1
|
Pawlikowska P, Delestré L, Gregoricchio S, Oppezzo A, Esposito M, Diop MB, Rosselli F, Guillouf C. FANCA deficiency promotes leukaemic progression by allowing the emergence of cells carrying oncogenic driver mutations. Oncogene 2023; 42:2764-2775. [PMID: 37573408 PMCID: PMC10491493 DOI: 10.1038/s41388-023-02800-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 07/21/2023] [Accepted: 07/28/2023] [Indexed: 08/14/2023]
Abstract
Leukaemia is caused by the clonal evolution of a cell that accumulates mutations/genomic rearrangements, allowing unrestrained cell growth. However, recent identification of leukaemic mutations in the blood cells of healthy individuals revealed that additional events are required to expand the mutated clones for overt leukaemia. Here, we assessed the functional consequences of deleting the Fanconi anaemia A (Fanca) gene, which encodes a DNA damage response protein, in Spi1 transgenic mice that develop preleukaemic syndrome. FANCA loss increases SPI1-associated disease penetrance and leukaemic progression without increasing the global mutation load of leukaemic clones. However, a high frequency of leukaemic FANCA-depleted cells display heterozygous activating mutations in known oncogenes, such as Kit or Nras, also identified but at low frequency in FANCA-WT mice with preleukaemic syndrome, indicating that FANCA counteracts the emergence of oncogene mutated leukaemic cells. A unique transcriptional signature is associated with the leukaemic status of FANCA-depleted cells, leading to activation of MDM4, NOTCH and Wnt/β-catenin pathways. We show that NOTCH signalling improves the proliferation capacity of FANCA-deficient leukaemic cells. Collectively, our observations indicate that loss of the FANC pathway, known to control genetic instability, fosters the expansion of leukaemic cells carrying oncogenic mutations rather than mutation formation. FANCA loss may contribute to this leukaemogenic progression by reprogramming transcriptomic landscape of the cells.
Collapse
Affiliation(s)
- Patrycja Pawlikowska
- CNRS UMR9019, Université Paris-Saclay, Gustave Roussy Cancer Campus, Villejuif, France
- Equipe Labellisée Ligue Nationale Contre le Cancer, Villejuif, France
- Inserm U981, Gustave Roussy Cancer Campus, CNRS UMS3655, Inserm US23AMMICA, Villejuif, France
| | - Laure Delestré
- Equipe Labellisée Ligue Nationale Contre le Cancer, Villejuif, France
- Inserm UMR1170, Université Paris-Saclay, Gustave Roussy Cancer Campus, Villejuif, France
| | - Sebastian Gregoricchio
- Equipe Labellisée Ligue Nationale Contre le Cancer, Villejuif, France
- Inserm UMR1170, Université Paris-Saclay, Gustave Roussy Cancer Campus, Villejuif, France
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Alessia Oppezzo
- CNRS UMR9019, Université Paris-Saclay, Gustave Roussy Cancer Campus, Villejuif, France
- Equipe Labellisée Ligue Nationale Contre le Cancer, Villejuif, France
| | - Michela Esposito
- Equipe Labellisée Ligue Nationale Contre le Cancer, Villejuif, France
- Inserm UMR1170, Université Paris-Saclay, Gustave Roussy Cancer Campus, Villejuif, France
| | - M' Boyba Diop
- Equipe Labellisée Ligue Nationale Contre le Cancer, Villejuif, France
- Inserm UMR1170, Université Paris-Saclay, Gustave Roussy Cancer Campus, Villejuif, France
| | - Filippo Rosselli
- CNRS UMR9019, Université Paris-Saclay, Gustave Roussy Cancer Campus, Villejuif, France.
- Equipe Labellisée Ligue Nationale Contre le Cancer, Villejuif, France.
| | - Christel Guillouf
- Equipe Labellisée Ligue Nationale Contre le Cancer, Villejuif, France.
- Inserm UMR1170, Université Paris-Saclay, Gustave Roussy Cancer Campus, Villejuif, France.
| |
Collapse
|
2
|
Abstract
Interstrand crosslinks covalently link complementary DNA strands, block replication and transcription, and can trigger cell death. In eukaryotic systems several pathways, including the Fanconi Anemia pathway, are involved in repairing interstrand crosslinks, but their precise mechanisms remain enigmatic. The lack of functional homologs in simpler model organisms has significantly hampered progress in this field. Two recent studies have finally identified a Fanconi-like interstrand crosslink repair pathway in yeast. Future studies in this simplistic model organism promise to greatly improve our basic understanding of complex interstrand crosslink repair pathways like the Fanconi pathway.
Collapse
|
3
|
Daee DL, Ferrari E, Longerich S, Zheng XF, Xue X, Branzei D, Sung P, Myung K. Rad5-dependent DNA repair functions of the Saccharomyces cerevisiae FANCM protein homolog Mph1. J Biol Chem 2012; 287:26563-75. [PMID: 22696213 DOI: 10.1074/jbc.m112.369918] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Interstrand cross-links (ICLs) covalently link complementary DNA strands, block DNA replication, and transcription and must be removed to allow cell survival. Several pathways, including the Fanconi anemia (FA) pathway, can faithfully repair ICLs and maintain genomic integrity; however, the precise mechanisms of most ICL repair processes remain enigmatic. In this study we genetically characterized a conserved yeast ICL repair pathway composed of the yeast homologs (Mph1, Chl1, Mhf1, Mhf2) of four FA proteins (FANCM, FANCJ, MHF1, MHF2). This pathway is epistatic with Rad5-mediated DNA damage bypass and distinct from the ICL repair pathways mediated by Rad18 and Pso2. In addition, consistent with the FANCM role in stabilizing ICL-stalled replication forks, we present evidence that Mph1 prevents ICL-stalled replication forks from collapsing into double-strand breaks. This unique repair function of Mph1 is specific for ICL damage and does not extend to other types of damage. These studies reveal the functional conservation of the FA pathway and validate the yeast model for future studies to further elucidate the mechanism of the FA pathway.
Collapse
Affiliation(s)
- Danielle L Daee
- Genome Instability Section, Genetics, and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Abstract
Interstrand crosslinks (ICLs) are highly toxic DNA lesions that prevent transcription and replication by inhibiting DNA strand separation. Agents that induce ICLs were one of the earliest, and are still the most widely used, forms of chemotherapeutic drug. Only recently, however, have we begun to understand how cells repair these lesions. Important insights have come from studies of individuals with Fanconi anaemia (FA), a rare genetic disorder that leads to ICL sensitivity. Understanding how the FA pathway links nucleases, helicases and other DNA-processing enzymes should lead to more targeted uses of ICL-inducing agents in cancer treatment and could provide novel insights into drug resistance.
