1
|
Canclini L, Cal K, Bardier C, Ruiz P, Mercer JA, Calliari A. Calcium triggers the dissociation of myosin-Va from ribosomes in ribonucleoprotein complexes. FEBS Lett 2020; 594:2311-2321. [PMID: 32412091 DOI: 10.1002/1873-3468.13813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 11/08/2022]
Abstract
The sorting of RNAs to specific regions of the cell for local translation represents an important mechanism directing protein distribution and cell compartmentalization. While significant progress has been made in understanding the mechanisms underlying the transport and localization of mRNAs, the mechanisms governing ribosome mobilization are less well understood. Ribosomes present in the cytoplasm of multiple cell types can form ribonucleoprotein complexes that also contain myosin-Va (Myo5a), a processive, actin-dependent molecular motor. Here, we report that Myo5a can be disassociated from ribosomes when ribonucleoprotein complexes are exposed to calcium, both in vitro and in vivo. We suggest that Myo5a may act as a molecular switch able to anchor or release ribosomes from the actin cytoskeleton in response to intracellular signaling.
Collapse
Affiliation(s)
- Lucía Canclini
- Department of Genetics, Instituto de Investigaciones Biológicas 'Clemente Estable' (MEC), Montevideo, Uruguay
| | - Karina Cal
- Department of Biosciences, Facultad de Veterinaria, Universidad de la República (UdelaR), Montevideo, Uruguay
| | - Camila Bardier
- Department of Genetics, Instituto de Investigaciones Biológicas 'Clemente Estable' (MEC), Montevideo, Uruguay
| | - Paul Ruiz
- Department of Biosciences, Facultad de Veterinaria, Universidad de la República (UdelaR), Montevideo, Uruguay
| | | | - Aldo Calliari
- Department of Biosciences, Facultad de Veterinaria, Universidad de la República (UdelaR), Montevideo, Uruguay
| |
Collapse
|
2
|
Zhang Y, Wang J, Xing S, Li L, Zhao S, Zhu W, Liang K, Liu Y, Chen L. Mitochondria determine the sequential propagation of the calcium macrodomains revealed by the super-resolution calcium lantern imaging. SCIENCE CHINA-LIFE SCIENCES 2020; 63:1543-1551. [PMID: 32279282 DOI: 10.1007/s11427-019-1659-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 02/27/2020] [Indexed: 01/02/2023]
Abstract
Despite the wide application of super-resolution (SR) microscopy in biological studies of cells, the technology is rarely used to monitor functional changes in live cells. By combining fast spinning disc-confocal structured illumination microscopy (SD-SIM) with loading of cytosolic fluorescent Ca2+ indicators, we have developed an SR method for visualization of regional Ca2+ dynamics and related cellular organelle morphology and dynamics, termed SR calcium lantern imaging. In COS-7 cells stimulated with ATP, we have identified various calcium macrodomains characterized by different types of Ca2+ release from endoplasmic reticulum (ER) stores. Finally, we demonstrated various roles of mitochondria in mediating calcium signals from different sources; while mitochondria can globally potentiate the Ca2+ entry associated with store release, mitochondria also locally control Ca2+ release from the neighboring ER stores and assist in their refilling processes.
Collapse
Affiliation(s)
- Yulin Zhang
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, 100871, China
| | - Jianyong Wang
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, 100871, China
| | - Shijia Xing
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, 100871, China
| | - Liuju Li
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, 100871, China
| | - Shiqun Zhao
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, 100871, China
| | - Wenzhen Zhu
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, 100871, China
| | - Kuo Liang
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Yanmei Liu
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, 100871, China.,Institute for Brain Research and Rehabilitation (IBRR), Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 200062, China
| | - Liangyi Chen
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, 100871, China. .,PKU-IDG/McGovern Institute for Brain Research, Beijing, 100871, China.
| |
Collapse
|
3
|
Zemmar A, Chen CC, Weinmann O, Kast B, Vajda F, Bozeman J, Isaad N, Zuo Y, Schwab ME. Oligodendrocyte- and Neuron-Specific Nogo-A Restrict Dendritic Branching and Spine Density in the Adult Mouse Motor Cortex. Cereb Cortex 2019; 28:2109-2117. [PMID: 28505229 PMCID: PMC6018724 DOI: 10.1093/cercor/bhx116] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Indexed: 01/27/2023] Open
Abstract
Nogo-A has been well described as a myelin-associated inhibitor of neurite outgrowth and functional neuroregeneration after central nervous system (CNS) injury. Recently, a new role of Nogo-A has been identified as a negative regulator of synaptic plasticity in the uninjured adult CNS. Nogo-A is present in neurons and oligodendrocytes. However, it is yet unclear which of these two pools regulate synaptic plasticity. To address this question we used newly generated mouse lines in which Nogo-A is specifically knocked out in (1) oligodendrocytes (oligoNogo-A KO) or (2) neurons (neuroNogo-A KO). We show that both oligodendrocyte- and neuron-specific Nogo-A KO mice have enhanced dendritic branching and spine densities in layer 2/3 cortical pyramidal neurons. These effects are compartmentalized: neuronal Nogo-A affects proximal dendrites whereas oligodendrocytic Nogo-A affects distal regions. Finally, we used two-photon laser scanning microscopy to measure the spine turnover rate of adult mouse motor cortex layer 5 cells and find that both Nogo-A KO mouse lines show enhanced spine remodeling after 4 days. Our results suggest relevant control functions of glial as well as neuronal Nogo-A for synaptic plasticity and open new possibilities for more selective and targeted plasticity enhancing strategies.
Collapse
Affiliation(s)
- Ajmal Zemmar
- Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland.,Department of Biology and Department of Health Sciences and Technology, ETH Zurich, 8057 Zurich, Switzerland.,Department of Neurosurgery, University Hospital Zurich, University of Zurich, CH-8091, Zurich, Switzerland
| | - Chia-Chien Chen
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA 95064, USA
| | - Oliver Weinmann
- Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland.,Department of Biology and Department of Health Sciences and Technology, ETH Zurich, 8057 Zurich, Switzerland
| | - Brigitt Kast
- Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland.,Department of Biology and Department of Health Sciences and Technology, ETH Zurich, 8057 Zurich, Switzerland
| | - Flora Vajda
- Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland.,Department of Biology and Department of Health Sciences and Technology, ETH Zurich, 8057 Zurich, Switzerland
| | - James Bozeman
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA 95064, USA
| | - Noel Isaad
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA 95064, USA
| | - Yi Zuo
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA 95064, USA
| | - Martin E Schwab
- Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland.,Department of Biology and Department of Health Sciences and Technology, ETH Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
4
|
Buscemi L, Ginet V, Lopatar J, Montana V, Pucci L, Spagnuolo P, Zehnder T, Grubišić V, Truttman A, Sala C, Hirt L, Parpura V, Puyal J, Bezzi P. Homer1 Scaffold Proteins Govern Ca2+ Dynamics in Normal and Reactive Astrocytes. Cereb Cortex 2017; 27:2365-2384. [PMID: 27075036 PMCID: PMC5963825 DOI: 10.1093/cercor/bhw078] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In astrocytes, the intracellular calcium (Ca2+) signaling mediated by activation of metabotropic glutamate receptor 5 (mGlu5) is crucially involved in the modulation of many aspects of brain physiology, including gliotransmission. Here, we find that the mGlu5-mediated Ca2+ signaling leading to release of glutamate is governed by mGlu5 interaction with Homer1 scaffolding proteins. We show that the long splice variants Homer1b/c are expressed in astrocytic processes, where they cluster with mGlu5 at sites displaying intense local Ca2+ activity. We show that the structural and functional significance of the Homer1b/c-mGlu5 interaction is to relocate endoplasmic reticulum (ER) to the proximity of the plasma membrane and to optimize Ca2+ signaling and glutamate release. We also show that in reactive astrocytes the short dominant-negative splice variant Homer1a is upregulated. Homer1a, by precluding the mGlu5-ER interaction decreases the intensity of Ca2+ signaling thus limiting the intensity and the duration of glutamate release by astrocytes. Hindering upregulation of Homer1a with a local injection of short interfering RNA in vivo restores mGlu5-mediated Ca2+ signaling and glutamate release and sensitizes astrocytes to apoptosis. We propose that Homer1a may represent one of the cellular mechanisms by which inflammatory astrocytic reactions are beneficial for limiting brain injury.
Collapse
Affiliation(s)
- Lara Buscemi
- Department of Fundamental Neurosciences, University of Lausanne, CH1005Lausanne, Switzerland
- Stroke Laboratory, Neurology Service, Department of Clinical Neurosciences, University Hospital Centre and University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Vanessa Ginet
- Department of Fundamental Neurosciences, University of Lausanne, CH1005Lausanne, Switzerland
- Division of Neonatology, Department of Paediatrics and Paediatric Surgery, University Hospital Centre and University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Jan Lopatar
- Department of Fundamental Neurosciences, University of Lausanne, CH1005Lausanne, Switzerland
| | - Vedrana Montana
- Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia
- Department of Neurobiology, Center for Glial Biology in Medicine, Civitan International Research Center, Atomic Force Microscopy and Nanotechnology Laboratories, and Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Luca Pucci
- Department of Fundamental Neurosciences, University of Lausanne, CH1005Lausanne, Switzerland
| | - Paola Spagnuolo
- Department of Fundamental Neurosciences, University of Lausanne, CH1005Lausanne, Switzerland
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Tamara Zehnder
- Department of Fundamental Neurosciences, University of Lausanne, CH1005Lausanne, Switzerland
| | - Vladimir Grubišić
- Department of Neurobiology, Center for Glial Biology in Medicine, Civitan International Research Center, Atomic Force Microscopy and Nanotechnology Laboratories, and Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Anita Truttman
- Division of Neonatology, Department of Paediatrics and Paediatric Surgery, University Hospital Centre and University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Carlo Sala
- CNR Institute of Neuroscience and Department of Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Lorenz Hirt
- Stroke Laboratory, Neurology Service, Department of Clinical Neurosciences, University Hospital Centre and University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Vladimir Parpura
- Department of Neurobiology, Center for Glial Biology in Medicine, Civitan International Research Center, Atomic Force Microscopy and Nanotechnology Laboratories, and Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Julien Puyal
- Department of Fundamental Neurosciences, University of Lausanne, CH1005Lausanne, Switzerland
- Division of Neonatology, Department of Paediatrics and Paediatric Surgery, University Hospital Centre and University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Paola Bezzi
- Department of Fundamental Neurosciences, University of Lausanne, CH1005Lausanne, Switzerland
| |
Collapse
|
5
|
Huh YJ, Choi JS, Jeon CJ. Localization of Rod Bipolar Cells in the Mammalian Retina Using an Antibody Against the α1c L-type Ca(2+) Channel. Acta Histochem Cytochem 2015; 48:47-52. [PMID: 26019373 PMCID: PMC4427564 DOI: 10.1267/ahc.14049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 03/16/2015] [Indexed: 11/22/2022] Open
Abstract
Bipolar cells transmit stimuli via graded changes in membrane potential and neurotransmitter release is modulated by Ca2+ influx through L-type Ca2+ channels. The purpose of this study was to determine whether the α1c subunit of L-type voltage-gated Ca2+ channel (α1c L-type Ca2+ channel) colocalizes with protein kinase C alpha (PKC-α), which labels rod bipolar cells. Retinal whole mounts and vertical sections from mouse, hamster, rabbit, and dog were immunolabeled with antibodies against PKC-α and α1c L-type Ca2+ channel, using fluorescein isothiocyanate (FITC) and Cy5 as visualizing agents. PKC-α-immunoreactive cells were morphologically identical to rod bipolar cells as previously reported. Their cell bodies were located within the inner nuclear layer, dendritic processes branched into the outer plexiform layer, and axons extended into the inner plexiform layer. Immunostaining showed that α1c L-type Ca2+ channel colocalized with PKC-α in rod bipolar cells. The identical expression of PKC-α and α1c L-type Ca2+ channel indicates that the α1c L-type Ca2+ channel has a specific role in rod bipolar cells, and the antibody against the α1c L-type Ca2+ channel may be a useful marker for studying the distribution of rod bipolar cells in mouse, hamster, rabbit, and dog retinas.
