1
|
Barnett DG, Lechner SA, Gammie SC, Kelm-Nelson CA. Thyroarytenoid Oxidative Metabolism and Synaptic Signaling Dysregulation in the Female Pink1-/- Rat. Laryngoscope 2023; 133:3412-3421. [PMID: 37293988 PMCID: PMC10709531 DOI: 10.1002/lary.30768] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/07/2023] [Accepted: 05/10/2023] [Indexed: 06/10/2023]
Abstract
OBJECTIVES AND HYPOTHESIS Vocal dysfunction, including hypophonia, in Parkinson disease (PD) manifests in the prodromal period and significantly impacts an individual's quality of life. Data from human studies suggest that pathology leading to vocal deficits may be structurally related to the larynx and its function. The Pink1-/- rat is a translational model used to study pathogenesis in the context of early-stage mitochondrial dysfunction. The primary objective of this work was to identify differentially expressed genes in the thyroarytenoid muscle and examine the dysregulated biological pathways in the female rat. METHODS RNA sequencing was used to determine thyroarytenoid (TA) muscle gene expression in adult female Pink1-/- rats compared with controls. A bioinformatic approach and the ENRICHR gene analysis tool were used to compare the sequencing dataset with biological pathways and processes, disease relationships, and drug-repurposing compounds. Weighted Gene Co-expression Network Analysis was used to construct biological network modules. The data were compared with a previously published dataset in male rats. RESULTS Significant upregulated pathways in female Pink1-/- rats included fatty acid oxidation and muscle contraction, synaptic transmission, and neuromuscular processes. Downregulated pathways included anterograde transsynaptic signaling, chemical synaptic transmission, and ion release. Several drug treatment options including cetuximab, fluoxetine, and resveratrol are hypothesized to reverse observed genetic dysregulation. CONCLUSIONS Data presented here are useful for identifying biological pathways that may underlie the mechanisms of peripheral dysfunction including neuromuscular synaptic transmission to the TA muscle. These experimental biomarkers have the potential to be targeted as sites for improving the treatment for hypophonia in early-stage PD. LEVEL OF EVIDENCE NA Laryngoscope, 133:3412-3421, 2023.
Collapse
Affiliation(s)
- David G.S. Barnett
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, University of Wisconsin, Madison, Wisconsin
| | - Sarah A. Lechner
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, University of Wisconsin, Madison, Wisconsin
| | - Stephen C. Gammie
- Department of Integrative Biology, University of Wisconsin, Madison, Wisconsin
| | - Cynthia A. Kelm-Nelson
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
2
|
Spontaneously hypertensive rats manifest deficits in emotional response to 22-kHz and 50-kHz ultrasonic playback. Prog Neuropsychopharmacol Biol Psychiatry 2023; 120:110615. [PMID: 36007820 DOI: 10.1016/j.pnpbp.2022.110615] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/03/2022] [Accepted: 08/13/2022] [Indexed: 10/15/2022]
Abstract
Many symptoms used routinely for human psychiatric diagnosis cannot be directly observed in animals which cannot describe their internal states. However, the ultrasonic vocalizations (USV) rodents use to communicate their emotional states can be measured. USV have therefore become a particularly useful tool in brain disease models. Spontaneously hypertensive rats (SHR) are considered an animal model of attention deficit hyperactivity disorder (ADHD) and schizophrenia. However, the specifics of SHR's behavior have not been fully described and there is very little data on their USV. Recently, we developed a communication model, in which Wistar rats are exposed to pre-recorded playbacks of aversive (22-kHz) or appetitive (50-kHz) USV, and their vocal responses depend on the extent of prior fear conditioning (0, 1, 6 or 10 shocks). Here, we investigated SHR's behavior and heart rate (HR) in our communication model, in comparison to Wistar rats employed as controls. In general, SHR emitted typical USV categories, however, they contained more short 22-kHz and less 50-kHz USV overall. Moreover, fewer SHR, in comparison with Wistar rats, emitted long 22-kHz USV after fear conditioning. SHR did not show a 50-kHz playback-induced HR increase, while they showed a profound 22-kHz playback-induced HR decrease. Finally, the number of previously delivered conditioning shocks appeared to have no effect on the investigated vocal, locomotor and HR responses of SHR. The phenomena observed in SHR are potentially attributable to deficits in emotional perception and processing. A lower number of 50-kHz USV emitted by SHR may reflect observations of speech impairments in human patients and further supports the usefulness of SHR to model ADHD and schizophrenia.
Collapse
|
3
|
Lenschow C, Mendes ARP, Lima SQ. Hearing, touching, and multisensory integration during mate choice. Front Neural Circuits 2022; 16:943888. [PMID: 36247731 PMCID: PMC9559228 DOI: 10.3389/fncir.2022.943888] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 06/28/2022] [Indexed: 12/27/2022] Open
Abstract
Mate choice is a potent generator of diversity and a fundamental pillar for sexual selection and evolution. Mate choice is a multistage affair, where complex sensory information and elaborate actions are used to identify, scrutinize, and evaluate potential mating partners. While widely accepted that communication during mate assessment relies on multimodal cues, most studies investigating the mechanisms controlling this fundamental behavior have restricted their focus to the dominant sensory modality used by the species under examination, such as vision in humans and smell in rodents. However, despite their undeniable importance for the initial recognition, attraction, and approach towards a potential mate, other modalities gain relevance as the interaction progresses, amongst which are touch and audition. In this review, we will: (1) focus on recent findings of how touch and audition can contribute to the evaluation and choice of mating partners, and (2) outline our current knowledge regarding the neuronal circuits processing touch and audition (amongst others) in the context of mate choice and ask (3) how these neural circuits are connected to areas that have been studied in the light of multisensory integration.
Collapse
Affiliation(s)
- Constanze Lenschow
- Champalimaud Foundation, Champalimaud Research, Neuroscience Program, Lisbon, Portugal
| | - Ana Rita P Mendes
- Champalimaud Foundation, Champalimaud Research, Neuroscience Program, Lisbon, Portugal
| | - Susana Q Lima
- Champalimaud Foundation, Champalimaud Research, Neuroscience Program, Lisbon, Portugal
| |
Collapse
|
4
|
Lechner SA, Kletzien H, Gammie SC, Kelm-Nelson CA. Thyroarytenoid Muscle Gene Expression in a Rat Model of Early-Onset Parkinson's Disease. Laryngoscope 2021; 131:E2874-E2879. [PMID: 34057223 PMCID: PMC8595495 DOI: 10.1002/lary.29661] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/30/2021] [Accepted: 05/19/2021] [Indexed: 01/21/2023]
Abstract
OBJECTIVES/HYPOTHESIS Voice disorders in Parkinson's disease (PD) are early-onset, manifest in the preclinical stages of the disease, and negatively impact quality of life. The complete loss of function in the PTEN-induced kinase 1 gene (Pink1) causes a genetic form of early-onset, autosomal recessive PD. Modeled after the human inherited mutation, the Pink1-/- rat demonstrates significant cranial sensorimotor dysfunction including declines in ultrasonic vocalizations. However, the underlying genetics of the vocal fold thyroarytenoid (TA) muscle that may contribute to vocal deficits has not been studied. The aim of this study was to identify differentially expressed genes in the TA muscle of 8-month-old male Pink1-/- rats compared to wildtype controls. STUDY DESIGN Animal experiment with control. METHODS High throughput RNA sequencing was used to examine TA muscle gene expression in adult male Pink1-/- rats and wildtype controls. Weighted Gene Co-expression Network Analysis was used to construct co-expression modules to identify biological networks, including where Pink1 was a central node. The ENRICHR tool was used to compare this gene set to existing human gene databases. RESULTS We identified 134 annotated differentially expressed genes (P < .05 cutoff) and observed enrichment in the following biological pathways: Parkinson's disease (Casp7, Pink1); Parkin-Ubiquitin proteasome degradation (Psmd12, Psmd7); MAPK signaling (Casp7, Ppm1b, Ppp3r1); and inflammatory TNF-α, Nf-κB Signaling (Casp7, Psmd12, Psmd7, Cdc34, Bcl7a, Peg3). CONCLUSIONS Genes and pathways identified here may be useful for evaluating the specific mechanisms of peripheral dysfunction including within the laryngeal muscle and have potential to be used as experimental biomarkers for treatment development. LEVEL OF EVIDENCE NA Laryngoscope, 131:E2874-E2879, 2021.
