1
|
Chang Y, Lusk S, Chang A, Ward CS, Ray RS. Vglut2-based glutamatergic signaling in central noradrenergic neurons is dispensable for normal breathing and chemosensory reflexes. eLife 2024; 12:RP88673. [PMID: 39287624 PMCID: PMC11407767 DOI: 10.7554/elife.88673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
Central noradrenergic (NA) neurons are key constituents of the respiratory homeostatic network. NA dysfunction is implicated in several developmental respiratory disorders including Congenital Central Hyperventilation Syndrome (CCHS), Sudden Infant Death Syndrome (SIDS), and Rett Syndrome. The current unchallenged paradigm in the field, supported by multiple studies, is that glutamate co-transmission in subsets of central NA neurons plays a role in breathing control. If true, NA-glutamate co-transmission may also be mechanistically important in respiratory disorders. However, the requirement of NA-derived glutamate in breathing has not been directly tested and the extent of glutamate co-transmission in the central NA system remains uncharacterized. Therefore, we fully characterized the cumulative fate maps and acute adult expression patterns of all three vesicular glutamate transporters (Slc17a7 (Vglut1), Slc17a6 (Vglut2), and Slc17a8 (Vglut3)) in NA neurons, identifying a novel, dynamic expression pattern for Vglut2 and an undescribed co-expression domain for Vglut3 in the NA system. In contrast to our initial hypothesis that NA-derived glutamate is required to breathing, our functional studies showed that loss of Vglut2 throughout the NA system failed to alter breathing or metabolism under room air, hypercapnia, or hypoxia in unrestrained and unanesthetized mice. These data demonstrate that Vglut2-based glutamatergic signaling within the central NA system is not required for normal baseline breathing and hypercapnic, hypoxic chemosensory reflexes. These outcomes challenge the current understanding of central NA neurons in the control of breathing and suggests that glutamate may not be a critical target to understand NA neuron dysfunction in respiratory diseases.
Collapse
Affiliation(s)
- Yuan Chang
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
- Department of Integrative Physiology, Baylor College of MedicineHoustonUnited States
| | - Savannah Lusk
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
| | - Andersen Chang
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
| | - Christopher S Ward
- Department of Integrative Physiology, Baylor College of MedicineHoustonUnited States
| | - Russell S Ray
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
- Department of Integrative Physiology, Baylor College of MedicineHoustonUnited States
- McNair Medical InstituteHoustonUnited States
| |
Collapse
|
2
|
Chang Y, Lusk S, Chang A, Ward CS, Ray RS. Vglut2-based glutamatergic signaling in central noradrenergic neurons is dispensable for normal breathing and chemosensory reflexes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.04.16.535729. [PMID: 37090585 PMCID: PMC10120737 DOI: 10.1101/2023.04.16.535729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Central noradrenergic (NA) neurons are key constituents of the respiratory homeostatic network. NA dysfunction is implicated in several developmental respiratory disorders including Congenital Central Hyperventilation Syndrome (CCHS), Sudden Infant Death Syndrome (SIDS) and Rett Syndrome. The current unchallenged paradigm in the field, supported by multiple studies, is that glutamate co-transmission in subsets of central NA neurons plays a role in breathing control. If true, NA-glutamate co-transmission may also be mechanistically important in respiratory disorders. However, the requirement of NA-derived glutamate in breathing has not been directly tested and the extent of glutamate co-transmission in the central NA system remains uncharacterized. Therefore, we fully characterized the cumulative fate maps and acute adult expression patterns of all three Vesicular Glutamate Transporters ( Slc17a7 (Vglut1), Slc17a6 (Vglut2), and Slc17a8 (Vglut3)) in NA neurons, identifying a novel, dynamic expression pattern for Vglut2 and an undescribed co-expression domain for Vglut3 in the NA system. In contrast to our initial hypothesis that NA derived glutamate is required to breathing, our functional studies showed that loss of Vglut2 throughout the NA system failed to alter breathing or metabolism under room air, hypercapnia, or hypoxia in unrestrained and unanesthetized mice. These data demonstrate that Vglut2-based glutamatergic signaling within the central NA system is not required for normal baseline breathing and hypercapnic, hypoxic chemosensory reflexes. These outcomes challenge the current understanding of central NA neurons in the control of breathing and suggests that glutamate may not be a critical target to understand NA neuron dysfunction in respiratory diseases.
Collapse
|
3
|
Turk AZ, Millwater M, SheikhBahaei S. Whole-brain analysis of CO 2 chemosensitive regions and identification of the retrotrapezoid and medullary raphé nuclei in the common marmoset ( Callithrix jacchus). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.26.558361. [PMID: 37986845 PMCID: PMC10659419 DOI: 10.1101/2023.09.26.558361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Respiratory chemosensitivity is an important mechanism by which the brain senses changes in blood partial pressure of CO2 (PCO2). It is proposed that special neurons (and astrocytes) in various brainstem regions play key roles as CO2 central respiratory chemosensors in rodents. Although common marmosets (Callithrix jacchus), New-World non-human primates, show similar respiratory responses to elevated inspired CO2 as rodents, the chemosensitive regions in marmoset brain have not been defined yet. Here, we used c-fos immunostainings to identify brain-wide CO2-activated brain regions in common marmosets. In addition, we mapped the location of the retrotrapezoid nucleus (RTN) and raphé nuclei in the marmoset brainstem based on colocalization of CO2-induced c-fos immunoreactivity with Phox2b, and TPH immunostaining, respectively. Our data also indicated that, similar to rodents, marmoset RTN astrocytes express Phox2b and have complex processes that create a meshwork structure at the ventral surface of medulla. Our data highlight some cellular and structural regional similarities in brainstem of the common marmosets and rodents.
Collapse
Affiliation(s)
- Ariana Z. Turk
- Neuron-Glia Signaling and Circuits Unit, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, 20892 MD, USA
| | - Marissa Millwater
- Neuron-Glia Signaling and Circuits Unit, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, 20892 MD, USA
| | - Shahriar SheikhBahaei
- Neuron-Glia Signaling and Circuits Unit, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, 20892 MD, USA
| |
Collapse
|
4
|
Gonye EC, Bayliss DA. Criteria for central respiratory chemoreceptors: experimental evidence supporting current candidate cell groups. Front Physiol 2023; 14:1241662. [PMID: 37719465 PMCID: PMC10502317 DOI: 10.3389/fphys.2023.1241662] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 08/16/2023] [Indexed: 09/19/2023] Open
Abstract
An interoceptive homeostatic system monitors levels of CO2/H+ and provides a proportionate drive to respiratory control networks that adjust lung ventilation to maintain physiologically appropriate levels of CO2 and rapidly regulate tissue acid-base balance. It has long been suspected that the sensory cells responsible for the major CNS contribution to this so-called respiratory CO2/H+ chemoreception are located in the brainstem-but there is still substantial debate in the field as to which specific cells subserve the sensory function. Indeed, at the present time, several cell types have been championed as potential respiratory chemoreceptors, including neurons and astrocytes. In this review, we advance a set of criteria that are necessary and sufficient for definitive acceptance of any cell type as a respiratory chemoreceptor. We examine the extant evidence supporting consideration of the different putative chemoreceptor candidate cell types in the context of these criteria and also note for each where the criteria have not yet been fulfilled. By enumerating these specific criteria we hope to provide a useful heuristic that can be employed both to evaluate the various existing respiratory chemoreceptor candidates, and also to focus effort on specific experimental tests that can satisfy the remaining requirements for definitive acceptance.
Collapse
Affiliation(s)
- Elizabeth C. Gonye
- Department of Pharmacology, University of Virginia, Charlottesville, VA, United States
| | | |
Collapse
|
5
|
Kurogochi K, Uechi M, Orito K. Involvement of neurokinin-1 receptors in the autonomic nervous system in colorectal distension-induced cardiovascular suppression in rats. Front Pharmacol 2022; 13:1020685. [PMID: 36339556 PMCID: PMC9627219 DOI: 10.3389/fphar.2022.1020685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/07/2022] [Indexed: 09/07/2024] Open
Abstract
Situational syncope, which includes rectally mediated reflexes, is defined as syncope induced by a specific situation. Its pathogenesis generally involves disorders of the autonomic nervous system. However, the mechanisms and preventive strategies are not yet well understood. Therefore, we hypothesized that a tachykinin neurokinin-1 receptor might be involved in the autonomic nervous system, and that a neurokinin-1 receptor antagonist could mitigate reflex syncope. This study used a rat model in which the reflex was induced by afferent vagal stimulation with colorectal distension (CRD). In the study, the rats were divided into three groups: non-CRD, CRD, and CRD with a neurokinin-1 receptor antagonist. First, we examined the effect of fosaprepitant, a neurokinin-1 receptor antagonist, on the circulatory response in this model. We then determined the brain regions that showed increased numbers of c-Fos immunoreactive cells in the respective groups. Our results suggest that the colorectal distension procedure reduced blood pressure and that fosaprepitant lowered this response. In addition, the number of c-Fos immunoreactive cells was increased in the caudal ventrolateral medullary region with colorectal distension, and this number was decreased by the administration of fosaprepitant. In conclusion, fosaprepitant might be involved in the vagal reflex pathway and potentially suppress the circulatory response to colorectal distension.
Collapse
Affiliation(s)
- Kentaro Kurogochi
- Laboratory of Physiology II Department of Veterinary Medicine, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa, Japan
- JASMINE Veterinary Cardiovascular Medical Center, Yokohama, Kanagawa, Japan
| | - Masami Uechi
- JASMINE Veterinary Cardiovascular Medical Center, Yokohama, Kanagawa, Japan
| | - Kensuke Orito
- Laboratory of Physiology II Department of Veterinary Medicine, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa, Japan
| |
Collapse
|
6
|
Tenorio-Lopes L, Kinkead R. Sex-Specific Effects of Stress on Respiratory Control: Plasticity, Adaptation, and Dysfunction. Compr Physiol 2021; 11:2097-2134. [PMID: 34107062 DOI: 10.1002/cphy.c200022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
As our understanding of respiratory control evolves, we appreciate how the basic neurobiological principles of plasticity discovered in other systems shape the development and function of the respiratory control system. While breathing is a robust homeostatic function, there is growing evidence that stress disrupts respiratory control in ways that predispose to disease. Neonatal stress (in the form of maternal separation) affects "classical" respiratory control structures such as the peripheral O2 sensors (carotid bodies) and the medulla (e.g., nucleus of the solitary tract). Furthermore, early life stress disrupts the paraventricular nucleus of the hypothalamus (PVH), a structure that has emerged as a primary determinant of the intensity of the ventilatory response to hypoxia. Although underestimated, the PVH's influence on respiratory function is a logical extension of the hypothalamic control of metabolic demand and supply. In this article, we review the functional and anatomical links between the stress neuroendocrine axis and the medullary network regulating breathing. We then present the persistent and sex-specific effects of neonatal stress on respiratory control in adult rats. The similarities between the respiratory phenotype of stressed rats and clinical manifestations of respiratory control disorders such as sleep-disordered breathing and panic attacks are remarkable. These observations are in line with the scientific consensus that the origins of adult disease are often found among developmental and biological disruptions occurring during early life. These observations bring a different perspective on the structural hierarchy of respiratory homeostasis and point to new directions in our understanding of the etiology of respiratory control disorders. © 2021 American Physiological Society. Compr Physiol 11:1-38, 2021.
