1
|
Khanh HC, Kaothien-Nakayama P, Zou Z, Nakayama H. Metabolic pathway engineering of high-salinity-induced overproduction of L-proline improves high-salinity stress tolerance of an ectoine-deficient Halomonas elongata. Appl Environ Microbiol 2024; 90:e0119524. [PMID: 39158316 PMCID: PMC11409704 DOI: 10.1128/aem.01195-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 07/25/2024] [Indexed: 08/20/2024] Open
Abstract
Halophilic bacteria have adapted to survive in high-salinity environments by accumulating amino acids and their derivatives as organic osmolytes. L-Proline (Pro) is one such osmolyte that is also being used as a feed stimulant in the aquaculture industry. Halomonas elongata OUT30018 is a moderately halophilic bacterium that accumulates ectoine (Ect), but not Pro, as an osmolyte. Due to its ability to utilize diverse biomass-derived carbon and nitrogen sources for growth, H. elongata OUT30018 is used in this work to create a strain that overproduces Pro, which could be used as a sustainable Pro-rich feed additive. To achieve this, we replaced the coding region of H. elongata OUT30018's Ect biosynthetic operon with the artificial self-cloned proBm1AC gene cluster that encodes the Pro biosynthetic enzymes: feedback-inhibition insensitive mutant γ-glutamate kinase (γ-GKD118N/D119N), γ-glutamyl phosphate reductase, and pyrroline-5-carboxylate reductase. Additionally, the putA gene, which encodes the key enzyme of Pro catabolism, was deleted from the genome to generate H. elongata HN6. While the Ect-deficient H. elongata KA1 could not grow in minimal media containing more than 4% NaCl, H. elongata HN6 thrived in the medium containing 8% NaCl by accumulating Pro in the cell instead of Ect, reaching a concentration of 353.1 ± 40.5 µmol/g cell fresh weight, comparable to the Ect accumulated in H. elongata OUT30018 in response to salt stress. With its genetic background, H. elongata HN6 has the potential to be developed into a Pro-rich cell factory for upcycling biomass waste into single-cell feed additives, contributing to a more sustainable aquaculture industry.IMPORTANCEWe report here the evidence for de novo biosynthesis of Pro to be used as a major osmolyte in an ectoine-deficient Halomonas elongata. Remarkably, the concentration of Pro accumulated in H. elongata HN6 (∆ectABC::mCherry-proBm1AC ∆putA) is comparable to that of ectoine accumulated in H. elongata OUT30018 in response to high-salinity stress. We also found that among the two γ-glutamate kinase mutants (γ-GKD118N/D119N and γ-GKD154A/E155A) designed to resemble the two known Escherichia coli feedback-inhibition insensitive γ-GKD107N and γ-GKE143A, the γ-GKD118N/D119N mutant is the only one that became insensitive to feedback inhibition by Pro in H. elongata. As Pro is one of the essential feed additives for the poultry and aquaculture industries, the genetic makeup of the engineered H. elongata HN6 would allow for the sustainable upcycling of high-salinity waste biomass into a Pro-rich single-cell eco-feed.
Collapse
Affiliation(s)
- Huynh Cong Khanh
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki, Japan
- College of Environment and Natural Resources, Can Tho University, Can Tho, Vietnam
| | - Pulla Kaothien-Nakayama
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki, Japan
| | - Ziyan Zou
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki, Japan
| | - Hideki Nakayama
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki, Japan
- Graduate School of Integrated Science and Technology, Nagasaki University, Nagasaki, Japan
- Organization for Marine Science and Technology, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
2
|
Gong Y, Wang R, Ma L, Wang S, Li C, Xu Q. Optimization of trans-4-hydroxyproline synthesis pathway by rearrangement center carbon metabolism in Escherichia coli. Microb Cell Fact 2023; 22:240. [PMID: 37986164 PMCID: PMC10659092 DOI: 10.1186/s12934-023-02236-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/22/2023] [Indexed: 11/22/2023] Open
Abstract
BACKGROUND trans-4-Hydroxyproline (T-4-HYP) is a promising intermediate in the synthesis of antibiotic drugs. However, its industrial production remains challenging due to the low production efficiency of T-4-HYP. This study focused on designing the key nodes of anabolic pathway to enhance carbon flux and minimize carbon loss, thereby maximizing the production potential of microbial cell factories. RESULTS First, a basic strain, HYP-1, was developed by releasing feedback inhibitors and expressing heterologous genes for the production of trans-4-hydroxyproline. Subsequently, the biosynthetic pathway was strengthened while branching pathways were disrupted, resulting in increased metabolic flow of α-ketoglutarate in the Tricarboxylic acid cycle. The introduction of the NOG (non-oxidative glycolysis) pathway rearranged the central carbon metabolism, redirecting glucose towards acetyl-CoA. Furthermore, the supply of NADPH was enhanced to improve the acid production capacity of the strain. Finally, the fermentation process of T-4-HYP was optimized using a continuous feeding method. The rate of sugar supplementation controlled the dissolved oxygen concentrations during fermentation, and Fe2+ was continuously fed to supplement the reduced iron for hydroxylation. These modifications ensured an effective supply of proline hydroxylase cofactors (O2 and Fe2+), enabling efficient production of T-4-HYP in the microbial cell factory system. The strain HYP-10 produced 89.4 g/L of T-4-HYP in a 5 L fermenter, with a total yield of 0.34 g/g, the highest values reported by microbial fermentation, the yield increased by 63.1% compared with the highest existing reported yield. CONCLUSION This study presents a strategy for establishing a microbial cell factory capable of producing T-4-HYP at high levels, making it suitable for large-scale industrial production. Additionally, this study provides valuable insights into regulating synthesis of other compounds with α-ketoglutaric acid as precursor.