Collapse
Affiliation(s)
- Sarah A. Lechner
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, University of Wisconsin, Madison, Wisconsin
| | - Heidi Kletzien
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts
| | - Stephen C. Gammie
- Department of Integrative Biology, University of Wisconsin, Madison, Wisconsin
| | - Cynthia A. Kelm-Nelson
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
5
|
Kamitakahara AK, Ali Marandi Ghoddousi R, Lanjewar AL, Magalong VM, Wu HH, Levitt P. MET Receptor Tyrosine Kinase Regulates Lifespan Ultrasonic Vocalization and Vagal Motor Neuron Development. Front Neurosci 2021; 15:768577. [PMID: 34803597 PMCID: PMC8600253 DOI: 10.3389/fnins.2021.768577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/14/2021] [Indexed: 11/25/2022] Open
Abstract
The intrinsic muscles of the larynx are innervated by the vagal motor nucleus ambiguus (nAmb), which provides direct motor control over vocal production in humans and rodents. Here, we demonstrate in mice using the Phox2b Cre line, that conditional embryonic deletion of the gene encoding the MET receptor tyrosine kinase (MET) in the developing brainstem (cKO) results in highly penetrant, severe deficits in ultrasonic vocalization in early postnatal life. Major deficits and abnormal vocalization patterns persist into adulthood in more than 70% of mice, with the remaining recovering the ability to vocalize, reflecting heterogeneity in circuit restitution. We show that underlying the functional deficits, conditional deletion of Met results in a loss of approximately one-third of MET+ nAmb motor neurons, which begins as early as embryonic day 14.5. The loss of motor neurons is specific to the nAmb, as other brainstem motor and sensory nuclei are unaffected. In the recurrent laryngeal nerve, through which nAmb motor neurons project to innervate the larynx, there is a one-third loss of axons in cKO mice. Together, the data reveal a novel, heterogenous MET-dependence, for which MET differentially affects survival of a subset of nAmb motor neurons necessary for lifespan ultrasonic vocal capacity.
Collapse
Affiliation(s)
- Anna K. Kamitakahara
- Program in Developmental Neuroscience and Neurogenetics, Children’s Hospital Los Angeles, The Saban Research Institute, Los Angeles, CA, United States
- Department of Pediatrics, Keck School of Medicine of University of Southern California, Los Angeles, CA, United States
| | - Ramin Ali Marandi Ghoddousi
- Program in Developmental Neuroscience and Neurogenetics, Children’s Hospital Los Angeles, The Saban Research Institute, Los Angeles, CA, United States
- Department of Pediatrics, Keck School of Medicine of University of Southern California, Los Angeles, CA, United States
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, United States
| | - Alexandra L. Lanjewar
- Program in Developmental Neuroscience and Neurogenetics, Children’s Hospital Los Angeles, The Saban Research Institute, Los Angeles, CA, United States
- Department of Pediatrics, Keck School of Medicine of University of Southern California, Los Angeles, CA, United States
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, United States
| | - Valerie M. Magalong
- Program in Developmental Neuroscience and Neurogenetics, Children’s Hospital Los Angeles, The Saban Research Institute, Los Angeles, CA, United States
- Department of Pediatrics, Keck School of Medicine of University of Southern California, Los Angeles, CA, United States
| | - Hsiao-Huei Wu
- Department of Pediatrics, Keck School of Medicine of University of Southern California, Los Angeles, CA, United States
| | - Pat Levitt
- Program in Developmental Neuroscience and Neurogenetics, Children’s Hospital Los Angeles, The Saban Research Institute, Los Angeles, CA, United States
- Department of Pediatrics, Keck School of Medicine of University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
6
|
Boulanger-Bertolus J, Mouly AM. Ultrasonic Vocalizations Emission across Development in Rats: Coordination with Respiration and Impact on Brain Neural Dynamics. Brain Sci 2021; 11:616. [PMID: 34064825 PMCID: PMC8150956 DOI: 10.3390/brainsci11050616] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/06/2021] [Accepted: 05/08/2021] [Indexed: 01/09/2023] Open
Abstract
Rats communicate using ultrasonic vocalizations (USV) throughout their life when confronted with emotionally stimulating situations, either negative or positive. The context of USV emission and the psychoacoustic characteristics of the vocalizations change greatly between infancy and adulthood. Importantly, the production of USV is tightly coordinated with respiration, and respiratory rhythm is known to influence brain activity and cognitive functions. This review goes through the acoustic characteristics and mechanisms of production of USV both in infant and adult rats and emphasizes the tight relationships that exist between USV emission and respiration throughout the rat's development. It further describes how USV emission and respiration collectively affect brain oscillatory activities. We discuss the possible association of USV emission with emotional memory processes and point out several avenues of research on USV that are currently overlooked and could fill gaps in our knowledge.
Collapse
Affiliation(s)
- Julie Boulanger-Bertolus
- Department of Anesthesiology, Center for Consciousness Science, University of Michigan, Ann Arbor, MI 48109-5048, USA
| | - Anne-Marie Mouly
- Lyon Neuroscience Research Center, INSERM U1028, CNRS UMR 5292, University Lyon 1, 69366 Lyon, France
| |
Collapse
|
7
|
Nomoto K, Hashiguchi A, Asaba A, Osakada T, Kato M, Koshida N, Mogi K, Kikusui T. Female C57BL/6 and BALB/c mice differently use the acoustic features of male ultrasonic vocalizations for social preferences. Exp Anim 2020; 69:319-325. [PMID: 32101835 PMCID: PMC7445051 DOI: 10.1538/expanim.19-0119] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Male mice emit ultrasonic vocalizations (USVs) in response to the presence of female mice
and their urine. Male USVs attract females, enhancing female reproductive functions, and
are thus considered as the courtship song. Previous studies have shown that female mice
exhibit disassortative social preferences for male USVs. However, it remains unclear what
acoustic features female mice use for the development of these preferences. To address
this, we examined social preferences of female C57BL/6 and BALB/c mice using the
three-chamber preference test using recorded male USVs. To dissociate the peak frequencies
of these USVs from their syllable structure, we digitally manipulated the peak frequencies
accordingly. We found that female mice preferred USVs that were dissimilar to those of
their own strain. We also observed that, while female C57BL/6 mice were sensitive to
changes in the syllable structure and the peak frequency, female BALB/c mice were
sensitive to differences in the syllable structure. Our results demonstrate that female
C57BL/6 and BALB/c mice differently use the acoustic features such as the peak frequency
and the syllable structure for exhibiting disassortative social preferences.