Collapse
Affiliation(s)
- Luana Tenorio-Lopes
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, The University of Calgary, Calgary, Alberta, Canada
| | - Richard Kinkead
- Département de Pédiatrie, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec City, Quebec, Canada
| |
Collapse
|
7
|
Abstract
The aim of this review is to summarize evidence regarding rat emotional experiences during carbon dioxide (CO2) exposure. The studies reviewed show that CO2 exposure is aversive to rats, and that rats respond to CO2 exposure with active and passive defense behaviors. Plasma corticosterone and bradycardia increased in rats exposed to CO2. As with anxiogenic drugs, responses to CO2 are counteracted by the administration of anxiolytics, SRIs, and SSRI's. Human studies reviewed indicate that, when inhaling CO2, humans experience feelings of anxiety fear and panic, and that administration of benzodiazepines, serotonin precursors, and SSRIs ameliorate these feelings. In vivo and in vitro rat studies reviewed show that brain regions, ion channels, and neurotransmitters involved in negative emotional responses are activated by hypercapnia and acidosis associated with CO2 exposure. On the basis of the behavioral, physiological, and neurobiological evidence reviewed, we conclude that CO2 elicits negative emotions in rats.
Collapse
|
8
|
Wang X, Lv Y, Xie J, Li B, Zhou T, Chen Y, Chen Y, Song J. Brain regions of marine medaka activated by acute and short-term ocean acidification. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 720:137279. [PMID: 32145610 DOI: 10.1016/j.scitotenv.2020.137279] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 05/28/2023]
Abstract
Altered behaviors have been reported in many marine fish following exposure to high CO2 concentrations. However, the mechanistic link between elevated CO2 and activation of brain regions in fish is unknown. Herein, we examined the relative quantification and location of c-Fos expression in marine medaka following acute (360 min) and short-term (7 d) exposure to CO2-enriched water (1000 ppm and 1800 ppm CO2). In the control and two treatment groups, pH was stable at 8.21, 7.92 and 7.64, respectively. After acute exposure to seawater acidified by enrichment with CO2, there was a clear upregulation of c-Fos protein in the medaka brain (P < 0.05). c-Fos protein expression peaked after 120 min exposure in the two treatment groups and thereafter began to decline. There were marked increases in c-Fos-labeling in the ventricular and periventricular zones of the cerebral hemispheres and the medulla oblongata. After 1800 ppm CO2 exposure for 7 d, medaka showed significant preference for dark zones during the initial 2 min period. c-Fos protein expression in the ventricular and periventricular zones of the diencephalon in medaka exposed to 1000 ppm and 1800 ppm CO2 were 0.51 ± 0.10 and 1.34 ± 0.30, respectively, which were significantly higher than controls (P < 0.05). Highest doublecortin protein expression occurred in theventricular zones of the diencephalon and mesencephalon. These findings suggest that the ventricular and periventricular zones of the cerebral hemispheres and the medulla oblongata of marine medaka are involved in rapid acid-base regulation. Prolonged ocean acidification may induce cell mitosis and differentiation in the adult medaka brain.
Collapse
Affiliation(s)
- Xiaojie Wang
- Institute for Marine Biosystem and Neurosciences, Shanghai Ocean University, Shanghai 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, China.
| | - Yutao Lv
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), China
| | - Jinling Xie
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), China
| | - Baolin Li
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), China
| | - Tangjian Zhou
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), China
| | - Yaqi Chen
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), China
| | - Yi Chen
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), China
| | - Jiakun Song
- Institute for Marine Biosystem and Neurosciences, Shanghai Ocean University, Shanghai 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China
| |
Collapse
|
9
|
Liu N, Fu C, Yu H, Wang Y, Shi L, Hao Y, Yuan F, Zhang X, Wang S. Respiratory Control by Phox2b-expressing Neurons in a Locus Coeruleus-preBötzinger Complex Circuit. Neurosci Bull 2020; 37:31-44. [PMID: 32468398 DOI: 10.1007/s12264-020-00519-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 03/12/2020] [Indexed: 02/06/2023] Open
Abstract
The locus coeruleus (LC) has been implicated in the control of breathing. Congenital central hypoventilation syndrome results from mutation of the paired-like homeobox 2b (Phox2b) gene that is expressed in LC neurons. The present study was designed to address whether stimulation of Phox2b-expressing LC (Phox2bLC) neurons affects breathing and to reveal the putative circuit mechanism. A Cre-dependent viral vector encoding a Gq-coupled human M3 muscarinic receptor (hM3Dq) was delivered into the LC of Phox2b-Cre mice. The hM3Dq-transduced neurons were pharmacologically activated while respiratory function was measured by plethysmography. We demonstrated that selective stimulation of Phox2bLC neurons significantly increased basal ventilation in conscious mice. Genetic ablation of these neurons markedly impaired hypercapnic ventilatory responses. Moreover, stimulation of Phox2bLC neurons enhanced the activity of preBötzinger complex neurons. Finally, axons of Phox2bLC neurons projected to the preBötzinger complex. Collectively, Phox2bLC neurons contribute to the control of breathing most likely via an LC-preBötzinger complex circuit.
Collapse
Affiliation(s)
- Na Liu
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, China.,Department of Physiology, Cangzhou Medical College, Cangzhou, 061000, China
| | - Congrui Fu
- School of Nursing, Hebei Medical University, Shijiazhuang, 050000, China
| | - Hongxiao Yu
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yakun Wang
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Luo Shi
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yinchao Hao
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Fang Yuan
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Xiangjian Zhang
- Hebei Key laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, 050000, China
| | - Sheng Wang
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, China.
| |
Collapse
|
10
|
Dereli AS, Yaseen Z, Carrive P, Kumar NN. Adaptation of Respiratory-Related Brain Regions to Long-Term Hypercapnia: Focus on Neuropeptides in the RTN. Front Neurosci 2019; 13:1343. [PMID: 31920508 PMCID: PMC6923677 DOI: 10.3389/fnins.2019.01343] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 11/28/2019] [Indexed: 12/21/2022] Open
Abstract
Long-term hypercapnia is associated with respiratory conditions including obstructive sleep apnea, chronic obstructive pulmonary disease and obesity hypoventilation syndrome. Animal studies have demonstrated an initial (within hours) increase in ventilatory drive followed by a decrease in this response over the long-term (days–weeks) in response hypercapnia. Little is known about whether changes in the central respiratory chemoreflex are involved. Here we investigated whether central respiratory chemoreceptor neurons of the retrotrapezoid nucleus (RTN), which project to the respiratory pattern generator within the ventral respiratory column (VRC) have a role in the mechanism of neuroplasticity associated with long-term hypercapnia. Adult male C57BL/6 mice (n = 5/group) were used. Our aims were (1) to determine if galanin, neuromedin B and gastrin-releasing peptide gene expression is altered in the RTN after long-term hypercapnia. This was achieved using qPCR to measure mRNA expression changes of neuropeptides in the RTN after short-term hypercapnia (6 or 8 h, 5 or 8% CO2) or long-term hypercapnia exposure (10 day, 5 or 8% CO2), (2) in the mouse brainstem, to determine the distribution of preprogalanin in chemoreceptors, and the co-occurrence of the galanin receptor 1 (GalR1:Gi-coupled receptor) with inhibitory GlyT2 ventral respiratory column neurons using in situ hybridization (ISH) to better characterize galaninergic RTN-VRC circuitry, (3) to investigate whether long-term hypercapnia causes changes to recruitment (detected by cFos immunohistochemistry) of respiratory related neural populations including the RTN neurons and their galaninergic subset, in vivo. Collectively, we found that hypercapnia decreases neuropeptide expression in the RTN in the short-term and has the opposite effect over the long-term. Following long term hypercapnia, the number of RTN galanin neurons remains unchanged, and their responsiveness to acute chemoreflex is sustained; in contrast, we identified multiple respiratory related sites that exhibit blunted chemoreflex activation. GalR1 was distributed in 11% of preBötC and 30% of BötC glycinergic neurons. Our working hypothesis is that during long-term hypercapnia, galanin co-release from RTN neurons may counterbalance glutamatergic inputs to respiratory centers to downscale energetically wasteful hyperventilation, thereby having a role in neuroplasticity by contributing to a decrease in ventilation, through the inhibitory effects of galanin.
Collapse
Affiliation(s)
- Ayse Sumeyra Dereli
- Department of Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Zarwa Yaseen
- Department of Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Pascal Carrive
- Department of Anatomy, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Natasha N Kumar
- Department of Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
11
|
Sex differences in breathing. Comp Biochem Physiol A Mol Integr Physiol 2019; 238:110543. [PMID: 31445081 DOI: 10.1016/j.cbpa.2019.110543] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 08/08/2019] [Accepted: 08/09/2019] [Indexed: 01/15/2023]
Abstract
Breathing is a vital behavior that ensures both the adequate supply of oxygen and the elimination of CO2, and it is influenced by many factors. Despite that most of the studies in respiratory physiology rely heavily on male subjects, there is much evidence to suggest that sex is an important factor in the respiratory control system, including the susceptibility for some diseases. These different respiratory responses in males and females may be related to the actions of sex hormones, especially in adulthood. These hormones affect neuromodulatory systems that influence the central medullary rhythm/pontine pattern generator and integrator, sensory inputs to the integrator and motor output to the respiratory muscles. In this article, we will first review the sex dependence on the prevalence of some respiratory-related diseases. Then, we will discuss the role of sex and gonadal hormones in respiratory control under resting conditions and during respiratory challenges, such as hypoxia and hypercapnia, and whether hormonal fluctuations during the estrous/menstrual cycle affect breathing control. We will then discuss the role of the locus coeruleus, a sexually dimorphic CO2/pH-chemosensitive nucleus, on breathing regulation in males and females. Next, we will highlight the studies that exist regarding sex differences in respiratory control during development. Finally, the few existing studies regarding the influence of sex on breathing control in non-mammalian vertebrates will be discussed.