Collapse
Affiliation(s)
- Andrew J Deans
- London Research Institute, Cancer Research UK, Clare Hall Laboratories, South Mimms EN63LD, UK
| | | |
Collapse
|
5
|
Thompson LH, Hinz JM. Cellular and molecular consequences of defective Fanconi anemia proteins in replication-coupled DNA repair: mechanistic insights. Mutat Res 2009; 668:54-72. [PMID: 19622404 PMCID: PMC2714807 DOI: 10.1016/j.mrfmmm.2009.02.003] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Revised: 01/20/2009] [Accepted: 02/10/2009] [Indexed: 12/13/2022]
Abstract
The Fanconi anemia (FA) molecular network consists of 15 "FANC" proteins, of which 13 are associated with mutations in patients with this cancer-prone chromosome instability disorder. Whereas historically the common phenotype associated with FA mutations is marked sensitivity to DNA interstrand crosslinking agents, the literature supports a more global role for FANC proteins in coping with diverse stresses encountered by replicative polymerases. We have attempted to reconcile and integrate numerous observations into a model in which FANC proteins coordinate the following physiological events during DNA crosslink repair: (a) activating a FANCM-ATR-dependent S-phase checkpoint, (b) mediating enzymatic replication-fork breakage and crosslink unhooking, (c) filling the resulting gap by translesion synthesis (TLS) by error-prone polymerase(s), and (d) restoring the resulting one-ended double-strand break by homologous recombination repair (HRR). The FANC core subcomplex (FANCA, B, C, E, F, G, L, FAAP100) promotes TLS for both crosslink and non-crosslink damage such as spontaneous oxidative base damage, UV-C photoproducts, and alkylated bases. TLS likely helps prevent stalled replication forks from breaking, thereby maintaining chromosome continuity. Diverse DNA damages and replication inhibitors result in monoubiquitination of the FANCD2-FANCI complex by the FANCL ubiquitin ligase activity of the core subcomplex upon its recruitment to chromatin by the FANCM-FAAP24 heterodimeric translocase. We speculate that this translocase activity acts as the primary damage sensor and helps remodel blocked replication forks to facilitate checkpoint activation and repair. Monoubiquitination of FANCD2-FANCI is needed for promoting HRR, in which the FANCD1/BRCA2 and FANCN/PALB2 proteins act at an early step. We conclude that the core subcomplex is required for both TLS and HRR occurring separately for non-crosslink damages and for both events during crosslink repair. The FANCJ/BRIP1/BACH1 helicase functions in association with BRCA1 and may remove structural barriers to replication, such as guanine quadruplex structures, and/or assist in crosslink unhooking.
Collapse
Affiliation(s)
- Larry H Thompson
- Biology and Biotechnology Division, L452, Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94551-0808, United States.
| | | |
Collapse
|
6
|
MEN1 and FANCD2 mediate distinct mechanisms of DNA crosslink repair. DNA Repair (Amst) 2008; 7:476-86. [PMID: 18258493 DOI: 10.1016/j.dnarep.2007.12.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2007] [Revised: 12/06/2007] [Accepted: 12/09/2007] [Indexed: 11/22/2022]
Abstract
Cells mutant for multiple endocrine neoplasia type I (MEN1) or any of the Fanconi anemia (FA) genes are hypersensitive to the killing effects of crosslinking agents, but the precise roles of these genes in the response to interstrand crosslinks (ICLs) are unknown. To determine if MEN1 and the FA genes function cooperatively in the same repair process or in distinct repair processes, we exploited Drosophila genetics to compare the mutation frequency and spectra of MEN1 and FANCD2 mutants and to perform genetic interaction studies. We created a novel in vivo reporter system in Drosophila based on the supF gene and showed that MEN1 mutant flies were extremely prone to single base deletions within a homopolymeric tract. FANCD2 mutants, on the other hand, had a mutation frequency and spectrum similar to wild type using this assay. In contrast to the supF results, both MEN1 and FANCD2 mutants were hypermutable using a different assay based on the lats tumor suppressor gene. The lats assay showed that FANCD2 mutants had a high frequency of large deletions, which the supF assay was not able to detect, while large deletions were rare in MEN1 mutants. Genetic interaction studies showed that neither overexpression nor loss of MEN1 modified the ICL sensitivity of FANCD2 mutants. The strikingly different mutation spectra of MEN1 and FANCD2 mutants together with lack of evidence for genetic interaction between these genes indicate MEN1 plays an essential role in ICL repair distinct from the Fanconi anemia genes.
Collapse
|
7
|
Grant SG, Das R, Cerceo CM, Rubinstein WS, Latimer JJ. Elevated levels of somatic mutation in a manifesting BRCA1 mutation carrier. Pathol Oncol Res 2007; 13:276-83. [PMID: 18158561 DOI: 10.1007/bf02940305] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2007] [Accepted: 09/21/2007] [Indexed: 01/23/2023]
Abstract
Homozygous loss of activity at the breast cancerpredisposing genes BRCA1 and BRCA2 (FANCD1) confers increased susceptibility to DNA double strand breaks, but this genotype occurs only in the tumor itself, following loss of heterozygosity at one of these loci. Thus, if these genes play a role in tumor etiology as opposed to tumor progression, they must manifest a heterozygous phenotype at the cellular level. To investigate the potential consequences of somatic heterozygosity for a BRCA1 mutation demonstrably associated with breast carcinogenesis on background somatic mutational burden, we applied the two standard assays of in vivo human somatic mutation to blood samples from a manifesting carrier of the Q1200X mutation in BRCA1 whose tumor was uniquely ascertained through an MRI screening study. The patient had an allele-loss mutation frequency of 19.4 x 10(-6) at the autosomal GPA locus in erythrocytes and 17.1 x 10(-6) at the X-linked HPRT locus in lymphocytes. Both of these mutation frequencies are significantly higher than expected from age-matched disease-free controls (P < 0.05). Mutation at the HPRT locus was similarly elevated in lymphoblastoid cell lines established from three other BRCA1 mutation carriers with breast cancer. Our patient's GPA mutation frequency is below the level established for diagnosis of homozygous Fanconi anemia patients, but consistent with data from obligate heterozygotes. The increased HPRT mutation frequency is more reminiscent of data from patients with xeroderma pigmentosum, a disease characterized by UV sensitivity and deficiency in the nucleotide excision pathway of DNA repair. Therefore, this BRCA1-associated breast cancer patient manifests a unique phenotype of increased background mutagenesis that likely contributed to the development of her disease independent of loss of heterozygosity at the susceptibility locus.
Collapse
Affiliation(s)
- Stephen G Grant
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15232, USA.
| | | | | | | | | |
Collapse
|
8
|
Hinz JM, Nham PB, Urbin SS, Jones IM, Thompson LH. Disparate contributions of the Fanconi anemia pathway and homologous recombination in preventing spontaneous mutagenesis. Nucleic Acids Res 2007; 35:3733-40. [PMID: 17517774 PMCID: PMC1920256 DOI: 10.1093/nar/gkm315] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Fanconi anemia (FA) is a chromosomal instability disorder in which DNA-damage processing defects are reported for translesion synthesis (TLS), non-homologous end joining (NHEJ) and homologous recombination (HR; both increased and decreased). To reconcile these diverse findings, we compared spontaneous mutagenesis in FA and HR mutants of hamster CHO cells. In the fancg mutant we find a reduced mutation rate accompanied by an increased proportion of deletions within the hprt gene. Moreover, in fancg cells gene amplification at the CAD and dhfr loci is elevated, another manifestation of inappropriate processing of damage during DNA replication. In contrast, the rad51d HR mutant has a greatly elevated rate of hprt mutations, >85% of which are deletions. Our analysis supports the concept that HR faithfully restores broken replication forks, whereas the FA pathway acts more globally to ensure chromosome stability by promoting efficient end joining of replication-derived breaks, as well as TLS and HR.