Collapse
Affiliation(s)
- Yu-Jin Huh
- Department of Biology, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, and Brain Science and Engineering Institute, Kyungpook National University
| | - Jae-Sik Choi
- Department of Biology, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, and Brain Science and Engineering Institute, Kyungpook National University
| | - Chang-Jin Jeon
- Department of Biology, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, and Brain Science and Engineering Institute, Kyungpook National University
| |
Collapse
|
6
|
Brasen JC, Burford JL, McDonough AA, Holstein-Rathlou NH, Peti-Peterdi J. Local pH domains regulate NHE3-mediated Na⁺ reabsorption in the renal proximal tubule. Am J Physiol Renal Physiol 2014; 307:F1249-62. [PMID: 25298526 DOI: 10.1152/ajprenal.00174.2014] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The proximal tubule Na(+)/H(+) exchanger 3 (NHE3), located in the apical dense microvilli (brush border), plays a major role in the reabsorption of NaCl and water in the renal proximal tubule. In response to a rise in blood pressure NHE3 redistributes in the plane of the plasma membrane to the base of the brush border, where NHE3 activity is reduced. This NHE3 redistribution is assumed to provoke pressure natriuresis; however, it is unclear how NHE3 redistribution per se reduces NHE3 activity. To investigate if the distribution of NHE3 in the brush border can change the reabsorption rate, we constructed a spatiotemporal mathematical model of NHE3-mediated Na(+) reabsorption across a proximal tubule cell and compared the model results with in vivo experiments in rats. The model predicts that when NHE3 is localized exclusively at the base of the brush border, it creates local pH microdomains that reduce NHE3 activity by >30%. We tested the model's prediction experimentally: the rat kidney cortex was loaded with the pH-sensitive fluorescent dye BCECF, and cells of the proximal tubule were imaged in vivo using confocal fluorescence microscopy before and after an increase of blood pressure by ∼50 mmHg. The experimental results supported the model by demonstrating that a rise of blood pressure induces the development of pH microdomains near the bottom of the brush border. These local changes in pH reduce NHE3 activity, which may explain the pressure natriuresis response to NHE3 redistribution.
Collapse
Affiliation(s)
- Jens Christian Brasen
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark; Biomedical Engineering, Department of Electrical Engineering, Technical University of Denmark, Lyngby, Denmark; and
| | - James L Burford
- Departments of Physiology and Biophysics and Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California; and
| | - Alicia A McDonough
- Department of Cell and Neurobiology, University of Southern California, Los Angeles, California
| | | | - Janos Peti-Peterdi
- Departments of Physiology and Biophysics and Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California; and
| |
Collapse
|
7
|
Zhang Z, Zhang Y, Mou Z, Chu S, Chen X, He W, Guo X, Yuan Y, Takahashi M, Chen N. Tyrosine 402 phosphorylation of Pyk2 is involved in ionomycin-induced neurotransmitter release. PLoS One 2014; 9:e94574. [PMID: 24718602 PMCID: PMC3981813 DOI: 10.1371/journal.pone.0094574] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Accepted: 03/17/2014] [Indexed: 11/28/2022] Open
Abstract
Protein tyrosine kinases, which are highly expressed in the central nervous system, are implicated in many neural processes. However, the relationship between protein tyrosine kinases and neurotransmitter release remains unknown. In this study, we found that ionomycin, a Ca2+ ionophore, concurrently induced asynchronous neurotransmitter release and phosphorylation of a non-receptor protein tyrosine kinase, proline-rich tyrosine kinase 2 (Pyk2), in clonal rat pheochromocytoma PC12 cells and cerebellar granule cells, whereas introduction of Pyk2 siRNA dramatically suppressed ionomycin-induced neurotransmitter release. Further study indicated that Tyr-402 (Y402) in Pyk2, instead of other tyrosine sites, underwent rapid phosphorylation after ionomycin induction in 1 min to 2 min. We demonstrated that the mutant of Pyk2 Y402 could abolish ionomycin-induced dopamine (DA) release by transfecting cells with recombinant Pyk2 and its mutants (Y402F, Y579F, Y580F, and Y881F). In addition, Src inhibition could prolong phosphorylation of Pyk2 Y402 and increase DA release. These findings suggested that Pyk2 was involved in ionomycin-induced neurotransmitter release through phosphorylation of Y402.
Collapse
Affiliation(s)
- Zhao Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Department of Pharmacology, Institute of Materia Medica, and neuroscience center, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
| | - Yun Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Department of Pharmacology, Institute of Materia Medica, and neuroscience center, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
| | - Zheng Mou
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Department of Pharmacology, Institute of Materia Medica, and neuroscience center, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
| | - Shifeng Chu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Department of Pharmacology, Institute of Materia Medica, and neuroscience center, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
| | - Xiaoyu Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Department of Pharmacology, Institute of Materia Medica, and neuroscience center, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
| | - Wenbin He
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Department of Pharmacology, Institute of Materia Medica, and neuroscience center, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
- Basic Medical College, Shanxi University of Traditional Chinese Medicine, Taiyuan, People’s Republic of China
| | - Xiaofeng Guo
- Basic Medical College, Shanxi University of Traditional Chinese Medicine, Taiyuan, People’s Republic of China
| | - Yuhe Yuan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Department of Pharmacology, Institute of Materia Medica, and neuroscience center, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
| | - Masami Takahashi
- Department of Biochemistry, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
- * E-mail: (NC); (MT)
| | - Naihong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Department of Pharmacology, Institute of Materia Medica, and neuroscience center, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
- * E-mail: (NC); (MT)
| |
Collapse
|
8
|
van Bel AJE, Furch ACU, Will T, Buxa SV, Musetti R, Hafke JB. Spread the news: systemic dissemination and local impact of Ca²⁺ signals along the phloem pathway. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:1761-87. [PMID: 24482370 DOI: 10.1093/jxb/ert425] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
We explored the idea of whether electropotential waves (EPWs) primarily act as vehicles for systemic spread of Ca(2+) signals. EPW-associated Ca(2+) influx may trigger generation and amplification of countless long-distance signals along the phloem pathway given the fact that gating of Ca(2+)-permeable channels is a universal response to biotic and abiotic challenges. Despite fundamental differences, both action and variation potentials are associated with a sudden Ca(2+) influx. Both EPWs probably disperse in the lateral direction, which could be of essential functional significance. A vast set of Ca(2+)-permeable channels, some of which have been localized, is required for Ca(2+)-modulated events in sieve elements. There, Ca(2+)-permeable channels are clustered and create so-called Ca(2+) hotspots, which play a pivotal role in sieve element occlusion. Occlusion mechanisms play a central part in the interaction between plants and phytopathogens (e.g. aphids or phytoplasmas) and in transient re-organization of the vascular symplasm. It is argued that Ca(2+)-triggered systemic signalling occurs in partly overlapping waves. The forefront of EPWs may be accompanied by a burst of free Ca(2+) ions and Ca(2+)-binding proteins in the sieve tube sap, with a far-reaching impact on target cells. Lateral dispersion of EPWs may induce diverse Ca(2+) influx and handling patterns (Ca(2+) signatures) in various cell types lining the sieve tubes. As a result, a variety of cascades may trigger the fabrication of signals such as phytohormones, proteins, or RNA species released into the sap stream after product-related lag times. Moreover, transient reorganization of the vascular symplasm could modify cascades in disjunct vascular cells.
Collapse
Affiliation(s)
- Aart J E van Bel
- Institute of General Botany, Justus-Liebig University, Senckenbergstrasse 17, D-35390 Giessen, Germany
| | | | | | | | | | | |
Collapse
|
9
|
Tricoire L, Lambolez B. Neuronal network imaging in acute slices using Ca2+ sensitive bioluminescent reporter. Methods Mol Biol 2014; 1098:33-45. [PMID: 24166366 DOI: 10.1007/978-1-62703-718-1_3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Genetically encoded indicators are valuable tools to study intracellular signaling cascades in real time using fluorescent or bioluminescent imaging techniques. Imaging of Ca(2+) indicators is widely used to record transient intracellular Ca(2+) increases associated with bioelectrical activity. The natural bioluminescent Ca(2+) sensor aequorin has been historically the first Ca(2+) indicator used to address biological questions. Aequorin imaging offers several advantages over fluorescent reporters: it is virtually devoid of background signal; it does not require light excitation and interferes little with intracellular processes. Genetically encoded sensors such as aequorin are commonly used in dissociated cultured cells; however it becomes more challenging to express them in differentiated intact specimen such as brain tissue. Here we describe a method to express a GFP-aequorin (GA) fusion protein in pyramidal cells of neocortical acute slices using recombinant Sindbis virus. This technique allows expressing GA in several hundreds of neurons on the same slice and to perform the bioluminescence recording of Ca(2+) transients in single neurons or multiple neurons simultaneously.