Collapse
Affiliation(s)
- Kensaku Nomoto
- Companion Animal Research Laboratory, School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5201, Japan
| | - Akiko Hashiguchi
- Companion Animal Research Laboratory, School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5201, Japan
| | - Akari Asaba
- Companion Animal Research Laboratory, School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5201, Japan
| | - Takuya Osakada
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.,ERATO Touhara Chemosensory Signal Project, JST, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Masahiro Kato
- Kato Acoustics Consulting Office, 2-8-9-303 Susukino, Aoba-ku, Yokohama, Kanagawa 225-0021, Japan
| | - Nobuyoshi Koshida
- Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Kazutaka Mogi
- Companion Animal Research Laboratory, School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5201, Japan
| | - Takefumi Kikusui
- Companion Animal Research Laboratory, School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5201, Japan
| |
Collapse
|
8
|
Mooney R. The neurobiology of innate and learned vocalizations in rodents and songbirds. Curr Opin Neurobiol 2020; 64:24-31. [PMID: 32086177 DOI: 10.1016/j.conb.2020.01.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/26/2019] [Accepted: 01/08/2020] [Indexed: 12/25/2022]
Abstract
Vocalizations are an important medium for sexual and social signaling in mammals and birds. In most mammals other than humans, vocalizations are specified by innate mechanisms and develop normally in the absence of auditory experience. By contrast, juvenile songbirds memorize and copy the songs of adult tutors, a process with many parallels to human speech learning. Despite the centrality of vocal learning to human speech, vocal production in humans as well as in songbirds exploits ancestral circuitry for innate vocalizations, and effective vocal communication depends on the fluent blending of innate and learned elements. This review covers recent advances in our understanding of central mechanisms for learned and innate vocalizations in birds and mice, including brainstem mechanisms that help to 'gate' vocalizations on or off, cortical involvement in learned and innate vocalizations, and the delineation of circuits that evaluate and reinforce song performance to facilitate vocal learning.
Collapse
Affiliation(s)
- Richard Mooney
- Department of Neurobiology, Duke University School of Medicine, Durham, NC 27705, United States.
| |
Collapse
|
9
|
Haney MM, Hamad A, Woldu HG, Ciucci M, Nichols N, Bunyak F, Lever TE. Recurrent laryngeal nerve transection in mice results in translational upper airway dysfunction. J Comp Neurol 2019; 528:574-596. [PMID: 31512255 DOI: 10.1002/cne.24774] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/21/2019] [Accepted: 08/28/2019] [Indexed: 02/06/2023]
Abstract
The recurrent laryngeal nerve (RLN) is responsible for normal vocal-fold (VF) movement, and is at risk for iatrogenic injury during anterior neck surgical procedures in human patients. Injury, resulting in VF paralysis, may contribute to subsequent swallowing, voice, and respiratory dysfunction. Unfortunately, treatment for RLN injury does little to restore physiologic function of the VFs. Thus, we sought to create a mouse model with translational functional outcomes to further investigate RLN regeneration and potential therapeutic interventions. To do so, we performed ventral neck surgery in 21 C57BL/6J male mice, divided into two groups: Unilateral RLN Transection (n = 11) and Sham Injury (n = 10). Mice underwent behavioral assays to determine upper airway function at multiple time points prior to and following surgery. Transoral endoscopy, videofluoroscopy, ultrasonic vocalizations, and whole-body plethysmography were used to assess VF motion, swallow function, vocal function, and respiratory function, respectively. Affected outcome metrics, such as VF motion correlation, intervocalization interval, and peak inspiratory flow were identified to increase the translational potential of this model. Additionally, immunohistochemistry was used to investigate neuronal cell death in the nucleus ambiguus. Results revealed that RLN transection created ipsilateral VF paralysis that did not recover by 13 weeks postsurgery. Furthermore, there was evidence of significant vocal and respiratory dysfunction in the RLN transection group, but not the sham injury group. No significant differences in swallow function or neuronal cell death were found between the two groups. In conclusion, our mouse model of RLN injury provides several novel functional outcome measures to increase the translational potential of findings in preclinical animal studies. We will use this model and behavioral assays to assess various treatment options in future studies.
Collapse
Affiliation(s)
- Megan M Haney
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri
| | - Ali Hamad
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri
| | - Henok G Woldu
- Department of Health Management & Informatics, University of Missouri, Columbia, Missouri
| | - Michelle Ciucci
- Department of Communication Sciences and Disorders, University of Wisconsin-Madison, Madison, Wisconsin.,Department of Surgery, Division of Otolaryngology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Nicole Nichols
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri
| | - Filiz Bunyak
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri
| | - Teresa E Lever
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri.,Department of Otolaryngology-Head and Neck Surgery, University of Missouri, Columbia, Missouri
| |
Collapse
|
10
|
Glass TJ, Kelm-Nelson CA, Russell JA, Szot JC, Lake JM, Connor NP, Ciucci MR. Laryngeal muscle biology in the Pink1-/- rat model of Parkinson disease. J Appl Physiol (1985) 2019; 126:1326-1334. [PMID: 30844333 DOI: 10.1152/japplphysiol.00557.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neuromuscular pathology is found in the larynx and pharynx in humans with Parkinson disease (PD); however, it is unknown when this pathology emerges. We hypothesized that pathology occurs in early (premanifest) stages. To address this, we used the Pink1-/- rat model of PD, which shows age-dependent dopaminergic neuron loss, locomotor deficits, and deficits related to laryngeal function. We report findings in the thyroarytenoid muscle (TA) in Pink1-/- rats compared with wild-type (WT) control rats at 4 and 6 mo of age. TAs were analyzed for force production, myosin heavy chain isoform (MyHC), centrally nucleated myofibers, neural cell adhesion molecule, myofiber size, and muscle section size. Compared with WT, Pink1-/- TA had reductions in force levels at 1-Hz stimulation and 20-Hz stimulation, increases in relative levels of MyHC 2L, increases in incidence of centrally nucleated myofibers in the external division of the TA, and reductions in myofiber size of the vocalis division of the TA at 6 mo of age. Alterations of laryngeal muscle biology occur in a rat model of premanifest PD. Although these alterations are statistically significant, their functional significance remains to be determined. NEW & NOTEWORTHY Pathology of peripheral nerves and muscle has been reported in the larynx and pharynx of humans diagnosed with Parkinson disease (PD); however, it is unknown whether differences of laryngeal muscle occur at premanifest stages. This study examined the thyroarytenoid muscles of the Pink1-/- rat model of PD for differences of muscle biology compared with control rats. Thyroarytenoid muscles of Pink1-/- rats at premanifest stages show differences in multiple measures of muscle biology.
