surface labeled by the endothelial cell marker. In these cells, smooth muscle actin and mGluR immunoreactivity overlapped, suggesting that, in addition to endothelial cells, pericytes within the microvasculature also express mGluRs. Furthermore, expression of mGluR1 alpha was also observed in pure pericyte cultures isolated from bovine retina. These data suggest that glutamate by means of activation of mGluRs may have a broad sphere of physiological influence in the brain which in addition to modulating synaptic transmission may also have a role in determining microvascular function and dysfunction.
Collapse
Affiliation(s)
- Samantha E Gillard
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana 46285, USA
| | | | | | | |
Collapse
|
12
|
Dayoub S, Devlin H, Sloan P. Evidence for the formation of metaplastic bone from pericytes in calcifying fibroblastic granuloma. J Oral Pathol Med 2003; 32:232-6. [PMID: 12653863 DOI: 10.1034/j.1600-0714.2003.00030.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND The calcifying fibroblastic granuloma (CFG) is a variant of epulis characterised histologically by calcified nodules and metaplastic bone formation and clinically by its pattern of frequent recurrence. Recent evidence suggests that calcified nodules and bone may form directly from non-haemopoetic pericytes in a variety of situations. This study aimed to test the hypothesis that metaplastic bone formation in CFG may be the result of a pericytic differentiation pathway. METHODS A series of 16 cases of CFG meeting the criteria of Lee were reviewed and stained using markers which aid the identification of pericyte (smooth muscle actin, von Willebrand's factor, monoclonal antibody 3G5) and osteoblast (AML-3) lineages. RESULTS The cells in mineralising areas of CFG resembled pericytes morphologically. Often, calcified nodules were observed within the vascular basement membrane and nodules frequently formed the nidus for reactive bone formation. The pericyte-like cells were positive for smooth muscle actin and AML-3 and were negative for von Willebrand's factor. CONCLUSIONS These data provide circumstantial evidence for a pericytic lineage in CFG.
Collapse
Affiliation(s)
- S Dayoub
- Dental School, Damascus University, Syria
| | | | | |
Collapse
|
13
|
Park YS, Kim NH, Jo I. Hypoxia and vascular endothelial growth factor acutely up-regulate angiopoietin-1 and Tie2 mRNA in bovine retinal pericytes. Microvasc Res 2003; 65:125-31. [PMID: 12686170 DOI: 10.1016/s0026-2862(02)00035-3] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The angiopoietin/Tie2 system is a predominant regulator of vascular development. This vascular development appears to be controlled and completed by the coordinated actions of two vascular cells, endothelial cells and their surrounding supporting cells, smooth muscle cells, or pericytes. The role of the angiopoietin/Tie2 system has been studied, but these studies are limited mostly to endothelial cells. In this study, using bovine retinal pericytes (BRP), we investigated the effect of two known angiogenic stimuli, hypoxia and vascular endothelial growth factor (VEGF) treatment, on the regulation of the angiopoietin/Tie2 system. Hypoxia (2% O(2) concentration) was acquired by a hypoxia chamber. Both hypoxia and VEGF (10 ng/ml) treatment significantly increased angiopoietin-1 (Ang1) mRNA expression. This marked augmentation occurred acutely (maximal increase at 2 h) and subsequently decreased. In contrast, angiopoietin-2 (Ang2) mRNA expression was unaltered in BRP upon both treatment. Significant up-regulation of Tie2 mRNA expression was found and lasted up to 12 h. However, using bovine aortic endothelial cells (BAEC), we found that only Ang2 expression, but neither Ang1 nor Tie2, responded to these two angiogenic stimuli, which was consistent with many previous reports. In conclusion, our data suggest that both hypoxia and VEGF treatment differentially regulate the angiopoietin/Tie2 system in the two vascular cells and that, particularly in BRP, the regulation of Ang1, but not Ang2, and Tie2 expression may play an important role in vascular development.
Collapse
Affiliation(s)
- Yoon Shin Park
- Division of Cardiovascular Research, Department of Biomedical Sciences, National Institute of Health, 5 Nokbun-dong, [122-701], Eunpyung-gu, Seoul, Korea
| | | | | |
Collapse
|
14
|
Paradis H, Liu CY, Saika S, Azhar M, Doetschman T, Good WV, Nayak R, Laver N, Kao CWC, Kao WWY, Gendron RL. Tubedown-1 in remodeling of the developing vitreal vasculature in vivo and regulation of capillary outgrowth in vitro. Dev Biol 2002; 249:140-55. [PMID: 12217325 DOI: 10.1006/dbio.2002.0757] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Tubedown-1 (tbdn-1) is a mammalian homologue of the N-terminal acetyltransferase subunit NAT1 of Saccharomyces cerevisiae and copurifies with an acetyltransferase activity. Tbdn-1 expression in endothelial cells becomes downregulated during the formation of capillary-like structures in vitro and is regulated in vivo in a manner which suggests a functional role in dampening blood vessel development. Here we show that tbdn-1 is expressed highly in the vitreal vascular network (tunica vasculosa lentis and vasa hyaloidea propria) during the pruning and remodeling phases of this transient structure. The vitreal blood vessels of mice harboring a targeted inactivation of TGF-beta2 fail to remodel and abnormally accumulate, a phenomenon reminiscent of the ocular pathology resembling persistent fetal vasculature (PFV) in humans. Since suppression of normal tbdn-1 expression has been previously observed in retinal vessel proliferation, we analyzed vitreal vascular changes and tbdn-1 expression in TGF-beta2(-/-) eyes. The nuclei of vitreal vessel endothelial cells in TGF-beta2(-/-) eyes express proliferating cell nuclear antigen (PCNA) and exhibit increased levels of active (P42/44)mitogen-activated protein kinase (phospho-(P42/44)MAPK), characteristics consistent with proliferative endothelial cells. In contrast to normal vitreal vessels, collagen IV expression exhibited a disorganized pattern in the TGF-beta2(-/-) vitreal vessels, suggesting vessel disorganization and possibly a breakdown of vessel basal laminae. Moreover, vitreal vessels of TGF-beta2(-/-) mice lack expression of pericyte markers (CD13, alpha smooth muscle actin) and show ultrastructural changes consistent with pericyte degeneration. The accumulating vitreal blood vessels of TGF-beta2(-/-) mice, while maintaining expression of the endothelial marker von Willebrand Factor, show a significant decrease in the expression of tbdn-1. We addressed the functional role of tbdn-1 in the regulation of vitreal blood vessels using an in vitro model of choroid-retina capillary outgrowth. Clones of the RF/6A fetal choroid-retina endothelial cell line showing suppression of tbdn-1 levels after overexpression of an antisense TBDN-1 cDNA display a significant increase in the formation of capillary-like structures in vitro compared with controls. These findings suggest that tbdn-1 inhibits capillary-like formation in vitro and may serve to dampen vitreal blood vessel formation preceding the regression of the vitreal vasculature during development. Our results also suggest that tbdn-1 may participate with TGF-beta2 in regulating normal development of the vitreal vasculature.
