1
|
Two Major Bile Acids in the Hornbills, (24R,25S)-3α,7α,24-Trihydroxy-5β-cholestan-27-oyl Taurine and Its 12α-Hydroxy Derivative. Lipids 2016; 51:757-68. [PMID: 27108034 DOI: 10.1007/s11745-016-4150-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 03/31/2016] [Indexed: 10/21/2022]
Abstract
Two major bile acids were isolated from the gallbladder bile of two hornbill species from the Bucerotidae family of the avian order Bucerotiformes Buceros bicornis (great hornbill) and Penelopides panini (Visayan tarictic hornbill). Their structures were determined to be 3α,7α,24-dihydroxy-5β-cholestan-27-oic acid and its 12α-hydroxy derivative, 3α,7α,12α,24-tetrahydroxy-5β-cholestan-27-oic acid (varanic acid, VA), both present in bile as their corresponding taurine amidates. The four diastereomers of varanic acid were synthesized and their assigned structures were confirmed by X-ray crystallographic analysis. VA and its 12-deoxy derivative were found to have a (24R,25S)-configuration. 13 additional hornbill species were also analyzed by HPLC and showed similar bile acid patterns to B. bicornis and P. panini. The previous stereochemical assignment for (24R,25S)-VA isolated from the bile of varanid lizards and the Gila monster should now be revised to the (24S,25S)-configuration.
Collapse
|
2
|
Hagey LR, Iida T, Ogawa S, Adachi Y, Une M, Mushiake K, Maekawa M, Shimada M, Mano N, Hofmann AF. Biliary bile acids in birds of the Cotingidae family: taurine-conjugated (24R,25R)-3α,7α,24-trihydroxy-5β-cholestan-27-oic acid and two epimers (25R and 25S) of 3α,7α-dihydroxy-5β-cholestan-27-oic acid. Steroids 2011; 76:1126-35. [PMID: 21600907 DOI: 10.1016/j.steroids.2011.04.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 04/25/2011] [Accepted: 04/27/2011] [Indexed: 11/29/2022]
Abstract
Three C(27) bile acids were found to be major biliary bile acids in the capuchinbird (Perissocephalus tricolor) and bare-throated bellbird (Procnias nudicollis), both members of the Cotingidae family of the order Passeriformes. The individual bile acids were isolated by preparative RP-HPLC, and their structures were established by RP-HPLC, LC/ESI-MS/MS and NMR as well as by a comparison of their chromatographic properties with those of authentic reference standards of their 12α-hydroxy derivatives. The most abundant bile acid present in the capuchinbird bile was the taurine conjugate of C(27) (24R,25R)-3α,7α,24-trihydroxy-5β-cholestan-27-oic acid, a diastereomer not previously identified as a natural bile acid. The four diastereomers of taurine-conjugated (24ξ,25ξ)-3α,7α,24-trihydroxy-5β-cholestan-27-oic acid could be distinguished by NMR and were resolved by RP-HPLC. The RRT of the diastereomers (with taurocholic acid as 1.0) were found to be increased in the following order: (24R,25R)<(24S,25R)<(24S,25S)<(24R,25S). Two epimers (25R and 25S) of C(27) 3α,7α-dihydroxy-5β-cholestan-27-oic acid were also present (as the taurine conjugates) in both bird species. Epimers of the two compounds could be distinguished by their NMR spectra and resolved by RP-HPLC with the (25S)-epimer eluting before the (25R)-epimer. Characterization of the taurine-conjugated (24R,25R)-3α,7α,24-trihydroxy-5β-cholestan-27-oic acid and two epimers (25R and 25S) of 3α,7α-dihydroxy-5β-cholestan-27-oic acid should facilitate their detection in peroxisomal disease and inborn errors of bile acid biosynthesis.