Collapse
Affiliation(s)
- Tiffany J Glass
- Department of Surgery, University of Wisconsin , Madison, Wisconsin
| | | | - John A Russell
- Department of Surgery, University of Wisconsin , Madison, Wisconsin
| | - John C Szot
- Department of Surgery, University of Wisconsin , Madison, Wisconsin
| | - Jacob M Lake
- Department of Surgery, University of Wisconsin , Madison, Wisconsin
| | - Nadine P Connor
- Department of Surgery, University of Wisconsin , Madison, Wisconsin.,Department of Communication Sciences and Disorders, University of Wisconsin , Madison, Wisconsin
| | - Michelle R Ciucci
- Department of Surgery, University of Wisconsin , Madison, Wisconsin.,Department of Communication Sciences and Disorders, University of Wisconsin , Madison, Wisconsin
| |
Collapse
|
11
|
Nomoto K, Ikumi M, Otsuka M, Asaba A, Kato M, Koshida N, Mogi K, Kikusui T. Female mice exhibit both sexual and social partner preferences for vocalizing males. Integr Zool 2019; 13:735-744. [PMID: 30019858 DOI: 10.1111/1749-4877.12357] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Acoustic signals are widely used as courtship signals in the animal kingdom. It has long been known that male mice emit ultrasonic vocalizations (USVs) in the presence of female mice or in response to female secretions. This observation led to the hypothesis that male USVs play a role in courtship behavior. Although previous studies showed that female mice have a social partner preference for vocalizing males, it is not known if they exhibit a sexual partner preference when given a choice. To address this issue, we examined the copulatory behaviors of female mice with either devocalized males (with or without the playback of the USVs) or sham-operated males in 2 different behavioral paradigms: the no-choice paradigm in the home cage of a male mouse (without choice of mating partners) or the mate-choice paradigm in a 3-chambered apparatus (with choice of mating partners). In the no-choice paradigm, female mice exhibited comparable sexual receptivity with sham-operated and devocalized males. In addition, we found that female mice showed more approach behavior towards devocalized males when male USVs were played back. In the mate-choice paradigm, female mice visited more frequently and stayed longer with sham-operated than devocalized males. Furthermore, we showed that female mice received more intromissions from sham-operated males than devocalized males. In summary, our results suggested that, although female mice can copulate equally with both devocalized and vocalizing males when given no choice of mating partner, female mice exhibit both sexual and social partner preferences for vocalizing males in the mate-choice paradigm.
Collapse
Affiliation(s)
- Kensaku Nomoto
- Companion Animal Research Laboratory, School of Veterinary Medicine, Azabu University, Kanagawa, Japan
| | - Mayu Ikumi
- Companion Animal Research Laboratory, School of Veterinary Medicine, Azabu University, Kanagawa, Japan
| | - Monami Otsuka
- Companion Animal Research Laboratory, School of Veterinary Medicine, Azabu University, Kanagawa, Japan
| | - Akari Asaba
- Companion Animal Research Laboratory, School of Veterinary Medicine, Azabu University, Kanagawa, Japan
| | | | - Nobuyoshi Koshida
- Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Kazutaka Mogi
- Companion Animal Research Laboratory, School of Veterinary Medicine, Azabu University, Kanagawa, Japan
| | - Takefumi Kikusui
- Companion Animal Research Laboratory, School of Veterinary Medicine, Azabu University, Kanagawa, Japan
| |
Collapse
|
12
|
Riede T. Peripheral Vocal Motor Dynamics and Combinatory Call Complexity of Ultrasonic Vocal Production in Rats. HANDBOOK OF ULTRASONIC VOCALIZATION - A WINDOW INTO THE EMOTIONAL BRAIN 2018. [DOI: 10.1016/b978-0-12-809600-0.00005-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
13
|
Kalcounis-Rueppell MC, Pultorak JD, Marler CA. Ultrasonic Vocalizations of Mice in the Genus Peromyscus. HANDBOOK OF ULTRASONIC VOCALIZATION - A WINDOW INTO THE EMOTIONAL BRAIN 2018. [DOI: 10.1016/b978-0-12-809600-0.00022-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
14
|
Riede T, Borgard HL, Pasch B. Laryngeal airway reconstruction indicates that rodent ultrasonic vocalizations are produced by an edge-tone mechanism. ROYAL SOCIETY OPEN SCIENCE 2017; 4:170976. [PMID: 29291091 PMCID: PMC5717665 DOI: 10.1098/rsos.170976] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 09/27/2017] [Indexed: 05/31/2023]
Abstract
Some rodents produce ultrasonic vocalizations (USVs) for social communication using an aerodynamic whistle, a unique vocal production mechanism not found in other animals. The functional anatomy and evolution of this sound production mechanism remains unclear. Using laryngeal airway reconstruction, we identified anatomical specializations critical for USV production. A robust laryngeal cartilaginous framework supports a narrow supraglottal airway. An intralaryngeal airsac-like cavity termed the ventral pouch was present in three muroid rodents (suborder Myomorpha), but was absent in a heteromyid rodent (suborder Castorimorpha) that produces a limited vocal repertoire and no documented USVs. Small lesions to the ventral pouch in laboratory rats caused dramatic changes in USV production, supporting the hypothesis that an interaction between a glottal exit jet and the alar edge generates ultrasonic signals in rodents. The resulting undulating airflow around the alar edge interacts with the resonance of the ventral pouch, which may function as a Helmholtz resonator. The proposed edge-tone mechanism requires control of intrinsic laryngeal muscles and sets the foundation for acoustic variation and diversification among rodents. Our work highlights the importance of anatomical innovations in the evolution of animal sound production mechanisms.
Collapse
Affiliation(s)
- Tobias Riede
- Department of Physiology, Midwestern University, 19555 N 59th Avenue, Glendale, AZ 85308, USA
| | - Heather L. Borgard
- Department of Physiology, Midwestern University, 19555 N 59th Avenue, Glendale, AZ 85308, USA
| | - Bret Pasch
- Department of Biological Sciences, Northern Arizona University, 617 S. Beaver Street, Flagstaff, AZ 86011, USA
- Merriam-Powell Center for Environmental Research, Northern Arizona University, Flagstaff, AZ 86011, USA
- Center for Bioengineering Innovation, Northern Arizona University, Flagstaff, AZ 86011, USA
| |
Collapse
|
15
|
Asaba A, Osakada T, Touhara K, Kato M, Mogi K, Kikusui T. Male mice ultrasonic vocalizations enhance female sexual approach and hypothalamic kisspeptin neuron activity. Horm Behav 2017. [PMID: 28645693 DOI: 10.1016/j.yhbeh.2017.06.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Vocal communication in animals is important for ensuring reproductive success. Male mice emit song-like "ultrasonic vocalizations (USVs)" when they encounter female mice, and females show approach to the USVs. However, it is unclear whether USVs of male mice trigger female behavioral and endocrine responses in reproduction. In this study, we first investigated the relationship between the number of deliveries in breeding pairs for 4months and USVs syllables emitted from those paired males during 3min of sexual encounter with unfamiliar female mice. There was a positive correlation between these two indices, which suggests that breeding pairs in which males could emit USVs more frequently had more offspring. Further, we examined the effect of USVs of male mice on female sexual behavior. Female mice showed more approach behavior towards vocalizing males than devocalized males. Finally, to determine whether USVs of male mice could activate the neural system governing reproductive function in female mice, the activation of kisspeptin neurons, key neurons to drive gonadotropin-releasing hormone neurons in the hypothalamus, was examined using dual-label immunocytochemistry with cAMP response element-binding protein phosphorylation (pCREB). In the arcuate nucleus (Arc), the number of kisspeptin neurons expressing pCREB significantly increased after exposure to USVs of male as compared with noise exposure group. In conclusion, our results suggest that USVs of male mice promote fertility in female mice by activating both their approaching behavior and central kisspeptin neurons.