Collapse
Affiliation(s)
- H Paradis
- Division of Basic Medical Sciences, Department of Medicine, Memorial University of Newfoundland, St. John's NF, A1B 3V6, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Lawrenson JG, Glyn MCP, Ward BJ. Ultrastructural and morphometric comparison of retinal and myocardial capillaries following acute ischaemia. Microvasc Res 2002; 64:65-74. [PMID: 12074632 DOI: 10.1006/mvre.2002.2403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The recovery of any tissue following a period of ischaemia is dependent on a patent microvasculature to restore blood flow. In the ischaemic myocardium, a reduction in capillary cross-sectional dimensions occurs, which is likely to contribute to "no-reflow" injury. Clinical and experimental evidence indicates that the retina is able to tolerate moderate periods of ischaemia without significant loss of function. The aim of the present study is to test the hypothesis that, as an end-arterial system, the retina possesses compensatory processes to maintain a functional microcirculation following acute ischaemia. Thirty minutes of no-flow global ischaemia was induced in isolated hearts of Wistar rats without reperfusion. The retina was also made ischaemic for 30 min using two experimental models: microsphere embolization and anoxic superfusion. Changes in capillary dimensions were assessed by ultrastructural morphometry. Following 30 min of myocardial ischaemia capillaries appeared swollen with a significant reduction in total capillary and luminal cross-sectional area. By contrast, ischaemic retinal capillaries showed minimal morphological changes and no significant alteration in dimensions. We have demonstrated notable differences in the response of retinal and myocardial microvessels to acute ischaemia. It is likely that the maintenance of capillary patency following short periods ischaemia in the retina is part of an adaptive mechanism to protect visual function.
Collapse
Affiliation(s)
- John G Lawrenson
- Applied Vision Research Centre, Department of Optometry and visual Science, City University, London, EC1V 0HB, United Kingdom.
| | | | | |
Collapse
|
16
|
Sundberg C, Kowanetz M, Brown LF, Detmar M, Dvorak HF. Stable expression of angiopoietin-1 and other markers by cultured pericytes: phenotypic similarities to a subpopulation of cells in maturing vessels during later stages of angiogenesis in vivo. J Transl Med 2002; 82:387-401. [PMID: 11950897 DOI: 10.1038/labinvest.3780433] [Citation(s) in RCA: 166] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Pericytes have been difficult cells to study because they do not maintain their characteristic phenotype in vitro, and they begin to express fibroblast markers after only a few days in culture. We now report methods for the isolation, purification, culture, and repurification of human dermal pericytes from mixed cell populations using an immunoaffinity-magnetic bead approach coupled with the 3G5 IgM monoclonal antibody that is specific for a pericyte surface ganglioside. These purified cells could be expanded in culture, and they maintained their pericyte phenotype for up to 8 days. In addition, they strongly expressed angiopoietin-1 (Ang-1) but not angiopoietin-2, Tie-1, or Tie-2; in contrast, dermal microvascular endothelial cells exhibited a reciprocal expression pattern. These findings are important because the close proximity of endothelial cells and pericytes has often made it difficult to determine with certainty the specific cell type(s) that expressed each of these proteins in situ. Extending our in vitro findings to two models of angiogenesis in vivo, we demonstrated a subpopulation of Ang-1-expressing cells that appeared in maturing microvessels during later stages of cutaneous wound healing and vascular permeability factor/vascular endothelial growth factor-induced angiogenesis. Our results provide strong evidence that Ang-1 is expressed by pericytes in vitro and in vivo and that the role proposed for Ang-1 in vessel maturation in development can be extended to vessel maturation after angiogenesis in adult tissues.
Collapse
Affiliation(s)
- Christian Sundberg
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | |
Collapse
|
17
|
Abstract
The purpose of this study is to identify the separation techniques that result in pure cultures of rat microvascular endothelial cells (MECs). A multistep process is used to optimize the separation of the cells from rat epididymal fat pads, obtaining as pure a culture as possible within a relatively short processing time. The process initially employs the digestion, filtration, and density gradient separation steps. We further describe the use of an attachment phase that allows the differential adherence of contaminating cell types. Immunomagnetic purification is the final step in the process and is performed using anti-PECAM-1 (CD31) monoclonal antibody-labeled DynaBeads.
Collapse
Affiliation(s)
- Cynthia A Frye
- The Laboratory of Reparative Biology and Bioengineering, Department of Plastic Surgery, University of Texas MD Anderson Cancer Center, Houston, USA
| | | |
Collapse
|
18
|
Johnstone EW, Leane PB, Byers S, Hopwood JJ, Foster BK. Metaphyseal factors promote calcium incorporation in physeal chondrocyte cultures. J Orthop Sci 2001; 5:593-9. [PMID: 11180924 DOI: 10.1007/s007760070011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2000] [Accepted: 06/05/2000] [Indexed: 11/24/2022]
Abstract
Our hypothesis is that physiological mineralization within the mammalian growth plate is a consequence of communication between cartilage chondrocytes and cells within metaphyseal bone. To test this hypothesis, chondrocytes were isolated from the proliferative region of the fetal ovine physis and co-cultured with cells or conditioned medium from cells characteristic of those in metaphyseal bone. The mineralization potential of chondrocytes alone and in the presence of other cells or conditioned medium was determined by 45calcium incorporation. Co-culture of chondrocytes with a crude cell isolate from metaphyseal bone resulted in a stimulation of 45calcium incorporation of 93% above that observed in the individual cell populations alone. Conditioned medium from metaphyseal bone cultures also stimulated 45calcium incorporation. This response to conditioned medium was dose-dependent and stable to 90 degrees C. Vascular endothelial cells and conditioned medium from chondrocyte and osteoblast cultures did not stimulate 45calcium incorporation by physeal chondrocytes. Thus, cells found in the metaphyseal bone produce a soluble factor, which promote calcium incorporation by physeal chondrocytes. The source of this factor is not chondrocytic, osteoblastic, or endothelial in origin.
Collapse
Affiliation(s)
- E W Johnstone
- Department of Orthopaedic Surgery, Women's and Children's Hospital, 72 King William Rd., North Adelaide, South Australia, Australia
| | | | | | | | | |
Collapse
|
19
|
Graterol A, Arciniegas E, De Sanctis JB. Endothelial cells scraped from the luminal surface of bovine pulmonary artery give rise to nonmuscle cells. Microvasc Res 2000; 60:1-7. [PMID: 10873509 DOI: 10.1006/mvre.2000.2243] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- A Graterol
- Instituto de Biomedicina, Laboratorio de Microscopía Electrónica, Caracas, Venezuela
| | | | | |
Collapse
|
20
|
Green H, Canfield AE, Hillarby MC, Grant ME, Boot-Handford RP, Freemont AJ, Wallis GA. The ribosomal protein QM is expressed differentially during vertebrate endochondral bone development. J Bone Miner Res 2000; 15:1066-75. [PMID: 10841175 DOI: 10.1359/jbmr.2000.15.6.1066] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Endochondral ossification is a carefully coordinated developmental process that converts the cartilaginous model of the embryonic skeleton to bone with accompanying long bone growth. To identify genes that regulate this process we performed a complementary DNA (cDNA) subtractive hybridization of fetal bovine proliferative chondrocyte cDNA from epiphyseal cartilage cDNA. The subtracted product was used to screen a fetal bovine cartilage cDNA library. Ten percent of the clones identified encoded the bovine orthologue of the human ribosomal protein "QM." Northern and western blot analysis confirmed that QM was highly expressed by cells isolated from epiphyseal cartilage as opposed to proliferative chondrocytes. In contrast, no detectable difference in the expression of mRNA for the ribosomal protein S11 was detected. Immunohistochemical analysis of fetal bovine limb sections revealed that QM was not expressed by the majority of the epiphyseal chondrocytes but only by chondrocytes in close proximity to capillaries that had invaded the epiphyseal cartilage. Strongest QM expression was seen in osteoblasts in the diaphyseal region of the bone adjoining the growth plate, within the periosteum covering the growth plate and within secondary centers of ossification. Hypertrophic chondrocytes within the growth plate adjoining the periosteum also were positive for QM as were chondrocytes in the perichondrium adjoining the periosteum. In vitro investigation of the expression of QM revealed higher QM expression in nonmineralizing osteoblast and pericyte cultures as compared with mineralizing cultures. The in vivo and in vitro expression pattern of QM suggests that this protein may have a role in cell differentiation before mineralization.