Collapse
Affiliation(s)
- Ludovic Tricoire
- Neurobiologie des processus adaptatifs, UMR7102, Université Pierre et Marie Curie, Paris, France
| | | |
Collapse
|
10
|
Warner JM, O'Shaughnessy B. Evolution of the hemifused intermediate on the pathway to membrane fusion. Biophys J 2013; 103:689-701. [PMID: 22947930 DOI: 10.1016/j.bpj.2012.06.041] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2012] [Revised: 06/13/2012] [Accepted: 06/18/2012] [Indexed: 11/29/2022] Open
Abstract
The pathway to membrane fusion in synthetic and biological systems is thought to pass through hemifusion, in which the outer leaflets are fused while the inner leaflets engage in a hemifusion diaphragm (HD). Fusion has been proposed to be completed by lysis of the expanded HD that matures from a localized stalklike initial connection. However, the process that establishes the expanded HD is poorly understood. Here we mathematically modeled hemifusion of synthetic vesicles, where hemifusion and fusion are most commonly driven by calcium and membrane tension. The model shows that evolution of the hemifused state is driven by these agents and resisted by interleaflet frictional and tensile stresses. Predicted HD growth rates depend on tension and salt concentration, and agree quantitatively with experimental measurements. For typical conditions, we predict that HDs expand at ~30 μm(2)/s, reaching a final equilibrium area ~7% of the vesicle area. Key model outputs are the evolving HD tension and area during the growth transient, properties that may determine whether HD lysis occurs. Applying the model to numerous published experimental studies that reported fusion, our results are consistent with a final fusion step in which the HD ruptures due to super-lysis HD membrane tensions.
Collapse
Affiliation(s)
- Jason M Warner
- Department of Chemical Engineering, Columbia University, New York, New York, USA
| | | |
Collapse
|
11
|
Calcium as a Trigger and Regulator of Systemic Alarms and Signals along the Phloem Pathway. LONG-DISTANCE SYSTEMIC SIGNALING AND COMMUNICATION IN PLANTS 2013. [DOI: 10.1007/978-3-642-36470-9_18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
12
|
Tarr TB, Dittrich M, Meriney SD. Are unreliable release mechanisms conserved from NMJ to CNS? Trends Neurosci 2012; 36:14-22. [PMID: 23102681 DOI: 10.1016/j.tins.2012.09.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 05/19/2012] [Accepted: 09/24/2012] [Indexed: 01/15/2023]
Abstract
The frog neuromuscular junction (NMJ) is a strong and reliable synapse because, during activation, sufficient neurotransmitter is released to trigger a postsynaptic action potential (AP). Recent evidence supports the hypothesis that this reliability emerges from the assembly of thousands of unreliable single vesicle release sites. The mechanisms that govern this unreliability include a paucity of voltage-gated calcium channels, a low probability of calcium channel opening during an AP, and the rare triggering of synaptic vesicle fusion even when a calcium channel does open and allows calcium flux. Here, we discuss the evidence that these unreliable single vesicle release sites may be the fundamental building blocks of many types of synapses in both the peripheral and central nervous system (PNS and CNS, respectively).
Collapse
Affiliation(s)
- Tyler B Tarr
- Department of Neuroscience, Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | | |
Collapse
|
13
|
Role of calcium and mitochondria in MeHg-mediated cytotoxicity. J Biomed Biotechnol 2012; 2012:248764. [PMID: 22927718 PMCID: PMC3425894 DOI: 10.1155/2012/248764] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 06/12/2012] [Accepted: 06/14/2012] [Indexed: 11/17/2022] Open
Abstract
Methylmercury (MeHg) mediated cytotoxicity is associated with loss of intracellular calcium (Ca2+) homeostasis. The imbalance in Ca2+ physiology is believed to be associated with dysregulation of Ca2+ intracellular stores and/or increased permeability of the biomembranes to this ion. In this paper we summarize the contribution of glutamate dyshomeostasis in intracellular Ca2+ overload and highlight the mitochondrial dysfunctions induced by MeHg via Ca2+ overload. Mitochondrial disturbances elicited by Ca2+ may involve several molecular events (i.e., alterations in the activity of the mitochondrial electron transport chain complexes, mitochondrial proton gradient dissipation, mitochondrial permeability transition pore (MPTP) opening, thiol depletion, failure of energy metabolism, reactive oxygen species overproduction) that could culminate in cell death. Here we will focus on the role of oxidative stress in these phenomena. Additionally, possible antioxidant therapies that could be effective in the treatment of MeHg intoxication are briefly discussed.
Collapse
|
14
|
Warner JM, O'Shaughnessy B. The hemifused state on the pathway to membrane fusion. PHYSICAL REVIEW LETTERS 2012; 108:178101. [PMID: 22680906 DOI: 10.1103/physrevlett.108.178101] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Indexed: 06/01/2023]
Abstract
Fusion of compartments enclosed by membrane bilayers enables secretion and other vital cellular processes and is widely studied in model synthetic membrane systems. Experiments suggest the fusion pathway passes through a hemifused intermediate where only outer monolayers are fused. Here we show membrane tension and divalent cations drive vesicles to hemifused equilibrium with expanded hemifusion diaphragms (HDs) where inner monolayers engage. Predicted HD sizes agree with recent measurements of Nikolaus et al. [Biophys. J. 98, 1192 (2010).]. The fusion pathway is completed by HD lysis provided HD tension is sufficiently high.
Collapse
Affiliation(s)
- Jason M Warner
- Department of Chemical Engineering, Columbia University, New York, New York 10027, USA
| | | |
Collapse
|
15
|
Wang Z, Liu H, Gu Y, Chapman ER. Reconstituted synaptotagmin I mediates vesicle docking, priming, and fusion. ACTA ACUST UNITED AC 2011; 195:1159-70. [PMID: 22184197 PMCID: PMC3246889 DOI: 10.1083/jcb.201104079] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In vitro reconstitution fusion assays incorporating full-length membrane-anchored synaptotagmin I clarify its role in several steps in the secretory pathway. The synaptic vesicle protein synaptotagmin I (syt) promotes exocytosis via its ability to penetrate membranes in response to binding Ca2+ and through direct interactions with SNARE proteins. However, studies using full-length (FL) membrane-embedded syt in reconstituted fusion assays have yielded conflicting results, including a lack of effect, or even inhibition of fusion, by Ca2+. In this paper, we show that reconstituted FL syt promoted rapid docking of vesicles (<1 min) followed by a priming step (3–9 min) that was required for subsequent Ca2+-triggered fusion between v- and t-SNARE liposomes. Moreover, fusion occurred only when phosphatidylinositol 4,5-bisphosphate was included in the target membrane. This system also recapitulates some of the effects of syt mutations that alter synaptic transmission in neurons. Finally, we demonstrate that the cytoplasmic domain of syt exhibited mixed agonist/antagonist activity during regulated membrane fusion in vitro and in cells. Together, these findings reveal further convergence of reconstituted and cell-based systems.
Collapse
Affiliation(s)
- Zhao Wang
- Department of Neuroscience, Howard Hughes Medical Institute, University of Wisconsin, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
16
|
Han Y, Kaeser PS, Südhof TC, Schneggenburger R. RIM determines Ca²+ channel density and vesicle docking at the presynaptic active zone. Neuron 2011; 69:304-16. [PMID: 21262468 PMCID: PMC3259453 DOI: 10.1016/j.neuron.2010.12.014] [Citation(s) in RCA: 271] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2010] [Indexed: 01/13/2023]
Abstract
At presynaptic active zones, neurotransmitter release is initiated by the opening of voltage-gated Ca²+ channels close to docked vesicles. The mechanisms that enrich Ca²+ channels at active zones are, however, largely unknown, possibly because of the limited presynaptic accessibility of most synapses. Here, we have established a Cre-lox based conditional knockout approach at a presynaptically accessible central nervous system synapse, the calyx of Held, to directly study the functions of RIM proteins. Removal of all RIM1/2 isoforms strongly reduced the presynaptic Ca²+ channel density, revealing a role of RIM proteins in Ca²+ channel targeting. Removal of RIMs also reduced the readily releasable pool, paralleled by a similar reduction of the number of docked vesicles, and the Ca²+ channel-vesicle coupling was decreased. Thus, RIM proteins co-ordinately regulate key functions for fast transmitter release, enabling a high presynaptic Ca²+ channel density and vesicle docking at the active zone.
Collapse
Affiliation(s)
- Yunyun Han
- Laboratory of Synaptic Mechanisms, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Pascal S. Kaeser
- Department of Molecular and Cellular Physiology and Howard Hughes Medical Institute, Stanford University School of Medicine, Lorry Lokey Stem Cell Research Building, 265 Campus Drive, Stanford, CA 94305-5453
| | - Thomas C. Südhof
- Department of Molecular and Cellular Physiology and Howard Hughes Medical Institute, Stanford University School of Medicine, Lorry Lokey Stem Cell Research Building, 265 Campus Drive, Stanford, CA 94305-5453
| | - Ralf Schneggenburger
- Laboratory of Synaptic Mechanisms, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
- corresponding author: ()
| |
Collapse
|
17
|
Pan J, Konermann L. Calcium-Induced Structural Transitions of the Calmodulin−Melittin System Studied by Electrospray Mass Spectrometry: Conformational Subpopulations and Metal-Unsaturated Intermediates. Biochemistry 2010; 49:3477-86. [DOI: 10.1021/bi100261c] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Jingxi Pan
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Lars Konermann
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
18
|
Drobac E, Tricoire L, Chaffotte AF, Guiot E, Lambolez B. Calcium imaging in single neurons from brain slices using bioluminescent reporters. J Neurosci Res 2010; 88:695-711. [PMID: 19798746 DOI: 10.1002/jnr.22249] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Responses of three bioluminescent Ca(2+) sensors were studied in vitro and in neurons from brain slices. These sensors consisted of tandem fusions of green fluorescent protein (GFP) with the photoproteins aequorin, obelin, or a mutant aequorin with high Ca(2+) sensitivity. Kinetics of GFP-obelin responses to a saturating Ca(2+) concentration were faster than those of GFP-aequorin at all Mg(2+) concentrations tested, whereas GFP-mutant aequorin responses were the slowest. GFP-photoproteins were efficiently expressed in pyramidal neurons following overnight incubation of acute neocortical slices with recombinant Sindbis viruses. Expression of GFP-photoproteins did not result in conspicuous modification of morphological or electrophysiological properties of layer V pyramidal cells. The three sensors allowed the detection of Ca(2+) transients associated with action potential discharge in single layer V pyramidal neurons. In these neurons, depolarizing steps of increasing amplitude elicited action potential discharge of increasing frequency. Bioluminescent responses of the three sensors were similar in several respects: detection thresholds, an exponential increase with stimulus intensity, photoprotein consumptions, and kinetic properties. These responses, which were markedly slower than kinetics measured in vitro, increased linearly during the action potential discharge and decayed exponentially at the end of the discharge. Onset slopes increased with stimulus intensity, whereas decay kinetics remained constant. Dendritic light emission contributed to whole-field responses, but the spatial resolution of bioluminescence imaging was limited to the soma and proximal apical dendrite. Nonetheless, the high signal-to-background ratio of GFP-photoproteins allowed the detection of Ca(2+) transients associated with 5 action potentials in single neurons upon whole-field bioluminescence recordings.
