1
|
Zilkha N, Chuartzman SG, Sofer Y, Pen Y, Cum M, Mayo A, Alon U, Kimchi T. Sex-dependent control of pheromones on social organization within groups of wild house mice. Curr Biol 2023; 33:1407-1420.e4. [PMID: 36917976 PMCID: PMC10132349 DOI: 10.1016/j.cub.2023.02.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/23/2023] [Accepted: 02/13/2023] [Indexed: 03/16/2023]
Abstract
Dominance hierarchy is a fundamental social phenomenon in a wide range of mammalian species, critically affecting fitness and health. Here, we investigate the role of pheromone signals in the control of social hierarchies and individual personalities within groups of wild mice. For this purpose, we combine high-throughput behavioral phenotyping with computational tools in freely interacting groups of wild house mice, males and females, in an automated, semi-natural system. We show that wild mice form dominance hierarchies in both sexes but use sex-specific strategies, displaying distinct male-typical and female-typical behavioral personalities that were also associated with social ranking. Genetic disabling of VNO-mediated pheromone detection generated opposite behavioral effects within groups, enhancing social interactions in males and reducing them in females. Behavioral personalities in the mutated mice displayed mixtures of male-typical and female-typical behaviors, thus blurring sex differences. In addition, rank-associated personalities were abolished despite the fact that both sexes of mutant mice formed stable hierarchies. These findings suggest that group organization is governed by pheromone-mediated sex-specific neural circuits and pave the way to investigate the mechanisms underlying sexual dimorphism in dominance hierarchies under naturalistic settings.
Collapse
Affiliation(s)
- Noga Zilkha
- Department of Brain Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | | | - Yizhak Sofer
- Department of Brain Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Yefim Pen
- Department of Brain Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Meghan Cum
- Department of Brain Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Avi Mayo
- Department of Molecular Cell Biology, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Uri Alon
- Department of Molecular Cell Biology, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Tali Kimchi
- Department of Brain Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel.
| |
Collapse
|
2
|
Fulenwider HD, Caruso MA, Ryabinin AE. Manifestations of domination: Assessments of social dominance in rodents. GENES, BRAIN, AND BEHAVIOR 2022; 21:e12731. [PMID: 33769667 PMCID: PMC8464621 DOI: 10.1111/gbb.12731] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/31/2021] [Accepted: 03/22/2021] [Indexed: 01/01/2023]
Abstract
Social hierarchies are ubiquitous features of virtually all animal groups. The varying social ranks of members within these groups have profound effects on both physical and emotional health, with lower-ranked individuals typically being the most adversely affected by their respective ranks. Thus, reliable measures of social dominance in preclinical rodent models are necessary to better understand the effects of an individual's social rank on other behaviors and physiological processes. In this review, we outline the primary methodologies used to assess social dominance in various rodent species: those that are based on analyses of agonistic behaviors, and those that are based on resource competition. In synthesizing this review, we conclude that assays based on resource competition may be better suited to characterize social dominance in a wider variety of rodent species and strains, and in both males and females. Lastly, albeit expectedly, we demonstrate that similarly to many other areas of preclinical research, studies incorporating female subjects are lacking in comparison to those using males. These findings emphasize the need for an increased number of studies assessing social dominance in females to form a more comprehensive understanding of this behavioral phenomenon.