Collapse
Affiliation(s)
- Yu Gong
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, People's Republic of China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science & Technology, Tianjin, 300457, People's Republic of China
| | - Ruiqi Wang
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, People's Republic of China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science & Technology, Tianjin, 300457, People's Republic of China
| | - Ling Ma
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, People's Republic of China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science & Technology, Tianjin, 300457, People's Republic of China
| | - Shuo Wang
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, People's Republic of China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science & Technology, Tianjin, 300457, People's Republic of China
| | - Changgeng Li
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, People's Republic of China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science & Technology, Tianjin, 300457, People's Republic of China
| | - Qingyang Xu
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, People's Republic of China.
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science & Technology, Tianjin, 300457, People's Republic of China.
| |
Collapse
|
3
|
Recent Advances in the Hydroxylation of Amino Acids and Its Derivatives. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9030285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Hydroxy amino acids (HAAs) are of unique value in the chemical and pharmaceutical industry with antiviral, antifungal, antibacterial, and anticancer properties. At present, the hydroxylated amino acids most studied are tryptophan, lysine, aspartic acid, leucine, proline, etc., and some of their derivatives. The hydroxylation of amino acids is inextricably linked to the catalysis of various biological enzymes, such as tryptophan hydroxylase, L-pipecolic acid trans-4-hydroxylase, lysine hydroxylase, etc. Hydroxylase conspicuously increases the variety of amino acid derivatives. For the manufacture of HAAs, the high regioselectivity biocatalytic synthesis approach is favored over chemical synthesis. Nowadays, the widely used method is to transcribe the hydroxylation pathway of various amino acids, including various catalytic enzymes, into Corynebacterium glutamicum or Escherichia coli for heterologous expression and then produce hydroxyamino acids. In this paper, we systematically reviewed the biosynthetic hydroxylation of aliphatic, heterocyclic, and aromatic amino acids and introduced the basic research and application of HAAs.
Collapse
|
4
|
Zhang Z, Su W, Bao Y, Huang Q, Ye K, Liu P, Chu X. Modular reconstruction and optimization of the trans-4-hydroxy-L-proline synthesis pathway in Escherichia coli. Microb Cell Fact 2022; 21:159. [PMID: 35953819 PMCID: PMC9367115 DOI: 10.1186/s12934-022-01884-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 07/26/2022] [Indexed: 11/24/2022] Open
Abstract
Background In recent years, there has been a growing demand for microbial production of trans-4-hydroxy-L-proline (t4Hyp), which is a value-added amino acid and has been widely used in the fields of medicine, food, and cosmetics. In this study, a multivariate modular metabolic engineering approach was used to remove the bottleneck in the synthesis pathway of t4Hyp. Results Escherichia coli t4Hyp synthesis was performed using two modules: a α-ketoglutarate (α-KG) synthesis module (K module) and L-proline synthesis with hydroxylation module (H module). First, α-KG attrition was reduced, and then, L-proline consumption was inhibited. Subsequently, to improve the contribution to proline synthesis with hydroxylation, optimization of gene overexpression, promotor, copy number, and the fusion system was performed. Finally, optimization of the H and K modules was performed in combination to balance metabolic flow. Using the final module H1K4 in a shaking flask culture, 8.80 g/L t4Hyp was produced, which was threefold higher than that produced by the W0 strain. Conclusions These strategies demonstrate that a microbial cell factory can be systematically optimized by modular engineering for efficient production of t4Hyp. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01884-4.