Collapse
|
12
|
Lui S, Torontali Z, Tadjalli A, Peever J. Brainstem Nuclei Associated with Mediating Apnea-Induced Respiratory Motor Plasticity. Sci Rep 2018; 8:12709. [PMID: 30139983 PMCID: PMC6107593 DOI: 10.1038/s41598-018-28578-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 06/21/2018] [Indexed: 01/30/2023] Open
Abstract
The respiratory control system is plastic. It has a working memory and is capable of retaining how respiratory stimuli affect breathing by regulating synaptic strength between respiratory neurons. For example, repeated airway obstructions trigger a form of respiratory plasticity that strengthens inspiratory activity of hypoglossal (XII) motoneurons. This form of respiratory plasticity is known as long-term facilitation (LTF) and requires noradrenaline released onto XII motoneurons. However, the brainstem regions responsible for this form of LTF remain unidentified. Here, we used electrophysiology, neuropharmacology and immunohistochemistry in adult rats to identify the brainstem regions involved in mediating LTF. First, we show that repeated airway obstructions induce LTF of XII motoneuron activity and that inactivation of the noradrenergic system prevents LTF. Second, we show that noradrenergic cells in the locus coeruleus (LC), which project to XII motoneurons, are recruited during LTF induction. Third, we show that targeted inactivation of noradrenergic LC cells during LTF induction prevents LTF. And lastly, we show that the nucleus tractus solitarius (NTS), which has known projections to the LC, is critical for LTF because its inactivation prevents LTF. Our results suggest that both the LC and NTS are involved in mediating apnea-induced LTF, and we hypothesize that a NTS → LC → XII circuit mechanism mediates this form of respiratory motor plasticity.
Collapse
Affiliation(s)
- Simon Lui
- Centre for Biological Timing and Cognition, University of Toronto, Toronto, Ontario, M5S 3G5, Canada.,Departments of Cell and Systems Biology, University of Toronto, Toronto, Ontario, M5S 3G5, Canada
| | - Zoltan Torontali
- Centre for Biological Timing and Cognition, University of Toronto, Toronto, Ontario, M5S 3G5, Canada.,Departments of Cell and Systems Biology, University of Toronto, Toronto, Ontario, M5S 3G5, Canada
| | - Arash Tadjalli
- Centre for Biological Timing and Cognition, University of Toronto, Toronto, Ontario, M5S 3G5, Canada.,Departments of Cell and Systems Biology, University of Toronto, Toronto, Ontario, M5S 3G5, Canada
| | - John Peever
- Centre for Biological Timing and Cognition, University of Toronto, Toronto, Ontario, M5S 3G5, Canada. .,Departments of Cell and Systems Biology, University of Toronto, Toronto, Ontario, M5S 3G5, Canada. .,Department of Physiology, University of Toronto, Toronto, Ontario, M5S 3G5, Canada.
| |
Collapse
|
13
|
Kaur S, Wang JL, Ferrari L, Thankachan S, Kroeger D, Venner A, Lazarus M, Wellman A, Arrigoni E, Fuller PM, Saper CB. A Genetically Defined Circuit for Arousal from Sleep during Hypercapnia. Neuron 2017; 96:1153-1167.e5. [PMID: 29103805 DOI: 10.1016/j.neuron.2017.10.009] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 09/11/2017] [Accepted: 10/04/2017] [Indexed: 12/21/2022]
Abstract
The precise neural circuitry that mediates arousal during sleep apnea is not known. We previously found that glutamatergic neurons in the external lateral parabrachial nucleus (PBel) play a critical role in arousal to elevated CO2 or hypoxia. Because many of the PBel neurons that respond to CO2 express calcitonin gene-related peptide (CGRP), we hypothesized that CGRP may provide a molecular identifier of the CO2 arousal circuit. Here, we report that selective chemogenetic and optogenetic activation of PBelCGRP neurons caused wakefulness, whereas optogenetic inhibition of PBelCGRP neurons prevented arousal to CO2, but not to an acoustic tone or shaking. Optogenetic inhibition of PBelCGRP terminals identified a network of forebrain sites under the control of a PBelCGRP switch that is necessary to arouse animals from hypercapnia. Our findings define a novel cellular target for interventions that may prevent sleep fragmentation and the attendant cardiovascular and cognitive consequences seen in obstructive sleep apnea. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Satvinder Kaur
- Department of Neurology, Program in Neuroscience, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Joshua L Wang
- Department of Neurology, Program in Neuroscience, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Loris Ferrari
- Department of Neurology, Program in Neuroscience, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Stephen Thankachan
- Department of Psychiatry, Harvard Medical School & VA Boston Healthcare, 1400 VFW Parkway, West Roxbury, MA, USA
| | - Daniel Kroeger
- Department of Neurology, Program in Neuroscience, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Anne Venner
- Department of Neurology, Program in Neuroscience, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Michael Lazarus
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Japan
| | - Andrew Wellman
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Elda Arrigoni
- Department of Neurology, Program in Neuroscience, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Patrick M Fuller
- Department of Neurology, Program in Neuroscience, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Clifford B Saper
- Department of Neurology, Program in Neuroscience, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
14
|
Parker LM, Le S, Wearne TA, Hardwick K, Kumar NN, Robinson KJ, McMullan S, Goodchild AK. Neurochemistry of neurons in the ventrolateral medulla activated by hypotension: Are the same neurons activated by glucoprivation? J Comp Neurol 2017; 525:2249-2264. [PMID: 28295336 DOI: 10.1002/cne.24203] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 03/02/2017] [Accepted: 03/03/2017] [Indexed: 12/15/2022]
Abstract
Previous studies have demonstrated that a range of stimuli activate neurons, including catecholaminergic neurons, in the ventrolateral medulla. Not all catecholaminergic neurons are activated and other neurochemical content is largely unknown hence whether stimulus specific populations exist is unclear. Here we determine the neurochemistry (using in situ hybridization) of catecholaminergic and noncatecholaminergic neurons which express c-Fos immunoreactivity throughout the rostrocaudal extent of the ventrolateral medulla, in Sprague Dawley rats treated with hydralazine or saline. Distinct neuronal populations containing PPCART, PPPACAP, and PPNPY mRNAs, which were largely catecholaminergic, were activated by hydralazine but not saline. Both catecholaminergic and noncatecholaminergic neurons containing preprotachykinin and prepro-enkephalin (PPE) mRNAs were also activated, with the noncatecholaminergic population located in the rostral C1 region. Few GlyT2 neurons were activated. A subset of these data was then used to compare the neuronal populations activated by 2-deoxyglucose evoked glucoprivation (Brain Structure and Function (2015) 220:117). Hydralazine activated more neurons than 2-deoxyglucose but similar numbers of catecholaminergic neurons. Commonly activated populations expressing PPNPY and PPE mRNAs were defined. These likely include PPNPY expressing catecholaminergic neurons projecting to vasopressinergic and corticotrophin releasing factor neurons in the paraventricular nucleus, which when activated result in elevated plasma vasopressin and corticosterone. Stimulus specific neurons included noncatecholaminergic neurons and a few PPE positive catecholaminergic neuron but neurochemical codes were largely unidentified. Reasons for the lack of identification of stimulus specific neurons, readily detectable using electrophysiology in anaesthetized preparations and for which neural circuits can be defined, are discussed.
Collapse
Affiliation(s)
- Lindsay M Parker
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, NSW, 2109, Australia.,ARC Centre of Excellence for Nanoscale Biophotonics, Macquarie University, NSW, 2109, Australia
| | - Sheng Le
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, NSW, 2109, Australia
| | - Travis A Wearne
- Department of Psychology, Faculty of Human Sciences, Macquarie University, NSW, 2109, Australia
| | - Kate Hardwick
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, NSW, 2109, Australia
| | - Natasha N Kumar
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, NSW, 2109, Australia.,Department of Pharmacology, School of Medical Science, University of New South Wales, NSW, 2052, Australia
| | - Katherine J Robinson
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, NSW, 2109, Australia
| | - Simon McMullan
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, NSW, 2109, Australia
| | - Ann K Goodchild
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, NSW, 2109, Australia
| |
Collapse
|
15
|
Menuet C, Khemiri H, de la Poëze d'Harambure T, Gestreau C. Polycythemia and high levels of erythropoietin in blood and brain blunt the hypercapnic ventilatory response in adult mice. Am J Physiol Regul Integr Comp Physiol 2016; 310:R979-91. [PMID: 26936784 DOI: 10.1152/ajpregu.00474.2015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 02/26/2016] [Indexed: 11/22/2022]
Abstract
Changes in arterial Po2, Pco2, and pH are the strongest stimuli sensed by peripheral and central chemoreceptors to adjust ventilation to the metabolic demand. Erythropoietin (Epo), the main regulator of red blood cell production, increases the hypoxic ventilatory response, an effect attributed to the presence of Epo receptors in both carotid bodies and key brainstem structures involved in integration of peripheral inputs and control of breathing. However, it is not known whether Epo also has an effect on the hypercapnic chemoreflex. In a first attempt to answer this question, we tested the hypothesis that Epo alters the ventilatory response to increased CO2 levels. Basal ventilation and hypercapnic ventilatory response (HCVR) were recorded from control mice and from two transgenic mouse lines constitutively expressing high levels of human Epo in brain only (Tg21) or in brain and plasma (Tg6), the latter leading to polycythemia. To tease apart the potential effects of polycythemia and levels of plasma Epo in the HCVR, control animals were injected with an Epo analog (Aranesp), and Tg6 mice were treated with the hemolytic agent phenylhydrazine after splenectomy. Ventilatory parameters measured by plethysmography in conscious mice were consistent with data from electrophysiological recordings in anesthetized animals and revealed a blunted HCVR in Tg6 mice. Polycythemia alone and increased levels of plasma Epo blunt the HCVR. In addition, Tg21 mice with an augmented level of cerebral Epo also had a decreased HCVR. We discuss the potential implications of these findings in several physiopathological conditions.