Collapse
Affiliation(s)
- Akari Asaba
- Companion Animal Research, School of Veterinary Medicine, Azabu University, Kanagawa, Japan
| | - Takuya Osakada
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, and JST ERATO Touhara Chemosensory Signal Project, The University of Tokyo, Tokyo 113-8657, Japan
| | - Kazushige Touhara
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, and JST ERATO Touhara Chemosensory Signal Project, The University of Tokyo, Tokyo 113-8657, Japan
| | | | - Kazutaka Mogi
- Companion Animal Research, School of Veterinary Medicine, Azabu University, Kanagawa, Japan
| | - Takefumi Kikusui
- Companion Animal Research, School of Veterinary Medicine, Azabu University, Kanagawa, Japan.
| |
Collapse
|
16
|
Matsumoto J, Nishimaru H, Takamura Y, Urakawa S, Ono T, Nishijo H. Amygdalar Auditory Neurons Contribute to Self-Other Distinction during Ultrasonic Social Vocalization in Rats. Front Neurosci 2016; 10:399. [PMID: 27703429 PMCID: PMC5028407 DOI: 10.3389/fnins.2016.00399] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 08/15/2016] [Indexed: 12/18/2022] Open
Abstract
Although, clinical studies reported hyperactivation of the auditory system and amygdala in patients with auditory hallucinations (hearing others' but not one's own voice, independent of any external stimulus), neural mechanisms of self/other attribution is not well understood. We recorded neuronal responses in the dorsal amygdala including the lateral amygdaloid nucleus to ultrasonic vocalization (USVs) emitted by subjects and conspecifics during free social interaction in 16 adult male rats. The animals emitting the USVs were identified by EMG recordings. One-quarter of the amygdalar neurons (15/60) responded to 50 kHz calls by the subject and/or conspecifics. Among the responsive neurons, most neurons (Type-Other neurons; 73%, 11/15) responded only to calls by conspecifics but not subjects. Two Type-Self neurons (13%, 2/15) responded to calls by the subject but not those by conspecifics, although their response selectivity to subjects vs. conspecifics was lower than that of Type-Other neurons. The remaining two neurons (13%) responded to calls by both the subject and conspecifics. Furthermore, population coding of the amygdalar neurons represented distinction of subject vs. conspecific calls. The present results provide the first neurophysiological evidence that the amygdala discriminately represents affective social calls by subject and conspecifics. These findings suggest that the amygdala is an important brain region for self/other attribution. Furthermore, pathological activation of the amygdala, where Type-Other neurons predominate, could induce external misattribution of percepts of vocalization.
Collapse
Affiliation(s)
- Jumpei Matsumoto
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama Toyama, Japan
| | - Hiroshi Nishimaru
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama Toyama, Japan
| | - Yusaku Takamura
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama Toyama, Japan
| | - Susumu Urakawa
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama Toyama, Japan
| | - Taketoshi Ono
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama Toyama, Japan
| | - Hisao Nishijo
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama Toyama, Japan
| |
Collapse
|
17
|
Fernández-Vargas M, Johnston RE. Ultrasonic vocalizations in golden hamsters (Mesocricetus auratus) reveal modest sex differences and nonlinear signals of sexual motivation. PLoS One 2015; 10:e0116789. [PMID: 25714096 PMCID: PMC4340904 DOI: 10.1371/journal.pone.0116789] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 12/16/2014] [Indexed: 11/29/2022] Open
Abstract
Vocal signaling is one of many behaviors that animals perform during social interactions. Vocalizations produced by both sexes before mating can communicate sex, identity and condition of the caller. Adult golden hamsters produce ultrasonic vocalizations (USV) after intersexual contact. To determine whether these vocalizations are sexually dimorphic, we analyzed the vocal repertoire for sex differences in: 1) calling rates, 2) composition (structural complexity, call types and nonlinear phenomena) and 3) acoustic structure. In addition, we examined it for individual variation in the calls. The vocal repertoire was mainly composed of 1-note simple calls and at least half of them presented some degree of deterministic chaos. The prevalence of this nonlinear phenomenon was confirmed by low values of harmonic-to-noise ratio for most calls. We found modest sexual differences between repertoires. Males were more likely than females to produce tonal and less chaotic calls, as well as call types with frequency jumps. Multivariate analysis of the acoustic features of 1-note simple calls revealed significant sex differences in the second axis represented mostly by entropy and bandwidth parameters. Male calls showed lower entropy and inter-quartile bandwidth than female calls. Because the variation of acoustic structure within individuals was higher than among individuals, USV could not be reliably assigned to the correct individual. Interestingly, however, this high variability, augmented by the prevalence of chaos and frequency jumps, could be the result of increased vocal effort. Hamsters motivated to produce high calling rates also produced longer calls of broader bandwidth. Thus, the sex differences found could be the result of different sex preferences but also of a sex difference in calling motivation or condition. We suggest that variable and complex USV may have been selected to increase responsiveness of a potential mate by communicating sexual arousal and preventing habituation to the caller.
Collapse
Affiliation(s)
| | - Robert E. Johnston
- Department of Psychology, Cornell University, Ithaca, NY, United States of America
| |
Collapse
|
18
|
Roubertoux PL, Carlier M, Tordjman S. Deficit in Social Relationships and Reduced Field of Interest in Mice. ORGANISM MODELS OF AUTISM SPECTRUM DISORDERS 2015. [DOI: 10.1007/978-1-4939-2250-5_14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
19
|
Asaba A, Okabe S, Nagasawa M, Kato M, Koshida N, Osakada T, Mogi K, Kikusui T. Developmental social environment imprints female preference for male song in mice. PLoS One 2014; 9:e87186. [PMID: 24505280 PMCID: PMC3914833 DOI: 10.1371/journal.pone.0087186] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 12/20/2013] [Indexed: 11/23/2022] Open
Abstract
Background Sexual imprinting is important for kin recognition and for promoting outbreeding, and has been a driving force for evolution; however, little is known about sexual imprinting by auditory cues in mammals. Male mice emit song-like ultrasonic vocalizations that possess strain-specific characteristics. Objectives In this study, we asked whether female mice imprint and prefer specific characteristics in male songs. Methods and Findings We used the two-choice test to determine the song preference of female C57BL/6 and BALB/c mice. By assessing the time engaged in searching behavior towards songs played back to females, we found that female mice displayed an innate preference for the songs of males from different strains. Moreover, this song preference was regulated by female reproductive status and by male sexual cues such as the pheromone ESP1. Finally, we revealed that this preference was reversed by cross-fostering and disappeared under fatherless conditions, indicating that the behavior was learned by exposure to the father's song. Conclusions Our results suggest that female mice can discriminate among male song characteristics and prefer songs of mice from strains that are different from their parents, and that these preferences are based on their early social experiences. This is the first study in mammals to demonstrate that male songs contribute to kin recognition and mate choice by females, thus helping to avoid inbreeding and to facilitate offspring heterozygosity.