Collapse
Affiliation(s)
- Estelle Drobac
- Université Pierre et Marie Curie-Paris 6, Neurobiologie des Processus Adaptatifs, CNRS UMR 7102, Paris, France
| | | | | | | | | |
Collapse
|
19
|
Brasen JC, Olsen LF, Hallett MB. Cell surface topology creates high Ca2+ signalling microdomains. Cell Calcium 2010; 47:339-49. [PMID: 20153895 PMCID: PMC2877796 DOI: 10.1016/j.ceca.2010.01.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Revised: 01/20/2010] [Accepted: 01/21/2010] [Indexed: 12/01/2022]
Abstract
It has long been speculated that cellular microdomains are important for many cellular processes, especially those involving Ca2+ signalling. Measurements of cytosolic Ca2+ report maximum concentrations of less than few micromolar, yet several cytosolic enzymes require concentrations of more than 20 μM Ca2+ to be activated. In this paper, we have resolved this apparent paradox by showing that the surface topology of cells represents an important and hitherto unrecognized feature for generating microdomains of high Ca2+ in cells. We show that whereas the standard modeling assumption of a smooth cell surface predicts only moderate localized effects, the more realistic “wrinkled” surface topology predicts that Ca2+ concentrations up to 80 μM can persist within the folds of membranes for significant times. This intra-wrinkle location may account for 5% of the total cell volume. Using different geometries of wrinkles, our simulations show that high Ca2+ microdomains will be generated most effectively by long narrow membrane wrinkles of similar dimensions to those found experimentally. This is a new concept which has not previously been considered, but which has ramifications as the intra-wrinkle location is also a strategic location at which Ca2+ acts as a regulator of the cortical cytoskeleton and plasma membrane expansion.
Collapse
Affiliation(s)
- Jens Christian Brasen
- CelCom, Institute of Biochemistry and Molecular Biology, University of Southern Denmark, Denmark.
| | | | | |
Collapse
|
20
|
Martín C, Gómez-Bilbao G, Ostolaza H. Bordetella adenylate cyclase toxin promotes calcium entry into both CD11b+ and CD11b- cells through cAMP-dependent L-type-like calcium channels. J Biol Chem 2009; 285:357-64. [PMID: 19875442 DOI: 10.1074/jbc.m109.003491] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Adenylate cyclase toxin (ACT), a 200 kDa protein, is an essential virulence factor for Bordetella pertussis, the bacterium that causes whooping cough. ACT is a member of the pore-forming RTX (repeats-in-toxin) family of proteins that share a characteristic calcium-binding motif of Gly- and Asp-rich nonapeptide repeats and a marked cytolytic or cytotoxic activity. In addition, ACT exhibits a distinctive feature: it has an N-terminal calmodulin-dependent adenylate cyclase domain. Translocation of this domain into the host cytoplasm results in uncontrolled production of cAMP, and it has classically been assumed that this surge in cAMP is the basis for the toxin-mediated killing. Several members of the RTX family of toxins, including ACT, have been shown to induce intracellular calcium increases, through different mechanisms. We show here that ACT stimulates a raft-mediated calcium influx, through its cAMP production activity, that activates PKA, which in turn activates calcium channels with L-type properties. This process is shown to occur both in CD11b(+) and CD11b(-) cells, suggesting a common mechanism, independent of the toxin receptor. We also show that this ACT-induced calcium influx does not correlate with the toxin-induced cytotoxicity.
Collapse
Affiliation(s)
- César Martín
- Unidad de Biofísica, Departamento de Bioquímica, Universidad del País Vasco, Centro Mixto CSIC-UPV/EHU, 48080 Bilbao, Spain
| | | | | |
Collapse
|
21
|
Exocytotic dynamics and calcium cooperativity effects in the calyx of Held synapse: a modelling study. J Comput Neurosci 2009; 28:65-76. [DOI: 10.1007/s10827-009-0187-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Revised: 08/04/2009] [Accepted: 09/16/2009] [Indexed: 12/30/2022]
|
22
|
Hafke JB, Furch ACU, Fricker MD, van Bel AJE. Forisome dispersion in Vicia faba is triggered by Ca(2+) hotspots created by concerted action of diverse Ca(2+) channels in sieve elements. PLANT SIGNALING & BEHAVIOR 2009; 4:968-72. [PMID: 19826217 PMCID: PMC2801364 DOI: 10.4161/psb.4.10.9671] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Accepted: 07/27/2009] [Indexed: 05/05/2023]
Abstract
Remote-controlled Ca(2+) influx, elicited by electropotential waves, triggers local signaling cascades in sieve elements and companion cells along the phloem of Vicia faba plants. The stimulus strength seems to be communicated by the rate and duration of Ca(2+) influx into sieve elements (SEs). The cooperative recruitment of Ca(2+) channels results in a graded response of forisome culminating in full sieve-tube occlusion. Several lines of evidence are integrated into a model that links the mode and strength of the electropotential waves (EPWs) with forisome dispersion, mediated by transiently enhanced levels of local Ca(2+) release dependent on both plasma membrane and ER Ca(2+) channels.
Collapse
Affiliation(s)
- Jens B Hafke
- Plant Cell Biology Research Group, Institute of General Botany, Justus-Liebig-University, Giessen, Germany
| | | | | | | |
Collapse
|
23
|
Mukhamed'yarov MA, Kochunova YO, Telina EN, Zefirov AL. Mechanisms of the facilitation of neurotransmitter secretion in strontium solutions. NEUROSCIENCE AND BEHAVIORAL PHYSIOLOGY 2009; 39:253-9. [PMID: 19234802 DOI: 10.1007/s11055-009-9123-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Indexed: 11/24/2022]
Abstract
Experiments on frog neuromuscular synapses using extracellular microelectrode recording of endplate currents (EPC) and nerve ending (NE) responses were performed to study the mechanisms of facilitation of quantum secretion of acetylcholine on replacement of extracellular Ca ions with Sr ions. Solutions with a Ca ion concentration of 0.5 mM (calcium solutions) or a Sr ion concentration of 1 mM (strontium solutions) were used; the basal levels of neurotransmitter secretion (in conditions of low-frequency stimulation) were essentially identical. In calcium solutions, the drop in EPC facilitation on paired-pulse stimulation as the interimpulse interval was increased from 5 to 500 msec was described by the sum of three exponential components - the early, the first, and the second. In strontium solutions, facilitation was decreased as compared with the level in calcium solutions predominantly because of decreases in the early and first components. At the same time, EPC facilitation in conditions of rhythmic stimulation (10 or 50 impulses/sec) in strontium solution was significantly increased as compared with the level in calcium solutions. In strontium solutions in conditions of high-frequency stimulation at 50 impulses/sec, there was also a marked decrease in the amplitude of the third phase of the NE response, reflecting NE potassium currents. These data lead to the conclusion that the facilitation sites underlying the first and early components had lower affinities for Sr ions than for Ca ions. Increases in facilitation in strontium solutions in conditions of high-frequency rhythmic activity resulted from two mechanisms: more marked widening of the NE action potential and an increase in the divalent cation influx current due to weak activation of the Ca2+-dependent potassium current in the presence of Sr ions, as well as the slow dynamics of the removal of Sr ions from the NE axoplasm as compared with that in the presence of Ca ions.
Collapse
Affiliation(s)
- M A Mukhamed'yarov
- Kazan State Medical University, 49 Butlerov Street, 420012, Kazan, Russia.
| | | | | | | |
Collapse
|
24
|
The mechanisms of multi-component paired-pulse facilitation of neurotransmitter release at the frog neuromuscular junction. Pflugers Arch 2009; 458:563-70. [DOI: 10.1007/s00424-009-0641-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Revised: 01/17/2009] [Accepted: 01/20/2009] [Indexed: 11/26/2022]
|
25
|
Alonso MT, Manjarrés IM, García-Sancho J. Modulation of calcium signalling by intracellular organelles seen with targeted aequorins. Acta Physiol (Oxf) 2009; 195:37-49. [PMID: 18983457 DOI: 10.1111/j.1748-1716.2008.01920.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The cytosolic Ca(2+) signals that trigger cell responses occur either as localized domains of high Ca(2+) concentration or as propagating Ca(2+) waves. Cytoplasmic organelles, taking up or releasing Ca(2+) to the cytosol, shape the cytosolic signals. On the other hand, Ca(2+) concentration inside organelles is also important in physiology and pathophysiology. Comprehensive study of these matters requires to measure [Ca(2+)] inside organelles and at the relevant cytosolic domains. Aequorins, the best-known chemiluminescent Ca(2+) probes, are excellent for this end as they do not require stressing illumination, have a large dynamic range and a sharp Ca(2+)-dependence, can be targeted to the appropriate location and engineered to have the proper Ca(2+) affinity. Using this methodology, we have evidenced the existence in chromaffin cells of functional units composed by three closely interrelated elements: (1) plasma membrane Ca(2+) channels, (2) subplasmalemmal endoplasmic reticulum and (3) mitochondria. These Ca(2+)-signalling triads optimize Ca(2+) microdomains for secretion and prevent propagation of the Ca(2+) wave towards the cell core. Oscillatory cytosolic Ca(2+) signals originate also oscillations of mitochondrial Ca(2+) in several cell types. The nuclear envelope slows down the propagation of the Ca(2+) wave to the nucleus and filters high frequencies. On the other hand, inositol-trisphosphate may produce direct release of Ca(2+) to the nucleoplasm in GH(3) pituitary cells, thus providing mechanisms for selective nuclear signalling. Aequorins emitting at different wavelengths, prepared by fusion either with green or red fluorescent protein, permit simultaneous and independent monitorization of the Ca(2+) signals in different subcellular domains within the same cell.