Collapse
Affiliation(s)
- John M Hinz
- Chemistry, Materials, & Life Sciences Directorate, L441, Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94551-0808, USA.
| | | | | | | | | |
Collapse
|
9
|
Marek LR, Bale AE. Drosophila homologs of FANCD2 and FANCL function in DNA repair. DNA Repair (Amst) 2006; 5:1317-26. [PMID: 16860002 DOI: 10.1016/j.dnarep.2006.05.044] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2006] [Revised: 05/19/2006] [Accepted: 05/25/2006] [Indexed: 12/29/2022]
Abstract
Fanconi anemia (FA) is a genetically heterogeneous disease characterized by developmental defects, progressive bone marrow failure and cancer susceptibility. Cells derived from patients with FA show spontaneous chromosomal aberrations and hypersensitivity to cross-linking agents, indicating a cellular defect in DNA repair. Among the 12 FA genes, only FANCD2, FANCL and FANCM have Drosophila homologs. Given this difference between the human and Drosophila FA pathways, it is unknown whether the fly homologs function in DNA repair. Here, we report that knockdown of Drosophila FANCD2 or FANCL leads to specific hypersensitivity to cross-linking agents. Further analysis revealed that FANCD2 and FANCL function in a linear pathway with FANCL being necessary for the monoubiquitination of FANCD2. FANCD2 mutants also exhibited the same defect in the ionizing radiation-inducible S-phase checkpoint that is seen in mammalian cells deficient for this gene. Finally, in an assay for inactivating mutations, FANCD2 mutants have an elevated mutation rate in response to nitrogen mustard, indicating that these flies are hypermutable. Taken together, these data demonstrate that Drosophila FANCD2 and FANCL play a critical role in DNA repair. Because of the lack of other FA genes, further studies will determine whether the conserved FA genes function as the minimal machinery or whether additional genes are involved in the Drosophila FA pathway.
Collapse
Affiliation(s)
- Lorri R Marek
- Department of Genetics, Yale University School of Medicine, 333 Cedar St., New Haven, CT 06520-8005, USA
| | | |
Collapse
|
10
|
Hinz JM, Nham PB, Salazar EP, Thompson LH. The Fanconi anemia pathway limits the severity of mutagenesis. DNA Repair (Amst) 2006; 5:875-84. [PMID: 16815103 DOI: 10.1016/j.dnarep.2006.05.039] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2006] [Accepted: 05/17/2006] [Indexed: 12/13/2022]
Abstract
Fanconi anemia (FA) is a developmental and cancer predisposition disorder in which key, yet unknown, physiological events promoting chromosome stability are compromised. FA cells exhibit excess metaphase chromatid breaks and are universally hypersensitive to DNA interstrand crosslinking agents. Published mutagenesis data from single-gene mutation assays show both increased and decreased mutation frequencies in FA cells. In this review we discuss the data from the literature and from our isogenic fancg knockout hamster CHO cells, and interpret these data within the framework of a molecular model that accommodates these seemingly divergent observations. In FA cells, reduced rates of recovery of viable X-linked hypoxanthine phosphoribosyltransferase (hprt) mutants are characteristically observed for diverse mutagenic agents, but also in untreated cultures, indicating the relevance of the FA pathway for processing assorted DNA lesions. We ascribe these reductions to: (1) impaired mutagenic translesion synthesis within hprt during DNA replication and (2) lethality of mutant cells following replication fork breakage on the X chromosome, caused by unrepaired double-strand breaks or large deletions/translocations encompassing essential genes flanking hprt. These findings, along with studies showing increased spontaneous mutability of FA cells at two autosomal loci, support a model in which FA proteins promote both translesion synthesis at replication-blocking lesions and repair of broken replication forks by homologous recombination and DNA end joining. The essence of this model is that the FANC protein pathway serves to restrict the severity of mutational outcome by favoring base substitutions and small deletions over larger deletions and chromosomal rearrangements.
Collapse
Affiliation(s)
- John M Hinz
- Biosciences Directorate, L441, Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94551-0808, USA
| | | | | | | |
Collapse
|
11
|
Araten DJ, Golde DW, Zhang RH, Thaler HT, Gargiulo L, Notaro R, Luzzatto L. A quantitative measurement of the human somatic mutation rate. Cancer Res 2005; 65:8111-7. [PMID: 16166284 DOI: 10.1158/0008-5472.can-04-1198] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The mutation rate (mu) is a key biological feature of somatic cells that determines risk for malignant transformation, and it has been exceedingly difficult to measure in human cells. For this purpose, a potential sentinel is the X-linked PIG-A gene, because its inactivation causes lack of glycosylphosphatidylinositol-linked membrane proteins. We previously found that the frequency (f) of PIG-A mutant cells can be measured accurately by flow cytometry, even when f is very low. Here we measure both f and mu by culturing B-lymphoblastoid cell lines and first eliminating preexisting PIG-A mutants by flow sorting. After expansion in culture, the frequency of new mutants is determined by flow cytometry using antibodies specific for glycosylphosphatidylinositol-linked proteins (e.g., CD48, CD55, and CD59). The mutation rate is then calculated by the formula mu = f/d, where d is the number of cell divisions occurring in culture. The mean mu in cells from normal donors was 10.6 x 10(-7) mutations per cell division (range 2.4 to 29.6 x 10(-7)). The mean mu was elevated >30-fold in cells from patients with Fanconi anemia (P < 0.0001), and mu varied widely in ataxia-telangiectasia with a mean 4-fold elevation (P = 0.002). In contrast, mu was not significantly different from normal in cells from patients with Nijmegen breakage syndrome. Differences in mu could not be attributed to variations in plating efficiency. The mutation rate in man can now be measured routinely in B-lymphoblastoid cell lines, and it is elevated in cancer predisposition syndromes. This system should be useful in evaluating cancer risk and in the design of preventive strategies.
Collapse
Affiliation(s)
- David J Araten
- Division of Hematology, Memorial Sloan-Kettering Cancer Center, New York, New York, USA.
| | | | | | | | | | | | | |
Collapse
|
12
|
Kyoizumi S, Kusunoki Y, Hayashi T, Hakoda M, Cologne JB, Nakachi K. Individual Variation of Somatic Gene Mutability in Relation to Cancer Susceptibility: Prospective Study on Erythrocyte Glycophorin A Gene Mutations of Atomic Bomb Survivors. Cancer Res 2005; 65:5462-9. [PMID: 15958596 DOI: 10.1158/0008-5472.can-04-1188] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
It has previously been reported that hemizygous mutant fraction (Mf) at the glycophorin A (GPA) locus in erythrocytes increased with radiation dose in heterozygotes among Hiroshima and Nagasaki atomic bomb survivors. In the present study, we analyzed the relationship between GPA Mf and cancer risk using newly developed cancers among previously cancer-free subjects whose GPA Mf had been measured between 1988 and 1996. Among 1,723 survivors (1,117 in Hiroshima and 606 in Nagasaki), we identified 186 subjects who developed a first cancer by the end of 2000. We compared the radiation dose responses of GPA Mf between cancer and cancer-free groups using a linear-quadratic model fit by multiple regression analysis in combination with age, sex, and city. The slope of the GPA Mf dose-response curve was significantly higher in the cancer group than in the cancer-free group among Hiroshima subjects. Moreover, no significant difference of GPA Mf between cancer and cancer-free groups was found in unexposed controls in the two cities. The same conclusions were obtained using a linear dose-response model and by further analysis using Cox regression of cancer incidence. These findings suggest that there might be interindividual variation in mutability of somatic genes and that Hiroshima survivors who have higher mutability in response to radiation exposure would be expected to have a higher probability of suffering radiation-related cancer.