Collapse
Affiliation(s)
- Zhenyu Zhang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, People's Republic of China
| | - Weike Su
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, People's Republic of China.,School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, People's Republic of China
| | - Yunyun Bao
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, People's Republic of China
| | - Qianqian Huang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, People's Republic of China
| | - Kai Ye
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, People's Republic of China
| | - Pengfu Liu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, People's Republic of China.
| | - Xiaohe Chu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, People's Republic of China.
| |
Collapse
|
5
|
Ji C, Xiao J, Zeng X. Recent Progress in the Stereoselective Synthesis of (−)‐α‐Kainic Acid. ChemistrySelect 2021. [DOI: 10.1002/slct.202102562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Cong‐Bin Ji
- School of Chemistry and Environmental Sciences Shangrao Normal University Shangrao Jiangxi 334001 People's Republic of China
| | - Jie Xiao
- School of Chemistry and Environmental Sciences Shangrao Normal University Shangrao Jiangxi 334001 People's Republic of China
| | - Xing‐Ping Zeng
- Key Laboratory of Small Functional Organic Molecule Ministry of Education Jiangxi Normal University Nanchang Jiangxi 330022 People's Republic of China
| |
Collapse
|
6
|
Heinilä LMP, Fewer DP, Jokela JK, Wahlsten M, Ouyang X, Permi P, Jortikka A, Sivonen K. The structure and biosynthesis of heinamides A1-A3 and B1-B5, antifungal members of the laxaphycin lipopeptide family. Org Biomol Chem 2021; 19:5577-5588. [PMID: 34085692 DOI: 10.1039/d1ob00772f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Laxaphycins are a family of cyclic lipopeptides with synergistic antifungal and antiproliferative activities. They are produced by multiple cyanobacterial genera and comprise two sets of structurally unrelated 11- and 12-residue macrocyclic lipopeptides. Here, we report the discovery of new antifungal laxaphycins from Nostoc sp. UHCC 0702, which we name heinamides, through antimicrobial bioactivity screening. We characterized the chemical structures of eight heinamide structural variants A1-A3 and B1-B5. These variants contain the rare non-proteinogenic amino acids 3-hydroxy-4-methylproline, 4-hydroxyproline, 3-hydroxy-d-leucine, dehydrobutyrine, 5-hydroxyl β-amino octanoic acid, and O-carbamoyl-homoserine. We obtained an 8.6-Mb complete genome sequence from Nostoc sp. UHCC 0702 and identified the 93 kb heinamide biosynthetic gene cluster. The structurally distinct heinamides A1-A3 and B1-B5 variants are synthesized using an unusual branching biosynthetic pathway. The heinamide biosynthetic pathway also encodes several enzymes that supply non-proteinogenic amino acids to the heinamide synthetase. Through heterologous expression, we showed that (2S,4R)-4-hydroxy-l-proline is supplied through the action of a novel enzyme LxaN, which hydroxylates l-proline. 11- and 12-residue heinamides have the characteristic synergistic activity of laxaphycins against Aspergillus flavus FBCC 2467. Structural and genetic information of heinamides may prove useful in future discovery of natural products and drug development.
Collapse
Affiliation(s)
| | - David Peter Fewer
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland.
| | - Jouni Kalevi Jokela
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland.
| | - Matti Wahlsten
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland.
| | - Xiaodan Ouyang
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland.
| | - Perttu Permi
- Department of Chemistry, University of Jyväskylä, Jyväskylä, Finland and Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Anna Jortikka
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland.
| | - Kaarina Sivonen
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
7
|
Zhang Z, Liu P, Su W, Zhang H, Xu W, Chu X. Metabolic engineering strategy for synthetizing trans-4-hydroxy-L-proline in microorganisms. Microb Cell Fact 2021; 20:87. [PMID: 33882914 PMCID: PMC8061225 DOI: 10.1186/s12934-021-01579-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 04/13/2021] [Indexed: 11/14/2022] Open
Abstract
Trans-4-hydroxy-L-proline is an important amino acid that is widely used in medicinal and industrial applications, particularly as a valuable chiral building block for the organic synthesis of pharmaceuticals. Traditionally, trans-4-hydroxy-L-proline is produced by the acidic hydrolysis of collagen, but this process has serious drawbacks, such as low productivity, a complex process and heavy environmental pollution. Presently, trans-4-hydroxy-L-proline is mainly produced via fermentative production by microorganisms. Some recently published advances in metabolic engineering have been used to effectively construct microbial cell factories that have improved the trans-4-hydroxy-L-proline biosynthetic pathway. To probe the potential of microorganisms for trans-4-hydroxy-L-proline production, new strategies and tools must be proposed. In this review, we provide a comprehensive understanding of trans-4-hydroxy-L-proline, including its biosynthetic pathway, proline hydroxylases and production by metabolic engineering, with a focus on improving its production.