Collapse
Affiliation(s)
- Hannah D. Fulenwider
- Department of Behavioral NeuroscienceOregon Health & Science UniversityPortlandORUSA
| | - Maya A. Caruso
- Department of Behavioral NeuroscienceOregon Health & Science UniversityPortlandORUSA
| | - Andrey E. Ryabinin
- Department of Behavioral NeuroscienceOregon Health & Science UniversityPortlandORUSA
| |
Collapse
|
3
|
Dwortz MF, Curley JP, Tye KM, Padilla-Coreano N. Neural systems that facilitate the representation of social rank. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200444. [PMID: 35000438 PMCID: PMC8743891 DOI: 10.1098/rstb.2020.0444] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 11/10/2021] [Indexed: 12/15/2022] Open
Abstract
Across species, animals organize into social dominance hierarchies that serve to decrease aggression and facilitate survival of the group. Neuroscientists have adopted several model organisms to study dominance hierarchies in the laboratory setting, including fish, reptiles, rodents and primates. We review recent literature across species that sheds light onto how the brain represents social rank to guide socially appropriate behaviour within a dominance hierarchy. First, we discuss how the brain responds to social status signals. Then, we discuss social approach and avoidance learning mechanisms that we propose could drive rank-appropriate behaviour. Lastly, we discuss how the brain represents memories of individuals (social memory) and how this may support the maintenance of unique individual relationships within a social group. This article is part of the theme issue 'The centennial of the pecking order: current state and future prospects for the study of dominance hierarchies'.
Collapse
Affiliation(s)
- Madeleine F. Dwortz
- Department of Psychology, University of Texas at Austin, Austin, TX 78712, USA
- Institute for Neuroscience, University of Texas at Austin, Austin, TX 78712, USA
| | - James P. Curley
- Department of Psychology, University of Texas at Austin, Austin, TX 78712, USA
| | - Kay M. Tye
- Systems Neuroscience Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Nancy Padilla-Coreano
- Systems Neuroscience Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Department of Neuroscience, University of Florida, Gainesville, FN 32611, USA
| |
Collapse
|
4
|
Dunbar RIM, Shultz S. The Infertility Trap: The Fertility Costs of Group-Living in Mammalian Social Evolution. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.634664] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mammal social groups vary considerably in size from single individuals to very large herds. In some taxa, these groups are extremely stable, with at least some individuals being members of the same group throughout their lives; in other taxa, groups are unstable, with membership changing by the day. We argue that this variability in grouping patterns reflects a tradeoff between group size as a solution to environmental demands and the costs created by stress-induced infertility (creating an infertility trap). These costs are so steep that, all else equal, they will limit group size in mammals to ∼15 individuals. A species will only be able to live in larger groups if it evolves strategies that mitigate these costs. We suggest that mammals have opted for one of two solutions. One option (fission-fusion herding) is low cost but high risk; the other (bonded social groups) is risk-averse, but costly in terms of cognitive requirements.
Collapse
|
5
|
Freeman AR. Female-female reproductive suppression: impacts on signals and behavior. Integr Comp Biol 2021; 61:1827-1840. [PMID: 33871603 DOI: 10.1093/icb/icab027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Female-female reproductive suppression is evident in an array of mammals, including rodents, primates, and carnivores. By suppressing others, breeding females can benefit by reducing competition from other females and their offspring. There are neuroendocrinological changes during suppression which result in altered behavior, reproductive cycling, and communication. This review, which focuses on species in Rodentia, explores the current theoretical frameworks of female-female reproductive suppression, how female presence and rank impacts reproductive suppression, and some of the proposed mechanisms of suppression. Finally, the understudied role of olfactory communication in female-female reproductive suppression is discussed to identify current gaps in our understanding of this topic.
Collapse
Affiliation(s)
- Angela R Freeman
- Department of Psychology, Cornell University, 211 Uris Hall, Cornell University, Ithaca, NY 14853
| |
Collapse
|
6
|
Dunbar RIM. Fertility as a constraint on group size in African great Apes. Biol J Linn Soc Lond 2019. [DOI: 10.1093/biolinnean/blz172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Gorillas and chimpanzees live in social groups of very different size and structure. Here I test the hypothesis that this difference might reflect the way fertility maps onto group demography as it does in other Catarrhines. For both genera, birth rates and the number of surviving offspring per female are quadratic (or ∩-shaped) functions of the number of adult females in the group, and this is independent of environmental effects. The rate at which fertility declines ultimately imposes a constraint on the size of social groups that can be maintained in both taxa. The differences in group size between the two genera seem to reflect a contrast in the way females buffer themselves against this cost. Gorillas do this by using males as bodyguards, whereas chimpanzees exploit fission–fusion sociality to do so. The latter allows chimpanzees to live in much larger groups without paying a fertility cost (albeit at a cognitive cost).