Collapse
Affiliation(s)
- Seishi Kyoizumi
- Department of Radiobiology/Molecular Epidemiology, Radiation Effects Research Foundation, Hiroshima, Japan
| | | | | | | | | | | |
Collapse
|
13
|
Evdokimova VN, McLoughlin RK, Wenger SL, Grant SG. Use of the glycophorin A somatic mutation assay for rapid, unambiguous identification of Fanconi anemia homozygotes regardless of GPA genotype. Am J Med Genet A 2005; 135:59-65. [PMID: 15822129 PMCID: PMC4849896 DOI: 10.1002/ajmg.a.30687] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A 7-year-old girl was hospitalized with pancytopenia requiring blood transfusion. She and an older brother with suspicious symptoms were referred for laboratory testing to confirm a clinical diagnosis of Fanconi anemia (FA). Blood samples from these two children and one parent were examined with the GPA somatic mutation assay. The patient's total GPA somatic mutation frequency of 1.4 x 10(-4) was determined despite the confounding effects of her recent transfusion, and was greater than 10-fold higher than that of a population of pediatric controls, consistent with the known FA phenotype. Her brother was not informative for the standard GPA assay, which requires heterozygosity for the MN blood group, but was analyzed with a modified assay that measured only allele loss mutation. His mutation frequency, 6.8 x 10(-4) was also supportive of a diagnosis of FA. Both analyses also showed evidence of ongoing mutation through terminal erythroblast differentiation, a characteristic of patients with DNA repair syndromes which further confirmed the diagnoses. These conclusions were confirmed with traditional DEB-induced chromosome breakage studies. The quantitative and qualitative aspects of the GPA assay relevant for applying this test for FA diagnosis, and perhaps for carrier detection, are discussed.
Collapse
Affiliation(s)
- Viktoria N. Evdokimova
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Reagan K. McLoughlin
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Sharon L. Wenger
- Department of Pathology, West Virginia University, Morgantown, West Virginia
| | - Stephen G. Grant
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
- Correspondence to: Stephen G. Grant, Ph.D., Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, 3343 Forbes Avenue, Pittsburgh, PA 15213.
| |
Collapse
|
14
|
Thompson LH, Hinz JM, Yamada NA, Jones NJ. How Fanconi anemia proteins promote the four Rs: replication, recombination, repair, and recovery. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2005; 45:128-142. [PMID: 15668941 DOI: 10.1002/em.20109] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The genetically complex disease Fanconi anemia (FA) comprises cancer predisposition, developmental defects, and bone marrow failure due to elevated apoptosis. The FA cellular phenotype includes universal sensitivity to DNA crosslinking damage, symptoms of oxidative stress, and reduced mutability at the X-linked HPRT gene. In this review article, we present a new heuristic molecular model that accommodates these varied features of FA cells. In our view, the FANCA, -C, and -G proteins, which are both cytoplasmic and nuclear, have an integrated dual role in which they sense and convey information about cytoplasmic oxidative stress to the nucleus, where they participate in the further assembly and functionality of the nuclear core complex (NCCFA= FANCA/B/C/E/F/G/L). In turn, NCCFA facilitates DNA replication at sites of base damage and strand breaks by performing the critical monoubiquitination of FANCD2, an event that somehow helps stabilize blocked and broken replication forks. This stabilization facilitates two kinds of processes: translesion synthesis at sites of blocking lesions (e.g., oxidative base damage), which produces point mutations by error-prone polymerases, and homologous recombination-mediated restart of broken forks, which arise spontaneously and when crosslinks are unhooked by the ERCC1-XPF endonuclease. In the absence of the critical FANCD2 monoubiquitination step, broken replication forks further lose chromatid continuity by collapsing into a configuration that is more difficult to restart through recombination and prone to aberrant repair through nonhomologous end joining. Thus, the FA regulatory pathway promotes chromosome integrity by monitoring oxidative stress and coping efficiently with the accompanying oxidative DNA damage during DNA replication.
Collapse
Affiliation(s)
- Larry H Thompson
- Biology and Biotechnology Research Program, Lawrence Livermore National Laboratory, Livermore, California 94551, USA.
| | | | | | | |
Collapse
|
15
|
Nakanishi K, Yang YG, Pierce AJ, Taniguchi T, Digweed M, D'Andrea AD, Wang ZQ, Jasin M. Human Fanconi anemia monoubiquitination pathway promotes homologous DNA repair. Proc Natl Acad Sci U S A 2005; 102:1110-5. [PMID: 15650050 PMCID: PMC545844 DOI: 10.1073/pnas.0407796102] [Citation(s) in RCA: 295] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Fanconi anemia (FA) is a recessive disorder characterized by congenital abnormalities, progressive bone-marrow failure, and cancer susceptibility. Cells from FA patients are hypersensitive to agents that produce DNA crosslinks and, after treatment with these agents, have pronounced chromosome breakage and other cytogenetic abnormalities. Eight FANC genes have been cloned, and the encoded proteins interact in a common cellular pathway. DNA-damaging agents activate the monoubiquitination of FANCD2, resulting in its targeting to nuclear foci that also contain BRCA1 and BRCA2/FANCD1, proteins involved in homology-directed DNA repair. Given the interaction of the FANC proteins with BRCA1 and BRCA2, we tested whether cells from FA patients (groups A, G, and D2) and mouse Fanca-/- cells with a targeted mutation are impaired for this repair pathway. We find that both the upstream (FANCA and FANCG) and downstream (FANCD2) FA pathway components promote homology-directed repair of chromosomal double-strand breaks (DSBs). The FANCD2 monoubiquitination site is critical for normal levels of repair, whereas the ATM phosphorylation site is not. The defect in these cells, however, is mild, differentiating them from BRCA1 and BRCA2 mutant cells. Surprisingly, we provide evidence that these proteins, like BRCA1 but unlike BRCA2, promote a second DSB repair pathway involving homology, i.e., single-strand annealing. These results suggest an early role for the FANC proteins in homologous DSB repair pathway choice.