Collapse
Affiliation(s)
- H Green
- The Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, University of Manchester, UK
| | | | | | | | | | | | | |
Collapse
|
21
|
Thomas WE. Brain macrophages: on the role of pericytes and perivascular cells. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 1999; 31:42-57. [PMID: 10611494 DOI: 10.1016/s0165-0173(99)00024-7] [Citation(s) in RCA: 205] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Pericytes are a unique cell group intimately associated with the vasculature and that appear to be present in most tissues. Their presence is generally considered to be restricted to the microvessels - arterioles, venules and particularly capillaries, where there is little or no smooth muscle. Morphologically, the pericytes exhibit a small, oval cell body with multiple processes extending for some distance along the vessel axis; these primary processes then give rise to orthogonal secondary branches which encircle the vascular wall. Through this morphology and their close association with the vasculature, the contour of the cells conforms to that of the adjacent vascular element; also, they are usually enclosed within the basal lamina of the microvasculature. While many earlier studies suggested brain pericytes as a source of macrophage activity, recent results substantiate this functional role; these recent findings include the demonstration of macrophage markers, phagocytosis and antigen presentation. Coupled with current knowledge on the entry of lymphoblasts into brain tissue and perivascular areas as potentially being the primary site of cellular interactions for production of immune responses, this places the pericytes in a position to significantly contribute to central nervous system (CNS) immune mechanisms. They may in fact be the population of brain macrophages most instrumental in the initiation of an immune response. Although these cells constitutively express several macrophage properties, they are also capable of up-regulation to display the full range of macrophage functional activity. At least, some of the pericytic macrophages are located on the surface of the basal lamina as opposed to completely within it; however, their potential transformation into microglia of the parenchyma remains an open issue. In addition to their function as macrophages, pericytes appear to serve a host of other functional roles. They are contractile and seem to serve as a smooth muscle equivalent in the capillaries performing vasoconstriction; they regulate endothelial cell properties and contribute to the stability and maintenance of blood vessels; and they appear to directly participate in coagulation through the extrinsic pathway. Also, pericytes have been suggested to be pluripotential and serve as precursors for a variety of other cell types. From these functional roles, comes their involvement in various disease processes. In association with the macrophage function, they are involved in numerous autoimmune and infectious diseases. Through their vascular role, they are involved in diabetic retinopathy and inflammation. Also, the pericytes appear to have involvement in Alzheimer's as well as other diseases. Thus, these cells are presented not only as macrophages but as a group with broad functional activities and significant potential for contributing to disease states.
Collapse
Affiliation(s)
- W E Thomas
- Department of Biological Sciences, 308 Hovey Hall, Illinois State University, Normal, IL 61790-4000, USA
| |
Collapse
|
22
|
Bini A, Mann KG, Kudryk BJ, Schoen FJ. Noncollagenous bone matrix proteins, calcification, and thrombosis in carotid artery atherosclerosis. Arterioscler Thromb Vasc Biol 1999; 19:1852-61. [PMID: 10446063 DOI: 10.1161/01.atv.19.8.1852] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Advanced atherosclerosis is often associated with dystrophic calcification, which may contribute to plaque rupture and thrombosis. In this work, the localization and association of the noncollagenous bone matrix proteins osteonectin, osteopontin, and osteocalcin with calcification, lipoproteins, thrombus/hemorrhage (T/H), and matrix metalloproteinases (MMPs) in human carotid arteries from endarterectomy samples have been determined. According to the recent American Heart Association classification, 6 of the advanced lesions studied were type V (fibroatheroma) and 16 type VI (complicated). Osteonectin, osteocalcin, and osteopontin were identified by monoclonal antibodies IIIA(3)A(8), G12, and MPIIIB10(1) and antiserum LF-123. Apolipoprotein (apo) AI, B, and E; lipoprotein(a); fibrinogen; fibrin; fragment D/D-dimer; MMP-2 (gelatinase A); and MMP-3 (stromelysin-1) were identified with previously characterized antibodies. Calcium phosphate deposits (von Kossa's stain) were present in 82% of samples (3 type V and 15 type VI). Osteonectin was localized in endothelial cells, SMCs, and macrophages and was associated with calcium deposits in 33% of type V and 88% of type VI lesions. Osteopontin was distributed similarly to osteonectin and was associated with calcium deposits in 50% of type V and 94% of type VI lesions. Osteocalcin was localized in large calcified areas only (in 17% of type V and 38% of type VI lesions). ApoB colocalized with cholesterol crystals and calcium deposits. Lipoprotein(a) was localized in the intima, subintima, and plaque shoulder. Fibrin (T/H) colocalized with bone matrix proteins in 33% of type V and 69% of type VI lesions. MMP-3 was cytoplasmic in most cells and colocalized with calcium and fibrin deposits. MMP-2 was less often associated with calcification. The results of this study show that osteonectin, osteopontin, and osteocalcin colocalized with calcium deposits with apoB, fibrin, and MMP-3 in advanced, symptomatic carotid lesions. These data suggest that the occurrence of T/H might contribute to dystrophic arterial calcification in the progression and complications of atherosclerosis.
Collapse
Affiliation(s)
- A Bini
- Laboratory of Blood Coagulation Biochemistry, Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, USA.
| | | | | | | |
Collapse
|
23
|
Ramsauer M, Kunz J, Krause D, Dermietzel R. Regulation of a blood-brain barrier-specific enzyme expressed by cerebral pericytes (pericytic aminopeptidase N/pAPN) under cell culture conditions. J Cereb Blood Flow Metab 1998; 18:1270-81. [PMID: 9809517 DOI: 10.1097/00004647-199811000-00014] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In this study we show that the aminopeptidase N of cerebral pericytes (pAPN) associated with the blood-brain barrier (BBB) is downregulated in pericytic cell cultures. This observation is in accordance with previous data describing comparable in vitro effects for BBB-specific enzymes of endothelial or pericytic origin, such as gamma-glutamyl transpeptidase or alkaline phosphatase. By polymerase chain reaction and in situ hybridization we were able to determine that the down-regulation of pAPN occurs at the posttranscriptional level. The mRNA of pAPN was found to be constitutively expressed even when the protein is no longer detectable. Culturing the pericytes in an endothelial cell-conditioned medium allowed pAPN to be reexpressed. However, the reexpression effect depended largely on the culturing conditions of the pericytes. Although purified pericytes deprived of endothelial cells did not reveal a reexpression effect, pericytes that were kept in contact with endothelial cells were able to acquire a pAPN-positive phenotype, indicating that endothelial cells constitute an essential requirement for the in vitro reexpression of pAPN. Astrocytes, however, were insufficient in exerting any reexpression effect.