Collapse
Affiliation(s)
- Akari Asaba
- Companion Animal Research, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa, Japan
| | - Shota Okabe
- Companion Animal Research, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa, Japan
| | - Miho Nagasawa
- Companion Animal Research, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa, Japan
| | - Masahiro Kato
- Kato Acoustics Consulting Office, Yokohama, Kanagawa, Japan
| | - Nobuyoshi Koshida
- Division of Electronic and Information Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Takuya Osakada
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kazutaka Mogi
- Companion Animal Research, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa, Japan
| | - Takefumi Kikusui
- Companion Animal Research, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa, Japan
- * E-mail:
| |
Collapse
|
20
|
Riede T. Stereotypic laryngeal and respiratory motor patterns generate different call types in rat ultrasound vocalization. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL GENETICS AND PHYSIOLOGY 2013; 319:213-24. [PMID: 23423862 PMCID: PMC3926509 DOI: 10.1002/jez.1785] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 11/23/2012] [Accepted: 01/02/2013] [Indexed: 11/09/2022]
Abstract
Rodents produce highly variable ultrasound whistles as communication signals unlike many other mammals, who employ flow-induced vocal fold oscillations to produce sound. The role of larynx muscles in controlling sound features across different call types in ultrasound vocalization (USV) was investigated using laryngeal muscle electromyographic (EMG) activity, subglottal pressure measurements and vocal sound output in awake and spontaneously behaving Sprague-Dawley rats. Results support the hypothesis that glottal shape determines fundamental frequency. EMG activities of thyroarytenoid and cricothyroid muscles were aligned with call duration. EMG intensity increased with fundamental frequency. Phasic activities of both muscles were aligned with fast changing fundamental frequency contours, for example in trills. Activities of the sternothyroid and sternohyoid muscles, two muscles involved in vocal production in other mammals, are not critical for the production of rat USV. To test how stereotypic laryngeal and respiratory activity are across call types and individuals, sets of ten EMG and subglottal pressure parameters were measured in six different call types from six rats. Using discriminant function analysis, on average 80% of parameter sets were correctly assigned to their respective call type. This was significantly higher than the chance level. Since fundamental frequency features of USV are tightly associated with stereotypic activity of intrinsic laryngeal muscles and muscles contributing to build-up of subglottal pressure, USV provide insight into the neurophysiological control of peripheral vocal motor patterns.
Collapse
Affiliation(s)
- Tobias Riede
- Department of Biology, University of Utah, Salt Lake City, Utah 84112, USA.
| |
Collapse
|
21
|
Arriaga G, Jarvis ED. Mouse vocal communication system: are ultrasounds learned or innate? BRAIN AND LANGUAGE 2013; 124:96-116. [PMID: 23295209 PMCID: PMC3886250 DOI: 10.1016/j.bandl.2012.10.002] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2012] [Revised: 10/05/2012] [Accepted: 10/08/2012] [Indexed: 05/20/2023]
Abstract
Mouse ultrasonic vocalizations (USVs) are often used as behavioral readouts of internal states, to measure effects of social and pharmacological manipulations, and for behavioral phenotyping of mouse models for neuropsychiatric and neurodegenerative disorders. However, little is known about the neurobiological mechanisms of rodent USV production. Here we discuss the available data to assess whether male mouse song behavior and the supporting brain circuits resemble those of known vocal non-learning or vocal learning species. Recent neurobiology studies have demonstrated that the mouse USV brain system includes motor cortex and striatal regions, and that the vocal motor cortex sends a direct sparse projection to the brainstem vocal motor nucleus ambiguous, a projection previously thought be unique to humans among mammals. Recent behavioral studies have reported opposing conclusions on mouse vocal plasticity, including vocal ontogeny changes in USVs over early development that might not be explained by innate maturation processes, evidence for and against a role for auditory feedback in developing and maintaining normal mouse USVs, and evidence for and against limited vocal imitation of song pitch. To reconcile these findings, we suggest that the trait of vocal learning may not be dichotomous but encompass a broad spectrum of behavioral and neural traits we call the continuum hypothesis, and that mice possess some of the traits associated with a capacity for limited vocal learning.
Collapse
Affiliation(s)
- Gustavo Arriaga
- Department of Neurobiology, Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA.
| | | |
Collapse
|
22
|
Similar acoustic structure and behavioural context of vocalizations produced by male and female California mice in the wild. Anim Behav 2011. [DOI: 10.1016/j.anbehav.2011.09.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
23
|
Kapusta J, Pochroń E. Effect of gonadal hormones and sexual experience on vocalizations and behavior of male bank voles (Myodes glareolus). CAN J ZOOL 2011. [DOI: 10.1139/z11-087] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study investigated the influence of gonadal hormones and sexual experience on behavior, especially vocalizations, of male bank voles ( Myodes glareolus (Schreber, 1780)) during same-sex encounters in a neutral arena. Interactions within pairs of castrated males, castrated but testosterone-treated males, and sham-operated intact males were studied in the first experiment and within pairs of sexually experienced males and sexually inexperienced males in the second experiment. Castration reduced the number of ultrasonic vocalizations emitted and androgen treatment restored it to levels seen in intact males. Ultrasounds were emitted more frequently during amicable encounters than during aggressive ones, but ultrasonic calling was reduced during interactions between sexually experienced males, possibly because of the high level of aggression seen in such encounters. In contrast, audible sounds were associated with aggressive behavior and were positively affected by social experience, but they were not testosterone dependent. Neither testosterone nor sexual experience appeared to have any effect on the spectral and temporal characteristics of either audible or ultrasonic calls. The results indicate that emission of ultrasounds during same-sex encounters of male bank voles is regulated by hormonal and social factors and seems to be correlated with type of behavior shown.
Collapse
Affiliation(s)
- J. Kapusta
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - E. Pochroń
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| |
Collapse
|
24
|
Menuet C, Cazals Y, Gestreau C, Borghgraef P, Gielis L, Dutschmann M, Van Leuven F, Hilaire G. Age-related impairment of ultrasonic vocalization in Tau.P301L mice: possible implication for progressive language disorders. PLoS One 2011; 6:e25770. [PMID: 22022446 PMCID: PMC3192129 DOI: 10.1371/journal.pone.0025770] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 09/09/2011] [Indexed: 12/03/2022] Open
Abstract
Background Tauopathies, including Alzheimer's Disease, are the most frequent neurodegenerative diseases in elderly people and cause various cognitive, behavioural and motor defects, but also progressive language disorders. For communication and social interactions, mice produce ultrasonic vocalization (USV) via expiratory airflow through the larynx. We examined USV of Tau.P301L mice, a mouse model for tauopathy expressing human mutant tau protein and developing cognitive, motor and upper airway defects. Methodology/Principal Findings At age 4–5 months, Tau.P301L mice had normal USV, normal expiratory airflow and no brainstem tauopathy. At age 8–10 months, Tau.P301L mice presented impaired USV, reduced expiratory airflow and severe tauopathy in the periaqueductal gray, Kolliker-Fuse and retroambiguus nuclei. Tauopathy in these nuclei that control upper airway function and vocalization correlates well with the USV impairment of old Tau.P301L mice. Conclusions In a mouse model for tauopathy, we report for the first time an age-related impairment of USV that correlates with tauopathy in midbrain and brainstem areas controlling vocalization. The vocalization disorder of old Tau.P301L mice could be, at least in part, reminiscent of language disorders of elderly suffering tauopathy.