Collapse
Affiliation(s)
- Zhenyu Zhang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014 Zhejiang People’s Republic of China
| | - Pengfu Liu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014 Zhejiang People’s Republic of China
| | - Weike Su
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014 Zhejiang People’s Republic of China
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014 Zhejiang People’s Republic of China
| | - Huawei Zhang
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014 Zhejiang People’s Republic of China
| | - Wenqian Xu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014 Zhejiang People’s Republic of China
| | - Xiaohe Chu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014 Zhejiang People’s Republic of China
| |
Collapse
|
8
|
Jiang L, Pang J, Yang L, Li W, Duan L, Zhang G, Luo Y. Engineering endogenous l-proline biosynthetic pathway to boost trans-4-hydroxy-l-proline production in Escherichia coli. J Biotechnol 2021; 329:104-117. [PMID: 33539894 DOI: 10.1016/j.jbiotec.2021.01.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 11/16/2022]
Abstract
Non-proteinogenic trans-4-hydroxy-l-proline (t4HYP), a crucial naturally occurred amino acid, is present in most organisms. t4HYP is a regio- and stereo-selectively hydroxylated product of l-proline and a valuable building block for pharmaceutically important intermediates/ingredients synthesis. Microbial production of t4HYP has aroused extensive investigations because of its low-cost and environmentally benign features. Herein, we reported metabolic engineering of endogenous l-proline biosynthetic pathway to enhance t4HYP production in trace l-proline-producing Escherichia coli BL21(DE3) (21-S0). The genes responsible for by-product formation from l-proline, pyruvate, acetyl-CoA, and isocitrate in the biosynthetic network of 21-S0 were knocked out to channel the metabolic flux towards l-proline biosynthesis. PdhR was knocked out to remove its negative regulation and aceK was deleted to ensure isocitrate dehydrogenase's activity and to increase NADPH/NADP+ level. The other genes for l-proline biosynthesis were enhanced by integration of strong promoters and 5'-untranslated regions. The resulting engineered E. coli strains 21-S1 ∼ 21-S9 harboring a codon-optimized proline 4-hydroxylase-encoding gene (P4H) were grown and fermented. A titer of 4.82 g/L of t4HYP production in 21-S6 overexpressing P4H was obtained at conical flask level, comparing with the starting 21-S0 (26 mg/L). The present work paves an efficient metabolic engineering way for higher t4HYP production in E. coli.
Collapse
Affiliation(s)
- Liangzhen Jiang
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, 9 Section 4, Renmin Road South, Chengdu 610041, People's Republic of China; College of Pharmacy and Biological Engineering, Chengdu University, 2025 Chengluo Avenue, Chengdu 610106, People's Republic of China
| | - Jing Pang
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, 9 Section 4, Renmin Road South, Chengdu 610041, People's Republic of China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, People's Republic of China
| | - Lixia Yang
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, 9 Section 4, Renmin Road South, Chengdu 610041, People's Republic of China
| | - Wei Li
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, 9 Section 4, Renmin Road South, Chengdu 610041, People's Republic of China
| | - Lili Duan
- College of Food Science and Technology, Sichuan Tourism University, 459 Hongling Road, Chengdu 610100, People's Republic of China
| | - Guolin Zhang
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, 9 Section 4, Renmin Road South, Chengdu 610041, People's Republic of China
| | - Yinggang Luo
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, 9 Section 4, Renmin Road South, Chengdu 610041, People's Republic of China; State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China.