Collapse
Affiliation(s)
- R I M Dunbar
- Department of Experimental Psychology, University of Oxford, Radcliffe Observatory Quarter, Oxford, UK
| |
Collapse
|
7
|
Mendoza DL, Mondragón R, Mayagoitia L, Randall CB. Behavioral Effects of Fluprazine in Lactating Hamsters and in Their Progeny. PSYCHOLOGICAL RECORD 2018. [DOI: 10.1007/bf03399548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Dunbar R. Social structure as a strategy to mitigate the costs of group living: a comparison of gelada and guereza monkeys. Anim Behav 2018; 136:53-64. [PMID: 29497179 PMCID: PMC5825386 DOI: 10.1016/j.anbehav.2017.12.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/05/2017] [Accepted: 11/06/2017] [Indexed: 11/24/2022]
Abstract
In mammals, and especially primates, group size and social complexity are typically correlated. However, we have no general explanation why this is so. I suggest that the answer may lie in one of the costs of group living: mammalian reproductive endocrinology is extremely sensitive to stress, and forms one of the hidden costs of living in groups. Fertility declines with group size widely across the social mammals, including primates, and will ultimately place a constraint on group size. However, some species seem to have been able to mitigate this cost by forming bonded relationships that reduce the impact of experienced aggression, even if rates of aggression remain high. The downside is that they reduce network connectivity and hence risk fragmenting the group by providing fracture lines for group fission. To explore this, I compare network indices and fertility patterns across the same range of group sizes for two species of Old World monkeys, Colobus guereza and Theropithecus gelada: the former relatively unsocial, the latter intensely social with frequent use of grooming-based alliances. Compared to those of the guereza, gelada social networks lose density more slowly, maintain connectedness more effectively and are less likely to fragment as they increase in size. Although fertility declines with group size in both species, in gelada the impact of this effect is deferred to larger group sizes. The differences in fertility and network structure both predict the very different maximum group sizes typical of these two species, as well as the typical sizes at which their groups undergo fission. This finding may explain aspects of wider mammalian sociality.
Collapse
Affiliation(s)
- R.I.M. Dunbar
- Department of Experimental Psychology, University of Oxford, Oxford, U.K
- Department of Computer Science, Aalto University, Aalto, Finland
| |
Collapse
|
9
|
Terranova JI, Ferris CF, Albers HE. Sex Differences in the Regulation of Offensive Aggression and Dominance by Arginine-Vasopressin. Front Endocrinol (Lausanne) 2017; 8:308. [PMID: 29184535 PMCID: PMC5694440 DOI: 10.3389/fendo.2017.00308] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 10/23/2017] [Indexed: 02/01/2023] Open
Abstract
Arginine-vasopressin (AVP) plays a critical role in the regulation of offensive aggression and social status in mammals. AVP is found in an extensive neural network in the brain. Here, we discuss the role of AVP in the regulation of aggression in the limbic system with an emphasis on the critical role of hypothalamic AVP in the control of aggression. In males, activation of AVP V1a receptors (V1aRs) in the hypothalamus stimulates offensive aggression, while in females activation of V1aRs inhibits aggression. Serotonin (5-HT) also acts within the hypothalamus to modulate the effects of AVP on aggression in a sex-dependent manner. Activation of 5-HT1a receptors (5-HT1aRs) inhibits aggression in males and stimulates aggression in females. There are also striking sex differences in the mechanisms underlying the acquisition of dominance. In males, the acquisition of dominance is associated with the activation of AVP-containing neurons in the hypothalamus. By contrast, in females, the acquisition of dominance is associated with the activation of 5-HT-containing neurons in the dorsal raphe. AVP and 5-HT also play critical roles in the regulation of a form of social communication that is important for the maintenance of dominance relationships. In both male and female hamsters, AVP acts via V1aRs in the hypothalamus, as well as in other limbic structures, to communicate social status through the stimulation of a form of scent marking called flank marking. 5-HT acts on 5-HT1aRs as well as other 5-HT receptors within the hypothalamus to inhibit flank marking induced by AVP in both males and females. Interestingly, while AVP and 5-HT influence the expression of aggression in opposite ways in males and females, there are no sex differences in the effects of AVP and 5-HT on the expression of social communication. Given the profound sex differences in the incidence of many psychiatric disorders and the increasing evidence for a relationship between aggressiveness/dominance and the susceptibility to these disorders, understanding the neural regulation of aggression and social status will have significant import for translational studies.