Collapse
Affiliation(s)
- Lee R Hagey
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093-0063, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Ogawa S, Mitamura K, Ikegawa S, Krasowski MD, Hagey LR, Hofmann AF, Iida T. Chemical synthesis of the (25R)- and (25S)-epimers of 3α,7α,12α-trihydroxy-5α-cholestan-27-oic acid as well as their corresponding glycine and taurine conjugates. Chem Phys Lipids 2011; 164:368-77. [PMID: 21554864 DOI: 10.1016/j.chemphyslip.2011.04.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 04/19/2011] [Accepted: 04/20/2011] [Indexed: 11/25/2022]
Abstract
The (25R)- and (25S)-epimers of C(27) 3α,7α,12α-trihydroxy-5α-cholestan-27-oic acid as well as their corresponding N-acylamidate conjugates with glycine or taurine were prepared starting from cholic acid in 14 steps. The principal reactions involved were (1) reduction of a key intermediary C(24)allo-cholic acid performate with NaBH(4)/triethylamine/ethyl chloroformate, (2) iodination of the resulting 3,7,12-triformyloxy-5α-cholan-24-ol with I(2)/triphenylphosphine; (3) nucleophilic substitution of the iodo derivative with diethylmethyl malonate/NaH; and (4) hydrolysis of the resulting 3,7,12-triformyloxy-25-methyl-26,27-diethyl ester with KOH, followed by decarboxylation of the geminal dicarboxylic acid with LiCl. N-Acylamidation of the resulting (25R)/(25S)-3α,7α,12α-trihydroxy-5α-cholestan-27-oic acid mixture with glycine or taurine afforded the corresponding epimeric mixtures of the glycine and taurine conjugates. The (25R)- and (25S)-epimers of the three variants of unconjugated and conjugated 3α,7α,12α-trihydroxy-5α-cholestan-27-oic acid were efficiently separated by HPLC on a reversed-phase C(18) column and their structural characteristics, particularly the chiral center at C-25, delineated using (1)H and (13)C NMR. These synthetic compounds should be useful as authentic reference standards for establishing their presence in bile as well as being useful in studies on the biosynthesis of allo-bile acids from cholesterol.
Collapse
Affiliation(s)
- Shoujiro Ogawa
- Department of Chemistry, College of Humanities & Sciences, Nihon University, Setagaya, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
4
|
Kuhajda K, Kevresan S, Kandrac J, Fawcett JP, Mikov M. Chemical and metabolic transformations of selected bile acids. Eur J Drug Metab Pharmacokinet 2007; 31:179-235. [PMID: 17136861 DOI: 10.1007/bf03190713] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This article surveys chemical transformations of selected bile acids. Chemical transformations were initially carried out with the aim of determining the structure of bile acids. More recently they have been concerned with bile acid interconversions as well as with the synthesis of steroid hormones, vitamins and therapeutc agents. Studies of similarities and differences in the biosynthesis of bile acids from cholesterol have occupied many researches. However, this article reviews only papers dealing with the synthesis of potential intermediates in the biosynthesis of bile acids. Steroid hormones such as pregnenolone, progesterone and testosterone are synthesized from methyl thiodeoxycholate whereas cortisone is synthesized from methyl deoxycholiate. Numerous papers and patents devoted to the synthesis of ursodeoxycholic acid from cholic or chenodeoxycholic acid testify to its effectiveness in the treatment of cholelithiasis. Chenodeoxycholic acid appears to be an excellent precursor in the synthesis of steroid plant growth regulators, as well as in the synthesis of metabolites and vitamin D analogues. Chirality of bile acids has been exploited in the synthesis of cyclic and acyclic receptors and solvents. Cholic and deoxycholic acids have been used to create new macrocyclic structures which show different capacities to bind and transport other compounds. Another important trend in the chemistry of bile acids is their application in combinatorial chemistry.
Collapse
Affiliation(s)
- K Kuhajda
- Faculty of Science, Department of Biochemistry, University of Novi Sad, Serbia
| | | | | | | | | |
Collapse
|
5
|
Huyghe S, Mannaerts GP, Baes M, Van Veldhoven PP. Peroxisomal multifunctional protein-2: the enzyme, the patients and the knockout mouse model. Biochim Biophys Acta Mol Cell Biol Lipids 2006; 1761:973-94. [PMID: 16766224 DOI: 10.1016/j.bbalip.2006.04.006] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2006] [Revised: 04/04/2006] [Accepted: 04/10/2006] [Indexed: 10/24/2022]
Abstract
The mammalian multifunctional protein-2 (MFP-2, also called multifunctional enzyme 2, D-bifunctional enzyme or 17-beta-estradiol dehydrogenase type IV) was identified by several groups about a decade ago. It plays a central role in peroxisomal beta-oxidation as it handles most, if not all, peroxisomal beta-oxidation substrates. Deficiency of this enzyme in man causes a severe developmental syndrome with abnormalities in several organs but in particular in the brain, leading to death within the first year of life. Accumulation of branched-long-chain fatty acids and very-long-chain fatty acids and a disturbed synthesis of bile acids were documented in these patients. A mouse model with MFP-2 deficiency only partly phenocopies the human disease. Although the expected metabolic abnormalities are present, no neurodevelopmental aberrations are observed. However, the survival of these mice into adulthood allowed to document the importance of this enzyme for the normal functioning of the brain, eyes and testis. In the present review, the identification and biochemical characteristics of MFP-2, and the consequences of MFP-2 dysfunction in humans and in mice will be discussed.