| |
Collapse
|
9
|
Brandenburg F, Theodosiou E, Bertelmann C, Grund M, Klähn S, Schmid A, Krömer JO. Trans-4-hydroxy-L-proline production by the cyanobacterium Synechocystis sp. PCC 6803. Metab Eng Commun 2020; 12:e00155. [PMID: 33511031 PMCID: PMC7815826 DOI: 10.1016/j.mec.2020.e00155] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 11/30/2020] [Accepted: 12/11/2020] [Indexed: 01/21/2023] Open
Abstract
Cyanobacteria play an important role in photobiotechnology. Yet, one of their key central metabolic pathways, the tricarboxylic acid (TCA) cycle, has a unique architecture compared to most heterotrophs and still remains largely unexploited. The conversion of 2-oxoglutarate to succinate via succinyl-CoA is absent but is by-passed by several other reactions. Overall, fluxes under photoautotrophic growth conditions through the TCA cycle are low, which has implications for the production of chemicals. In this study, we investigate the capacity of the TCA cycle of Synechocystis sp PCC 6803 for the production of trans-4-hydroxy-L-proline (Hyp), a valuable chiral building block for the pharmaceutical and cosmetic industries. For the first time, photoautotrophic Hyp production was achieved in a cyanobacterium expressing the gene for the L-proline-4-hydroxylase (P4H) from Dactylosporangium sp. strain RH1. Interestingly, while elevated intracellular Hyp concentrations could be detected in the recombinant Synechocystis strains under all tested conditions, detectable Hyp secretion into the medium was only observed when the pH of the medium exceeded 9.5 and mostly in the late phases of the cultivation. We compared the rates obtained for autotrophic Hyp production with published sugar-based production rates in E. coli. The land-use efficiency (space-time yield) of the phototrophic process is already in the same order of magnitude as the heterotrophic process considering sugar farming as well. But, the remarkable plasticity of the cyanobacterial TCA cycle promises the potential for a 23–55 fold increase in space-time yield when using Synechocystis. Altogether, these findings contribute to a better understanding of bioproduction from the TCA cycle in photoautotrophs and broaden the spectrum of chemicals produced in metabolically engineered cyanobacteria. Phototrophic production of trans-4-hydroxy-L-prolin. pH dependency of product accumulation in Synechocystis PCC6803. Comparative analysis of land use efficiency in phototrophs & heterotrophs.
Collapse
|
10
|
López B, Bartra M, Berenguer R, Ariza X, Garcia J, Gómez R, Torralvo H. An Enantioselective Approach to 4-Substituted Proline Scaffolds: Synthesis of ( S)-5-( Tert-Butoxy Carbonyl)-5-Azaspiro[2.4]heptane-6-Carboxylic Acid. Molecules 2020; 25:molecules25235644. [PMID: 33266105 PMCID: PMC7729483 DOI: 10.3390/molecules25235644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 11/16/2022] Open
Abstract
A catalytic and enantioselective preparation of the (S)-4-methyleneproline scaffold is described. The key reaction is a one-pot double allylic alkylation of an imine analogue of glycine in the presence of a chinchonidine-derived catalyst under phase transfer conditions. These 4-methylene substituted proline derivatives are versatile starting materials often used in medicinal chemistry. In particular, we have transformed tert-butyl (S)-4-methyleneprolinate (12) into the N-Boc-protected 5-azaspiro[2.4]heptane-6-carboxylic acid (1), a key element in the industrial synthesis of antiviral ledipasvir.
Collapse
Affiliation(s)
- Blanca López
- Departament de Química Inorgànica i Orgànica, Secció de Química Orgànica, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain; (B.L.); (R.G.); (H.T.)
- R&D Department, Esteve Química S.A., Caracas 17-19, 08030 Barcelona, Spain; (M.B.); (R.B.)
| | - Martí Bartra
- R&D Department, Esteve Química S.A., Caracas 17-19, 08030 Barcelona, Spain; (M.B.); (R.B.)
| | - Ramon Berenguer
- R&D Department, Esteve Química S.A., Caracas 17-19, 08030 Barcelona, Spain; (M.B.); (R.B.)
| | - Xavier Ariza
- Departament de Química Inorgànica i Orgànica, Secció de Química Orgànica, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain; (B.L.); (R.G.); (H.T.)
- Institut de Biomedicina (IBUB), Universitat de Barcelona, 08028 Barcelona, Spain
- CIBER Fisiopatología de la Obesidad y la Nutrición (CIBERobn), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: (X.A.); (J.G.)
| | - Jordi Garcia
- Departament de Química Inorgànica i Orgànica, Secció de Química Orgànica, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain; (B.L.); (R.G.); (H.T.)
- Institut de Biomedicina (IBUB), Universitat de Barcelona, 08028 Barcelona, Spain
- CIBER Fisiopatología de la Obesidad y la Nutrición (CIBERobn), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: (X.A.); (J.G.)
| | - Roberto Gómez
- Departament de Química Inorgànica i Orgànica, Secció de Química Orgànica, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain; (B.L.); (R.G.); (H.T.)