Collapse
Affiliation(s)
- Koji Nakanishi
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Niedzwiedz W, Mosedale G, Johnson M, Ong CY, Pace P, Patel KJ. The Fanconi anaemia gene FANCC promotes homologous recombination and error-prone DNA repair. Mol Cell 2004; 15:607-20. [PMID: 15327776 DOI: 10.1016/j.molcel.2004.08.009] [Citation(s) in RCA: 237] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2004] [Revised: 05/04/2004] [Accepted: 06/24/2004] [Indexed: 01/01/2023]
Abstract
The Fanconi anemia (FA) protein FANCC is essential for chromosome stability in vertebrate cells, a feature underscored by the extreme sensitivity of FANCC-deficient cells to agents that crosslink DNA. However, it is not known how this FA protein facilitates the repair of both endogenously acquired and mutagen-induced DNA damage. Here, we use the model vertebrate cell line DT40 to address this question. We discover that apart from functioning in homologous recombination, FANCC also promotes the mutational repair of endogenously generated abasic sites. Moreover in these vertebrate cells, the efficient repair of crosslinks requires the combined functions of FANCC, translesion synthesis, and homologous recombination. These studies reveal that the FA proteins cooperate with key mutagenesis and repair processes that enable replication of damaged DNA.
Collapse
Affiliation(s)
- Wojciech Niedzwiedz
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, United Kingdom
| | | | | | | | | | | |
Collapse
|
17
|
Abstract
Fanconi anaemia (FA) is a rare genetic cancer-susceptibility syndrome that is characterized by congenital abnormalities, bone-marrow failure and cellular sensitivity to DNA crosslinking agents. Seven FA-associated genes have recently been cloned, and their products were found to interact with well-known DNA-damage-response proteins, including BRCA1, ATM and NBS1. The FA proteins could therefore be involved in the cell-cycle checkpoint and DNA-repair pathways. Recent studies implicate the FA proteins in the process of repairing chromosome defects that occur during homologous recombination, and disruption of the FA genes results in chromosome instability--a common feature of many human cancers.
Collapse
Affiliation(s)
- Alan D D'Andrea
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney Street, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
18
|
Sala-Trepat M, Rouillard D, Escarceller M, Laquerbe A, Moustacchi E, Papadopoulo D. Arrest of S-phase progression is impaired in Fanconi anemia cells. Exp Cell Res 2000; 260:208-15. [PMID: 11035915 DOI: 10.1006/excr.2000.4994] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fanconi anemia (FA) is an inherited cancer-susceptibility disorder, characterized by genomic instability, hypersensitivity to DNA cross-linking agents, and a prolonged G2 phase of the cell cycle. We observed a marked dose-dependent accumulation of FA cells in the G2 compartment after treatment with 4,5',8-trimethylpsoralen (Me(3)Pso) in combination with 365 nm irradiation. Using bivariate DNA distribution methodology, we determined the proportion of replicating and arresting S-phase cells and observed that, whereas normal cells arrested DNA replication in the presence of Me(3)Pso cross-links and monoadducts, FA lymphoblasts failed to arrest DNA synthesis. Taken together, the above data suggest that, in response to damage induced by DNA cross-linking agents, the S-phase checkpoint is inefficient in FA cells. This would lead to accumulation of secondary lesions, such as single- and double-strand breaks and gaps. The prolonged time in G2 phase seen in FA cells therefore exists in order to allow the cells to remove lesions which accumulated during the preceding abnormal S phase.
Collapse
|
19
|
Kubota M, Lin YW, Hamahata K, Sawada M, Koishi S, Hirota H, Wakazono Y. Cancer chemotherapy and somatic cell mutation. Mutat Res 2000; 470:93-102. [PMID: 11027962 DOI: 10.1016/s1383-5742(00)00043-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The occurrence of a second neoplasm is one of the major obstacles in cancer chemotherapy. The elucidation of the genotoxic effects induced by anti-cancer drugs is considered to be helpful in identifying the degree of cancer risk. Numerous investigations on cancer patients after chemotherapy have demonstrated: (i) an increase in the in vivo somatic cell mutant frequency (Mf) at three genetic loci, including hypoxanthine-guanine phosphoribosyl-transferase (hprt), glycophorin A (GPA), and the T-cell receptor (TCR), and (ii) alterations in the mutational spectra of hprt mutants. However, the time required for and the degree of such changes are quite variable among patients even if they have received the same chemotherapy, suggesting the existence of underlying genetic factor(s). Accordingly, some cancer patients prior to chemotherapy as well as patients with cancer-prone syndrome have been found to show an elevated Mf. Based on the information obtained from somatic cell mutation assays, an individualized chemotherapy should be considered in order to minimize the risk of a second neoplasm.
Collapse
Affiliation(s)
- M Kubota
- Department of Pediatrics, Faculty of Medicine, Kyoto University, Kawahara-cho 54, Shogoin, Sakyo-ku, 606-8507, Kyoto, Japan.
| | | | | | | | | | | | | |
Collapse
|
20
|
Grant SG, Wenger SL, Latimer JJ, Thull D, Burke LW. Analysis of genomic instability using multiple assays in a patient with Rothmund-Thomson syndrome. Clin Genet 2000; 58:209-15. [PMID: 11076043 PMCID: PMC4712958 DOI: 10.1034/j.1399-0004.2000.580308.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We report on a patient with Rothmund-Thomson syndrome (RTS) whose cytogenetic evaluation showed a normal karyotype with no evidence of trisomy mosaicism or chromosomal rearrangements. Cultured lymphocytes from the patient, her mother, and a control exposed to mitomycin C and diepoxybutane did not show increased sensitivity to the dialkylating agents. Unlike some previous reports, we found no evidence of a deficiency in nucleotide excision repair, as measured with the functional unscheduled DNA synthesis assay. Glycophorin A analysis of red blood cells for somatic mutation revealed suspiciously high frequencies of both allele loss and loss-and-duplication variants in the blood of the patient, a pattern consistent with observations in other RecQ-related human diseases, and evidence for clonal expansion of a mutant clone in the mother. Discrepant results in the literature may reflect true heterogeneity in the disease or the fact that a consistent set of tests has not been applied to RTS patients.
Collapse
Affiliation(s)
- S G Grant
- Department of Environmental and Occupational Health, University of Pittsburgh, PA, USA
| | | | | | | | | |
Collapse
|
21
|
Vickers M, Brown GC, Cologne JB, Kyoizumi S. Modelling haemopoietic stem cell division by analysis of mutant red cells. Br J Haematol 2000; 110:54-62. [PMID: 10930979 DOI: 10.1046/j.1365-2141.2000.02134.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Data describing the number of human red cells mutated at the glycophorin A locus, measured flow cytometrically, are reported for 752 adults and 49 neonates. The variance increases with age more rapidly than the approximately linear increase in mean. It is postulated that this discrepancy is explained by the known property of asymmetric stem cell division, so that the division of a single mutant stem cell may result in zero, one or two progeny stem cells. A mathematical analysis allows description of this process with three parameters: stem cell number, mean division rate and mutation rate per division. The values of these parameters can not be deduced from the data presented here. However, estimates of either stem cell number or mutation rate from other sources enable deduction of the two other parameters. The mean number of divisions per stem cell per lifetime was estimated to be about 70. This analysis therefore implies that the rate at which blood cell telomeres shorten with age acts as a direct measure of stem cell turnover. Furthermore, it is argued that this low figure implies that mutations occurring during early life, including organogenesis, are relatively important in initiating stem cell-derived malignancy. Finally, the number of human stem cell divisions per lifetime is similar to shorter-lived mammals, suggesting this number is important in the ageing process.