Collapse
Affiliation(s)
- M Ramsauer
- Institut für Anatomie, Ruhr-Universität Bochum, Germany
| | | | | | | |
Collapse
|
24
|
Yan Q, Sage EH. Transforming growth factor-β1 induces apoptotic cell death in cultured retinal endothelial cells but not pericytes: Association with decreased expression of p21waf1/cip1. J Cell Biochem 1998. [DOI: 10.1002/(sici)1097-4644(19980701)70:1<70::aid-jcb8>3.0.co;2-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
25
|
Doherty MJ, Ashton BA, Walsh S, Beresford JN, Grant ME, Canfield AE. Vascular pericytes express osteogenic potential in vitro and in vivo. J Bone Miner Res 1998; 13:828-38. [PMID: 9610747 DOI: 10.1359/jbmr.1998.13.5.828] [Citation(s) in RCA: 387] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
At postconfluence, cultured bovine pericytes isolated from retinal capillaries form three-dimensional nodule-like structures that mineralize. Using a combination of Northern and Southern blotting, in situ hybridization, and immunofluorescence we have demonstrated that this process is associated with the stage-specific expression of markers of primitive clonogenic marrow stromal cells (STRO-1) and markers of cells of the osteoblast lineage (bone sialoprotein, osteocalcin, osteonectin, and osteopontin). To demonstrate that the formation of nodules and the expression of these proteins were indicative of true osteogenic potential, vascular pericytes were also inoculated into diffusion chambers and implanted into athymic mice. When recovered from the host, chambers containing pericytes were found reproducibly to contain a tissue comprised of cartilage and bone, as well as soft fibrous connective tissue and cells resembling adipocytes. This is the first study to provide direct evidence of the osteogenic potential of microvascular pericytes in vivo. Our results are also consistent with the possibility that the pericyte population in situ serves as a reservoir of primitive precursor cells capable of giving rise to cells of multiple lineages including osteoblasts, chondrocytes, adipocytes, and fibroblasts.
Collapse
Affiliation(s)
- M J Doherty
- Wellcome Trust Center for Cell-Matrix Research, School of Biological Sciences, University of Manchester, United Kingdom
| | | | | | | | | | | |
Collapse
|
26
|
Vranka JA, Johnson E, Zhu X, Shepardson A, Alexander JP, Bradley JM, Wirtz MK, Weleber RG, Klein ML, Acott TS. Discrete expression and distribution pattern of TIMP-3 in the human retina and choroid. Curr Eye Res 1997; 16:102-10. [PMID: 9068940 DOI: 10.1076/ceyr.16.2.102.5086] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE Extracellular matrix homeostasis is dependent in part upon a family of matrix metalloproteinases and their specific inhibitors, the tissue inhibitors of metalloproteinases (TIMPs). Recently, gene defects in TIMP-3 have been identified in the affected individuals of several families with Sorsby's fundus dystrophy (SFD). Very little information is available regarding TIMP-3 function or even its existence in the retina or choroid. METHODS We used reverse transcription-polymerase chain reaction and Northern analysis to evaluate the expression of TIMP mRNA and Western immunoblots to evaluate TIMP protein produced by select cells of the human retina and choroid. We also used these methods and immunohistochemistry to localize the TIMPs in the retina and choroid. RESULTS TIMP-3 transcripts are found in cultured human retinal pigment epithelium (RPE), choroidal microcapillary endothelium and pericytes. RPE cells also express and secrete TIMP-3 protein, which is localized to the extracellular matrix and is not found in culture medium; TIMP-1 and -2 are found almost exclusively in the medium. Immunohistochemistry of human retina/choroid sections shows pronounced TIMP-3 immunostaining in Bruch's membrane, particularly near the surface of the RPE and endothelial cells, presumably in their basement membranes, with minimal staining in other portions of the retina. Immunostaining for TIMP-1 is absent and for TIMP-2 is much less prevalent, but detectable in Bruch's membrane. CONCLUSIONS TIMP-1, -2 and -3 exhibit distinctive expression patterns in the retina and choroid. This distribution and expression pattern partially explains why TIMP-3 mutations result in SFD, rather than other retinal pathologies, such as those associated with proliferative diabetic retinopathy.
Collapse
Affiliation(s)
- J A Vranka
- Department of Ophthalmology, Casey Eye Institute, Oregon Health Sciences University, Portland 97201, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Phenotypic diversity and lineage relationships in vascular endothelial cells. Stem Cells 1997. [DOI: 10.1016/b978-012563455-7/50007-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
28
|
el Hafny B, Bourre JM, Roux F. Synergistic stimulation of gamma-glutamyl transpeptidase and alkaline phosphatase activities by retinoic acid and astroglial factors in immortalized rat brain microvessel endothelial cells. J Cell Physiol 1996; 167:451-60. [PMID: 8655599 DOI: 10.1002/(sici)1097-4652(199606)167:3<451::aid-jcp9>3.0.co;2-o] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The immortalized rat brain microvessel endothelial cell line RBE4 was used to investigate the in vitro regulation of two blood-brain barrier specific enzymes, gamma-glutamyl transpeptidase (GTP) and alkaline phosphatase (ALP). The effects of bFGF, astroglial factors, and retinoic acid (a cell differentiation agent) on GTP and ALP activities were separately or simultaneously studied in order to define optimal culture conditions for induction of these two specific enzymes of the blood-brain barrier. In the present study, a phenotypically distinct subpopulation of endothelial cells has been shown to develop from confluent cobblestone monolayers of RBE4 immortalized cerebral endothelial cells. These distinct cells were present within multicellular aggregates and specifically exhibited GTP and ALP activities. Addition of bFGF, astroglial factors, or retinoic acid induced the formation of these three-dimensional structures and in consequence an increase in GTP and ALP activities. For retinoic acid and astroglial factors, this increase could also be explained by the stimulation of either GTP or ALP expression in the phenotypically distinct positive cells associated with aggregates. Simultaneous treatment with retinoic acid and astroglial factors had a synergistic effect on GTP and ALP expression and thus may allow these distinct cells to evolve toward a more differentiated state. Since such results were also obtained with physiological concentrations of retinoic acid, we suggest that addition of this agent might contribute to greater differentiation of cells in in vitro blood-brain barrier models where endothelial cells are cocultured with astrocytes.
Collapse
Affiliation(s)
- B el Hafny
- INSERM U26, Unité de Neuro-Pharmaco-Nutrition, Hôpital F. Widal, Paris, France
| | | | | |
Collapse
|
29
|
Canfield AE, Sutton AB, Hoyland JA, Schor AM. Association of thrombospondin-1 with osteogenic differentiation of retinal pericytes in vitro. J Cell Sci 1996; 109 ( Pt 2):343-53. [PMID: 8838658 DOI: 10.1242/jcs.109.2.343] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vascular pericytes can differentiate into osteoblast-like cells in vitro, suggesting that these cells may represent a potential source of osteoprogenitor cells in the adult. Pericyte differentiation is associated with a characteristic pattern of nodule formation and mineralisation. Nodules are formed in post-confluent cultures by the retraction of multilayered areas. Crystals of hydroxyapatite are deposited on the extracellular matrix of these nodules which then becomes mineralised. We now demonstrate that thrombospondin-1 (TSP-1) gene expression is modulated during pericyte differentiation in vitro. That is, the relative levels of TSP-1 (protein and mRNA) increased markedly during nodule formation and then decreased when mineralisation of the nodules had taken place. TSP-1 was localised throughout non-mineralised nodules but it was largely excluded from the inner mass of mineralised nodules. The production of a mineralised matrix by vascular pericytes was promoted by the presence of antibodies to TSP-1 in the culture medium and was inhibited by exogenous TSP-1. These effects did not appear to be mediated through the activation of latent TGF-beta, since neither exogenous TGF-beta nor neutralising antibodies to TGF-beta had any effect on the rate or extent of mineralisation seen in the pericyte cultures. Taken together these results suggest that high levels of TSP-1 inhibit pericyte mineralisation, supporting the view that this protein plays a role in pericyte differentiation and bone formation.