Collapse
|
16
|
de Carvalho D, Marques D, Bernuci M, Leite C, Araújo-Lopes R, Anselmo-Franci J, Bícego K, Szawka R, Gargaglioni L. Role of sex hormones in hypercapnia-induced activation of the locus coeruleus in female and male rats. Neuroscience 2016; 313:36-45. [DOI: 10.1016/j.neuroscience.2015.11.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 10/21/2015] [Accepted: 11/12/2015] [Indexed: 12/27/2022]
|
17
|
Valic M, Pecotic R, Pavlinac Dodig I, Valic Z, Stipica I, Dogas Z. Intermittent hypercapnia-induced phrenic long-term depression is revealed after serotonin receptor blockade with methysergide in anaesthetized rats. Exp Physiol 2015; 101:319-31. [DOI: 10.1113/ep085161] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 11/20/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Maja Valic
- Department of Neuroscience; University of Split School of Medicine; Split Croatia
| | - Renata Pecotic
- Department of Neuroscience; University of Split School of Medicine; Split Croatia
| | - Ivana Pavlinac Dodig
- Department of Neuroscience; University of Split School of Medicine; Split Croatia
| | - Zoran Valic
- Department of Physiology; University of Split School of Medicine; Split Croatia
| | - Ivona Stipica
- Department of Neuroscience; University of Split School of Medicine; Split Croatia
| | - Zoran Dogas
- Department of Neuroscience; University of Split School of Medicine; Split Croatia
| |
Collapse
|
18
|
King TL, Ruyle BC, Kline DD, Heesch CM, Hasser EM. Catecholaminergic neurons projecting to the paraventricular nucleus of the hypothalamus are essential for cardiorespiratory adjustments to hypoxia. Am J Physiol Regul Integr Comp Physiol 2015; 309:R721-31. [PMID: 26157062 PMCID: PMC4666929 DOI: 10.1152/ajpregu.00540.2014] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 07/01/2015] [Indexed: 12/31/2022]
Abstract
Brainstem catecholamine neurons modulate sensory information and participate in control of cardiorespiratory function. These neurons have multiple projections, including to the paraventricular nucleus (PVN), which contributes to cardiorespiratory and neuroendocrine responses to hypoxia. We have shown that PVN-projecting catecholaminergic neurons are activated by hypoxia, but the function of these neurons is not known. To test the hypothesis that PVN-projecting catecholamine neurons participate in responses to respiratory challenges, we injected IgG saporin (control; n = 6) or anti-dopamine β-hydroxylase saporin (DSAP; n = 6) into the PVN to retrogradely lesion catecholamine neurons projecting to the PVN. After 2 wk, respiratory measurements (plethysmography) were made in awake rats during normoxia, increasing intensities of hypoxia (12, 10, and 8% O2) and hypercapnia (5% CO2-95% O2). DSAP decreased the number of tyrosine hydroxylase-immunoreactive terminals in PVN and cells counted in ventrolateral medulla (VLM; -37%) and nucleus tractus solitarii (nTS; -36%). DSAP produced a small but significant decrease in respiratory rate at baseline (during normoxia) and at all intensities of hypoxia. Tidal volume and minute ventilation (VE) index also were impaired at higher hypoxic intensities (10-8% O2; e.g., VE at 8% O2: IgG = 181 ± 22, DSAP = 91 ± 4 arbitrary units). Depressed ventilation in DSAP rats was associated with significantly lower arterial O2 saturation at all hypoxic intensities. PVN DSAP also reduced ventilatory responses to 5% CO2 (VE: IgG = 176 ± 21 and DSAP = 84 ± 5 arbitrary units). Data indicate that catecholamine neurons projecting to the PVN are important for peripheral and central chemoreflex respiratory responses and for maintenance of arterial oxygen levels during hypoxic stimuli.
Collapse
Affiliation(s)
| | | | - David D Kline
- Department of Biomedical Sciences, Dalton Cardiovascular Research Center, and
| | - Cheryl M Heesch
- Department of Biomedical Sciences, Dalton Cardiovascular Research Center, and
| | - Eileen M Hasser
- Department of Biomedical Sciences, Dalton Cardiovascular Research Center, and Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| |
Collapse
|
19
|
Translational approach to studying panic disorder in rats: hits and misses. Neurosci Biobehav Rev 2015; 46 Pt 3:472-96. [PMID: 25316571 DOI: 10.1016/j.neubiorev.2014.10.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 09/26/2014] [Accepted: 10/01/2014] [Indexed: 12/30/2022]
Abstract
Panic disorder (PD) patients are specifically sensitive to 5–7% carbon dioxide. Another startling feature of clinical panic is the counterintuitive lack of increments in ‘stress hormones’. PD is also more frequent in women and highly comorbid with childhood separation anxiety (CSA). On the other hand, increasing evidence suggests that panic is mediated at dorsal periaqueductal grey matter (DPAG). In line with prior studies showing that DPAG-evoked panic-like behaviours are attenuated by clinically-effective treatments with panicolytics, we show here that (i) the DPAG harbors a hypoxia-sensitive alarm system, which is activated by hypoxia and potentiated by hypercapnia, (ii) the DPAG suffocation alarm system is inhibited by clinically-effective treatments with panicolytics, (iii) DPAG stimulations do not increase stress hormones in the absence of physical exertion, (iv) DPAG-evoked panic-like behaviours are facilitated in neonatally-isolated adult rats, a model of CSA, and (v) DPAG-evoked responses are enhanced in the late diestrus of female rats. Data are consistent with the DPAG mediation of both respiratory and non-respiratory types of panic attacks.
Collapse
|
20
|
Brainstem areas activated by intermittent apnea in awake unrestrained rats. Neuroscience 2015; 297:262-71. [DOI: 10.1016/j.neuroscience.2015.04.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 03/24/2015] [Accepted: 04/03/2015] [Indexed: 11/21/2022]
|
21
|
Abstract
Lung ventilation fluctuates widely with behavior but arterial PCO2 remains stable. Under normal conditions, the chemoreflexes contribute to PaCO2 stability by producing small corrective cardiorespiratory adjustments mediated by lower brainstem circuits. Carotid body (CB) information reaches the respiratory pattern generator (RPG) via nucleus solitarius (NTS) glutamatergic neurons which also target rostral ventrolateral medulla (RVLM) presympathetic neurons thereby raising sympathetic nerve activity (SNA). Chemoreceptors also regulate presympathetic neurons and cardiovagal preganglionic neurons indirectly via inputs from the RPG. Secondary effects of chemoreceptors on the autonomic outflows result from changes in lung stretch afferent and baroreceptor activity. Central respiratory chemosensitivity is caused by direct effects of acid on neurons and indirect effects of CO2 via astrocytes. Central respiratory chemoreceptors are not definitively identified but the retrotrapezoid nucleus (RTN) is a particularly strong candidate. The absence of RTN likely causes severe central apneas in congenital central hypoventilation syndrome. Like other stressors, intense chemosensory stimuli produce arousal and activate circuits that are wake- or attention-promoting. Such pathways (e.g., locus coeruleus, raphe, and orexin system) modulate the chemoreflexes in a state-dependent manner and their activation by strong chemosensory stimuli intensifies these reflexes. In essential hypertension, obstructive sleep apnea and congestive heart failure, chronically elevated CB afferent activity contributes to raising SNA but breathing is unchanged or becomes periodic (severe CHF). Extreme CNS hypoxia produces a stereotyped cardiorespiratory response (gasping, increased SNA). The effects of these various pathologies on brainstem cardiorespiratory networks are discussed, special consideration being given to the interactions between central and peripheral chemoreflexes.
Collapse
Affiliation(s)
- Patrice G Guyenet
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
22
|
Clément O, Valencia Garcia S, Libourel PA, Arthaud S, Fort P, Luppi PH. The inhibition of the dorsal paragigantocellular reticular nucleus induces waking and the activation of all adrenergic and noradrenergic neurons: a combined pharmacological and functional neuroanatomical study. PLoS One 2014; 9:e96851. [PMID: 24811249 PMCID: PMC4014589 DOI: 10.1371/journal.pone.0096851] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 04/12/2014] [Indexed: 11/18/2022] Open
Abstract
GABAergic neurons specifically active during paradoxical sleep (PS) localized in the dorsal paragigantocellular reticular nucleus (DPGi) are known to be responsible for the cessation of activity of the noradrenergic neurons of the locus coeruleus during PS. In the present study, we therefore sought to determine the role of the DPGi in PS onset and maintenance and in the inhibition of the LC noradrenergic neurons during this state. The effect of the inactivation of DPGi neurons on the sleep-waking cycle was examined in rats by microinjection of muscimol, a GABAA agonist, or clonidine, an alpha-2 adrenergic receptor agonist. Combining immunostaining of the different populations of wake-inducing neurons with that of c-FOS, we then determined whether muscimol inhibition of the DPGi specifically induces the activation of the noradrenergic neurons of the LC. Slow wave sleep and PS were abolished during 3 and 5 h after muscimol injection in the DPGi, respectively. The application of clonidine in the DPGi specifically induced a significant decrease in PS quantities and delayed PS appearance compared to NaCl. We further surprisingly found out that more than 75% of the noradrenergic and adrenergic neurons of all adrenergic and noradrenergic cell groups are activated after muscimol treatment in contrast to the other wake active systems significantly less activated. These results suggest that, in addition to its already know inhibition of LC noradrenergic neurons during PS, the DPGi might inhibit the activity of noradrenergic and adrenergic neurons from all groups during PS, but also to a minor extent during SWS and waking.
Collapse
Affiliation(s)
- Olivier Clément
- INSERM, U1028; CNRS, UMR5292; Lyon Neuroscience Research Center, Team SLEEP, Lyon, France
- University Claude Bernard Lyon 1, Lyon, France
| | - Sara Valencia Garcia
- INSERM, U1028; CNRS, UMR5292; Lyon Neuroscience Research Center, Team SLEEP, Lyon, France
- University Claude Bernard Lyon 1, Lyon, France
| | - Paul-Antoine Libourel
- INSERM, U1028; CNRS, UMR5292; Lyon Neuroscience Research Center, Team SLEEP, Lyon, France
- University Claude Bernard Lyon 1, Lyon, France
| | - Sébastien Arthaud
- INSERM, U1028; CNRS, UMR5292; Lyon Neuroscience Research Center, Team SLEEP, Lyon, France
- University Claude Bernard Lyon 1, Lyon, France
| | - Patrice Fort
- INSERM, U1028; CNRS, UMR5292; Lyon Neuroscience Research Center, Team SLEEP, Lyon, France
- University Claude Bernard Lyon 1, Lyon, France
| | - Pierre-Hervé Luppi
- INSERM, U1028; CNRS, UMR5292; Lyon Neuroscience Research Center, Team SLEEP, Lyon, France
- University Claude Bernard Lyon 1, Lyon, France
- * E-mail:
| |
Collapse
|
23
|
Monosynaptic glutamatergic activation of locus coeruleus and other lower brainstem noradrenergic neurons by the C1 cells in mice. J Neurosci 2014; 33:18792-805. [PMID: 24285886 DOI: 10.1523/jneurosci.2916-13.2013] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The C1 neurons, located in the rostral ventrolateral medulla (VLM), are activated by pain, hypotension, hypoglycemia, hypoxia, and infection, as well as by psychological stress. Prior work has highlighted the ability of these neurons to increase sympathetic tone, hence peripheral catecholamine release, probably via their direct excitatory projections to sympathetic preganglionic neurons. In this study, we use channelrhodopsin-2 (ChR2) optogenetics to test whether the C1 cells are also capable of broadly activating the brain's noradrenergic system. We selectively expressed ChR2(H134R) in rostral VLM catecholaminergic neurons by injecting Cre-dependent adeno-associated viral vectors into the brain of adult dopamine-β-hydroxylase (DβH)(Cre/0) mice. Most ChR2-expressing VLM neurons (75%) were immunoreactive for phenylethanolamine N-methyl transferease, thus were C1 cells, and most of the ChR2-positive axonal varicosities were immunoreactive for vesicular glutamate transporter-2 (78%). We produced light microscopic evidence that the axons of rostral VLM (RVLM) catecholaminergic neurons contact locus coeruleus, A1, and A2 noradrenergic neurons, and ultrastructural evidence that these contacts represent asymmetric synapses. Using optogenetics in tissue slices, we show that RVLM catecholaminergic neurons activate the locus coeruleus as well as A1 and A2 noradrenergic neurons monosynaptically by releasing glutamate. In conclusion, activation of RVLM catecholaminergic neurons, predominantly C1 cells, by somatic or psychological stresses has the potential to increase the firing of both peripheral and central noradrenergic neurons.