Collapse
Affiliation(s)
- M Vickers
- Department of Haematology, Medicine and Therapeutics, University of Aberdeen, Foresterhill, UK.
| | | | | | | |
Collapse
|
22
|
Laquerbe A, Sala-Trepat M, Vives C, Escarceller M, Papadopoulo D. Molecular spectra of HPRT deletion mutations in circulating T-lymphocytes in Fanconi anemia patients. Mutat Res 1999; 431:341-50. [PMID: 10635999 DOI: 10.1016/s0027-5107(99)00177-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The principal cellular feature of Fanconi anemia (FA), an inherited cancer prone disorder, is a high level of chromosomal breakage, amplified after treatment with crosslinking agents. Three of the eight genes involved in FA have been cloned: FANCA, FANCC and FANCG. However, their biological functions remain unknown. We previously observed an excessive production of deletions at the HPRT locus in FA lymphoblasts belonging to the relatively rare complementation group D(1) and an increased frequency of glycophorin A (GPA) variants in erythrocytes derived from FA patients (2). In thi study, we examined the molecular nature of 31 HPRT mutations formed in vivo in circulating T-lymphocytes isolated from 9 FA male patients. The results show that in all FA patients investigated the deletions are by far the most prevalent mutational event in contrast to age matched healthy donors, in which point mutations predominate. The complementation group in the FA patients examined in the present study has not yet been defined. However, knowing that mutations in the FANCA and FANCC gene are found to be involved in at least 70% of the FA patients, it can be expected that the excessive production of deletions is a general feature of the FA phenotype. In addition, the spectrum of HPRT deletions observed in FA patients differs from that of healthy children: there is a high frequency of 3'-terminal deletions and a strikingly low proportion of V(D)J mediated events. Based on previous findings, a decreased fidelity of coding V(D)J joint formation (3) and an inaccurate repair of specific DNA double strand breaks via Non-Homologous End Joining (4), we propose that FA genes play a role in the control of the fidelity of rejoining of specific DNA ends. Such a defect may explain several basic features of FA, such as chromosomal instability and deletion pronenness.
Collapse
Affiliation(s)
- A Laquerbe
- UMR218 du CNRS, Institut Curie-Recherche, Paris, France
| | | | | | | | | |
Collapse
|
23
|
Grant SG, Reeger W, Wenger SL. Diagnosis of ataxia telangiectasia with the glycophorin A somatic mutation assay. GENETIC TESTING 1999; 1:261-7. [PMID: 10464655 DOI: 10.1089/gte.1997.1.261] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
There are no widely applied definitive laboratory tests for the diagnosis of ataxia telangiectasia (AT). We, and others, have previously reported significantly elevated levels of in vivo somatic mutation in blood samples from known AT patients, observations that might form the basis for a useful prospective laboratory test for confirmation of a clinical diagnosis of AT. In the present case, a 4 1/2-year-old black female was suspected of having AT based on ataxic gait and chronic upper respiratory infections. Blood work-up showed low IgG2 and elevated alpha-fetoprotein (AFP), consistent with the AT phenotype. Her peripheral blood karyotype was normal, however, with no spontaneous breakage observed among 100 solid stained metaphases. Lymphocytes from AT patients often show elevated levels of chromosome rearrangement, especially at sites of immunoglobulin and T-cell receptor genes. Therefore, a blood sample was analyzed with the glycophorin A (GPA) in vivo somatic mutation assay. The GPA assay detects and quantifies the phenotypically variant erythrocytes resulting from loss of heterozygosity for the MN blood group. The patient had a 10-fold increased frequency of variant erythrocytes with a phenotype consistent with simple loss of the N allele, which is characteristic of AT. In addition, the variant cell distribution for this patient showed three other, more qualitative hallmarks of AT: a normal frequency of allele loss and duplication events, a unique ridge of cells of intermediate phenotype between the normal and mutant peaks, and evidence of similar ongoing mutational loss of the M allele. Together with clinical data, these distinctive qualitative and quantitative features of the GPA assay allow for a diagnosis of AT with a projected accuracy of 95%. Therefore, we suggest that the GPA assay, which can be performed on < 1 ml of blood and completed in less than a day, be considered as a confirmatory laboratory test for a clinical diagnosis of AT.
Collapse
Affiliation(s)
- S G Grant
- Center for Environmental and Occupational Health and Toxicology, University of Pittsburgh, PA 15238, USA
| | | | | |
Collapse
|
24
|
Abstract
Fanconi anemia (FA) is an autosomal genetic disease characterized by a complex array of developmental disorders, a high predisposition to bone marrow failure and to acute myelogenous leukemia. The chromosomal instability and the hypersensitivity to DNA cross-linking agents led to its classification with the DNA repair disorders. This review aimed at establishing whether it is still appropriate to consider 1/approximately FA within a DNA repair framework taking into account the recently discovered genetic heterogeneity characteristics of the defect (eight complementation groups). We discuss the possibility that the FA proteins interact to form a complex which may control different functions, including the processing of specific DNA lesions. Such a complex may act as a sensor to initiate protective systems as well as transcription of specific genes specifying, among others proteins, growth factors. Such steps may be organized as a linear cascade or more likely under the form of a web network.
Collapse
Affiliation(s)
- M Buchwald
- UMR 218 CNRS and LCR no. 1 CEA, Institut Curie-Recherche, Paris, France
| | | |
Collapse
|
25
|
Levran O, Erlich T, Magdalena N, Gregory JJ, Batish SD, Verlander PC, Auerbach AD. Sequence variation in the Fanconi anemia gene FAA. Proc Natl Acad Sci U S A 1997; 94:13051-6. [PMID: 9371798 PMCID: PMC24261 DOI: 10.1073/pnas.94.24.13051] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Fanconi anemia (FA) is a genetically heterogeneous autosomal recessive syndrome associated with chromosomal instability, hypersensitivity to DNA crosslinking agents, and predisposition to malignancy. The gene for FA complementation group A (FAA) recently has been cloned. The cDNA is predicted to encode a polypeptide of 1,455 amino acids, with no homologies to any known protein that might suggest a function for FAA. We have used single-strand conformational polymorphism analysis to screen genomic DNA from a panel of 97 racially and ethnically diverse FA patients from the International Fanconi Anemia Registry for mutations in the FAA gene. A total of 85 variant bands were detected. Forty-five of the variants are probably benign polymorphisms, of which nine are common and can be used for various applications, including mapping studies for other genes in this region of chromosome 16q. Amplification refractory mutation system assays were developed to simplify their detection. Forty variants are likely to be pathogenic mutations. Seventeen of these are microdeletions/microinsertions associated with short direct repeats or homonucleotide tracts, a type of mutation thought to be generated by a mechanism of slipped-strand mispairing during DNA replication. A screening of 350 FA probands from the International Fanconi Anemia Registry for two of these deletions (1115-1118del and 3788-3790del) revealed that they are carried on about 2% and 5% of the FA alleles, respectively. 3788-3790del appears in a variety of ethnic groups and is found on at least two different haplotypes. We suggest that FAA is hypermutable, and that slipped-strand mispairing, a mutational mechanism recognized as important for the generation of germ-line and somatic mutations in a variety of cancer-related genes, including p53, APC, RB1, WT1, and BRCA1, may be a major mechanism for FAA mutagenesis.