- Institut de Biomedicina (IBUB), Universitat de Barcelona, 08028 Barcelona, Spain
- CIBER Fisiopatología de la Obesidad y la Nutrición (CIBERobn), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Hèctor Torralvo
- Departament de Química Inorgànica i Orgànica, Secció de Química Orgànica, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain; (B.L.); (R.G.); (H.T.)
- R&D Department, Esteve Química S.A., Caracas 17-19, 08030 Barcelona, Spain; (M.B.); (R.B.)
| |
Collapse
|
11
|
Hara R, Kino K. Enzymatic reactions and microorganisms producing the various isomers of hydroxyproline. Appl Microbiol Biotechnol 2020; 104:4771-4779. [PMID: 32291491 DOI: 10.1007/s00253-020-10603-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/24/2020] [Accepted: 04/01/2020] [Indexed: 02/06/2023]
Abstract
Hydroxyproline is an industrially important compound with applications in the pharmaceutical, nutrition, and cosmetic industries. trans-4-Hydroxy-L-proline is recognized as the most abundant of the eight possible isomers (hydroxy group at C-3 or C-4, cis- or trans-configuration, and L- or D-form). However, little attention has been paid to the rare isomers, probably due to their limited availability. This mini-review provides an overview of recent advances in microbial and enzymatic processes to develop practical production strategies for various hydroxyprolines. Here, we introduce three screening strategies, namely, activity-, sequence-, and metabolite-based approaches, allowing identification of diverse proline-hydroxylating enzymes with different product specificities. All naturally occurring hydroxyproline isomers can be produced by using suitable hydroxylases in a highly regio- and stereo-selective manner. Furthermore, crystal structures of relevant hydroxylases provide much insight into their functional roles. Since hydroxylases acting on free L-proline belong to the 2-oxoglutarate-dependent dioxygenase superfamily, cellular metabolism of Escherichia coli coupled with a hydroxylase is a valuable source of 2-oxoglutarate, which is indispensable as a co-substrate in L-proline hydroxylation. Further, microbial hydroxyproline 2-epimerase may serve as a highly adaptable tool to convert L-hydroxyproline into D-hydroxyproline. KEY POINTS: • Proline hydroxylases serve as powerful tools for selectivel-proline hydroxylation. • Engineered Escherichia coli are a robust platform for hydroxyproline production. • Hydroxyproline epimerase convertsl-hydroxyproline intod-hydroxyproline.
Collapse
Affiliation(s)
- Ryotaro Hara
- Research Institute for Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo, 169-8555, Japan.,Laboratory of Industrial Microbiology, Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Kuniki Kino
- Research Institute for Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo, 169-8555, Japan. .,Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo, 169-8555, Japan.
| |
Collapse
|
12
|
Aronoff MR, Egli J, Schmitt A, Wennemers H. Alkylation of γ‐Azaproline Creates Conformationally Adaptable Proline Derivatives for pH‐Responsive Collagen Triple Helices. Chemistry 2020; 26:5070-5074. [DOI: 10.1002/chem.201905768] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Matthew R. Aronoff
- Laboratory of Organic ChemistryETH Zürich Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| | - Jasmine Egli
- Laboratory of Organic ChemistryETH Zürich Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| | - Adeline Schmitt
- Laboratory of Organic ChemistryETH Zürich Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| | - Helma Wennemers
- Laboratory of Organic ChemistryETH Zürich Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| |
Collapse
|
13
|
Tian Z, Clark BLM, Menard F. Kainic Acid-Based Agonists of Glutamate Receptors: SAR Analysis and Guidelines for Analog Design. ACS Chem Neurosci 2019; 10:4190-4198. [PMID: 31550120 DOI: 10.1021/acschemneuro.9b00349] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
A comprehensive survey of kainic acid analogs that have been tested for their biological activity is presented. Specifically, this review (1) gathers and compares over 100 kainoids according to a relative activity scale, (2) exposes structural features required to optimize affinity for kainate receptors, and (3) suggests design rules to create next-generation KA analogs. Literature SAR data are analyzed systematically and combined with the most recent crystallographic studies. In view of the renewed interest in neuroactive molecules, this review aims to help guide the efforts of organic synthesis laboratories, as well as to inform newcomers to KA/GluK research.