Collapse
Affiliation(s)
- Joseph I. Terranova
- Center for Behavioral Neuroscience, Neuroscience Institute, Georgia State University, Atlanta, GA, United States
| | - Craig F. Ferris
- Department of Psychology, Center for Translational NeuroImaging, Northeastern University, Boston, MA, United States
| | - H. Elliott Albers
- Center for Behavioral Neuroscience, Neuroscience Institute, Georgia State University, Atlanta, GA, United States
- *Correspondence: H. Elliott Albers,
| |
Collapse
|
10
|
Schulz KM, Sisk CL. The organizing actions of adolescent gonadal steroid hormones on brain and behavioral development. Neurosci Biobehav Rev 2016; 70:148-158. [PMID: 27497718 DOI: 10.1016/j.neubiorev.2016.07.036] [Citation(s) in RCA: 175] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 07/13/2016] [Accepted: 07/14/2016] [Indexed: 01/03/2023]
Abstract
Adolescence is a developmental period characterized by dramatic changes in cognition, risk-taking and social behavior. Although gonadal steroid hormones are well-known mediators of these behaviors in adulthood, the role gonadal steroid hormones play in shaping the adolescent brain and behavioral development has only come to light in recent years. Here we discuss the sex-specific impact of gonadal steroid hormones on the developing adolescent brain. Indeed, the effects of gonadal steroid hormones during adolescence on brain structure and behavioral outcomes differs markedly between the sexes. Research findings suggest that adolescence, like the perinatal period, is a sensitive period for the sex-specific effects of gonadal steroid hormones on brain and behavioral development. Furthermore, evidence from studies on male sexual behavior suggests that adolescence is part of a protracted postnatal sensitive period that begins perinatally and ends following adolescence. As such, the perinatal and peripubertal periods of brain and behavioral organization likely do not represent two discrete sensitive periods, but instead are the consequence of normative developmental timing of gonadal hormone secretions in males and females.
Collapse
Affiliation(s)
- Kalynn M Schulz
- Department of Psychology, University of Tennessee, Knoxville, TN 37996, United States.
| | - Cheryl L Sisk
- Neuroscience Program, Michigan State University, East Lansing, MI 48824, United States.
| |
Collapse
|
11
|
Caldwell HK, Albers HE. Oxytocin, Vasopressin, and the Motivational Forces that Drive Social Behaviors. Curr Top Behav Neurosci 2016; 27:51-103. [PMID: 26472550 DOI: 10.1007/7854_2015_390] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The motivation to engage in social behaviors is influenced by past experience and internal state, but also depends on the behavior of other animals. Across species, the oxytocin (Oxt) and vasopressin (Avp) systems have consistently been linked to the modulation of motivated social behaviors. However, how they interact with other systems, such as the mesolimbic dopamine system, remains understudied. Further, while the neurobiological mechanisms that regulate prosocial/cooperative behaviors have been extensively examined, far less is understood about competitive behaviors, particularly in females. In this chapter, we highlight the specific contributions of Oxt and Avp to several cooperative and competitive behaviors and discuss their relevance to the concept of social motivation across species, including humans. Further, we discuss the implications for neuropsychiatric diseases and suggest future areas of investigation.