Collapse
Affiliation(s)
- Steven Huyghe
- Laboratory of Cell Metabolism, Department of Pharmaceutical Sciences, Katholieke Universiteit Leuven, Campus Gasthuisberg, Onderwijs en Navorsing II, bus 823, Herestraat 49, B-3000 Leuven, Belgium
| | | | | | | |
Collapse
|
6
|
Affiliation(s)
- J R Hanson
- School of Chemistry, Physics and Environmental Science, University of Sussex, Brighton, UK
| |
Collapse
|
7
|
Kurosawa T, Sato M, Inoue K, Yoshimura T, Tohma M, Ling Jiang L, Hashimoto T. Separation of stereoisomers of C27-bile acid CoA esters by liquid chromatography and its application to the study of the stereospecificities of D- and L-bifunctional proteins in bile acid biosynthesis. Anal Chim Acta 1998. [DOI: 10.1016/s0003-2670(97)00601-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
|
9
|
Qin YM, Haapalainen AM, Conry D, Cuebas DA, Hiltunen JK, Novikov DK. Recombinant 2-enoyl-CoA hydratase derived from rat peroxisomal multifunctional enzyme 2: role of the hydratase reaction in bile acid synthesis. Biochem J 1997; 328 ( Pt 2):377-82. [PMID: 9371691 PMCID: PMC1218931 DOI: 10.1042/bj3280377] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Rat liver peroxisomes contain two multifunctional enzymes: (1) perMFE-1 [2-enoyl-CoA hydratase 1/Delta3,Delta2-enoyl-CoA isomerase/(S)-3-hydroxyacyl-CoA dehydrogenase] and (2) perMFE-2 [2-enoyl-CoA hydratase 2/(R)-3-hydroxyacyl-CoA dehydrogenase]. To investigate the role of the hydratase activity of perMFE-2 in beta-oxidation, a truncated version of perMFE-2 was expressed in Escherichia coli as a recombinant protein. The protein catalyses the hydration of straight-chain (2E)-enoyl-CoAs to (3R)-hydroxyacyl-CoAs, but it is devoid of hydratase 1 [(2E)-enoyl-CoA to (3S)-hydroxyacyl-CoA] and (3R)-hydroxyacyl-CoA dehydrogenase activities. The purified enzyme (46 kDa hydratase 2) can be stored as an active enzyme for at least half a year. The recombinant enzyme hydrates (24E)-3alpha,7alpha,12alpha-trihydroxy- 5beta-cholest-24-enoyl-CoA to (24R,25R)-3alpha,7alpha,12alpha, 24-tetrahydroxy-5beta-cholestanoyl-CoA, which has previously been characterized as a physiological intermediate in bile acid synthesis. The stereochemistry of the products indicates that the hydration reaction catalysed by the enzyme proceeds via a syn mechanism. A monofunctional 2-enoyl-CoA hydratase 2 has not been observed as a wild-type protein. The recombinant 46 kDa hydratase 2 described here survives in a purified form under storage, thus being the first protein of this type amenable to application as a tool in metabolic studies.
Collapse
Affiliation(s)
- Y M Qin
- Biocenter Oulu, University of Oulu, Linnanmaa, FIN-90570 Oulu, Finland
| | | | | | | | | | | |
Collapse
|
10
|
Effect of the side-chain structure on the specificity of beta-oxidation in bile acid biosynthesis in rat liver homogenates. J Lipid Res 1997. [DOI: 10.1016/s0022-2275(20)30043-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
11
|
Dieuaide-Noubhani M, Asselberghs S, Mannaerts GP, Van Veldhoven PP. Evidence that multifunctional protein 2, and not multifunctional protein 1, is involved in the peroxisomal beta-oxidation of pristanic acid. Biochem J 1997; 325 ( Pt 2):367-73. [PMID: 9230115 PMCID: PMC1218569 DOI: 10.1042/bj3250367] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The second (enoyl-CoA hydratase) and third (3-hydroxyacyl-CoA dehydrogenase) steps of peroxisomal beta-oxidation are catalysed by two separate multifunctional proteins (MFPs), MFP-1 being involved in the degradation of straight-chain fatty acids and MFP-2 in the beta-oxidation of the side chain of cholesterol (bile acid synthesis). In the present study we determined which of the two MFPs is involved in the peroxisomal degradation of pristanic acid by using the synthetic analogue 2-methylpalmitic acid. The four stereoisomers of 3-hydroxy-2-methylpalmitoyl-CoA were separated by gas chromatography after hydrolysis, methylation and derivatization of the hydroxy group with (S)-2-phenylpropionic acid, and the stereoisomers were designated I-IV according to their order of elution from the column. Purified MFP-1 dehydrated stereoisomer IV but dehydrogenated stereoisomer III, so by itself MFP-1 is not capable of converting a branched enoyl-CoA into a 3-ketoacyl-CoA. In contrast, MFP-2 dehydrated and dehydrogenated the same stereoisomer (II), so it is highly probable that MFP-2 is involved in the peroxisomal degradation of branched fatty acids and that stereoisomer II is the physiological intermediate in branched fatty acid oxidation. By analogy with the results obtained with the four stereoisomers of the bile acid intermediate varanoyl-CoA, stereoisomer II can be assigned the 3R-hydroxy, 2R-methyl configuration.