Collapse
Affiliation(s)
- A E Canfield
- University of Manchester, School of Biological Sciences, UK
| | | | | | | |
Collapse
|
30
|
Angelis ED, Moss SH, Pouton CW. Endothelial cell biology and culture methods for drug transport studies. Adv Drug Deliv Rev 1996. [DOI: 10.1016/0169-409x(95)00094-n] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
31
|
Zink S, Rösen P, Lemoine H. Micro- and macrovascular endothelial cells in beta-adrenergic regulation of transendothelial permeability. THE AMERICAN JOURNAL OF PHYSIOLOGY 1995; 269:C1209-18. [PMID: 7491911 DOI: 10.1152/ajpcell.1995.269.5.c1209] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Barrier function of endothelial cells (EC) was modulated using beta-adrenergic agonists, e.g., isoproterenol (ISO) and formoterol (FOR). To get a direct comparison between EC from different vascular sources, we isolated EC from aorta (BAEC) and retina (BREC) of the same calf. For permeability studies, EC were cultured on polycarbonate filters. At confluency, transendothelial exchange of the diffusion marker fluorescein isothiocyanate-dextran was determined. Microvascular retinal EC monolayers are half as permeable as monolayers from macrovascular BAEC. When EC are stimulated with beta-adrenergic receptor (AR) agonists, monolayer permeability decreases, and the amount of intracellular adenosine 3',5'-cyclic monophosphate (cAMP) increases in both cell types. Comparison of the half-maximum concentrations causing change in permeability (pEC50) shows direct coupling between beta-AR and adenylate cyclase. The beta 2-selective agonist FOR stimulates cAMP synthesis in BAEC with a pEC50 value of 9.37 and decreases permeability with a pEC50 value of 9.72. In BREC, the pEC50 values of ISO concerning stimulation of cAMP synthesis and the decrease of permeability are also very similar, 5.32 and 5.34, respectively. BREC are not as sensitive to beta 2-AR agonists as BAEC. The pEC50 value of FOR influence on BREC permeability is 8.77 in comparison with 9.72 for BAEC. These results could be interpreted with different affinities of the beta 2-selective AR agonist in BREC and BAEC.
Collapse
Affiliation(s)
- S Zink
- Diabetes-Forschungsinstitut, Heinrich-Heine-Universität Düsseldorf, Germany
| | | | | |
Collapse
|
32
|
Isolation and Culture of Bovine Intracranial Arterial Endothelial Cells. Neurosurgery 1995. [DOI: 10.1097/00006123-199504000-00023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
33
|
Reisner A, Olson JJ, Yang J, Assietti R, Klemm JM, Girard PR. Isolation and culture of bovine intracranial arterial endothelial cells. Neurosurgery 1995; 36:806-12; discussion 813. [PMID: 7596513 DOI: 10.1227/00006123-199504000-00023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We report a simple explant technique to isolate and propagate endothelial cells from bovine cerebral arteries. The endothelial nature of the cells was confirmed by the presence of Factor VIII/von Willebrand antigen, the ability to phagocytize low-density lipoprotein, and the ability to be induced to express E-selectin. The lack of expression of the CD11c antigen and the absence of smooth muscle alpha-actin immunofluorescence suggested that the cultures were not contaminated with macrophages or smooth muscle cells, respectively. This technique yields pure cerebral arterial endothelial cell cultures, which will be of value for in vitro investigation of cerebrovascular physiology and disease processes.
Collapse
Affiliation(s)
- A Reisner
- Department of Neurosurgery, Emory University, Atlanta, Georgia, USA
| | | | | | | | | | | |
Collapse
|
34
|
Ehler E, Karlhuber G, Bauer HC, Draeger A. Heterogeneity of smooth muscle-associated proteins in mammalian brain microvasculature. Cell Tissue Res 1995; 279:393-403. [PMID: 7895277 DOI: 10.1007/bf00318497] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In the brain, the microvascular system is composed of endothelial cells surrounded by a layer of pericytes. The lack of smooth muscle cells in this tissue suggests that any contractile function must be performed by one or both of these cell types. The present study was undertaken in order to identify cells in terminal blood vessels that contain smooth muscle-like contractile machinery. Endothelial cells were reactive with antibodies against smooth muscle myosin but showed no other smooth muscle-related features. In contrast, pericytes of intact microvessels showed a pattern of protein expression similar to that of smooth muscle cells. Pericytes also behaved in tissue culture like cultured smooth muscle cells, with regard to the changes in expression of smooth muscle-related proteins. These data confirm the close relationship between smooth muscle cells and pericytes, and point to their contractile function in the brain microvessels.
Collapse
Affiliation(s)
- E Ehler
- Institute of Molecular Biology, Austrian Academy of Sciences, Salzburg
| | | | | | | |
Collapse
|
35
|
Canfield AE, Schor AM. Heterogeneity in collagen biosynthesis by sprouting retinal endothelial cells. J Cell Physiol 1994; 159:19-28. [PMID: 7511145 DOI: 10.1002/jcp.1041590104] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Bovine retinal microvascular endothelial cells can display two distinct and reversible morphologies in culture: 'cobblestone' and 'sprouting'. The cobblestone morphology resembles the resting cells lining the lumen of mature vessels while the sprouting morphology resembles the angiogenic cells involved in the formation of new vessels. Retinal cells displayed some heterogeneity in the shape of the cells making up the cobblestone monolayer. In contrast, all cell lines displayed an identical sprouting morphology. We have investigated the synthesis of matrix macromolecules by retinal endothelial cells displaying either the cobblestone or the sprouting morphology. Type IV was the only collagen synthesised by eight different lines of early-passage (between one and six) cobblestone endothelial cells. Collagen types I and III were not detected in these cultures. In contrast, heterogeneity was observed in the types of collagen synthesized by four lines of early-passage cells displaying the sprouting morphology. That is, two lines synthesised collagen types, II, III and IV, whereas two other lines continued to synthesise only type IV collagen. Both cobblestone and sprouting cells synthesised fibronectin and thrombospondin, although the relative amounts of these macromolecules varied with culture conditions. The pattern of collagen synthesis by cobblestone cells was also affected by in vitro "ageing": 4/5 lines examined above passage eight synthesised collagen types I, III and IV. Our results indicate that there is heterogeneity in the sprouting phenotype displayed by retinal endothelial cells, and that this phenotype is not necessarily associated with the synthesis of type I collagen. We suggest that differences in the spectrum of matrix macromolecules synthesised by sprouting endothelial cells may play a role in the control of angiogenesis.