Collapse
Affiliation(s)
- M T Alonso
- Instituto de Biología y Genética Molecular, Universidad de Valladolid y Consejo Superior de Investigaciones Científicas, Valladolid, Spain
| | | | | |
Collapse
|
26
|
Abstract
Vesicular glutamate release from astrocytes depends on mobilization of free Ca(2+) from the endoplasmic reticulum (ER), and extracellular space to elevate cytosolic Ca(2+) (Ca(2+)(cyt)). Although mitochondria in neurons, and other secretory cells, have been shown to sequester free Ca(2+) and have been implicated in the modulation of Ca(2+)-dependent transmitter release, the role of mitochondria in Ca(2+)-dependent glutamate release from astrocytes is not known. A pharmacological approach was taken to manipulate Ca(2+) accumulation in mitochondria and thereby affect Ca(2+)(cyt) of solitary astrocytes in response to mechanical stimuli. Ca(2+)(cyt) responses and levels of glutamate release were measured optically in parallel experiments using a fluorescent Ca(2+) indicator and an enzyme-linked assay, respectively. It was observed that inhibiting mitochondrial Ca(2+) accumulation is correlated to increased Ca(2+)(cyt) and glutamate release, whereas enhancing mitochondrial Ca(2+) accumulation is correlated to decreased Ca(2+)(cyt) and glutamate release. These observations suggest that, in addition to the activity of ER and plasma membrane ion channels, mitochondria modulate Ca(2+)(cyt) dynamics in astrocytes and play a role in Ca(2+)-dependent glutamate release from astrocytes.
Collapse
|
27
|
Keller DX, Franks KM, Bartol TM, Sejnowski TJ. Calmodulin activation by calcium transients in the postsynaptic density of dendritic spines. PLoS One 2008; 3:e2045. [PMID: 18446197 PMCID: PMC2312328 DOI: 10.1371/journal.pone.0002045] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Accepted: 03/12/2008] [Indexed: 11/19/2022] Open
Abstract
The entry of calcium into dendritic spines can trigger a sequence of biochemical reactions that begins with the activation of calmodulin (CaM) and ends with long-term changes to synaptic strengths. The degree of activation of CaM can depend on highly local elevations in the concentration of calcium and the duration of transient increases in calcium concentration. Accurate measurement of these local changes in calcium is difficult because the spaces are so small and the numbers of molecules are so low. We have therefore developed a Monte Carlo model of intracellular calcium dynamics within the spine that included calcium binding proteins, calcium transporters and ion channels activated by voltage and glutamate binding. The model reproduced optical recordings using calcium indicator dyes and showed that without the dye the free intracellular calcium concentration transient was much higher than predicted from the fluorescent signal. Excitatory postsynaptic potentials induced large, long-lasting calcium gradients across the postsynaptic density, which activated CaM. When glutamate was released at the synapse 10 ms before an action potential occurred, simulating activity patterns that strengthen hippocampal synapses, the calcium gradient and activation of CaM in the postsynaptic density were much greater than when the order was reversed, a condition that decreases synaptic strengths, suggesting a possible mechanism underlying the induction of long-term changes in synaptic strength. The spatial and temporal mechanisms for selectivity in CaM activation demonstrated here could be used in other signaling pathways.
Collapse
Affiliation(s)
- Daniel X Keller
- The Salk Institute, Computational Neurobiology Laboratory, and Howard Hughes Medical Institute, La Jolla, California, United States of America.
| | | | | | | |
Collapse
|
28
|
Schaff UY, Yamayoshi I, Tse T, Griffin D, Kibathi L, Simon SI. Calcium flux in neutrophils synchronizes beta2 integrin adhesive and signaling events that guide inflammatory recruitment. Ann Biomed Eng 2008; 36:632-46. [PMID: 18278555 PMCID: PMC2668576 DOI: 10.1007/s10439-008-9453-8] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Accepted: 01/28/2008] [Indexed: 12/11/2022]
Abstract
Intracellular calcium flux is an early step in the signaling cascade that bridges ligation of selectin and chemokine receptors to activation of adhesive and motile functions during recruitment on inflamed endothelium. Calcium flux was imaged in real time and provided a means of correlating signaling events in neutrophils rolling on E-selectin and stimulated by chemokine in a microfluidic chamber. Integrin dependent neutrophil arrest was triggered by E-selectin tethering and ligation of IL-8 seconds before a rapid rise in intracellular calcium, which was followed by the onset of pseudopod formation. Calcium flux on rolling neutrophils increased in a shear dependent manner, and served to link integrin adhesion and signaling of cytoskeletally driven cell polarization. Abolishing calcium influx through membrane expressed store operated calcium channels inhibited activation of high affinity beta(2) integrin and subsequent cell arrest. We conclude that calcium influx at the plasma membrane integrates chemotactic and adhesive signals, and functions to synchronize signaling of neutrophil arrest and migration in a shear stress dependent manner.
Collapse
Affiliation(s)
- Ulrich Y Schaff
- Department of Biomedical Engineering, Genome and Biomedical Sciences Facility, University of California, Davis, 451 E. Health Sciences Dr., Davis, CA 95616-5294, USA
| | | | | | | | | | | |
Collapse
|
29
|
García-Sancho J, Verkhratsky A. Cytoplasmic organelles determine complexity and specificity of calcium signalling in adrenal chromaffin cells. Acta Physiol (Oxf) 2008; 192:263-71. [PMID: 18021325 DOI: 10.1111/j.1748-1716.2007.01812.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Complex and coordinated fluctuations of intracellular free Ca2+ concentration ([Ca2+]c) regulate secretion of adrenaline from chromaffin cells. The physiologically relevant intracellular Ca2+ signals occur either as localized microdomains of high Ca2+ concentrations or as propagating Ca2+ waves, which give rise to global Ca2+ elevations. Intracellular organelles, the endoplasmic reticulum (ER), mitochondria and nuclear envelope, are endowed with powerful Ca2+ transport systems. Calcium uptake and Ca2+ release from these organelles determine the spatial and temporal parameters of Ca2+ signalling events. Furthermore, the ER and mitochondria form close relations with the sites of plasmalemmal Ca2+ entry, creating 'Ca2+ signalling triads' which act as elementary operational units, which regulate exocytosis. Ca2+ ions accumulating in the ER and mitochondria integrate exocytotic activity with energy production and protein synthesis.
Collapse
Affiliation(s)
- J García-Sancho
- Departamento de Fisiología, Facultad de Medicina, Instituto de Biología y Genética Molecular, Universidad de Valladolid y Consejo Superior de Investigaciones Científicas, Valladolid, Spain.
| | | |
Collapse
|
30
|
Affiliation(s)
- Andrew G Engel
- Department of Neurology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
31
|
Cifuentes F, Montoya M, Morales M. High-frequency stimuli preferentially release large dense-core vesicles located in the proximity of nonspecialized zones of the presynaptic membrane in sympathetic ganglia. Dev Neurobiol 2008; 68:446-56. [DOI: 10.1002/dneu.20604] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
32
|
Single fluorescent protein-based Ca2+ sensors with increased dynamic range. BMC Biotechnol 2007; 7:37. [PMID: 17603870 PMCID: PMC1931437 DOI: 10.1186/1472-6750-7-37] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2007] [Accepted: 06/29/2007] [Indexed: 11/10/2022] Open
Abstract
Background Genetically encoded sensors developed on the basis of green fluorescent protein (GFP)-like proteins are becoming more and more popular instruments for monitoring cellular analytes and enzyme activities in living cells and transgenic organisms. In particular, a number of Ca2+ sensors have been developed, either based on FRET (Fluorescence Resonance Energy Transfer) changes between two GFP-mutants or on the change in fluorescence intensity of a single circularly permuted fluorescent protein (cpFP). Results Here we report significant progress on the development of the latter type of Ca2+ sensors. Derived from the knowledge of previously reported cpFP-based sensors, we generated a set of cpFP-based indicators with different spectral properties and fluorescent responses to changes in Ca2+ concentration. Two variants, named Case12 and Case16, were characterized by particular high brightness and superior dynamic range, up to 12-fold and 16.5-fold increase in green fluorescence between Ca2+-free and Ca2+-saturated forms. We demonstrated the high potential of these sensors on various examples, including monitoring of Ca2+ response to a prolonged glutamate treatment in cortical neurons. Conclusion We believe that expanded dynamic range, high brightness and relatively high pH-stability should make Case12 and Case16 popular research tools both in scientific studies and high throughput screening assays.
Collapse
|
33
|
Serulle Y, Sugimori M, Llinás RR. Imaging synaptosomal calcium concentration microdomains and vesicle fusion by using total internal reflection fluorescent microscopy. Proc Natl Acad Sci U S A 2007; 104:1697-702. [PMID: 17242349 PMCID: PMC1785242 DOI: 10.1073/pnas.0610741104] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transmitter release at chemical synapses is triggered by high calcium concentration microprofiles at the presynaptic cytosol. Such microprofiles, generated by the opening of voltage-dependent calcium channels at the presynaptic plasma membrane, have been defined as calcium concentration microdomains. Using total internal reflection fluorescent microscopy in conjunction with calcium and vesicular release indicator dyes, we have directly visualized the close apposition of calcium concentration microdomains and synaptic release sites at single synaptic terminals from the CNS from rat cerebellar mossy fiber and squid optic lobe. These findings demonstrate the close apposition of calcium entry and release sites and the dynamics of such site locations over time. Kinetic analysis shows that vesicles can be released via two distinct mechanisms: full-fusion and kiss-and-run. Calcium triggers vesicular motion toward the membrane, and the speed of such movement is calcium concentration-dependent. Moreover, the immediately available vesicular pool represents molecularly trapped vesicles that can be located at a larger distance from the plasma membrane than the field illuminated by total internal reflection fluorescent microscopy.