Collapse
Affiliation(s)
- M Dieuaide-Noubhani
- Katholieke Universiteit Leuven, Campus Gasthuisberg, Departement Moleculaire Celbiologie, Afdeling Farmacologie, Herestraat 49, B-3000 Leuven, Belgium
| | | | | | | |
Collapse
|
12
|
Kurosawa T, Sato H, Sato M, Takechi H, Machida M, Tohma M. Analysis of stereoisomeric C27-bile acids by high performance liquid chromatography with fluorescence detection. J Pharm Biomed Anal 1997; 15:1375-82. [PMID: 9226566 DOI: 10.1016/s0731-7085(96)01984-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A method for differentially measuring the 24-hydroxylated stereoisomeric intermediates (3 alpha,7 alpha,12 alpha,24-tetrahydroxy- and 3 alpha,7 alpha,24-trihydroxy-5 beta-cholestan-26-oic acids) and related C27-bile acids in beta-oxidation of bile acid biosynthesis has been developed by high performance liquid chromatography with fluorescence detection. The method involved the derivatization of the above intermediable C27-bile acids into fluorescent esters with 3-(4-bromomethylphenyl)-7-diethylaminocoumarin, a newly synthesized labeling reagent for carboxylic acids. The fluorescent derivatives were subjected to a short silica gel column to eliminate interfering products prior to analysis by high performance liquid chromatography. The separation of the 16 kinds of bile acids containing stereoisomers was carried out using a reversed-phase Inertsil C8-column by gradient elution and detected with a fluorometer (Ex. 400 nm, Em. 475 nm). The linearity of calibration curve for each bile acid was from 0.5 to 250 pmol (r = 0.999) and the detection limits were about 15 fmol at a signal-to-noise ratio of 3. The method was applied to the determination of intermediates in beta-oxidation of bile acid biosynthesis using rat liver homogenate. The results showed that two stereoisomers of 24-hydroxylated C27-bile acids were predominantly produced, indicating the formation of the isomers by the cis-hydration with water.
Collapse
Affiliation(s)
- T Kurosawa
- Faculty of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Japan
| | | | | | | | | | | |
Collapse
|
13
|
Novikov D, Dieuaide-Noubhani M, Vermeesch JR, Fournier B, Mannaerts GP, Van Veldhoven PP. The human peroxisomal multifunctional protein involved in bile acid synthesis: activity measurement, deficiency in Zellweger syndrome and chromosome mapping. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1360:229-40. [PMID: 9197465 DOI: 10.1016/s0925-4439(97)00003-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The dehydrogenation of 24R,25R-varanoyl-CoA, the physiological intermediate formed during the peroxisomal breakdown of the bile acid intermediate trihydroxycoprostanic acid, was studied in human liver. The reaction appeared to be catalyzed by two different enzymes. A first one, present in the cytosol, did not discriminate between the four possible varanoyl-CoA isomers and did not require the CoA moiety. The second enzymic activity was associated with peroxisomes and acted only on the 24R,25R-isomer, in which the 24-hydroxy group possesses the D-configuration. The D-specific dehydrogenase is part of a 79 kDa protein which represents the human counterpart of a recently discovered second multifunctional protein in rat liver peroxisomes, named multifunctional protein 2 (MFP-2). Human MFP-2, like its rat counterpart, is also responsible for the formation (by hydratation) of 24R,25R-varanoyl-CoA. A deficiency of MFP-2 in Zellweger liver could be demonstrated immunologically by using antibodies against the rat enzyme and enzymically -- after removal of the cytosol -- by using 24R,25R-varanoyl-CoA. The gene coding for MFP-2 was mapped to chromosome 5q2.3.