Collapse
Affiliation(s)
- A E Canfield
- CRC Department of Medical Oncology, Christie Hospital NHS Trust, Manchester, England
| | | |
Collapse
|
36
|
Scott PA, Bicknell R. The isolation and culture of microvascular endothelium. J Cell Sci 1993; 105 ( Pt 2):269-73. [PMID: 8408265 DOI: 10.1242/jcs.105.2.269] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- P A Scott
- Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, UK
| | | |
Collapse
|
37
|
Nehls V, Drenckhahn D. The versatility of microvascular pericytes: from mesenchyme to smooth muscle? HISTOCHEMISTRY 1993; 99:1-12. [PMID: 8468190 DOI: 10.1007/bf00268014] [Citation(s) in RCA: 165] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- V Nehls
- Department of Anatomy, Julius-Maximilians-University, Würzburg, Germany
| | | |
Collapse
|
38
|
Arciniegas E, Sutton AB, Allen TD, Schor AM. Transforming growth factor beta 1 promotes the differentiation of endothelial cells into smooth muscle-like cells in vitro. J Cell Sci 1992; 103 ( Pt 2):521-9. [PMID: 1478952 DOI: 10.1242/jcs.103.2.521] [Citation(s) in RCA: 168] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Alpha-smooth muscle actin is considered a reliable marker for distinguishing between arterial smooth muscle and endothelial cells. Several authors have reported heterogeneity in the expression of this actin isoform in atherosclerotic lesions. Such heterogeneity appears to result from the presence of different smooth muscle cell phenotypes (contractile and synthetic) in these lesions. In the present study, we show that bovine aortic endothelial cells, which are characterised by the presence of Factor VIII-related antigen (FVIII) and by the absence of alpha-smooth muscle actin (alpha-SM actin) may be induced to express the latter when exposed to TGF-beta 1. FVIII was detected by immunofluorescence, alpha-SM actin was detected by immunofluorescence and immunoblotting. The number of cells expressing alpha-SM actin increased with time of incubation with TGF-beta 1, and this increase occurred concomitantly with a decrease in the expression of FVIII. Double immunofluorescence demonstrated the presence of cells that expressed both FVIII and alpha-SM actin after 5 days of incubation with TGF-beta 1. With longer incubation times (10-20 days) the loss of FVIII expression was complete and over 90% of the cells expressed alpha-SM actin. Ultrastructurally, cells in control cultures showed the typical features of endothelial cells. In the TGF-beta 1-treated cultures, cells which appeared indistinguishable from contractile and synthetic smooth muscle cells were observed. Withdrawal of TGF-beta 1 after 10 days incubation resulted in the re-appearance of polygonal cells which were FVIII-positive and alpha-SM actin-negative.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
MESH Headings
- Actins/metabolism
- Animals
- Aorta/cytology
- Cattle
- Cell Differentiation/drug effects
- Cells, Cultured
- Endothelium, Vascular/cytology
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Microscopy, Electron
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Retinal Vessels/cytology
- Time Factors
- Transforming Growth Factor beta/pharmacology
- von Willebrand Factor/metabolism
Collapse
Affiliation(s)
- E Arciniegas
- CRC Department of Medical Oncology, Christie Hospital, Manchester, UK
| | | | | | | |
Collapse
|
39
|
Greenwood J. Characterization of a rat retinal endothelial cell culture and the expression of P-glycoprotein in brain and retinal endothelium in vitro. J Neuroimmunol 1992; 39:123-32. [PMID: 1352311 DOI: 10.1016/0165-5728(92)90181-j] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Retinal vascular endothelia form one aspect of the blood-retinal barrier and, like the blood-brain barrier, control the passage of molecules and cells into the parenchyma. To facilitate comparative in vitro studies, rat retinal endothelial cells have been cultured and characterised. Using immunocytochemical techniques, retinal endothelium was positive for von Willebrand's factor, tight junction-associated polypeptide (ZO-1) and the transferrin receptor. The cells also expressed high-affinity uptake of acetylated low-density lipoprotein. Using the monoclonal antibodies JSB-1 and C219, the product of the multidrug resistance gene, P-glycoprotein, was found to be expressed on primary cultures of both brain and retinal endothelium.
Collapse
Affiliation(s)
- J Greenwood
- Department of Clinical Science, Institute of Ophthalmology, London, UK
| |
Collapse
|
40
|
Schor AM, Canfield AE, Sutton AB, Allen TD, Sloan P, Schor SL. The behaviour of pericytes in vitro: relevance to angiogenesis and differentiation. EXS 1992; 61:167-78. [PMID: 1617229 DOI: 10.1007/978-3-0348-7001-6_26] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- A M Schor
- CRC Department of Medical Oncology, Christie Hospital NHS Trust, Manchester, UK
| | | | | | | | | | | |
Collapse
|
41
|
Canfield AE, Sutton AB, Schor SL, Grant ME, Schor AM. Aortic endothelial cells in culture: factors which modulate their morphological and biosynthetic phenotypes. EXS 1992; 61:158-66. [PMID: 1617228 DOI: 10.1007/978-3-0348-7001-6_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- A E Canfield
- CRC Department of Medical Oncology, Christie Hospital NHS Trust, Manchester, England
| | | | | | | | | |
Collapse
|
42
|
Doron DA, Jacobowitz DM, Heldman E, Feuerstein G, Pollard HB, Hallenbeck JM. Extracellular matrix permits the expression of von Willebrand's factor, uptake of di-I-acetylated low density lipoprotein and secretion of prostacyclin in cultures of endothelial cells from rat brain microvessels. IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY : JOURNAL OF THE TISSUE CULTURE ASSOCIATION 1991; 27A:689-97. [PMID: 1917789 DOI: 10.1007/bf02633213] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Microvascular endothelial cells from the adult rat brain were cultured on Matrigel and found to express many differentiated properties including secretion of prostacyclin (PGI2) and von Willebrand's factor (vWF). Brain microvascular endothelial cells (BMECs) were purified by dextran and percoll gradients after enzymatic treatment and cultured under various conditions. BMECs that were plated on Matrigel stained positively for factor VIII-related antigen and incorporated Di-I-acetylated low density lipoprotein, whereas BMEC plated on fibronectin, gelatin, or uncoated dishes did not express any of the above properties which are characteristic of endothelial cells. vWF was measured by a sensitive ELISA in the culture media of BMECs plated on different types of matrices. Specificity of the anti-human vWF antibodies for the rat vWF was verified by immunoabsorption on a solid phase, sodium dodecyl sulfate, and Western blot analysis. BMECs also secreted vWF into the culture media only when the cells were plated on Matrigel, and this secretion was augmented after a 6 h incubation with an interleukin-1 tumor necrosis factor-alpha mixture, but not by lipopolysaccharide. From different matrices tested, only Matrigel permitted the secretion of PGI2 by BMECs. Cells also proved to be sensitive to mechanical stimulation and became refractory to secretagogue if the mechanical stimulation was serially repeated. Under the best conditions, stimulation of the cells with bradykinin (1 microM) substantially increased PGI2 secretion. These data indicate that growth of BMECs on Matrigel in vitro permits the expression of classical endothelial cell markers in a manner similar to the behavior of these cells in situ.