Collapse
Affiliation(s)
- Yafell Serulle
- *Program in Neuroscience and Physiology
- Department of Biochemistry, and
- Marine Biological Laboratory, Woods Hole, MA 02543
| | - Mutsuyuki Sugimori
- *Program in Neuroscience and Physiology
- Department of Physiology and Neuroscience, New York University School of Medicine, New York, NY 10016; and
- Marine Biological Laboratory, Woods Hole, MA 02543
| | - Rodolfo R. Llinás
- *Program in Neuroscience and Physiology
- Department of Physiology and Neuroscience, New York University School of Medicine, New York, NY 10016; and
- Marine Biological Laboratory, Woods Hole, MA 02543
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
34
|
Oheim M, Kirchhoff F, Stühmer W. Calcium microdomains in regulated exocytosis. Cell Calcium 2006; 40:423-39. [PMID: 17067670 DOI: 10.1016/j.ceca.2006.08.007] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Accepted: 08/23/2006] [Indexed: 11/19/2022]
Abstract
Katz and co-workers showed that Ca(2+) triggers exocytosis. The existence of sub-micrometer domains of greater than 100 microM [Ca(2+)](i) was postulated on theoretical grounds. Using a modified, low-affinity aequorin, Llinas et al. were the first to demonstrate the existence of Ca(2+) 'microdomains' in squid presynaptic terminals. Over the past several years, it has become clear that individual Ca(2+) nano- and microdomains forming around the mouth of voltage-gated Ca(2+) channels ascertain the tight coupling of fast synaptic vesicle release to membrane depolarization by action potentials. Recent work has established different geometric arrangements of vesicles and Ca(2+) channels at different central synapses and pointed out the role of Ca(2+) syntillas - localized, store operated Ca(2+) signals - in facilitation and spontaneous release. The coupling between Ca(2+) increase and evoked exocytosis is more sluggish in peripheral terminals and neuroendocrine cells, where channels are less clustered and Ca(2+) comes from different sources, including Ca(2+) influx via the plasma membrane and the mobilization of Ca(2+) from intracellular stores. Finally, also non- (electrically) excitable cells display highly localized Ca(2+) signaling domains. We discuss in particular the organization of structural microdomains of Bergmann glia, specialized astrocytes of the cerebellum that have only recently been considered as secretory cells. Glial microdomains are the spatial substrate for functionally segregated Ca(2+) signals upon metabotropic activation. Our review emphasizes the large diversity of different geometric arrangements of vesicles and Ca(2+) sources, leading to a wide spectrum of Ca(2+) signals triggering release.
Collapse
Affiliation(s)
- Martin Oheim
- Molecular and Cellular Biophysics of Synaptic Transmission, INSERM, U603, Paris, France.
| | | | | |
Collapse
|
35
|
Weerth SH, Holtzclaw LA, Russell JT. Signaling proteins in raft-like microdomains are essential for Ca2+ wave propagation in glial cells. Cell Calcium 2006; 41:155-67. [PMID: 16905188 DOI: 10.1016/j.ceca.2006.06.006] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2006] [Revised: 05/20/2006] [Accepted: 06/02/2006] [Indexed: 10/24/2022]
Abstract
The hypothesis that calcium signaling proteins segregate into lipid raft-like microdomains was tested in isolated membranes of rat oligodendrocyte progenitor (OP) cells and astrocytes using Triton X-100 solubilization and density gradient centrifugation. Western blot analysis of gradient fractions showed co-localization of caveolin-1 with proteins involved in the Ca2+ signaling cascade. These included agonist receptors, P2Y1, and M1, TRPC1, IP3R2, ryanodine receptor, as well as the G protein Galphaq and Homer. Membranes isolated from agonist-stimulated astrocytes showed an enhanced recruitment of phospholipase C (PLCbeta1), IP3R2 and protein kinase C (PKC-alpha) into lipid raft fractions. IP3R2, TRPC1 and Homer co-immunoprecipitated, suggesting protein-protein interactions. Disruption of rafts by cholesterol depletion using methyl-beta-cyclodextrin (beta-MCD) altered the distribution of caveolin-1 and GM1 to non-raft fractions with higher densities. beta-MCD-induced disruption of rafts inhibited agonist-evoked Ca2+ wave propagation in astrocytes and attenuated wave speeds. These results indicate that in glial cells, Ca2+ signaling proteins might exist in organized membrane microdomains, and these complexes may include proteins from different cellular membrane systems. Such an organization is essential for Ca2+ wave propagation.
Collapse
Affiliation(s)
- Susanna H Weerth
- Section for Cell Biology and Signal Transduction, National Institute of Child Health and Human Development, National Institute of Health, Bethesda, MD 20892-4480, USA
| | | | | |
Collapse
|
36
|
Ardiles AO, Maripillán J, Lagos VL, Toro R, Mora IG, Villarroel L, Alés E, Borges R, Cárdenas AM. A rapid exocytosis mode in chromaffin cells with a neuronal phenotype. J Neurochem 2006; 99:29-41. [PMID: 16889641 DOI: 10.1111/j.1471-4159.2006.04080.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have used astrocyte-conditioned medium (ACM) to promote the transdifferentiation of bovine chromaffin cells and study modifications in the exocytotic process when these cells acquire a neuronal phenotype. In the ACM-promoted neuronal phenotype, secretory vesicles and intracellular Ca2+ rise were preferentially distributed in the neurite terminals. Using amperometry, we observed that the exocytotic events also occurred mainly in the neurite terminals, wherein the individual exocytotic events had smaller quantal size than in undifferentiated cells. Additionally, duration of pre-spike current was significantly shorter, suggesting that ACM also modifies the fusion pore stability. After long exposure (7-9 days) to ACM, the kinetics of catecholamine release from individual vesicles was markedly accelerated. The morphometric analysis of vesicle diameters suggests that the rapid exocytotic events observed in neurites of ACM-treated cells correspond to the exocytosis of large dense-core vesicles (LDCV). On the other hand, experiments performed in EGTA-loaded cells suggest that ACM treatment promotes a better coupling between voltage-gated calcium channels (VGCC) and LDCV. Thus, our findings reveal that ACM promotes a neuronal phenotype in chromaffin cells, wherein the exocytotic kinetics is accelerated. Such rapid exocytosis mode could be caused at least in part by a better coupling between secretory vesicles and VGCC.
Collapse
Affiliation(s)
- Alvaro O Ardiles
- Centro de Neurociencia de Valparaíso, Universidad de Valparaíso, Chile
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Mukhamedyarov MA, Zefirov AL, Palotás A. Paired-pulse facilitation of transmitter release at different levels of extracellular calcium concentration. Neurochem Res 2006; 31:1055-8. [PMID: 16871441 DOI: 10.1007/s11064-006-9115-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2006] [Indexed: 11/30/2022]
Abstract
High-frequency synaptic activity can cause facilitation of transmitter release due to accumulation of "residual Ca(2+)" at the nerve terminal. However, the mechanism of this phenomenon is still under debate. Here we show that, using extracellular recording from frog cutaneous pectoris muscle, paired-pulse facilitation (PPF) at the frog neuro-muscular junction decays in two or three-exponential manner depending upon the extracellular Ca(2+) concentration ([Ca(2+)](e)). First, second and "early" PPF components are analyzed and described in this study. Considering the dependence of PPF on [Ca(2+)](e), existence of several specific high-affinity intra-terminal Ca(2+)-binding sites that underlie the facilitation of transmitter release at the frog neuro-muscular junction is proposed.
Collapse
Affiliation(s)
- Marat A Mukhamedyarov
- Department of Physiology, Kazan State Medical University, ul. Butlerova 49, 420012 Kazan, Russia
| | | | | |
Collapse
|
38
|
Ivanov AI, Calabrese RL. Spike-mediated and graded inhibitory synaptic transmission between leech interneurons: evidence for shared release sites. J Neurophysiol 2006; 96:235-51. [PMID: 16641378 DOI: 10.1152/jn.01094.2005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Inhibitory synaptic transmission between leech heart interneurons consist of two components: graded, gated by Ca2+ entering by low-threshold [low-voltage-activated (LVA)] Ca channels and spike-mediated, gated by Ca2+ entering by high-threshold [high-voltage-activated (HVA)] Ca channels. Changes in presynaptic background Ca2+ produced by Ca2+ influx through LVA channels modulate spike-mediated transmission, suggesting LVA channels have access to release sites controlled by HVA channels. Here we explore whether spike-mediated and graded transmission can use the same release sites and thus how Ca2+ influx by HVA and LVA Ca channels might interact to evoke neurotransmitter release. We recorded pre- and postsynaptic currents from voltage-clamped heart interneurons bathed in 0 mM Na+/5 mM Ca2+ saline. Using different stimulating paradigms and inorganic Ca channel blockers, we show that strong graded synaptic transmission can occlude high-threshold/spike-mediated synaptic transmission when evoked simultaneously. Suppression of LVA Ca currents diminishes graded release and concomitantly increases the ability of Ca2+ entering by HVA channels to release transmitter. Uncaging of Ca chelator corroborates that graded release occludes spike-mediated transmission. Our results indicate that both graded and spike-mediated synaptic transmission depend on the same readily releasable pool of synaptic vesicles. Thus Ca2+, entering cells through different Ca channels (LVA and HVA), acts to gate release of the same synaptic vesicles. The data argue for a closer location of HVA Ca channels to release sites than LVA Ca channels. The results are summarized in a conceptual model of a heart interneuron release site.
Collapse
Affiliation(s)
- Andrei I Ivanov
- Department of Biology, Emory University, Atlanta, GA 30322, USA.
| | | |
Collapse
|
39
|
Maximov A, Südhof TC. Autonomous function of synaptotagmin 1 in triggering synchronous release independent of asynchronous release. Neuron 2006; 48:547-54. [PMID: 16301172 DOI: 10.1016/j.neuron.2005.09.006] [Citation(s) in RCA: 177] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2005] [Revised: 08/16/2005] [Accepted: 09/02/2005] [Indexed: 10/25/2022]
Abstract
Ca(2+) triggers neurotransmitter release in at least two principal modes, synchronous and asynchronous release. Synaptotagmin 1 functions as a Ca(2+) sensor for synchronous release, but its role in asynchronous release remains unclear. We now show that in cultured cortical neurons stimulated at low frequency (<or.1 Hz), deletion of synaptotagmin 1 blocks synchronous GABA and glutamate release without significantly increasing asynchronous release. At higher stimulation frequencies (>or Hz), deletion of synaptotagmin 1 also alters only synchronous, not asynchronous, release during the stimulus train, but dramatically enhances "delayed asynchronous release" following the stimulus train. Thus synaptotagmin 1 functions as an autonomous Ca(2+) sensor independent of asynchronous release during isolated action potentials and action potential trains, but restricts asynchronous release induced by residual Ca(2+) after action potential trains. We propose that synaptotagmin 1 occupies release "slots" at the active zone, possibly in a Ca(2+)-independent complex with SNARE proteins that are freed when action potential-induced Ca(2+) influx activates synaptotagmin 1.