Collapse
Affiliation(s)
- O Levran
- Laboratory of Human Genetics and Hematology, The Rockefeller University, New York, NY 10021-6399, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Escarceller M, Rousset S, Moustacchi E, Papadopoulo D. The fidelity of double strand breaks processing is impaired in complementation groups B and D of Fanconi anemia, a genetic instability syndrome. SOMATIC CELL AND MOLECULAR GENETICS 1997; 23:401-11. [PMID: 9661703 DOI: 10.1007/bf02673750] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In mammalian cells, nonhomologous end-joining is the predominant mechanism to eliminate DNA double strand breaks. Such events are at the origin of deletion mutagenesis and chromosomal rearrangements. The hallmark of Fanconi anemia, an inherited cancer prone disorder, is increased chromosomal breakage associated to over-production of deletions. Knowing that double strand breaks are at the origin of deletion mutagenesis, the question arises whether their processing is affected in FA. We set up a "host cell end-joining assay" to analyze the fate of double strand breaks into extrachromosomal substrates transiently replicated in normal and FA-D lymphoblasts. Although no difference in plasmid survival was found, blunt-ended breaks were sealed with significantly lower fidelity in FA cells, resulting in a higher deletion frequency and a larger deletion size. The results suggest that FA-D and FA-B gene products are likely to play a role in end-joining fidelity of specific DNA double strand breaks.
Collapse
Affiliation(s)
- M Escarceller
- UMR 218 CNRS, LRC n(0) 1 du CEA, Institut Curie-Recherche, Paris, France
| | | | | | | |
Collapse
|
27
|
Affiliation(s)
- M S Meyn
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
28
|
Williams JR, Russell J, Dicello JF, Mabry MH. The genotype of the human cancer cell: implications for risk analysis. Mutat Res 1996; 365:17-42. [PMID: 8898987 DOI: 10.1016/s0165-1110(96)90010-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
An extremely large database describes genotypes associated with the human cancer phenotype and genotypes of human populations with genetic predisposition to cancer. Aspects of this database are examined from the perspective of risk analysis, and the following conclusions and hypotheses are proposed: (1) The genotypes of human cancer cells are characterized by multiple mutated genes. Each type of cancer is characterized by a set of mutated genes, a subset from a total of more than 80 genes, that varies between tissue types and between different tumors from the same tissue. No single cancer-associated gene nor carcinogenic pathway appears suitable as an overall indicator whose induction serves as a quantitative marker for risk analysis. (2) Genetic defects that predispose human populations to cancer are numerous and diverse, and provide a model for associating cancer rates with induced genetic changes. As these syndromes contribute significantly to the overall cancer rate, risk analysis should include an estimation of the effect of putative carcinogens on individuals with genetic predisposition. (3) Gene activation and inactivation events are observed in the cancer genotype at different frequencies, and the potency of carcinogens to induce these events varies significantly. There is a paradox between the observed frequency for induction of single mutational events in test systems and the frequency of multiple events in a single cancer cell, suggesting events are not independent. Quantitative prediction of cancer risk will depend on identifying rate-limiting events in carcinogenesis. Hyperproliferation and hypermutation may be such events. (4) Four sets of data suggest that hypermutation may be an important carcinogenic process. Current mechanisms of risk analysis do not properly evaluate the potency of putative carcinogens to induce the hypermutable state or to increase mutation in hypermutable cells. (5) High-dose exposure to carcinogens in model systems changes patterns of gene expression and may induce protective effects through delay in cell progression and other processes that affect mutagenesis and toxicity. Paradigms in risk analysis that require extrapolation over wide ranges of exposure levels may be flawed mechanistically and may underestimate carcinogenic effects of test agents at environmental levels. Characteristics of the human cancer genotype suggest that approaches to risk analysis must be broadened to consider the multiplicity of carcinogenic pathways and the relative roles of hyperproliferation and hypermutation. Further, estimation of risk to general human populations must consider effects on hypersusceptible individuals. The extrapolation of effects over wide exposure levels is an imprecise process.
Collapse
Affiliation(s)
- J R Williams
- Johns Hopkins Oncology Center, Baltimore MD 21287-5001, USA
| | | | | | | |
Collapse
|
29
|
Lin YW, Kubota M, Hirota H, Furusho K, Tomiwa K, Ochi J, Kasahara Y, Sasaki H, Ohta S. Somatic cell mutation frequency at the HPRT, T-cell antigen receptor and glycophorin A loci in Cockayne syndrome. Mutat Res 1995; 337:49-55. [PMID: 7596357 DOI: 10.1016/0921-8777(95)00014-b] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Skin fibroblasts of patients with Cockayne syndrome (CS) are hypersensitive to the lethal or mutagenic effect of ultraviolet light, which may cause genetic instability. Up to now, however, no systematic study of in vivo somatic cell mutation in CS cells has been reported. This article describes our investigation of the mutation frequencies (Mfs) at three different loci, i.e. hypoxanthine-guanine phosphoribosyl transferase (HPRT), T-cell antigen receptor (TCR) and glycophorin A (GPA), in six patients with CS. Mfs at the HPRT and TCR loci were found to be within the normal range as determined in age-matched controls. In the GPA locus of two patients, there was a slight increase, but it was much smaller than that reported in other DNA repair deficient syndromes. The frequency of spontaneous HPRT mutation in Epstein-Barr virus transformed B-lymphoblastoid cells derived from CS patients was similar to that in cells from normal children. The molecular characterization of the representative HPRT mutant T cell clones from CS patients did not show any structural alterations. These results may explain, at least in part, why CS is not associated with predisposition to cancer.
Collapse
Affiliation(s)
- Y W Lin
- Department of Pediatrics, School of Medicine, Kyoto University, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Aguirrezabalaga I, Sierra LM, Comendador MA. The hypermutability conferred by the mus308 mutation of Drosophila is not specific for cross-linking agents. Mutat Res 1995; 336:243-50. [PMID: 7739612 DOI: 10.1016/0921-8777(94)00057-d] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The hypersensitivity of the mus308 mutant of D. melanogaster to cross-linking agents has been suggested to be the consequence of a possible defect of this mutant in DNA cross-link repair. Moreover, the mus308 mutation has been proposed as an animal model for the study of Fanconi's anemia. In order to obtain more information about the function controlled by this locus, we have measured the mutability of the mus308 mutant to several mutagens with different modes of action using the sex-linked recessive lethal test. We show that this mutation confers hypermutability not only to the cross-linking agents tested, hexamethylphosphoramide and hexamethylmelamine, but to the point mutagen N-ethyl-N-nitrosourea as well, whereas the response to methyl methanesulfonate was normal. The results suggest that the mus308 locus is not defective in a repair pathway specific for cross-links but is rather involved in a step of a more general post-replication repair process responsible for the removal of non-excised adducts.