Collapse
Affiliation(s)
- D A Doron
- Department of Neurology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
| | | | | | | | | | | |
Collapse
|
43
|
Schor AM, Canfield AE, Sloan P, Schor SL. Differentiation of pericytes in culture is accompanied by changes in the extracellular matrix. IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY : JOURNAL OF THE TISSUE CULTURE ASSOCIATION 1991; 27A:651-9. [PMID: 1717427 DOI: 10.1007/bf02631109] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We have previously reported that pericytes derived from retinal and brain microvessels aggregate into nodules soon after reaching confluence. Nodule formation involves a reorganization of the cells resulting in the presence of sparse cells, confluent monolayers, multilayers, sprouts, and nodules within the same culture dish. Extracellular calcification occurs only within the nodules, demonstrating that pericytes are capable of undergoing osteogenic differentiation in culture and that this differentiation is related to nodule formation. Using immunofluorescence we have now studied the distribution of laminin, type IV collagen, type X collagen, and tenascin in pericyte cultures during nodule formation. These matrix macromolecules were also identified by a combination of biochemical techniques, including Northern blot hybridization, immunoblotting and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. A molecule that seems to be related to type X collagen was demonstrated by the presence of a pepsin-resistant, collagenase-sensitive polypeptide of molecular weight approximately 45 kDa. The production of laminin, type X-related collagen, and tenascin by pericytes has not been previously reported. Our results suggest that the synthesis or distribution or both of these molecules is dependent on the state of pericyte differentiation. The expression of laminin, type IV collagen, and type X-related collagen was maximal in multilayer areas, sprouts, and nodules. Tenascin appeared homogeneously distributed in monolayer and multilayer areas; when calcified nodules were present, the anti-tenascin serum preferentially decorated a discrete area circumscribing the nodules. Tenascin and type X collagen have been found transiently in vivo preceding calcification; their possible role in this process is not known. Our results also suggest an association between laminin, type IV collagen, and calcification. The in vitro experimental system described here may help to clarify the role of matrix macromolecules in the calcification process.
Collapse
Affiliation(s)
- A M Schor
- CRC Department of Medical Oncology, Christie Hospital and Holt Radium Institute, Manchester, United Kingdom
| | | | | | | |
Collapse
|
44
|
Canfield AE, Schor AM. Identification and partial characterisation of a low Mr collagen synthesised by bovine retinal pericytes. Apparent relationship to type X collagen. FEBS Lett 1991; 286:171-5. [PMID: 1864364 DOI: 10.1016/0014-5793(91)80967-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Bovine retinal pericytes (BRP) in culture synthesise a low Mr collagenous polypeptide which appears similar, but not identical, to bovine type X collagen and which we have called 'BRP collagen'. This polypeptide displays the following characteristics: (i) it is sensitive to digestion by bacterial collagenase and is resistant to pepsin digestion; (ii) it has an apparent Mr of 45 kDa (pepsinised form); (iii) it is recognised by specific antibodies to type X collagen using immunoblotting; (iv) it is present in the cell layer/matrix but not in the medium of pericyte cultures; and (v) it is not disulphide-bonded into higher Mr multimers. The latter two properties distinguish BRP collagen from bovine type X collagen. We have recently shown that pericytes calcify in vitro. We now report that this calcification is associated with an increased synthesis of BRP collagen.
Collapse
Affiliation(s)
- A E Canfield
- Department of Medical Oncology, Christie Hospital and Holt Radium Institute, Manchester, UK
| | | |
Collapse
|
45
|
Miyazato M, Fukuda M, Iwamasa T. Growth characteristics of retinal capillary endothelial cells compared with pulmonary vein endothelial cells in culture. The effect of pericytes on differentiation of endothelial cells. ACTA PATHOLOGICA JAPONICA 1991; 41:133-42. [PMID: 2042490 DOI: 10.1111/j.1440-1827.1991.tb02508.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Bovine retinal capillary endothelial cells (RCECs) and pulmonary vein endothelial cells (PVECs) were isolated and investigated in plate culture, three-dimensional culture and in co-culture with pericytes. In plate culture, RCECs required growth factor in the medium for growth whereas PVECs did not. Phenotypic modulation (a tendency to become similar morphologically to smooth muscle cells, and to accumulate into thread-like structures) was observed in PVECs but not in RCECs. In three-dimensional culture, RCECs contracted, aggregated and were unable to proliferate. Proliferation was elicited when the gel matrix was adsorbed by fibronectin or upon co-culture with pericytes. In contrast, PVECs not only proliferated but also formed tubular structures. In co-culture with pericytes, PVECs in close contact with, or in near apposition to pericytes formed tubular structures earlier than those without contact in the same dish. These results provide new findings about differences in the growth characteristics of endothelial cells between microvessels and large vessels. In addition, it is considered that pericytes may promote tube formation by endothelial cells in three-dimensional culture.
Collapse
Affiliation(s)
- M Miyazato
- Department of Pathology, Ryukyu University School of Medicine, Okinawa, Japan
| | | | | |
Collapse
|
46
|
Human growth hormone stimulates proliferation of human retinal microvascular endothelial cells in vitro. Proc Natl Acad Sci U S A 1991; 88:617-21. [PMID: 1988956 PMCID: PMC50863 DOI: 10.1073/pnas.88.2.617] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Growth hormone (GH) has been implicated in the pathogenesis of proliferative diabetic retinopathy. We sought to determine whether this could be mediated by an effect of GH on proliferation of endothelial cells, and, for this purpose, established long-term cultures of human retinal microvascular endothelial cells (hREC) from normal postmortem human eyes. High-purity (greater than 95%) hREC preparations were selected for experiments, based on immunofluorescence with acetylated low density lipoprotein (LDL) and anti-factor VIII-related antigen. Growth requirements for these cells were complex, including serum for maintenance at slow growth rates and additional mitogens for more rapid proliferation. Exposure of hREC to physiologic doses of human GH (hGH) resulted in 100% greater cell number vs. control (P less than 0.01) but could be elicited only in the presence of serum. When differing serum conditions were compared, hGH stimulated [3H]thymidine incorporation up to 1.6- to 2.2-fold under each condition and increased DNA content significantly in the presence of human, horse, and fetal calf serum. Depending on the culture conditions used, the threshold hGH concentration for significant stimulation of hREC proliferation was 0.4-4 micrograms/liter. In contrast, proliferation of human umbilical vein endothelial cells was not significantly altered by hGH added to concentrations as high as 200 micrograms/liter. In summary, hREC respond to physiologic concentrations of hGH in vitro with enhanced proliferation. This specific effect of GH on retinal microvascular endothelial cells supports the hypothesis of a role for GH in endothelial cell biology.
Collapse
|
47
|
Canfield AE, Boot-Handford RP, Schor AM. Thrombospondin gene expression by endothelial cells in culture is modulated by cell proliferation, cell shape and the substratum. Biochem J 1990; 268:225-30. [PMID: 2344360 PMCID: PMC1131416 DOI: 10.1042/bj2680225] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Endothelial cells plated on the surface of a two-dimensional substratum (gelatin-coated dishes, dishes coated with native type I collagen or collagen gels) form a cobblestone monolayer at confluence, whereas cells plated within a three-dimensional gel matrix elongate into a sprouting morphology and self-associate into tube-like structures. In this study, we have compared the synthesis of thrombospondin by quiescent endothelial cells displaying (a) the same morphological phenotype (cobblestone) on different substrata (gelatin and collagen) and (b) different morphological phenotypes (cobblestone and sprouting) on the same substratum (collagen). We demonstrate that thrombospondin is a major biosynthetic product of confluent, quiescent cells cultured on dishes coated with either gelatin or collagen, and that the synthesis of this protein is markedly decreased when cells are plated on or in three-dimensional collagen gels. Moreover, we demonstrate that cells plated in gel (sprouting) secrete less thrombospondin than do cells plated on the gel surface (cobblestone). The regulation of thrombospondin synthesis is reversible and occurs at the level of transcription, as steady-state mRNA levels for thrombospondin decrease in a manner comparable with the levels of protein secreted by these cells. We also show that mRNA levels for laminin B2 chains are increased when cells are cultured on and in collagen gels compared with on gelatin-coated dishes, suggesting that the syntheses of thrombospondin and laminin are regulated by different mechanisms. When cells are cultured on gelatin- or collagen-coated dishes, thrombospondin gene expression is directly proportional to the proliferative state of the cultures. By contrast, the synthesis of thrombospondin by cells cultured on collagen gels remains at equally low levels whether they are labelled when they are sparse and rapidly proliferating or when they are confluent and quiescent. Fibronectin synthesis was found to increase with increasing confluency of the cells plated on all three substrata. These results demonstrate that thrombospondin gene expression is modulated by cell shape, cell proliferation and the nature of the substratum used for cell culture.