Collapse
|
12
|
Abstract
During the latter half of the last century, evidence of reproductive competition between males and male selection by females led to the development of a stereotypical view of sex differences that characterized males as competitive and aggressive, and females as passive and choosy, which is currently being revised. Here, we compare social competition and its consequences for selection in males and females and argue that similar selection processes operate in both sexes and that contrasts between the sexes are quantitative rather than qualitative. We suggest that classifications of selection based on distinction between the form of competition or the components of fitness that are involved introduce unnecessary complexities and that the most useful approach in understanding the evolution and distribution of differences and similarities between the sexes is to compare the operation of selection in males and females in different reproductive systems.
Collapse
Affiliation(s)
- T. H. Clutton-Brock
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | | |
Collapse
|
13
|
Clutton-Brock T, Huchard E. Social competition and its consequences in female mammals. J Zool (1987) 2013. [DOI: 10.1111/jzo.12023] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
| | - E. Huchard
- Department of Zoology; University of Cambridge; Cambridge UK
| |
Collapse
|
14
|
Smorkatcheva AV, Orlova DV. Effect of polygyny on female reproductive success in the mandarin vole, Microtus mandarinus (Rodentia, Arvicolinae). BIOL BULL+ 2011. [DOI: 10.1134/s1062359011070089] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Chen T, Beekman M, Ward AJW. The role of female dominance hierarchies in the mating behaviour of mosquitofish. Biol Lett 2011; 7:343-5. [PMID: 21123247 PMCID: PMC3097860 DOI: 10.1098/rsbl.2010.1020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2010] [Accepted: 11/11/2010] [Indexed: 11/12/2022] Open
Abstract
While studies of sexual selection focus primarily on female choice and male-male competition, males should also exert mate choice in order to maximize their reproductive success. We examined male mate choice in mosquitofish, Gambusia holbrooki, with respect to female size and female dominance. We found that the number of mating attempts made by a male was predicted by the dominance rank of females in a group, with dominant females attracting more mating attempts than subordinates. The number of mating attempts made by males was independent of the female size. The observed bias in the number of mating attempts towards dominant females may be driven either by straightforward male mate choice, since dominance and female fecundity are often closely related, or via the dominant females mediating male mating behaviour by restricting their access to subordinate females.
Collapse
Affiliation(s)
| | | | - Ashley J. W. Ward
- School of Biological Sciences, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
16
|
Stockley P, Bro-Jørgensen J. Female competition and its evolutionary consequences in mammals. Biol Rev Camb Philos Soc 2011; 86:341-66. [DOI: 10.1111/j.1469-185x.2010.00149.x] [Citation(s) in RCA: 307] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Schulz KM, Molenda-Figueira HA, Sisk CL. Back to the future: The organizational-activational hypothesis adapted to puberty and adolescence. Horm Behav 2009; 55:597-604. [PMID: 19446076 PMCID: PMC2720102 DOI: 10.1016/j.yhbeh.2009.03.010] [Citation(s) in RCA: 397] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Revised: 03/15/2009] [Accepted: 03/17/2009] [Indexed: 11/16/2022]
Abstract
Phoenix, Goy, Gerall, and Young first proposed in 1959 the organizational-activational hypothesis of hormone-driven sex differences in brain and behavior. The original hypothesis posited that exposure to steroid hormones early in development masculinizes and defeminizes neural circuits, programming behavioral responses to hormones in adulthood. This hypothesis has inspired a multitude of experiments demonstrating that the perinatal period is a time of maximal sensitivity to gonadal steroid hormones. However, recent work from our laboratory and others demonstrates that steroid-dependent organization of behavior also occurs during adolescence, prompting a reassessment of the developmental time-frame within which organizational effects are possible. In addition, we present evidence that adolescence is part of a single protracted postnatal sensitive period for steroid-dependent organization of male mating behavior that begins perinatally and ends in late adolescence. These findings are consistent with the original formulation of the organizational/activational hypothesis, but extend our notions of what constitutes "early" development considerably. Finally, we present evidence that female behaviors also undergo steroid-dependent organization during adolescence, and that social experience modulates steroid-dependent adolescent brain and behavioral development. The implications for human adolescent development are also discussed, especially with respect to how animal models can help to elucidate the factors underlying the association between pubertal timing and adult psychopathology in humans.