Collapse
Affiliation(s)
- Clément Menuet
- Maturation, Plasticity, Physiology and Pathology of Respiration, Unité Mixte de Recherche 6231, Centre National de la Recherche Scientifique, Université de la Méditerranée, Université Paul Cézanne, Marseille, France
| | - Yves Cazals
- Neurovegetative physiology laboratory, Unité Mixte de Recherche 6231, Centre National de la Recherche Scientifique, Université de la Méditerranée, Université Paul Cézanne, Marseille, France
| | - Christian Gestreau
- Maturation, Plasticity, Physiology and Pathology of Respiration, Unité Mixte de Recherche 6231, Centre National de la Recherche Scientifique, Université de la Méditerranée, Université Paul Cézanne, Marseille, France
| | - Peter Borghgraef
- Experimental Genetics Group, Department of Human Genetics, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Lies Gielis
- Experimental Genetics Group, Department of Human Genetics, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Mathias Dutschmann
- Institute of Membrane and Systems Biology, University of Leeds, Leeds, United Kingdom
| | - Fred Van Leuven
- Experimental Genetics Group, Department of Human Genetics, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Gérard Hilaire
- Maturation, Plasticity, Physiology and Pathology of Respiration, Unité Mixte de Recherche 6231, Centre National de la Recherche Scientifique, Université de la Méditerranée, Université Paul Cézanne, Marseille, France
- * E-mail:
| |
Collapse
|
25
|
Riede T. Subglottal pressure, tracheal airflow, and intrinsic laryngeal muscle activity during rat ultrasound vocalization. J Neurophysiol 2011; 106:2580-92. [PMID: 21832032 DOI: 10.1152/jn.00478.2011] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Vocal production requires complex planning and coordination of respiratory, laryngeal, and vocal tract movements, which are incompletely understood in most mammals. Rats produce a variety of whistles in the ultrasonic range that are of communicative relevance and of importance as a model system, but the sources of acoustic variability were mostly unknown. The goal was to identify sources of fundamental frequency variability. Subglottal pressure, tracheal airflow, and electromyographic (EMG) data from two intrinsic laryngeal muscles were measured during 22-kHz and 50-kHz call production in awake, spontaneously behaving adult male rats. During ultrasound vocalization, subglottal pressure ranged between 0.8 and 1.9 kPa. Pressure differences between call types were not significant. The relation between fundamental frequency and subglottal pressure within call types was inconsistent. Experimental manipulations of subglottal pressure had only small effects on fundamental frequency. Tracheal airflow patterns were also inconsistently associated with frequency. Pressure and flow seem to play a small role in regulation of fundamental frequency. Muscle activity, however, is precisely regulated and very sensitive to alterations, presumably because of effects on resonance properties in the vocal tract. EMG activity of cricothyroid and thyroarytenoid muscle was tonic in calls with slow or no fundamental frequency modulations, like 22-kHz and flat 50-kHz calls. Both muscles showed brief high-amplitude, alternating bursts at rates up to 150 Hz during production of frequency-modulated 50-kHz calls. A differentiated and fine regulation of intrinsic laryngeal muscles is critical for normal ultrasound vocalization. Many features of the laryngeal muscle activation pattern during ultrasound vocalization in rats are shared with other mammals.
Collapse
Affiliation(s)
- Tobias Riede
- Dept. of Biology and National Center for Voice and Speech, Univ. of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
26
|
Sugimoto H, Okabe S, Kato M, Koshida N, Shiroishi T, Mogi K, Kikusui T, Koide T. A role for strain differences in waveforms of ultrasonic vocalizations during male-female interaction. PLoS One 2011; 6:e22093. [PMID: 21818297 PMCID: PMC3144874 DOI: 10.1371/journal.pone.0022093] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Accepted: 06/15/2011] [Indexed: 11/18/2022] Open
Abstract
Male mice emit ultrasonic vocalizations (USVs) towards females during male-female interaction. It has been reported that USVs of adult male mice have the capability of attracting females. Although the waveform pattern of USVs is affected by genetic background, differences among strains with respect to USV and the effects of these differences on courtship behavior have not been analyzed fully. We analyzed USV patterns, as well as actual social behavior during USV recording, in 13 inbred mouse strains, which included laboratory and wild-derived strains. Significant effects of strain were observed for the frequency of USV emission, duration, and frequency of the waveform category. Principal component (PC) analysis showed that PC1 was related to frequency and duration, and PC2-4 were related to each waveform. In the comparison of USV patterns and behaviors among strains, wild-derived KJR mice displayed the highest scores for PC2-4, and female mice paired with KJR males did not emit rejection-related click sounds. It is assumed that the waveforms emitted by KJR males have a positive effect in male-female interaction. Therefore, we extracted waveforms in PC2-4 from the USV recordings of KJR mice to produce a sound file, "HIGH2-4". As a negative control, another sound file ("LOW2-4") was created by extracting waveforms in PC2-4 from strains with low scores for these components. In the playback experiments using these sound files, female mice were attracted to the speaker that played HIGH2-4 but not the speaker that played LOW2-4. These results highlight the role of strain differences in the waveforms of male USVs during male-female interaction. The results indicated that female mice use male USVs as information when selecting a suitable mate.
Collapse
Affiliation(s)
- Hiroki Sugimoto
- Mouse Genomics Resource Laboratory, National Institute of Genetics, Mishima, Shizuoka-ken, Japan
- Transdisciplinary Research Integration Center, Research Organization of Information and Systems, Tokyo, Japan
| | - Shota Okabe
- Companion Animal Research, Azabu University, Sagamihara, Kanagawa-ken, Japan
| | | | - Nobuyoshi Koshida
- Division of Electronic and Information Engineering, Graduate School, Tokyo University of Agriculture and Technology, Koganei, Tokyo, Japan
| | - Toshihiko Shiroishi
- Mammalian Genetics Laboratory, National Institute of Genetics, Mishima, Shizuoka-ken, Japan
- Department of Genetics, The Graduate University for Advanced Studies (SOKENDAI), Hayama, Kanagawa, Japan
| | - Kazutaka Mogi
- Companion Animal Research, Azabu University, Sagamihara, Kanagawa-ken, Japan
| | - Takefumi Kikusui
- Companion Animal Research, Azabu University, Sagamihara, Kanagawa-ken, Japan
| | - Tsuyoshi Koide
- Mouse Genomics Resource Laboratory, National Institute of Genetics, Mishima, Shizuoka-ken, Japan
- Department of Genetics, The Graduate University for Advanced Studies (SOKENDAI), Hayama, Kanagawa, Japan
- * E-mail:
| |
Collapse
|
27
|
|
28
|
Brudzynski SM, Fletcher NH. Rat ultrasonic vocalization: short-range communication. HANDBOOK OF BEHAVIORAL NEUROSCIENCE 2010. [DOI: 10.1016/b978-0-12-374593-4.00008-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
29
|
Nyby JG. Adult house mouse (Mus musculus) ultrasonic calls: hormonal and pheromonal regulation. HANDBOOK OF BEHAVIORAL NEUROSCIENCE 2010. [DOI: 10.1016/b978-0-12-374593-4.00029-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
30
|
Liu RC, Miller KD, Merzenich MM, Schreiner CE. Acoustic variability and distinguishability among mouse ultrasound vocalizations. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2003; 114:3412-3422. [PMID: 14714820 DOI: 10.1121/1.1623787] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Auditory neurobiology has benefited significantly from ethological approaches using acoustic communication signals. Developing an ethological model in a genetically manipulable system such as the mouse would enhance the ability to investigate the processing, learning, and recognition of sounds. Characterizing the basic acoustic structure of mouse vocalizations would help lay a foundation for such a future study. Towards this goal, ultrasound vocalizations emitted by isolated mouse pups and pairs of adult males and females have been digitally recorded and examined. Previous work suggests that these calls may have communicative significance. An analysis of the natural variability in their spectral content, median frequency, duration, and repetition period reveals acoustic structure that could be used for recognizing the calls. Other parameters, like the rate of frequency modulation, may also be informative, but have not been examined. Pup isolation calls develop systematically between postnatal day 5 and 12 towards a more stereotyped vocalization--contracting from a wide range of values into narrower clusters of frequency and duration, and shifting from longer to shorter repetition periods. Most significantly, pup isolation and adult encounter calls fall into two distinct spectral and temporal categories, making it possible for a receiver to acoustically distinguish between them, and to potentially categorically perceive them along those dimensions.