Collapse
Affiliation(s)
- Zhenlin Tian
- Department of Chemistry, University of British Columbia, Kelowna, BC V1V 1V7, Canada
| | - Brianna L. M. Clark
- Department of Chemistry, University of British Columbia, Kelowna, BC V1V 1V7, Canada
| | - Frederic Menard
- Department of Chemistry, University of British Columbia, Kelowna, BC V1V 1V7, Canada
| |
Collapse
|
14
|
Zhao J, Liu C, Guo X, Wang J, Liu H, Zheng P, Sun J, Ma Y. Efficient production of trans-3-hydroxyproline by a bacterial trans-3-proline hydroxylase and characterization of enzymatic properties. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.04.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
15
|
Hara R, Nishikawa T, Okuhara T, Koketsu K, Kino K. Ectoine hydroxylase displays selective trans-3-hydroxylation activity towards L-proline. Appl Microbiol Biotechnol 2019; 103:5689-5698. [PMID: 31106391 DOI: 10.1007/s00253-019-09868-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 04/18/2019] [Accepted: 04/26/2019] [Indexed: 11/25/2022]
Abstract
L-Hydroxyproline (Hyp) is a valuable intermediate for the synthesis of pharmaceuticals; consequently, a practical process for its production has been in high demand. To date, industrial processes have been developed by using L-Pro hydroxylases. However, a process for the synthesis of trans-3-Hyp has not yet been established, because of the lack of highly selective enzymes that can convert L-Pro to trans-3-Hyp. The present study was designed to develop a biocatalytic trans-3-Hyp production process. We speculated that ectoine hydroxylase (EctD), which is involved in the hydroxylation of the known compatible solute ectoine, may possess the ability to hydroxylate L-Pro, since the structures of ectoine and 5-hydroxyectoine resemble those of L-Pro and trans-3-Hyp, respectively. Consequently, we discovered that ectoine hydroxylases from Halomonas elongata, as well as some actinobacteria, catalyzed L-Pro hydroxylation to form trans-3-Hyp. Of these, ectoine hydroxylase from Streptomyces cattleya also utilized 3,4-dehydro-L-Pro, 2-methyl-L-Pro, and L-pipecolic acid as substrates. In the whole-cell bioconversion of L-Pro into trans-3-Hyp using Escherichia coli expressing the ectD gene from S. cattleya, only 12.4 mM trans-3-Hyp was produced from 30 mM L-Pro, suggesting a rapid depletion of 2-oxoglutarate, an essential component of enzyme activity as a cosubstrate, in the host. Therefore, the endogenous 2-oxoglutarate dehydrogenase gene was deleted. Using this deletion mutant as the host, trans-3-Hyp production was enhanced up to 26.8 mM from 30 mM L-Pro, with minimal loss of 2-oxoglutarate. This finding is not only beneficial for trans-3-Hyp production, but also for other E. coli bioconversion processes involving 2-oxoglutarate-utilizing enzymes.
Collapse
Affiliation(s)
- Ryotaro Hara
- Research Institute for Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo, 169-8555, Japan
| | - Takeyuki Nishikawa
- Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo, 169-8555, Japan
| | - Takuya Okuhara
- Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo, 169-8555, Japan
| | - Kento Koketsu
- Bioprocess Development Center, Kyowa Hakko Bio Co., Ltd., 2, Miyukigaoka, Tsukuba, Ibaraki, 305-0841, Japan
| | - Kuniki Kino
- Research Institute for Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo, 169-8555, Japan.
- Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo, 169-8555, Japan.