Collapse
Affiliation(s)
- Anton Maximov
- Center for Basic Neuroscience, Department of Molecular Genetics, and Howard Hughes Medical Institute, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | | |
Collapse
|
40
|
Shahrezaei V, Delaney KR. Brevity of the Ca2+ Microdomain and Active Zone Geometry Prevent Ca2+-Sensor Saturation for Neurotransmitter Release. J Neurophysiol 2005; 94:1912-9. [PMID: 15888526 DOI: 10.1152/jn.00256.2005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The brief time course of the calcium (Ca2+) channel opening combined with the molecular-level colocalization of Ca2+ channels and synaptic vesicles in presynaptic terminals predict sub-millisecond calcium concentration ([Ca2+]) transients of ≥100 μM in the immediate vicinity of the vesicle. This [Ca2+] is much higher than some of the recent estimates for the equilibrium dissociation constant of the Ca2+ sensor(s) that control neurotransmitter release, suggesting release should be close to saturation, yet it is well known that release is highly sensitive to changes in Ca2+ influx. We show that due to the brevity of the Ca2+ influx the binding kinetics of the Ca2+ sensor rather than its equilibrium affinity determine receptor occupancy. For physiologically relevant Ca2+ currents and forward Ca2+ binding rates, the effective affinity of the Ca2+ sensor can be several-fold lower than the equilibrium affinity. Using simple models, we show redundant copies of the binding sites increase effective affinity of the Ca2+ sensor for release. Our results predict that different levels of expression of Ca2+ binding sites could account for apparent differences in Ca2+ sensor affinities between synapses. Using Monte Carlo simulations of Ca2+ dynamics with nanometer resolution, we demonstrate that these kinetic constraints combined with vesicles acting as diffusion barriers can prevent saturation of the Ca2+-sensor(s) for neurotransmitter release. We further show the random positioning of the Ca2+-sensor molecules around the vesicle can result in the emergence of two distinct populations of the vesicles with low and high release probability. These considerations allow experimental evidence for the Ca2+ channel-vesicle colocalization to be reconciled with a high equilibrium affinity for the Ca2+ sensor of the release machinery.
Collapse
Affiliation(s)
- Vahid Shahrezaei
- Department of Physics, Simon Fraser University., 8888 University Dr., Burnaby, British Columbia V5A 1S6, Canada.
| | | |
Collapse
|
41
|
Schneggenburger R, Neher E. Presynaptic calcium and control of vesicle fusion. Curr Opin Neurobiol 2005; 15:266-74. [PMID: 15919191 DOI: 10.1016/j.conb.2005.05.006] [Citation(s) in RCA: 238] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2005] [Accepted: 05/05/2005] [Indexed: 10/25/2022]
Abstract
Vesicle fusion and transmitter release at synapses is driven by a highly localized Ca2+ signal that rapidly builds up around open Ca2+-channels at and near presynaptic active zones. It has been difficult to estimate the amplitude and the kinetics of this 'microdomain' signal by direct Ca2+-imaging approaches. Recently, Ca2+ uncaging at large CNS synapses, among them the calyx of Held, has shown that the intrinsic cooperativity of Ca2+ in inducing vesicle fusion is high, with 4-5 Ca2+ ions needed to trigger vesicle fusion. Given the Ca2+-sensitivity of vesicle fusion as determined by Ca2+-uncaging, it was found that a surprisingly small (10-25 microM) and brief (<1 ms) local Ca2+ signal is sufficient to achieve the amount, and the kinetics of the physiological transmitter release. The high cooperativity of Ca2+ in inducing vesicle fusion and the non-saturation of the Ca2+-sensor for vesicle fusion renders small changes of the local Ca2+-signal highly effective in changing the release probability; an insight that is important for our understanding of short-term modulation of synaptic strength.
Collapse
Affiliation(s)
- Ralf Schneggenburger
- AG Synaptische Dynamik & Modulation and Abt. Membranbiophysik, Max-Planck-Institut für biophysikalische Chemie, Am Fassberg 11, D-37077 Göttingen, Germany.
| | | |
Collapse
|
42
|
Leite JP, Neder L, Arisi GM, Carlotti CG, Assirati JA, Moreira JE. Plasticity, synaptic strength, and epilepsy: what can we learn from ultrastructural data? Epilepsia 2005; 46 Suppl 5:134-41. [PMID: 15987268 DOI: 10.1111/j.1528-1167.2005.01021.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Central nervous system synapses have an intrinsic plastic capacity to adapt to new conditions with rapid changes in their structure. Such activity-dependent refinement occurs during development and learning, and shares features with diseases such as epilepsy. Quantitative ultrastructural studies based on serial sectioning and reconstructions have shown various structural changes associated with synaptic strength involving both dendritic spines and postsynaptic densities (PSDs) during long-term potentiation (LTP). In this review, we focus on experimental studies that have analyzed at the ultrastructural level the consequences of LTP in rodents, and plastic changes in the hippocampus of experimental models of epilepsy and human tissue obtained during surgeries for intractable temporal lobe epilepsy (TLE). Modifications in spine morphology, increases in the proportion of synapses with perforated PSDs, and formation of multiple spine boutons arising from the same dendrite are the possible sequence of events that accompany hippocampal LTP. Structural remodeling of mossy fiber synapses and formation of aberrant synaptic contacts in the dentate gyrus are common features in experimental models of epilepsy and in human TLE. Combined electrophysiological and ultrastructural studies in kindled rats and chronic epileptic animals have indicated the occurrence of seizure- and neuron loss-induced changes in the hippocampal network. In these experiments, the synaptic contacts on granule cells are similar to those described for LTP. Such changes could be associated with enhancement of synaptic efficiency and may be important in epileptogenesis.
Collapse
Affiliation(s)
- João Pereira Leite
- Department of Neurology, University of São Paulo School of Medicine at Ribeirão Preto, São Paulo, Brazil.
| | | | | | | | | | | |
Collapse
|
43
|
Rogers KL, Stinnakre J, Agulhon C, Jublot D, Shorte SL, Kremer EJ, Brûlet P. Visualization of local Ca2+ dynamics with genetically encoded bioluminescent reporters. Eur J Neurosci 2005; 21:597-610. [PMID: 15733079 DOI: 10.1111/j.1460-9568.2005.03871.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Measurements of local Ca2+ signalling at different developmental stages and/or in specific cell types is important for understanding aspects of brain functioning. The use of light excitation in fluorescence imaging can cause phototoxicity, photobleaching and auto-fluorescence. In contrast, bioluminescence does not require the input of radiative energy and can therefore be measured over long periods, with very high temporal resolution. Aequorin is a genetically encoded Ca(2+)-sensitive bioluminescent protein, however, its low quantum yield prevents dynamic measurements of Ca2+ responses in single cells. To overcome this limitation, we recently reported the bi-functional Ca2+ reporter gene, GFP-aequorin (GA), which was developed specifically to improve the light output and stability of aequorin chimeras [V. Baubet, et al., (2000) PNAS, 97, 7260-7265]. In the current study, we have genetically targeted GA to different microdomains important in synaptic transmission, including to the mitochondrial matrix, endoplasmic reticulum, synaptic vesicles and to the postsynaptic density. We demonstrate that these reporters enable 'real-time' measurements of subcellular Ca2+ changes in single mammalian neurons using bioluminescence. The high signal-to-noise ratio of these reporters is also important in that it affords the visualization of Ca2+ dynamics in cell-cell communication in neuronal cultures and tissue slices. Further, we demonstrate the utility of this approach in ex-vivo preparations of mammalian retina, a paradigm in which external light input should be controlled. This represents a novel molecular imaging approach for non-invasive monitoring of local Ca2+ dynamics and cellular communication in tissue or whole animal studies.
Collapse
Affiliation(s)
- Kelly L Rogers
- Unité d'Embryologie Moléculaire, CNRS URA 2578, Institut Pasteur, 25-28 rue du Docteur Roux, 75724 Paris CEDEX 15, France
| | | | | | | | | | | | | |
Collapse
|
44
|
Limke TL, Heidemann SR, Atchison WD. Disruption of Intraneuronal Divalent Cation Regulation by Methylmercury: Are Specific Targets Involved in Altered Neuronal Development and Cytotoxicity in Methylmercury Poisoning? Neurotoxicology 2004; 25:741-60. [PMID: 15288506 DOI: 10.1016/j.neuro.2003.12.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2003] [Accepted: 12/15/2003] [Indexed: 10/26/2022]
Abstract
Methylmercury is an environmental contaminant which causes relatively specific degeneration of the granular layer of the cerebellum, despite its ability to bind thiol groups in proteins of all cell types. The mechanisms underlying the specific targeting of cells during MeHg poisoning may depend on specific receptors and other targets related to divalent cation homeostasis, particularly intracellular calcium (Ca(2+)(i) signaling. MeHg disrupts Ca(2+)(i) homeostasis in a number of neuronal models, including cerebellar granule cells in primary culture, and contributes to MeHg-induced cell death, impaired synaptic function and disruption of neuronal development. Interestingly, the disruption of [Ca(2+)](i) regulation occurs through specific pathways which affect Ca(2+) regulation by organelles, particularly mitochondria and the smooth endoplasmic reticulum (SER). Cholinergic pathways which affect [Ca(2+)](i) signaling also appear to be critical targets, particularly muscarinic acetylcholine (ACh) receptors which are linked to Ca(2+) release through inositol-1,4,5-triphosphate (IP(3)) receptors. [Ca(2+)](i) dysregulation may also underlie observed alterations in cerebellar neuron development through interaction with specific target(s) in the developing axon. In this review, we examine the hypothesis that MeHg affects specific targets to cause disruption of neuronal development and cell death.