Collapse
|
24
|
Li Y, Panossian LA, Zhang J, Zhu Y, Zhan G, Chou YT, Fenik P, Bhatnagar S, Piel DA, Beck SG, Veasey S. Effects of chronic sleep fragmentation on wake-active neurons and the hypercapnic arousal response. Sleep 2014; 37:51-64. [PMID: 24470695 DOI: 10.5665/sleep.3306] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
STUDY OBJECTIVES Delayed hypercapnic arousals may occur in obstructive sleep apnea. The impaired arousal response is expected to promote more pronounced oxyhemoglobin desaturations. We hypothesized that long-term sleep fragmentation (SF) results in injury to or dysfunction of wake-active neurons that manifests, in part, as a delayed hypercapnic arousal response. DESIGN Adult male mice were implanted for behavioral state recordings and randomly assigned to 4 weeks of either orbital platform SF (SF4wk, 30 events/h) or control conditions (Ct4wk) prior to behavioral, histological, and locus coeruleus (LC) whole cell electrophysiological evaluations. MEASUREMENTS AND RESULTS SF was successfully achieved across the 4 week study, as evidenced by a persistently increased arousal index, P < 0.01 and shortened sleep bouts, P < 0.05, while total sleep/wake times and plasma corticosterone levels were unaffected. A multiple sleep latency test performed at the onset of the dark period showed a reduced latency to sleep in SF4wk mice (P < 0.05). The hypercapnic arousal latency was increased, Ct4wk 64 ± 5 sec vs. SF4wk 154 ± 6 sec, P < 0.001, and remained elevated after a 2 week recovery (101 ± 4 sec, P < 0.001). C-fos activation in noradrenergic, orexinergic, histaminergic, and cholinergic wake-active neurons was reduced in response to hypercapnia (P < 0.05-0.001). Catecholaminergic and orexinergic projections into the cingulate cortex were also reduced in SF4wk (P < 0.01). In addition, SF4wk resulted in impaired LC neuron excitability (P < 0.01). CONCLUSIONS Four weeks of sleep fragmentation (SF4wk) impairs arousal responses to hypercapnia, reduces wake neuron projections and locus coeruleus neuronal excitability, supporting the concepts that some effects of sleep fragmentation may contribute to impaired arousal responses in sleep apnea, which may not reverse immediately with therapy.
Collapse
Affiliation(s)
- Yanpeng Li
- Department of Neurology, Neuroscience Research Center, Shanghai Changzheng Hospital, the Affiliated Hospital to the Second Military Medical University, Shanghai City, China ; Center for Sleep and Circadian Neurobiology, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Lori A Panossian
- Center for Sleep and Circadian Neurobiology, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Jing Zhang
- Center for Sleep and Circadian Neurobiology, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Yan Zhu
- Center for Sleep and Circadian Neurobiology, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Guanxia Zhan
- Center for Sleep and Circadian Neurobiology, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Yu-Ting Chou
- Center for Sleep and Circadian Neurobiology, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Polina Fenik
- Center for Sleep and Circadian Neurobiology, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Seema Bhatnagar
- Department of Anesthesiology, Children's Hospital of Philadelphia, Philadelphia, PA
| | - David A Piel
- Department of Anesthesiology, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Sheryl G Beck
- Department of Anesthesiology, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Sigrid Veasey
- Center for Sleep and Circadian Neurobiology, University of Pennsylvania School of Medicine, Philadelphia, PA
| |
Collapse
|
25
|
Abstract
There is a growing public awareness that hormones can have a significant impact on most biological systems, including the control of breathing. This review will focus on the actions of two broad classes of hormones on the neuronal control of breathing: sex hormones and stress hormones. The majority of these hormones are steroids; a striking feature is that both groups are derived from cholesterol. Stress hormones also include many peptides which are produced primarily within the paraventricular nucleus of the hypothalamus (PVN) and secreted into the brain or into the circulatory system. In this article we will first review and discuss the role of sex hormones in respiratory control throughout life, emphasizing how natural fluctuations in hormones are reflected in ventilatory metrics and how disruption of their endogenous cycle can predispose to respiratory disease. These effects may be mediated directly by sex hormone receptors or indirectly by neurotransmitter systems. Next, we will discuss the origins of hypothalamic stress hormones and their relationship with the respiratory control system. This relationship is 2-fold: (i) via direct anatomical connections to brainstem respiratory control centers, and (ii) via steroid hormones released from the adrenal gland in response to signals from the pituitary gland. Finally, the impact of stress on the development of neural circuits involved in breathing is evaluated in animal models, and the consequences of early stress on respiratory health and disease is discussed.
Collapse
Affiliation(s)
- Mary Behan
- Department of Comparative Biosciences, University of Wisconsin, Madison, Wisconsin, USA.
| | | |
Collapse
|
26
|
Patrone LGA, Bícego KC, Hartzler LK, Putnam RW, Gargaglioni LH. Cardiorespiratory effects of gap junction blockade in the locus coeruleus in unanesthetized adult rats. Respir Physiol Neurobiol 2013; 190:86-95. [PMID: 24035835 DOI: 10.1016/j.resp.2013.09.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 09/02/2013] [Accepted: 09/04/2013] [Indexed: 12/18/2022]
Abstract
The locus coeruleus (LC) plays an important role in central chemoreception. In young rats (P9 or younger), 85% of LC neurons increase firing rate in response to hypercapnia vs. only about 45% of neurons from rats P10 or older. Carbenoxolone (CARB - gap junction blocker) does not affect the % of LC neurons responding in young rats but it decreases the % responding by half in older animals. We evaluated the participation of gap junctions in the CO2 ventilatory response in unanesthetized adult rats by bilaterally microinjecting CARB (300μM, 1mM or 3mM/100nL), glycyrrhizic acid (GZA, CARB analog, 3mM) or vehicle (aCSF - artificial cerebrospinal fluid) into the LC of Wistar rats. Bilateral gap junction blockade in LC neurons did not affect resting ventilation; however, the increase in ventilation produced by hypercapnia (7% CO2) was reduced by ∼25% after CARB 1mM or 3mM injection (1939.7±104.8mLkg(-1)min(-1) for the aCSF group and 1468.3±122.2mLkg(-1)min(-1) for 1mM CARB, P<0.05; 1939.7±104.8mLkg(-1)min(-1) for the aCSF group and 1540.9±68.4mLkg(-1)min(-1) for the 3mM CARB group, P<0.05) due largely to a decrease in respiratory frequency. GZA injection or CARB injection outside the LC (peri-LC) had no effect on ventilation under any conditions. The results suggest that gap junctions in the LC modulate the hypercapnic ventilatory response of adult rats.
Collapse
Affiliation(s)
- Luis G A Patrone
- Department of Animal Physiology and Morphology, Sao Paulo State University- UNESP/FCAV, Jaboticabal, SP, Brazil; National Institute of Science and Technology in Comparative Physiology (INCT, Fisiologia Comparada), Brazil
| | | | | | | | | |
Collapse
|
27
|
Li N, Li A, Nattie E. Focal microdialysis of CO₂ in the perifornical-hypothalamic area increases ventilation during wakefulness but not NREM sleep. Respir Physiol Neurobiol 2013; 185:349-55. [PMID: 22999917 PMCID: PMC3530002 DOI: 10.1016/j.resp.2012.09.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 09/12/2012] [Accepted: 09/13/2012] [Indexed: 10/27/2022]
Abstract
We investigated whether the perifornical-lateral hypothalamic area (PF-LHA), where the orexin neurons reside, is a central chemoreceptor site by microdialysis of artificial cerebrospinal fluid (aCSF) equilibrated with 25% CO(2) into PF-LHA in conscious rats. This treatment is known to produce a focal tissue acidification like that associated with a 6-7 mm Hg increase in arterial [Formula: see text] . Such focal acidification in the PF-LHA significantly increased ventilation up to 15% compared with microdialysis of normal aCSF equilibrated with 5% CO(2) only in wakefulness but not in sleep in both the dark (P=0.004) and light (P<0.001) phases of the diurnal cycle. This response was predominantly due to a significant increase in respiratory frequency (11%, P<0.001). There were no significant effects on ventilation in the group with probes misplaced outside the PF-LHA. These results suggest that PF-LHA functions as a central chemoreceptor site in the central nervous system in a vigilant state dependent manner with predominant effects in wakefulness.
Collapse
Affiliation(s)
- Ningjing Li
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, United States.
| | | | | |
Collapse
|
28
|
Buchanan GF. Timing, sleep, and respiration in health and disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 119:191-219. [PMID: 23899599 DOI: 10.1016/b978-0-12-396971-2.00008-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Breathing is perhaps the physiological function that is most vital to human survival. Without breathing and adequate oxygenation of tissues, life ceases. As would be expected for such a vital function, breathing occurs automatically, without the requirement of conscious input. Breathing is subject to regulation by a variety of factors including circadian rhythms and vigilance state. Given the need for breathing to occur continuously with little tolerance for interruption, it is not surprising that breathing is subject to both circadian phase-dependent and vigilance-state-dependent regulation. Similarly, the information regarding respiratory state, including blood-gas concentrations, can affect circadian timing and sleep-wake state. The exact nature of the interactions between breathing, circadian phase, and vigilance state can vary depending upon the species studied and the methodologies employed. These interactions between breathing, circadian phase, and vigilance state may have important implications for a variety of human diseases, including sleep apnea, asthma, sudden unexpected death in epilepsy, and sudden infant death syndrome.