Collapse
Affiliation(s)
- A E Canfield
- Department of Medical Oncology, Christie Hospital, Manchester, U.K
| | | | | |
Collapse
|
48
|
Kennedy A, Frank RN, Sotolongo LB, Das A, Zhang NL. Proliferative response and macromolecular synthesis by ocular cells cultured on extracellular matrix materials. Curr Eye Res 1990; 9:307-22. [PMID: 2340748 DOI: 10.3109/02713689008999619] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
To investigate the effects of extracellular matrix components on cellular function, we cultured several types of ocular cells on substrates composed of extracellular matrix materials that were layered on culture dishes either as dried films or as gels. We measured cellular proliferation on these substrates and on a series of gels composed of varying proportions of rat tail tendon type I collagen and Matrigel, a commercially available extract of a basement membrane-producing murine tumor. In addition, we studied the biosynthesis of collagens and of proteoglycans by these cultured cells using [3H]-L-proline and [35S]-sulfate. The proliferative abilities of the various types of ocular cells on the dried film substrates, on uncoated plastic culture vessels, and on pure type I collagen gel, were similar. However, proliferation of ocular cells cultured on gels composed of greater than or equal to 90% Matrigel was markedly reduced. There was little or no inhibition of growth of two types of non-ocular cells: rat C6 astrocytoma cells, and human dermal fibroblasts. Histologic studies showed that the ocular cells tested often formed long strands and capillary-like tubes, and tended to "burrow" beneath the surface of substrates containing high percentages of Matrigel. Fibroblasts infrequently formed tubes, and exhibited the burrowing property also on gels containing primarily type I collagen, while C6 cells showed neither of these behaviors on any of the matrices tested. The elution pattern of newly synthesized [3H]-labeled and [35S]-labeled macromolecules produced by all of the cultured cell types, and detected by Sepharose CL-4B chromatography in the medium and in the cell layer plus matrix fractions did not vary following culture on the different substrates. Approximately twofold more of the newly synthesized collagens and proteoglycans were deposited in the cell layer plus matrix, and proportionately less appeared in the medium, when cells were cultured on type I collagen gels and on Matrigel than on the dried film substrates. These experiments demonstrate the influence of the extracellular matrix on several aspects of cell behavior, and provide further evidence that modification of the composition of the extracellular matrix may be an important determinant of normal or pathological cell function.
Collapse
Affiliation(s)
- A Kennedy
- Kresge Eye Institute, Wayne State University School of Medicine, Detroit, MI 48201
| | | | | | | | | |
Collapse
|
49
|
Morel NM, Dodge AB, Patton WF, Herman IM, Hechtman HB, Shepro D. Pulmonary microvascular endothelial cell contractility on silicone rubber substrate. J Cell Physiol 1989; 141:653-9. [PMID: 2556412 DOI: 10.1002/jcp.1041410325] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Endothelial cell (EC) motility may contribute to the regulation of microvascular perfusion and/or paracellular permeability. The experiments reported herein demonstrate that bovine pulmonary microvessel EC can reversibly deform a silicone substrate in response to agents known to contract and relax smooth muscle cells. Contracting pulmonary microvessel EC exerted a tension that created wrinkles in the underlying deformable substrate. Relaxation and loss of tension were revealed by the disappearance of these wrinkles without loss of cell adhesion to the substratum. Angiotensin II (Ang II) and bradykinin stimulated pulmonary microvessel EC to contract within 3 to 8 min in a Ca2+-dependent fashion. The peak of contraction at 10 to 20 min was followed by relaxation. Forskolin and sodium nitroprusside (SNP) initiated relaxation of the microvessel EC within 3 to 10 min respectively. Relaxed EC contracted following the addition of Ang II, also within 3 min. Dibutyryl cAMP, dibutyryl cGMP, and the photoactivated internalized "caged" cAMP and cGMP promoted EC relaxation in a manner similar to forskolin and SNP. Increases in the intracellular concentration of inositol triphosphate (IP3) with the photoactivated IP3 complex promoted EC contraction in 2 min with a peak at 7 min. The contraction was followed by relaxation, which occurred at 20-25 min. Neither bovine pulmonary artery nor retinal microvessel EC, used as controls, contracted under these experimental conditions. One could speculate that this unique contractile property of pulmonary microvessel EC as observed in vitro may play a regulatory role in vivo, in local perfusion and/or in intercellular gap regulation.
Collapse
Affiliation(s)
- N M Morel
- Department of Biology, Boston University, Massachusetts
| | | | | | | | | | | |
Collapse
|
50
|
Canfield AE, Schor AM, Loskutoff DJ, Schor SL, Grant ME. Plasminogen activator inhibitor-type I is a major biosynthetic product of retinal microvascular endothelial cells and pericytes in culture. Biochem J 1989; 259:529-35. [PMID: 2497739 PMCID: PMC1138540 DOI: 10.1042/bj2590529] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Previous studies have shown that a glycoprotein of Mr 47,000 (designated Gp47) is a major biosynthetic product of retinal endothelial cells in vitro (Canfield, Schor, West, Schor & Grant (1987) Biochem. J. 246, 121-129). We now present data indicating that (a) an identical protein is secreted by bovine retinal pericytes, (b) this protein is plasminogen activator inhibitor-type I (PAI-1), as revealed by immunoprecipitation with specific antibodies and reverse fibrin zymography, and (c) retinal endothelial cells and pericytes synthesize different species of matrix macromolecules, that is: type IV collagen is the major collagen secreted by endothelial cells, whereas pericytes produce predominantly type I collagen; fibronectin and thrombospondin are synthesized by both cell types. Our studies also indicate that PAI-1 is produced, albeit at considerably lower levels, by large vessel vascular cells (aortic endothelial and smooth muscle cells) and human skin fibroblasts. PAI-1 produced by human skin fibroblasts appears to be a distinct molecular species compared to its bovine counterpart as assessed by its slower mobility on SDS/polyacrylamide-gel electrophoresis. The potential significance of elevated PAI-1 production by retinal endothelial cells and pericytes, as well as their distinctive patterns of matrix biosynthesis, is discussed in terms of the involvement of these cells in the maintenance and remodelling of microvessel basement membrane.
Collapse
Affiliation(s)
- A E Canfield
- Cancer Research Campaign Department of Medical Oncology, Christie Hospital and Holt Radium Institute, Manchester, U.K
| | | | | | | | | |
Collapse
|