Collapse
Affiliation(s)
- Robert C Liu
- Sloan-Swartz Center for Theoretical Neuroscience, Department of Physiology, Box 0444, University of California at San Francisco, 513 Parnassus Avenue, San Francisco, California 94143, USA.
| | | | | | | |
Collapse
|
31
|
Abstract
Ultrasonic vocalization (UV) as a measure of social memory was investigated in female mice. UVs emitted by a resident female in the presence of a same-sex partner were measured during a 3-min, pretest social interaction. In a second 3-min test session, mice were reexposed to the familiar partner or presented with a novel partner. In the first case, there was a decline in UVs emitted by resident mice when the intervals between the 2 sessions were 15, 30, or 60 min. After 24 hr, this effect disappeared. In contrast, with a novel female partner, the number of UVs remained unchanged. Scopolamine (0.05 mg/kg ip) disrupted this memory process: Drug-treated females did not show the expected decrease in UVs when reexposed to the familiar female after 30 min. This study provides behavioral and pharmacological evidence that ultrasonic calls can be used as a measure of social memory in female mice.
Collapse
Affiliation(s)
- F R D'Amato
- Istituto di Psicobiologia e Psicofarmacologia, Consiglio Nazionale delle Ricerche, Rome, Italy.
| | | |
Collapse
|
32
|
Moles A, D'amato FR. Ultrasonic vocalization by female mice in the presence of a conspecific carrying food cues. Anim Behav 2000; 60:689-694. [PMID: 11082239 DOI: 10.1006/anbe.2000.1504] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In female mice, Mus domesticus, reunion with a same-sex conspecific is associated with intense ultrasonic vocalization. We examined whether the palatability of a familiar food eaten by a demonstrator mouse and the motivational state of the conspecific observer could modulate the number of ultrasonic calls uttered during female-female interaction in NMRI mice. A pilot study indicated that these calls were uttered almost exclusively by the observer member of the pair. Observers were either food deprived or not deprived and demonstrators were offered either no food, a palatable diet or an unpalatable diet. We monitored both the number of ultrasounds (range 65-75 kHz) uttered and a series of behavioural parameters during the first 3 min of social interaction after 24 h of separation. Observers investigated the nose area of demonstrators fed on the unpalatable diet more than the same area of demonstrators not given food. No differences were found in demonstrators' behaviour. Ultrasonic calls were given immediately after female-female reunion and were affected by both the motivational state of the observer and the salience of the information carried by the conspecific. These results suggest that the motivational state of the observer affects ultrasonic calling towards a demonstrator conspecific. Nondeprived animals produced more calls towards demonstrators fed on palatable food, whereas food-deprived subjects vocalized more to fed conspecifics, independently of the palatability of the food eaten by the demonstrator. We suggest that ultrasonic vocalization in female mice can facilitate proximity with a conspecific and the number of these calls is modulated by the salience of the information carried by the companion. Copyright 2000 The Association for the Study of Animal Behaviour.
Collapse
Affiliation(s)
- A Moles
- Istituto di Psicobiologia e Psicofarmacologia del CNR
| | | |
Collapse
|
33
|
White NR, Prasad M, Barfield RJ, Nyby JG. 40- and 70-kHz vocalizations of mice (Mus musculus) during copulation. Physiol Behav 1998; 63:467-73. [PMID: 9523885 DOI: 10.1016/s0031-9384(97)00484-8] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ultrasonic vocalizations were tape recorded from five pairs of copulating mice and subjected to spectrographic analysis. As expected, the mice emitted numerous 70-kHz vocalizations. At the beginning of the test, before copulation began, 70-kHz calls were emitted almost continuously, while calls with lower spectrographic frequencies were not observed. Subsequently, bursts of 70-kHz calling generally began shortly before mounts and intromissions and persisted until dismount. Intermixed with these 70-kHz calls were additional vocalizations of about 40 kHz. Calling rates were highest just prior to intromission. Once intromissions began, 70-kHz calls continued at a lower rate until dismount; however, 40-kHz calls occurred infrequently. In a second experiment, the male was found to emit the majority of the 70-kHz calls and all of the 40-kHz calls. When the male was devocalized, few calls were detected, regardless of whether the female was able to call. If the male was not devocalized, high rates of calling were detected, even if the female was devocalized.
Collapse
Affiliation(s)
- N R White
- Department of Biological Sciences, Rutgers-The State University, Piscataway, NJ 08855-1059, USA.
| | | | | | | |
Collapse
|
34
|
Warburton VL, Sales GD, Milligan SR. The emission and elicitation of mouse ultrasonic vocalizations: the effects of age, sex and gonadal status. Physiol Behav 1989; 45:41-7. [PMID: 2727141 DOI: 10.1016/0031-9384(89)90164-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Subject' mice of varying gonadal status (castrate males; intact or neonatally gonadectomized females and males) were paired for 3-min with intact 'stimulus' females and ultrasonic vocalizations were monitored. Vocalization patterns from home cages differed from the test pairings. The results suggested that the age, experience and gonadal status of the subject influenced the vocalizations from the pair. As the source of ultrasonic calls from these vocally intact pairs could not be individually identified, the 'subjects' were paired with a range of ultrasonically silent (inferior laryngeal nerve-transected) stimulus animals. Vocalizations were detected from all combinations of animals. Gonadally intact females were most effective in eliciting ultrasonic vocalizations from the subjects and gonadally intact males were least effective. The responses of castrate males were lower than from intact males. Anesthetized adults of either sex elicited only poor vocalization responses from other adults. Ultrasonic calls have often previously been studied using vocally intact 'subject' and 'stimulus' animals: the present results confirm the difficulty of establishing who is who in such situations.
Collapse
Affiliation(s)
- V L Warburton
- Department of Physiology, King's College, Strand, London
| | | | | |
Collapse
|
35
|
Bean NJ, Nunez AA, Wysocki CJ. 70-kHz vocalizations by male mice do not inhibit aggression in lactating mice. BEHAVIORAL AND NEURAL BIOLOGY 1986; 46:46-53. [PMID: 3729895 DOI: 10.1016/s0163-1047(86)90883-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Two experiments investigated the relationship between adult male 70-kHz vocalizations and aggression by lactating female mice (Mus domesticus). Intact, vocalizing males, surgically devocalized males, and naturally nonvocalizing males were used to assess the effects of high frequency vocalizations on maternal aggression. The emission of high frequency vocalizations promoted aggressive behavior by the females. In both experiments, lactating females attacked the vocalizing males more rapidly and showed a higher incidence of aggressive behaviors toward these males than they did to the nonvocalizing male. We suggest that these vocalizations are only one of many situational cues that the female uses to determine her final behavioral response.
Collapse
|