Collapse
Affiliation(s)
- Gordon F Buchanan
- Department of Neurology, Yale University School of Medicine, New Haven, and Veteran's Affairs Medical Center, West Haven, Connecticut, USA
| |
Collapse
|
29
|
Abstract
Central chemoreception traditionally refers to a change in ventilation attributable to changes in CO2/H(+) detected within the brain. Interest in central chemoreception has grown substantially since the previous Handbook of Physiology published in 1986. Initially, central chemoreception was localized to areas on the ventral medullary surface, a hypothesis complemented by the recent identification of neurons with specific phenotypes near one of these areas as putative chemoreceptor cells. However, there is substantial evidence that many sites participate in central chemoreception some located at a distance from the ventral medulla. Functionally, central chemoreception, via the sensing of brain interstitial fluid H(+), serves to detect and integrate information on (i) alveolar ventilation (arterial PCO2), (ii) brain blood flow and metabolism, and (iii) acid-base balance, and, in response, can affect breathing, airway resistance, blood pressure (sympathetic tone), and arousal. In addition, central chemoreception provides a tonic "drive" (source of excitation) at the normal, baseline PCO2 level that maintains a degree of functional connectivity among brainstem respiratory neurons necessary to produce eupneic breathing. Central chemoreception responds to small variations in PCO2 to regulate normal gas exchange and to large changes in PCO2 to minimize acid-base changes. Central chemoreceptor sites vary in function with sex and with development. From an evolutionary perspective, central chemoreception grew out of the demands posed by air versus water breathing, homeothermy, sleep, optimization of the work of breathing with the "ideal" arterial PCO2, and the maintenance of the appropriate pH at 37°C for optimal protein structure and function.
Collapse
Affiliation(s)
- Eugene Nattie
- Dartmouth Medical School, Department of Physiology, Lebanon, New Hampshire, USA.
| | | |
Collapse
|
30
|
Abstract
Central chemoreception traditionally refers to a change in ventilation attributable to changes in CO2/H(+) detected within the brain. Interest in central chemoreception has grown substantially since the previous Handbook of Physiology published in 1986. Initially, central chemoreception was localized to areas on the ventral medullary surface, a hypothesis complemented by the recent identification of neurons with specific phenotypes near one of these areas as putative chemoreceptor cells. However, there is substantial evidence that many sites participate in central chemoreception some located at a distance from the ventral medulla. Functionally, central chemoreception, via the sensing of brain interstitial fluid H(+), serves to detect and integrate information on (i) alveolar ventilation (arterial PCO2), (ii) brain blood flow and metabolism, and (iii) acid-base balance, and, in response, can affect breathing, airway resistance, blood pressure (sympathetic tone), and arousal. In addition, central chemoreception provides a tonic "drive" (source of excitation) at the normal, baseline PCO2 level that maintains a degree of functional connectivity among brainstem respiratory neurons necessary to produce eupneic breathing. Central chemoreception responds to small variations in PCO2 to regulate normal gas exchange and to large changes in PCO2 to minimize acid-base changes. Central chemoreceptor sites vary in function with sex and with development. From an evolutionary perspective, central chemoreception grew out of the demands posed by air versus water breathing, homeothermy, sleep, optimization of the work of breathing with the "ideal" arterial PCO2, and the maintenance of the appropriate pH at 37°C for optimal protein structure and function.
Collapse
Affiliation(s)
- Eugene Nattie
- Dartmouth Medical School, Department of Physiology, Lebanon, New Hampshire, USA.
| | | |
Collapse
|
31
|
Spirovski D, Li Q, Pilowsky PM. Brainstem galanin-synthesizing neurons are differentially activated by chemoreceptor stimuli and represent a subpopulation of respiratory neurons. J Comp Neurol 2011; 520:154-73. [DOI: 10.1002/cne.22723] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
32
|
Hodges MR, Richerson GB. Medullary serotonin neurons and their roles in central respiratory chemoreception. Respir Physiol Neurobiol 2010; 173:256-63. [PMID: 20226279 PMCID: PMC4554718 DOI: 10.1016/j.resp.2010.03.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Revised: 03/03/2010] [Accepted: 03/04/2010] [Indexed: 11/13/2022]
Abstract
Much progress has been made in our understanding of central chemoreception since the seminal experiments of Fencl, Loeschcke, Mitchell and others, including identification of new brainstem regions and specific neuron types that may serve as central "sensors" of CO(2)/pH. In this review, we discuss key attributes, or minimal requirements a neuron/cell must possess to be defined as a central respiratory chemoreceptor, and summarize how well each of the various candidates fulfill these minimal criteria-especially the presence of intrinsic chemosensitivity. We then discuss some of the in vitro and in vivo evidence in support of the conclusion that medullary serotonin (5-HT) neurons are central chemoreceptors. We also provide an additional hypothesis that chemosensitive medullary 5-HT neurons are poised to integrate multiple synaptic inputs from various other sources thought to influence ventilation. Finally, we discuss open questions and future studies that may aid in continuing our advances in understanding central chemoreception.
Collapse
Affiliation(s)
- Matthew R Hodges
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | | |
Collapse
|
33
|
Dean JB, Putnam RW. The caudal solitary complex is a site of central CO(2) chemoreception and integration of multiple systems that regulate expired CO(2). Respir Physiol Neurobiol 2010; 173:274-87. [PMID: 20670695 DOI: 10.1016/j.resp.2010.07.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Revised: 06/30/2010] [Accepted: 07/01/2010] [Indexed: 12/16/2022]
Abstract
The solitary complex is comprised of the nucleus tractus solitarius (NTS, sensory) and dorsal motor nucleus of the vagus (DMV, motor), which functions as an integrative center for neural control of multiple systems including the respiratory, cardiovascular and gastroesophageal systems. The caudal NTS-DMV is one of the several sites of central CO(2) chemoreception in the brain stem. CO(2) chemosensitive neurons are fully responsive to CO(2) at birth and their responsiveness seems to depend on pH-sensitive K(+) channels. In addition, chemosensitive neurons are highly sensitive to conditions such as hypoxia (e.g., neural plasticity) and hyperoxia (e.g., stimulation), suggesting they employ redox and nitrosative signaling mechanisms. Here we review the cellular and systems physiological evidence supporting our hypothesis that the caudal NTS-DMV is a site for integration of respiratory, cardiovascular and gastroesophageal systems that work together to eliminate CO(2) during acute and chronic respiratory acidosis to restore pH homeostasis.
Collapse
Affiliation(s)
- Jay B Dean
- Dept. of Molecular Pharmacology & Physiology, Hyperbaric Biomedical Research Laboratory, University of South Florida, Tampa, FL 33612, USA.
| | | |
Collapse
|
34
|
de Carvalho D, Bícego KC, de Castro OW, da Silva GS, Garcia-Cairasco N, Gargaglioni LH. Role of neurokinin-1 expressing neurons in the locus coeruleus on ventilatory and cardiovascular responses to hypercapnia. Respir Physiol Neurobiol 2010; 172:24-31. [DOI: 10.1016/j.resp.2010.04.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Revised: 04/04/2010] [Accepted: 04/08/2010] [Indexed: 10/19/2022]
|
35
|
The locus coeruleus and central chemosensitivity. Respir Physiol Neurobiol 2010; 173:264-73. [PMID: 20435170 DOI: 10.1016/j.resp.2010.04.024] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Revised: 04/23/2010] [Accepted: 04/24/2010] [Indexed: 11/21/2022]
Abstract
The locus coeruleus (LC) lies in the dorsal pons and supplies noradrenergic (NA) input to many regions of the brain, including respiratory control areas. The LC may provide tonic input for basal respiratory drive and is involved in central chemosensitivity since focal acidosis of the region stimulates ventilation and ablation reduces CO(2)-induced increased ventilation. The output of LC is modulated by both serotonergic and glutamatergic inputs. A large percentage of LC neurons are intrinsically activated by hypercapnia. This percentage and the magnitude of their response are highest in young neonates and decrease dramatically after postnatal day P10. The cellular bases for intrinsic chemosensitivity of LC neurons are comprised of multiple factors, primary among them being reduced extracellular and intracellular pH, which inhibit inwardly rectifying and voltage-gated K(+) channels, and activate L-type Ca(2+) channels. Activation of K(Ca) channels in LC neurons may limit their ultimate response to hypercapnia. Finally, the LC mediates central chemosensitivity and contains pH-sensitive neurons in amphibians, suggesting that the LC has a long-standing phylogenetic role in respiratory control.
Collapse
|
36
|
Kinkead R, Gulemetova R. Neonatal maternal separation and neuroendocrine programming of the respiratory control system in rats. Biol Psychol 2010; 84:26-38. [DOI: 10.1016/j.biopsycho.2009.09.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Revised: 08/28/2009] [Accepted: 09/02/2009] [Indexed: 10/20/2022]
|
37
|
Cardiovascular and behavioural responses to conditioned fear and restraint are not affected by retrograde lesions of A5 and C1 bulbospinal neurons. Neuroscience 2010; 166:1210-8. [PMID: 20109540 DOI: 10.1016/j.neuroscience.2010.01.039] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Revised: 01/19/2010] [Accepted: 01/19/2010] [Indexed: 11/23/2022]
Abstract
The aim of this study was to test a possible role of A5 neurons in the expression of the pressor and tachycardic responses to conditioned fear and restraint, two forms of psychological stress. Previous Fos studies have shown that the C1 adrenergic neurons and spinally projecting neurons in the vasopressor region of the rostral ventrolateral medulla are not activated by these two stressors, suggesting that these cardiovascular changes may be mediated by other premotor sympathetic (presympathetic) cell groups. The same studies also revealed that the A5 noradrenergic group was one of the main presympathetic cell groups to be activated in response to these two stressors. Thus, we hypothesized that the A5 group could mediate these cardiovascular responses. Conditioned fear and restraint were tested in rats implanted with radiotelemetric probes before and after retrograde lesion with the selective toxin anti-dopamine-beta-hydroxylase-saporin bilaterally injected in the spinal cord at T2-T3. Six animals were selected that had the most extensive loss of spinally projecting catecholaminergic neurons: A5 (81%-95%) and rostral C1 (59%-86%, which would include most C1 bulbospinal neurons). However, despite this major loss of noradrenergic and adrenergic presympathetic neurons, the magnitude of the cardiovascular response to conditioned fear and restraint was the same before and after the lesion. Associated behavioural changes were not affected either. The results indicate that A5 presympathetic neurons are not essential for the expression of the tachycardic and pressor responses to conditioned fear and restraint. They also confirm that C1 bulbospinal neurons are not involved in these responses. The presympathetic neurons driving the tachycardic and pressor responses to conditioned fear and restraint must be elsewhere.