Collapse
Affiliation(s)
- Kalynn M Schulz
- Department of Psychiatry and Developmental Psychobiology Program, University of Colorado, Denver Anschutz Medical Campus, Aurora, CO 80045, USA.
| | | | | |
Collapse
|
18
|
Kinahan AA, Pillay N. Dominance status influences female reproductive strategy in a territorial African rodent Rhabdomys pumilio. Behav Ecol Sociobiol 2007. [DOI: 10.1007/s00265-007-0482-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Ragnauth AK, Devidze N, Moy V, Finley K, Goodwillie A, Kow LM, Muglia LJ, Pfaff DW. Female oxytocin gene-knockout mice, in a semi-natural environment, display exaggerated aggressive behavior. GENES BRAIN AND BEHAVIOR 2005; 4:229-39. [PMID: 15924555 DOI: 10.1111/j.1601-183x.2005.00118.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Compared to results from a generation of neuropharmacological work, the phenotype of mice lacking the oxytocin (OT) peptide gene was remarkably normal. An important component of the current experiments was to assay OT-knockout (OTKO) and wild-type (WT) littermate control mice living under controlled stressful conditions designed to mimic more closely the environment for which the mouse genome evolved. Furthermore, our experimental group was comprised of an all-female population, in contrast to previous studies which have focused on all-male populations. Our data indicated that aggressive behaviors initiated by OTKO during a food deprivation feeding challenge were considerably more intense and diverse than aggressive behaviors initiated by WT. From the measures of continuous social interaction in the intruder paradigm, it emerged that OTKO mice were more offensively aggressive (attacking rumps and tails) than WT. In a test of parental behaviors, OTKO mice were 100% infanticidal while WT were 16% infanticidal and 50% maternal. Finally, 'alpha females' (always OTKO) were identified in each experiment. They were the most aggressive, the first to feed and the most dominant at nesting behaviors. Semi-natural environments are excellent testing environments for elucidating behavioral differences between transgenic mice and their WT littermates which may not be ordinarily discernible. Future studies of mouse group behavior should include examining female groupings in addition to the more usual all-male groups.
Collapse
Affiliation(s)
- A K Ragnauth
- Laboratory of Neurobiology & Behavior, The Rockefeller University, New York, NY 10021, USA.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Lewis RJ. Beyond dominance: the importance of leverage. THE QUARTERLY REVIEW OF BIOLOGY 2002; 77:149-64. [PMID: 12089769 DOI: 10.1086/343899] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The dominance concept as it is currently defined and applied in animal behavior is problematic. What has been traditionally considered dominance is actually a combination of dominance in the strict sense and power based upon other sources. Rather than working within the current paradigm, I propose a conceptual revision founded upon the more inclusive concept of power. Power is a phenomenon where a dyadic relationship is asymmetrical (Simon 1953) and can be divided into two types: dominance and leverage. Dominance is power based upon the ability to use force. Leverage is power based upon a resource that cannot be taken by force. Four characteristics of power are used in sociology (base, means, amount, and scope) that facilitate both the expansion of the power concept beyond traditional dominance and the application of these theoretical ideas in empirical studies. This cross-disciplinary approach to power allows a wide range of behaviors to be considered as critical while at the same time it focuses the attention of researchers to the aspects of power that differ among dyads, classes, and species. Power is not simply a linear combination of dominance and leverage, and more research is needed before the exact nature of this relationship can be clarified. By considering dominance as one form of power, this framework fosters a more complete understanding of power dynamics and their effects on animal societies.