Collapse
Affiliation(s)
- Tobi L Limke
- Department of Pharmacology and Toxicology, Institute for Environmental Toxicology, Michigan State University, B-331 Life Sciences Building, East Lansing, MI 48824-1317, USA
| | | | | |
Collapse
|
45
|
D'Angelo I, Brecha NC. Y2 receptor expression and inhibition of voltage-dependent Ca2+ influx into rod bipolar cell terminals. Neuroscience 2004; 125:1039-49. [PMID: 15120863 DOI: 10.1016/j.neuroscience.2003.10.041] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2003] [Indexed: 11/21/2022]
Abstract
Neuropeptide Y (NPY) is a potent inhibitory neuropeptide expressed by amacrine cells in the rat retina. NPY modulates the release of multiple neurotransmitters in mammalian retina, yet the mechanisms mediating this regulation are not well defined. To further understand the action of NPY in the retina, Y receptor coupling to voltage-dependent Ca(2+) channels was investigated using Ca(2+) imaging with fura-2 AM to measure [Ca(2+)](i) increases in rod bipolar cell terminals. Y receptor expression was studied in rat retinal tissue with reverse transcription-polymerase chain reaction (RT-PCR). NPY inhibited the depolarization-evoked Ca(2+) influx into rod bipolar cell axon terminals and caused a dose-dependent reduction and an average maximal inhibition of 72% at 1 microM, which was reversed upon washout. K(+)-evoked Ca(2+) increases were also inhibited by the selective Y2 receptor agonists, C2-NPY and NPY(13-36), at concentrations of 1 microM, but not by the selective Y1 receptor agonist, [Leu(31)Pro(34)]NPY, selective Y4 receptor agonist, rPP, or the selective Y5 receptor agonist, [d-Trp32]-NPY. Y receptor expression was determined using RT-PCR for all known Y receptor subtypes. Y2 receptor mRNA, as well as Y1, Y4, and Y5 receptor mRNAs, are present in the rat retina. Like the rod bipolar cell, other studies in central neurons have shown that the Y2 receptor is expressed predominantly as a presynaptic receptor and that it modulates transmitter release. Together, these findings suggest that NPY activates presynaptic Y2 receptors to inhibit voltage-dependent Ca(2+) influx into rod bipolar cell terminals, and establishes one mechanism by which NPY may reduce l-glutamate release from the rod bipolar cell synapse.
Collapse
Affiliation(s)
- I D'Angelo
- Department of Neurobiology, Box 951763, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | | |
Collapse
|
46
|
Wachman ES, Poage RE, Stiles JR, Farkas DL, Meriney SD. Spatial Distribution of Calcium Entry Evoked by Single Action Potentials within the Presynaptic Active Zone. J Neurosci 2004; 24:2877-85. [PMID: 15044526 PMCID: PMC6729837 DOI: 10.1523/jneurosci.1660-03.2004] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The nature of presynaptic calcium (Ca(2+)) signals that initiate neurotransmitter release makes these signals difficult to study, in part because of the small size of specialized active zones within most nerve terminals. Using the frog motor nerve terminal, which contains especially large active zones, we show that increases in intracellular Ca(2+) concentration within 1 msec of action potential invasion are attributable to Ca(2+) entry through N-type Ca(2+) channels and are not uniformly distributed throughout active zone regions. Furthermore, changes in the location and magnitude of Ca(2+) signals recorded before and after experimental manipulations (omega-conotoxin GVIA, diaminopyridine, and lowered extracellular Ca(2+)) support the hypothesis that there is a remarkably low probability of a single Ca(2+) channel opening within an active zone after an action potential. The trial-to-trial variability observed in the spatial distribution of presynaptic Ca(2+) entry also supports this conclusion, which differs from the conclusions of previous work in other synapses.
Collapse
Affiliation(s)
- Elliot S Wachman
- Center for Light Microscope Imaging and Biotechnology, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | |
Collapse
|
47
|
Abstract
Dual intracellular recordings from pairs of synaptically connected neurones have demonstrated that the frequency-dependent pattern of transmitter release varies dramatically between different classes of connections. Somewhat surprisingly, these patterns are not determined by the class of neurone supplying the axon alone, but to a large degree by the class of postsynaptic neurone. A wide range of presynaptic mechanisms, some that depress the release of transmitter and others that enhance release have been identified. It is the selective expression of these different mechanisms that determines the unique frequency- and pattern-dependent properties of each class of connection. Although the molecular interactions underlying these several mechanisms have yet to be fully identified, the wealth and complexity of the protein-protein and protein-lipid interactions that have been shown to control the release of transmitter suggest many ways in which the properties of a synapse may be tuned to respond to particular patterns and frequencies.
Collapse
Affiliation(s)
- Alex M Thomson
- Department of Pharmacology, The School of Pharmacy, London University, 29-39 Brunswick Square, London WC1N 1AX, UK.
| |
Collapse
|
48
|
Vigh J, Solessio E, Morgans CW, Lasater EM. Ionic mechanisms mediating oscillatory membrane potentials in wide-field retinal amacrine cells. J Neurophysiol 2003; 90:431-43. [PMID: 12649310 DOI: 10.1152/jn.00092.2003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Particular types of amacrine cells of the vertebrate retina show oscillatory membrane potentials (OMPs) in response to light stimulation. Historically it has been thought the oscillations arose as a result of circuit properties. In a previous study we found that in some amacrine cells, the ability to oscillate was an intrinsic property of the cell. Here we characterized the ionic mechanisms responsible for the oscillations in wide-field amacrine cells (WFACs) in an effort to better understand the functional properties of the cell. The OMPs were found to be calcium (Ca2+) dependent; blocking voltage-gated Ca2+ channels eliminated the oscillations, whereas elevating extracellular Ca2+ enhanced them. Strong intracellular Ca2+ buffering (10 mM EGTA or bis-(o-aminophenoxy)-N,N,N',N'-tetraacetic acid) eliminated any attenuation in the OMPs as well as a Ca2+-dependent inactivation of the voltage-gated Ca2+ channels. Pharmacological and immunohistochemical characterization revealed that WFACs express L- and N-type voltage-sensitive Ca2+ channels. Block of the L-type channels eliminated the OMPs, but omega-conotoxin GVIA did not, suggesting a different function for the N-type channels. The L-type channels in WFACs are functionally coupled to a set of calcium-dependent potassium (K(Ca)) channels to mediate OMPs. The initiation of OMPs depended on penitrem-A-sensitive (BK) K(Ca) channels, whereas their duration is under apamin-sensitive (SK) K(Ca) channel control. The Ca2+ current is essential to evoke the OMPs and triggering the K(Ca) currents, which here act as resonant currents, enhances the resonance as an amplifying current, influences the filtering characteristics of the cell membrane, and attenuates the OMPs via CDI of the L-type Ca2+ channel.
Collapse
Affiliation(s)
- Jozsef Vigh
- Department of Ophthalmology and Visual Sciences, John Moran Eye Center, University of Utah, Health Sciences Center, Salt Lake City, Utah 84132, USA
| | | | | | | |
Collapse
|
49
|
Kirischuk S, Grantyn R. Intraterminal Ca2+ concentration and asynchronous transmitter release at single GABAergic boutons in rat collicular cultures. J Physiol 2003; 548:753-64. [PMID: 12640015 PMCID: PMC2342888 DOI: 10.1113/jphysiol.2002.037036] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 12/04/2002] [Accepted: 02/18/2003] [Indexed: 11/08/2022] Open
Abstract
Neurotransmitter release in response to a single action potential has a precise time course. A significant fraction of the releasable vesicles is exocytosed synchronously, within a few milliseconds after the arrival of an action potential. If repeatedly activated, stimulus-locked phasic synchronous release declines, but synaptic transmission can be maintained through tonic asynchronous transmitter release. The desynchronisation of release during repetitive activation is generally attributed to a build-up of intraterminal Ca2+ concentration. However, the precise relationship between presynaptic Ca2+ level and asynchronous release rate at small central synapses has remained unclear. Here we characterise this relationship for single GABAergic terminals in rat collicular cultures. In the presence of tetrodotoxin, inhibitory postsynaptic currents (IPSCs) and presynaptic Ca2+ transients were recorded in response to direct presynaptic depolarisation of individual boutons. Repetitive stimulation indeed resulted in a shift from phasic to asynchronous neurotransmitter release. A clear dominance of the asynchronous release mode was observed after 10 pulses. The steady-state asynchronous release rate showed a third-power dependency on the presynaptic Ca2+ concentration, which is similar to that of evoked release. The Ca2+ sensor for asynchronous release exhibited a high affinity for Ca2+ and was far from saturation. These properties of the Ca2+ sensor should make the asynchronous release very sensitive to any modification of presynaptic Ca2+ concentration, including those resulting from changes in presynaptic activity patterns. Thus, asynchronous release represents a powerful but delicately regulated mechanism that ensures the maintenance of appropriate inhibition when the readily releasable pool of vesicles is depleted.
Collapse
Affiliation(s)
- Sergei Kirischuk
- Developmental Physiology, Johannes Müller Institute of Physiology, Humboldt University Medical School (Charité), 10117 Berlin, Germany.
| | | |
Collapse
|
50
|
Modulation of spike-mediated synaptic transmission by presynaptic background Ca2+ in leech heart interneurons. J Neurosci 2003. [PMID: 12598609 DOI: 10.1523/jneurosci.23-04-01206.2003] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
At the core of the rhythmically active leech heartbeat central pattern generator are pairs of mutually inhibitory interneurons. Synaptic transmission between these interneurons consists of spike-mediated and graded components, both of which wax and wane on a cycle-by-cycle basis. Low-threshold Ca2+ currents gate the graded component. Ca imaging experiments indicate that these low-threshold currents are widespread in the neurons and that they contribute to neuron-wide changes in internal background Ca2+ concentration (Ivanov and Calabrese, 2000). During normal rhythmic activity, background Ca2+ concentration oscillates, and thus graded synaptic transmission waxes and wanes as the neurons move from the depolarized to the inhibited phases of their activity. Here we show that in addition to gating graded transmitter release, the background Ca2+ concentration changes evoked by low-threshold Ca2+ currents modulate spike-mediated synaptic transmission. We develop stimulation paradigms to simulate the changes in baseline membrane potential that accompany rhythmic bursting. Using Ca imaging and electrophysiological measurements, we show that the strength of spike-mediated synaptic transmission follows the changes in background Ca2+ concentration that these baseline potential changes evoke and that it does not depend on previous spike activity. Moreover, we show using internal EGTA and photo-release of caged Ca2+ and caged Ca2+ chelator that changes in internal Ca2+ concentration modulate spike-mediated synaptic transmission. Thus activity-dependent changes in background Ca2+, which have been implicated in homeostatic regulation of intrinsic membrane currents and synaptic strength, may also regulate synaptic transmission in an immediate way to modulate synaptic strength cycle by cycle in rhythmically active networks.
Collapse
|