Collapse
|
38
|
Niblock MM, Gao H, Li A, Jeffress EC, Murphy M, Nattie EE. Fos-Tau-LacZ mice reveal sex differences in brainstem c-fos activation in response to mild carbon dioxide exposure. Brain Res 2010; 1311:51-63. [PMID: 19932690 PMCID: PMC2812580 DOI: 10.1016/j.brainres.2009.11.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Revised: 11/13/2009] [Accepted: 11/17/2009] [Indexed: 01/13/2023]
Abstract
There are sex differences in the neurochemistry of brainstem nuclei that participate in the control of breathing as well as sex differences in respiratory responses to hypoxia. Central chemoreception refers to the detection within the brain of minute changes in carbon dioxide (CO(2)) levels and the subsequent modulation of breathing. Putative central chemoreceptor sites are widespread and include cells located near the ventral surface of the brainstem in the retrotrapezoid nucleus (RTN), in the medullary midline raphe nuclei, and, more dorsally in the medulla, in the nucleus of the solitary tract and in the locus caeruleus at the pontomedullary junction as well as in the fastigial nucleus of the cerebellum. In this study, we ask if the cells that respond to CO(2) differ between the sexes. We used a transgenic mouse with a c-fos promoter driven tau-lacZ reporter construct (FTL) to map the locations of cells in the mouse brainstem and cerebellum that responded to exposure of mice of both sexes to 5% CO(2) or room air (control). X-gal (5-bromo-4-chloro-3-indolyl-beta-d-galactopyranoside) histochemical staining to detect the beta-galactosidase enzyme produced staining in the brains of mice of both sexes in all of the previously identified putative chemoreceptor sites, with the exception of the fastigial nucleus. Notably, the male RTN region contained significantly more x-gal-labeled cells than the female RTN region. In addition to new observations regarding potential sex differences in the retrotrapezoid region, we found the FTL mouse to be a useful tool for identifying cells that respond to the exposure of the whole animal to relatively low concentrations of CO(2).
Collapse
Affiliation(s)
- Mary Melissa Niblock
- Biology Department and Neuroscience Program, Dickinson College, Carlisle, PA, USA.
| | | | | | | | | | | |
Collapse
|
39
|
Guyenet PG, Stornetta RL, Abbott SBG, Depuy SD, Fortuna MG, Kanbar R. Central CO2 chemoreception and integrated neural mechanisms of cardiovascular and respiratory control. J Appl Physiol (1985) 2010; 108:995-1002. [PMID: 20075262 DOI: 10.1152/japplphysiol.00712.2009] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In this review, we examine why blood pressure (BP) and sympathetic nerve activity (SNA) increase during a rise in central nervous system (CNS) P(CO(2)) (central chemoreceptor stimulation). CNS acidification modifies SNA by two classes of mechanisms. The first one depends on the activation of the central respiratory controller (CRG) and causes the much-emphasized respiratory modulation of the SNA. The CRG probably modulates SNA at several brain stem or spinal locations, but the most important site of interaction seems to be the caudal ventrolateral medulla (CVLM), where unidentified components of the CRG periodically gate the baroreflex. CNS P(CO(2)) also influences sympathetic tone in a CRG-independent manner, and we propose that this process operates differently according to the level of CNS P(CO(2)). In normocapnia and indeed even below the ventilatory recruitment threshold, CNS P(CO(2)) exerts a tonic concentration-dependent excitatory effect on SNA that is plausibly mediated by specialized brain stem chemoreceptors such as the retrotrapezoid nucleus. Abnormally high levels of P(CO(2)) cause an aversive interoceptive awareness in awake individuals and trigger arousal from sleep. These alerting responses presumably activate wake-promoting and/or stress-related pathways such as the orexinergic, noradrenergic, and serotonergic neurons. These neuronal groups, which may also be directly activated by brain acidification, have brainwide projections that contribute to the CO(2)-induced rise in breathing and SNA by facilitating neuronal activity at innumerable CNS locations. In the case of SNA, these sites include the nucleus of the solitary tract, the ventrolateral medulla, and the preganglionic neurons.
Collapse
Affiliation(s)
- Patrice G Guyenet
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908-0735, USA.
| | | | | | | | | | | |
Collapse
|
40
|
Ondicova K, Mravec B. Do monoamine-synthesizing cells constitute a complex network of oxygen sensors? Med Hypotheses 2009; 74:547-51. [PMID: 19846259 DOI: 10.1016/j.mehy.2009.09.045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Accepted: 09/23/2009] [Indexed: 11/17/2022]
Abstract
Oxygen represents an essential molecule for organisms. Because of this, sophisticated systems of sensors have evolved to monitor oxygenation of tissues. We propose that monoamine-synthesizing cells represent an important part of this system. It is well known that the carotid body, which contains chromaffin cells, serves as a chemical sensor of blood oxygenation. Similarly, the activity of adrenal medullary chromaffin cells is increased during hypoxia. Moreover, neurons located in the central nervous system containing catecholamines, serotonin, and histamine are also sensitive to hypoxia. On the basis of this common sensitivity of monoamine-synthesizing cells to changes in oxygenation we propose the hypothesis that these cells constitute a widely distributed network of sensors that monitor oxygen levels. The role of monoamine-synthesizing cells in monitoring tissue oxygen supply during both physiological and pathological conditions is also discussed.
Collapse
Affiliation(s)
- K Ondicova
- Faculty of Medicine, Institute of Pathophysiology, Comenius University, Slovak Academy of Sciences, Bratislava, Slovakia
| | | |
Collapse
|
41
|
de Souza Moreno V, Bícego KC, Szawka RE, Anselmo-Franci JA, Gargaglioni LH. Serotonergic mechanisms on breathing modulation in the rat locus coeruleus. Pflugers Arch 2009; 459:357-68. [DOI: 10.1007/s00424-009-0741-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Revised: 09/15/2009] [Accepted: 09/22/2009] [Indexed: 10/20/2022]
|
42
|
Transgenic mice lacking serotonin neurons have severe apnea and high mortality during development. J Neurosci 2009; 29:10341-9. [PMID: 19692608 DOI: 10.1523/jneurosci.1963-09.2009] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Central serotonin (5-HT) neurons modulate many vital brain functions, including respiratory control. Whether breathing depends critically on 5-HT neurons, or whether their influence is excitatory or inhibitory, remains controversial. Here we show that neonatal Lmx1b(flox/flox;ePet-Cre/+) mice (also called Lmx1b(f/f/p) mice), which selectively lack serotonin neurons, display frequent and severe apnea lasting as long as 55 s. This was associated with a marked decrease in ventilation to less than one-half of normal. These respiratory abnormalities were most severe during the postnatal period, markedly improving by the time the pups were 2-4 weeks old. Despite the severe breathing dysfunction, many of these mice survived, but there was a high perinatal mortality, and those that survived had a decrease in growth rate until the age at which the respiratory defects resolved. Consistent with these in vivo observations, respiratory output was markedly reduced in isolated brainstem-spinal cord preparations from neonatal Lmx1b(f/f/p) mice and completely blocked in perfused brain preparations from neonatal rats treated with selective antagonists of 5-HT(2A) and neurokinin 1 (NK-1) receptors. The ventilatory deficits in neonatal Lmx1b(f/f/p) mice were reversed in vitro and in vivo with agonists of 5-HT(2A) and/or NK-1 receptors. These results demonstrate that ventilatory output in the neonatal period is critically dependent on serotonin neurons, which provide excitatory drive to the respiratory network via 5-HT(2A) and NK-1 receptor activation. These findings provide insight into the mechanisms of sudden infant death syndrome, which has been associated with abnormalities of 5-HT neurons and of cardiorespiratory control.
Collapse
|
43
|
Corcoran AE, Hodges MR, Wu Y, Wang W, Wylie CJ, Deneris ES, Richerson GB. Medullary serotonin neurons and central CO2 chemoreception. Respir Physiol Neurobiol 2009; 168:49-58. [PMID: 19394450 PMCID: PMC2787387 DOI: 10.1016/j.resp.2009.04.014] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Revised: 04/15/2009] [Accepted: 04/18/2009] [Indexed: 11/18/2022]
Abstract
Serotonergic (5-HT) neurons are putative central respiratory chemoreceptors, aiding in the brain's ability to detect arterial changes in PCO2 and implement appropriate ventilatory responses to maintain blood homeostasis. These neurons are in close proximity to large medullary arteries and are intrinsically chemosensitive in vitro, characteristics expected for chemoreceptors. 5-HT neurons of the medullary raphé are stimulated by hypercapnia in vivo, and their disruption results in a blunted hypercapnic ventilatory response. More recently, data collected from transgenic and knockout mice have provided further insight into the role of 5-HT in chemosensitivity. This review summarizes current evidence in support of the hypothesis that 5-HT neurons are central chemoreceptors, and addresses arguments made against this role. We also briefly explore the relationship between the medullary raphé and another chemoreceptive site, the retrotrapezoid nucleus, and discuss how they may interact during hypercapnia to produce a robust ventilatory response.
Collapse
Affiliation(s)
- Andrea E Corcoran
- Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, AK 99775, USA.
| | | | | | | | | | | | | |
Collapse
|
44
|
Erlichman JS, Boyer AC, Reagan P, Putnam RW, Ritucci NA, Leiter JC. Chemosensory responses to CO2 in multiple brain stem nuclei determined using a voltage-sensitive dye in brain slices from rats. J Neurophysiol 2009; 102:1577-90. [PMID: 19553484 DOI: 10.1152/jn.00381.2009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We used epifluorescence microscopy and a voltage-sensitive dye, di-8-ANEPPS, to study changes in membrane potential during hypercapnia with or without synaptic blockade in chemosensory brain stem nuclei: the locus coeruleus (LC), the nucleus of the solitary tract, lateral paragigantocellularis nucleus, raphé pallidus, and raphé obscurus and, in putative nonchemosensitive nuclei, the gigantocellularis reticular nucleus and the spinotrigeminal nucleus. We studied the response to hypercapnia in LC cells to evaluate the performance characteristics of the voltage-sensitive dye. Hypercapnia depolarized many LC cells and the voltage responses to hypercapnia were diminished, but not eradicated, by synaptic blockade (there were intrinsically CO2-sensitive cells in the LC). The voltage response to hypercapnia was substantially diminished after inhibiting fast Na+ channels with tetrodotoxin. Thus action potential-related activity was responsible for most of the optical signal that we detected. We systematically examined CO2 sensitivity among cells in brain stem nuclei to test the hypothesis that CO2 sensitivity is a ubiquitous phenomenon, not restricted to nominally CO2 chemosensory nuclei. We found intrinsically CO2 sensitive neurons in all the nuclei that we examined; even the nonchemosensory nuclei had small numbers of intrinsically CO2 sensitive neurons. However, synaptic blockade significantly altered the distribution of CO2-sensitive cells in all of the nuclei so that the cellular response to CO2 in more intact preparations may be difficult to predict based on studies of intrinsic neuronal activity. Thus CO2-sensitive neurons are widely distributed in chemosensory and nonchemosensory nuclei and CO2 sensitivity is dependent on inhibitory and excitatory synaptic activity even within brain slices. Neuronal CO2 sensitivity important for the behavioral response to CO2 in intact animals will thus be determined as much by synaptic mechanisms and patterns of connectivity throughout the brain as by intrinsic CO2 sensitivity.