Collapse
|
21
|
Billitti JE, Lasley BL, Wilson BW. Development and validation of a fecal testosterone biomarker in Mus musculus and Peromyscus maniculatus. Biol Reprod 1998; 59:1023-8. [PMID: 9780305 DOI: 10.1095/biolreprod59.5.1023] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
This is a report on the development and validation of an ELISA method to determine fecal testosterone levels, and on their evaluation as a biomarker for adverse effects of endocrine-disrupting chemicals on reproductive health using male rodents of the Peromyscus maniculatus and Mus musculus species as an animal model. The ELISA antibody had the highest specificity for testosterone (100%), followed by dihydrotestosterone (57.4%) and androstenediol (0.27%). Radiolabeled testosterone was injected i.p. into three mice. Fecal samples were collected, extracted, and analyzed by liquid scintillation counting. The ELISA was performed to characterize the excretion kinetics and metabolic fate of circulating testosterone. Solubilization of feces with 10% methanol overnight provided an extraction efficiency of 87% for all metabolites; an ethyl ether extraction was more selective for testosterone. The fecal excretion of the testosterone was a biphasic process with a majority of the radioactivity recovered in the first 24 hours. HPLC analysis revealed at least five testosterone metabolites in feces, with most metabolites being less polar than testosterone. This study forms the initial evaluation of what will become a field monitoring tool.
Collapse
Affiliation(s)
- J E Billitti
- Department of Environmental Toxicology, University of California at Davis, Davis, California 95616, USA
| | | | | |
Collapse
|
22
|
Abstract
Sex ratio skews in relation to a variety of environmental or parental conditions have frequently been reported among mammals and, though less commonly, among birds. However, the adaptive significance of such sex ratio variation remains unclear. This has, in part, been attributed to the absence of a low-cost physiological mechanism for sex ratio manipulation by the parent. It is shown here that several recent findings in reproductive biology are suggestive of many potential pathways by which gonadotropins and steroid hormones could interfere with the sex ratio at birth. And these hormone levels are well-known to be influenced by many parameters which have been invoked in correlating with offspring sex ratios. Hence, it is argued that the significant, but inconsistent sex ratio biases reported in mammalian and avian populations are coherent with current knowledge on reproductive physiology in those species. However, whether such variations can be viewed at as a consequence of physiological constraint or as adaptive sex ratio adjustment, has still to be determined.
Collapse
|
23
|
Krackow S. Sex-specific embryonic mortality during concurrent pregnancy and lactation in house mice. THE JOURNAL OF EXPERIMENTAL ZOOLOGY 1990; 256:106-12. [PMID: 2401881 DOI: 10.1002/jez.1402560113] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
To evaluate the importance of lactational stress for sex ratio manipulation in postpartum inseminated house mice, 163 sexually inexperienced male and female BALB/c ABom inbred mice were mated and stud males were removed the day following the initial parturition. Randomly chosen dams were allowed to suckle their young for either one or 14 or 21 days. The results showed that two weeks of lactation enhance the incidence of total abortion of the litter conceived postpartum. If lactation continued another week, dams which gave birth to a second litter lost relatively more embryos during uterine development and the percentage of lost embryos was increased by the number of pups suckled. Among these dams, the number of embryos lost in utero correlated positively with viable litter sex ratios (percentage male pups) at second parturition, indicating that lactational stress enhances embryonic mortality and that this additional mortality predominantly affects female embryos.
Collapse
Affiliation(s)
- S Krackow
- Fakultät für Biologie, Universität Konstanz, Federal Republic of Germany
| |
Collapse
|
24
|
A guide to the literature on aggressive behavior. Aggress Behav 1989. [DOI: 10.1002/1098-2337(1989)15:2<183::aid-ab2480150207>3.0.co;2-g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|