Collapse
|
31
|
Rothman N, Haas R, Hayes RB, Li GL, Wiemels J, Campleman S, Quintana PJ, Xi LJ, Dosemeci M, Titenko-Holland N. Benzene induces gene-duplicating but not gene-inactivating mutations at the glycophorin A locus in exposed humans. Proc Natl Acad Sci U S A 1995; 92:4069-73. [PMID: 7732033 PMCID: PMC42104 DOI: 10.1073/pnas.92.9.4069] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Occupational exposure to benzene is known to cause leukemia, but the mechanism remains unclear. Unlike most other carcinogens, benzene and its metabolites are weakly or nonmutagenic in most simple gene mutation assays. Benzene and its metabolites do, however, produce chromosomal damage in a variety of systems. Here, we have used the glycophorin A (GPA) gene loss mutation assay to evaluate the nature of DNA damage produced by benzene in 24 workers heavily exposed to benzene and 23 matched control individuals in Shanghai, China. The GPA assay identifies stem cell or precursor erythroid cell mutations expressed in peripheral erythrocytes of MN-heterozygous subjects, distinguishing the NN and N phi mutant variants. A significant increase in the NN GPA variant cell frequency (Vf) was found in benzene-exposed workers as compared with unexposed control individuals (mean +/- SEM, 13.9 +/- 1.7 per million cells vs. 7.4 +/- 1.1 per million cells in control individuals; P = 0.0002). In contrast, no significant difference existed between the two groups for the N phi Vf (9.1 +/- 0.9 vs. 8.8 +/- 1.8 per million cells; P = 0.21). Further, lifetime cumulative occupational exposure to benzene was associated with the NN Vf (P = 0.005) but not with the N phi Vf (P = 0.31), suggesting that NN mutations occur in longer-lived bone marrow stem cells. NN variants result from loss of the GPA M allele and duplication of the N allele, presumably through recombination mechanisms, whereas NO variants arise from gene inactivation, presumably due to point mutations and deletions. Thus, these results suggest that benzene produces gene-duplicating mutations but does not produce gene-inactivating mutations at the GPA locus in bone marrow cells of humans exposed to high benzene levels. This finding is consistent with data on the genetic toxicology of benzene and its metabolites and adds further weight to the hypothesis that chromosome damage and mitotic recombination are important in benzene-induced leukemia.
Collapse
Affiliation(s)
- N Rothman
- Epidemiology and Biostatistics Program, National Cancer Institute, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Laquerbe A, Moustacchi E, Fuscoe JC, Papadopoulo D. The molecular mechanism underlying formation of deletions in Fanconi anemia cells may involve a site-specific recombination. Proc Natl Acad Sci U S A 1995; 92:831-5. [PMID: 7846061 PMCID: PMC42714 DOI: 10.1073/pnas.92.3.831] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Spontaneous and induced chromosomal breakage is an important cellular feature of Fanconi anemia (FA), an inherited DNA repair disorder characterized by progressive bone marrow failure, developmental abnormalities, and predisposition to leukemia. We have previously reported that in comparison to normal cells, there is a substantial increase in frequency of intragenic deletions at an endogenous locus (HPRT) in FA lymphoblasts. Taken together with the increased chromosomal instability, these observations indicated that the wild-type FA gene(s) plays an important role in the maintenance of the genomic integrity. To obtain information on the mechanism(s) underlying the genomic rearrangements in FA, the breakpoint sites of deletions in 11 FA-derived HPRT- mutants were analyzed. The results indicate that a significant proportion of deletions involving a loss of a given exon are identical and that two deletions of different size have the same 3' breakpoint. Interestingly, it appears that in most of the mutants there is a common deletion signal sequence, which suggests that the mutations in the FA gene(s) may lead to an aberrant site-specific cleavage activity that might be responsible for the deletion proneness and the chromosomal instability characteristic of the FA pathology. From the similarity or even identity of the signal sequence at some of the breakpoints with the consensus heptamer which directs cleavage and joining in the assembly of immunoglobulin and T-cell receptor genes, we speculate that steps in common with the V(D)J recombinational process may be illegitimately involved in FA cells.
Collapse
Affiliation(s)
- A Laquerbe
- Unité Recherche Associée 1292 du Centre National de la Recherche Scientifique, Institut Curie, Paris, France
| | | | | | | |
Collapse
|
33
|
Hirota H, Kubota M, Adachi S, Okuda A, Lin YW, Bessho R, Wakazono Y, Matsubara K, Kuwakado K, Akiyama Y. Somatic mutations at T-cell antigen receptor and glycophorin A loci in pediatric leukemia patients following chemotherapy: comparison with HPRT locus mutation. Mutat Res 1994; 315:95-103. [PMID: 7521002 DOI: 10.1016/0921-8777(94)90010-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Frequencies of somatic mutations in pediatric patients with leukemia were evaluated following intensive treatment at three different loci: the hypoxanthine-guanine phosphoribosyl transferase (HPRT), T-cell antigen receptor (TCR), and glycophorin A (GPA) gene. Thirty-two children with acute lymphoblastic leukemia (ALL), nine children with acute myelogenous leukemia (AML), and 20 age-matched healthy controls were included in the study of mutant frequencies (Mfs) at the HPRT and TCR loci. Among these patients and controls, individuals with heterozygous MN blood type, i.e., 14 children with ALL, three children with AML, and nine healthy controls, served for the further assessment of variant frequency (Vf) at the GPA locus. In ALL patients, geometric mean Mfs and Vfs at these loci were significantly higher than in healthy controls. The high Mf value at the HPRT locus persisted for up to 8 years after the end of chemotherapy. On the other hand, the Mf values at the TCR locus and Vf values at the GPA locus declined gradually with time. In AML patients, on the other hand, the geometric mean Mf only at the TCR locus was significantly higher than in the controls, albeit to a lesser degree than in ALL patients. These data suggest that anti-cancer therapy induces somatic mutations at various loci and that ALL patients are more susceptible to mutagenic intervention than are AML patients.
Collapse
Affiliation(s)
- H Hirota
- Department of Pediatrics, Kyoto University, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Mott MG, Boyse J, Hewitt M, Radford M. Do mutations at the glycophorin A locus in patients treated for childhood Hodgkin's disease predict secondary leukaemia? Lancet 1994; 343:828-9. [PMID: 7908079 DOI: 10.1016/s0140-6736(94)92027-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Childhood Hodgkin's disease has a high cure rate but second cancers are common, related to treatment and perhaps genetic predisposition. The glycophorin A (GPA) mutation assay measures the frequency of NO and NN mutant erythrocytes of MN blood-group heterozygous individuals. Mutant frequencies in Hodgkin's disease patients were compared with controls. No significant difference from controls was found pretreatment or in patients treated with radiotherapy only. Patients who received chemotherapy had a significantly increased frequency (total mutation frequency per 10(6) cells: 31 vs 11, p < 0.001), which may be relevant to their known increased risk of secondary leukaemia.
Collapse
Affiliation(s)
- M G Mott
- Institute of Child Health, Royal Hospital for Sick Children, Bristol, UK
| | | | | | | |
Collapse
|