Collapse
|
45
|
Davenport PW, Vovk A. Cortical and subcortical central neural pathways in respiratory sensations. Respir Physiol Neurobiol 2009; 167:72-86. [DOI: 10.1016/j.resp.2008.10.001] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Revised: 09/29/2008] [Accepted: 10/01/2008] [Indexed: 10/21/2022]
|
46
|
Gargaglioni LH, Bícegoa KC, Branco LGS. Brain monoaminergic neurons and ventilatory control in vertebrates. Respir Physiol Neurobiol 2009; 164:112-22. [PMID: 18550453 DOI: 10.1016/j.resp.2008.04.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2008] [Revised: 04/15/2008] [Accepted: 04/23/2008] [Indexed: 10/22/2022]
Abstract
Monoamines (noradrenaline (NA), adrenaline (AD), dopamine (DA) and serotonin (5-HT) are key neurotransmitters that are implicated in multiple physiological and pathological brain mechanisms, including control of respiration. The monoaminergic system is known to be widely distributed in the animal kingdom, which indicates a considerable degree of phylogenetic conservation of this system amongst vertebrates. Substantial progress has been made in uncovering the participation of the brain monoamines in the breathing regulation of mammals, since they are involved in the maturation of the respiratory network as well as in the modulation of its intrinsic and synaptic properties. On the other hand, for the non-mammalian vertebrates, most of the knowledge of central monoaminergic modulation in respiratory control, which is actually very little, has emerged from studies using anuran amphibians. This article reviews the available data on the role of brain monoaminergic systems in the control of ventilation in terrestrial vertebrates. Emphasis is given to the comparative aspects of the brain noradrenergic, adrenergic, dopaminergic and serotonergic neuronal groups in breathing regulation, after first briefly considering the distribution of monoaminergic neurons in the vertebrate brain.
Collapse
Affiliation(s)
- Luciane H Gargaglioni
- Department of Animal Morphology and Physiology, State University of Sao Paulo, FCAV at Jaboticabal, SP, Brazil.
| | | | | |
Collapse
|
47
|
Léger L, Goutagny R, Sapin E, Salvert D, Fort P, Luppi PH. Noradrenergic neurons expressing Fos during waking and paradoxical sleep deprivation in the rat. J Chem Neuroanat 2008; 37:149-57. [PMID: 19152834 DOI: 10.1016/j.jchemneu.2008.12.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Revised: 10/30/2008] [Accepted: 12/16/2008] [Indexed: 11/28/2022]
Abstract
Noradrenaline is known to induce waking (W) and to inhibit paradoxical sleep (PS or REM). Both roles have been exclusively attributed to the noradrenergic neurons of the locus coeruleus (LC, A6), shown to be active during W and inactive during PS. However, the A1, A2, A5 and A7 noradrenergic neurons could also be responsible. Therefore, to determine the contribution of each of the noradrenergic groups in W and in PS inhibition, rats were maintained in continuous W for 3h in a novel environment or specifically deprived of PS for 3 days, with some of them allowed to recover from this deprivation. A double immunohistochemical labeling with Fos and tyrosine hydroxylase was then performed. Thirty percent of the LC noradrenergic cells were found to be Fos-positive after exposure to the novel environment and less than 2% after PS deprivation. In contrast, a significant number of double-labeled neurons (up to 40% of the noradrenergic neurons) were observed in the A1/C1, A2 and A5 groups, after both novel environment and PS deprivation. After PS recovery and in control condition, less than 1% of the noradrenergic neurons were Fos-immunoreactive, regardless of the noradrenergic group. These results indicate that the brainstem noradrenergic cell groups are activated during W and silent during PS. They further suggest that the inhibitory effect of noradrenaline on PS may be due to the A1/C1, A2 and to a lesser degree to A5 neurons but not from those of the LC as previously hypothesized.
Collapse
|
48
|
Role of chemoreceptors in mediating dyspnea. Respir Physiol Neurobiol 2008; 167:9-19. [PMID: 19118647 DOI: 10.1016/j.resp.2008.12.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2008] [Revised: 11/26/2008] [Accepted: 12/04/2008] [Indexed: 11/22/2022]
Abstract
Dyspnea, or the uncomfortable awareness of respiratory distress, is a common symptom experienced by most people at some point during their lifetime. It is commonly encountered in individuals with pulmonary disease, such as chronic obstructive pulmonary disease (COPD), but can also be seen in healthy individuals after strenuous exercise, at altitude or in response to psychological stress. Dyspnea is a multifactorial sensation involving the brainstem, cortex, and limbic system, as well as mechanoreceptors, irritant receptors and chemoreceptors. Chemoreceptors appear to contribute to the sensation of dyspnea in two ways. They stimulate the respiratory control system in response to hypoxia and/or hypercapnia, and the resultant increase respiratory motor output can be consciously perceived as unpleasant. They also can induce the sensation of dyspnea through an as yet undetermined mechanism-potentially via direct ascending connections to the limbic system and cortex. The goal of this article is to briefly review how changes in blood gases reach conscious awareness and how chemoreceptors are involved in dyspnea.
Collapse
|
49
|
Johnson SM, Haxhiu MA, Richerson GB. GFP-expressing locus ceruleus neurons from Prp57 transgenic mice exhibit CO2/H+ responses in primary cell culture. J Appl Physiol (1985) 2008; 105:1301-11. [PMID: 18635881 PMCID: PMC2576037 DOI: 10.1152/japplphysiol.90414.2008] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Accepted: 07/12/2008] [Indexed: 11/22/2022] Open
Abstract
The locus ceruleus (LC) contains neurons that increase their firing rate (FR) in vitro when exposed to elevated CO(2)/H(+) and have been proposed to influence the respiratory network to make compensatory adjustments in ventilation. Prp57 transgenic mice express green fluorescent protein (GFP) in the LC and were used to isolate, culture, and target LC neurons for electrophysiological recording. We hypothesized that GFP-LC neurons would exhibit CO(2)/H(+) chemosensitivity under primary culture conditions, evidenced as a change in FR. This is the first study to quantify CO(2)/H(+) responses in LC neuron FR in cell culture. Neurons were continuously bathed with solutions containing antagonists of glutamate and GABA receptors, and the acid-base status was changed from control (5% CO(2); pH approximately 7.4) to hypercapnic acidosis (9% CO(2); pH approximately 7.2) and hypocapnic alkalosis (3% CO(2); pH approximately 7.6). FR was quantified during perforated patch current clamp recordings. Approximately 86% of GFP-LC neurons were stimulated, and approximately 14% were insensitive to changes in CO(2)/H(+). The magnitude of the response of these neurons depended on the baseline FR, ranging from 155.9 +/- 6% when FR started at 2.95 +/- 0.49 Hz to 381 +/- 55.6% when FR started at 1.32 +/- 0.31 Hz. These results demonstrate that cultured LC neurons from Prp57 transgenic mice retain functional sensing molecules necessary for CO(2)/H(+) responses. Prp57 transgenic mice will serve as a valuable model to delineate mechanisms involved in CO(2)/H(+) responsiveness in catecholaminergic neurons.
Collapse
Affiliation(s)
- Shereé M Johnson
- Department of Physiology and Biophysics, Howard University College of Medicine, 520 W Street Northwest, Washington, DC 20059, USA.
| | | | | |
Collapse
|
50
|
Rukhadze I, Fenik VB, Branconi JL, Kubin L. Fos expression in pontomedullary catecholaminergic cells following rapid eye movement sleep-like episodes elicited by pontine carbachol in urethane-anesthetized rats. Neuroscience 2008; 152:208-22. [PMID: 18155849 DOI: 10.1016/j.neuroscience.2007.11.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2007] [Revised: 11/09/2007] [Accepted: 11/09/2007] [Indexed: 02/07/2023]
Abstract
Pontine noradrenergic neurons of the locus coeruleus (LC) and sub-coeruleus (SubC) region cease firing during rapid eye movement sleep (REMS). This plays a permissive role in the generation of REMS and may contribute to state-dependent modulation of transmission in the CNS. Whether all pontomedullary catecholaminergic neurons, including those in the A1/C1, A2/C2 and A7 groups, have REMS-related suppression of activity has not been tested. We used Fos protein expression as an indirect marker of the level of neuronal activity and linear regression analysis to determine whether pontomedullary cells identified by tyrosine hydroxylase (TH) immunohistochemistry have reduced Fos expression following REMS-like state induced by pontine microinjections of a cholinergic agonist, carbachol in urethane-anesthetized rats. The percentage of Fos-positive TH cells was negatively correlated with the cumulative duration of REMS-like episodes induced during 140 min prior to brain harvesting in the A7 and rostral A5 groups bilaterally (P < 0.01 for both), and in SubC neurons on the side opposite to carbachol injection (P < 0.05). Dorsal medullary A2/C2 neurons did not exhibit such correlation, but their Fos expression (and that in A7, rostral A5 and SubC neurons) was positively correlated with the duration of the interval between the last REMS-like episode and the time of perfusion (P < 0.05). In contrast, neither of these correlations was significant for A1 /C1 or caudal A5 neurons. These findings suggest that, similar to the prototypic LC neurons, neurons of the A7, rostral A5 and A2/C2 groups have reduced or abolished activity during REMS, whereas A1 /IC1 and caudal A5 neurons do not have this feature. The reduced activity of A2/C2, A5 and A7 neurons during REMS, and the associated decrements in norepinephrine release, may cause state-dependent modulation of.transmission in brain somato- and viscerosensory, somatomotor, and cardiorespiratory pathways.
Collapse
Affiliation(s)
- I Rukhadze
- Department of Animal Biology 209E/VET, School of Veterinary Medicine and Center for Sleep and Respiratory Neurobiology, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA 19104-6046, USA.
| | | | | | | |
Collapse
|