Collapse
Affiliation(s)
- D Novikov
- Katholieke Universiteit Leuven, Campus Gasthuisberg, Departement Moleculaire Celbiologie, Afdeling Farmacologie, Belgium
| | | | | | | | | | | |
Collapse
|
14
|
Dieuaide-Noubhani M, Novikov D, Vandekerckhove J, Veldhoven PP, Mannaerts GP. Identification and characterization of the 2-enoyl-CoA hydratases involved in peroxisomal beta-oxidation in rat liver. Biochem J 1997; 321 ( Pt 1):253-9. [PMID: 9003427 PMCID: PMC1218062 DOI: 10.1042/bj3210253] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In this study we attempted to determine the number of 2-enoyl-CoA hydratases involved in peroxisomal beta-oxidation. We therefore separated peroxisomal proteins from rat liver on several chromatographic columns and measured hydratase activities on the eluates with different substrates. The results indicate that rat liver peroxisomes contain two hydratase activities: (1) a hydratase activity associated with multifunctional protein 1 (MFP-1) (2-enoyl-CoA hydratase/delta 3, delta 2-enoyl-CoA isomerase/L-3-hydroxyacyl-CoA dehydrogenase) and (2) a hydratase activity associated with MFP-2 (17 beta-hydroxysteroid dehydrogenase/D-3-hydroxyacyl-CoA dehydrogenase/2-enoyl-CoA hydratase). MFP-1 forms and dehydrogenates L-3-hydroxyacyl-CoA species, whereas MFP-2 forms and dehydrogenates D-3-hydroxyacyl-CoA species. A portion of MFP-2 is proteolytically cleaved, most probably in the peroxisome, into a 34 kDa 17 beta-hydroxysteroid dehydrogenase/D-3-hydroxyacyl-CoA dehydrogenase and a 45 kDa D-specific 2-enoyl-CoA hydratase. Finally, the results confirm that MFP-1 is involved in the degradation of straight-chain fatty acids, whereas MFP-2 and its cleavage products seem to be involved in the degradation of the side chain of cholesterol (bile acid synthesis).
Collapse
Affiliation(s)
- M Dieuaide-Noubhani
- Katholieke Universiteit Leuven, Faculteit Geneeskunde, Department Moleculaire Celbiologie, Belgium
| | | | | | | | | |
Collapse
|
15
|
Une M, Inoue A, Hoshita T. Formation of varanic acid, 3 alpha, 7 alpha, 12 alpha, 24-tetrahydroxy-5 beta-cholestanoic acid from 3 alpha, 7 alpha, 12 alpha-trihydroxy-5 beta-cholestanoic acid in Bombina orientalis. Steroids 1996; 61:639-41. [PMID: 8916357 DOI: 10.1016/s0039-128x(96)00137-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Varanic acid (3 alpha, 7 alpha, 12 alpha, 24-tetrahydroxy-5 beta-cholestanoic acid; 24-OH-THCA) is almost the sole component of bile acids in the bile of Bombina orientalis. To examine in the mechanism of the formation of 24-OH-THCA, radiolabeled (25R)- and (25S)-3 alpha, 7 alpha, 12 alpha-trihdroxy-5 beta-cholestanoic acids [(25R)- and (25S)-THCA] and (24E)-3 alpha, 7 alpha, 12 alpha-trihdroxy-5 beta-cholest-24-enoic acid (delta 24-THCA) were administered intraperitoneally to B. orientalis, gallbladder bile was collected after 24 h, and bile acids were subsequently extracted. Then the bile acids were analyzed by means of radio thin-layer chromatography and radio high-performance liquid chromatography after conversion to p-bromophenacyl ester derivatives. Although delta 24-THCA was not converted to 24-OH-THCA, (25R)-THCA and (25S)-THCA were transformed to (24R,25R)-24-OH-THCA and (24R,25S)-24-OH-THCA, respectively. These results strongly suggest that 24-OH-THCA was transformed via direct hydroxylation of the saturated side chain of THCA, not via hydration to an alpha, beta-unsaturated acid, delta 24-THCA, in B. orientalis.
Collapse
Affiliation(s)
- M Une
- Institute of Pharmaceutical Sciences, Hiroshima University, School of Medicine, Japan
| | | | | |
Collapse
|