| |
Collapse
|
16
|
Aronoff MR, Egli J, Menichelli M, Wennemers H. γ‐Azaproline Confers pH Responsiveness and Functionalizability on Collagen Triple Helices. Angew Chem Int Ed Engl 2019; 58:3143-3146. [DOI: 10.1002/anie.201813048] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/08/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Matthew R. Aronoff
- Laboratory of Organic ChemistryETH Zürich Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| | - Jasmine Egli
- Laboratory of Organic ChemistryETH Zürich Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| | | | - Helma Wennemers
- Laboratory of Organic ChemistryETH Zürich Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| |
Collapse
|
17
|
Aronoff MR, Egli J, Menichelli M, Wennemers H. γ‐Azaproline Confers pH Responsiveness and Functionalizability on Collagen Triple Helices. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201813048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Matthew R. Aronoff
- Laboratory of Organic ChemistryETH Zürich Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| | - Jasmine Egli
- Laboratory of Organic ChemistryETH Zürich Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| | | | - Helma Wennemers
- Laboratory of Organic ChemistryETH Zürich Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| |
Collapse
|
18
|
Liu C, Zhao J, Liu J, Guo X, Rao D, Liu H, Zheng P, Sun J, Ma Y. Simultaneously improving the activity and thermostability of a new proline 4-hydroxylase by loop grafting and site-directed mutagenesis. Appl Microbiol Biotechnol 2018; 103:265-277. [DOI: 10.1007/s00253-018-9410-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/14/2018] [Accepted: 09/19/2018] [Indexed: 02/03/2023]
|
19
|
Sun D, Gao D, Xu P, Guo Q, Zhu Z, Cheng X, Bai S, Qin HM, Lu F. A novel l -leucine 5-hydroxylase from Nostoc piscinale unravels unexpected sulfoxidation activity toward l -methionine. Protein Expr Purif 2018; 149:1-6. [DOI: 10.1016/j.pep.2018.04.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/26/2018] [Accepted: 04/13/2018] [Indexed: 01/21/2023]
|
20
|
Utepova IA, Serebrennikova PO, Streltsova MS, Musikhina AA, Fedorchenko TG, Chupakhin ON, Antonchick AP. Enantiomerically Enriched 1,2- P, N-Bidentate Ferrocenyl Ligands for 1,3-Dipolar Cycloaddition and Transfer Hydrogenation Reactions. Molecules 2018; 23:molecules23061311. [PMID: 29848984 PMCID: PMC6100496 DOI: 10.3390/molecules23061311] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 05/25/2018] [Accepted: 05/25/2018] [Indexed: 12/24/2022] Open
Abstract
Novel complexes of 1,2-P,N-bidentate ferrocenyl ligands with AgOAc or with [RuCl2(PPh3)3] as catalysts have been studied in asymmetric synthesis. The catalytic activity of these systems have been studied in [3+2]-cycloaddition of azomethine ylides with olefins and the asymmetric transfer hydrogenation of ketones.
Collapse
Affiliation(s)
- Irina A Utepova
- Ural Federal University, 19 Mira Street, Ekaterinburg 620002, Russia.
- Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, 22 S. Kovalevskaya Street, Ekaterinburg 620041, Russia.
| | | | | | | | - Tatiana G Fedorchenko
- Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, 22 S. Kovalevskaya Street, Ekaterinburg 620041, Russia.
| | - Oleg N Chupakhin
- Ural Federal University, 19 Mira Street, Ekaterinburg 620002, Russia.
- Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, 22 S. Kovalevskaya Street, Ekaterinburg 620041, Russia.
| | - Andrey P Antonchick
- Chemische Biologie, Max-Planck-Institut für Molekulare Physiologie, Otto-Hahn Strasse 11, 44227 Dortmund, Germany.
- Fakultät Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Strasse 4a, 44227 Dortmund, Germany.
- Faculty of Science, Peoples' Friendship University of Russia, 6 Miklukho-Maklaya Street, Moscow 117198, Russia.
| |
Collapse
|
21
|
Wang XC, Liu J, Zhao J, Ni XM, Zheng P, Guo X, Sun CM, Sun JB, Ma YH. Efficient production of trans-4-hydroxy-l-proline from glucose using a new trans-proline 4-hydroxylase in Escherichia coli. J Biosci Bioeng 2018; 126:470-477. [PMID: 29805115 DOI: 10.1016/j.jbiosc.2018.04.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/04/2018] [Accepted: 04/17/2018] [Indexed: 01/22/2023]
Abstract
trans-4-Hydroxy-l-proline (trans-4Hyp) is widely used as a valuable building block for the organic synthesis of many pharmaceuticals such as carbapenem antibiotics. The major limitation for industrial bioproduction of trans-4Hyp is the low titer and productivity by using the existing trans-proline 4-hydroxylases (trans-P4Hs). Herein, three new trans-P4Hs from Alteromonas mediterranea (AlP4H), Micromonospora sp. CNB394 (MiP4H) and Sorangium cellulosum (ScP4H) were discovered through genome mining and enzymatic determination. These trans-P4Hs were introduced into an l-proline-producing chassis cell, and the recombinant strain overexpressing AlP4H produced the highest concentration of trans-4Hyp (3.57 g/L) from glucose in a shake flask. In a fed-batch fermentation with a 5 L bioreactor, the best strain SEcH (pTc-B74A-alp4h) accumulated 45.83 g/L of trans-4Hyp within 36 h, with the highest productivity (1.27 g/L/h) in trans-4Hyp fermentation from glucose, to the best of our knowledge. This study provides a promising hydroxylase candidate for efficient industrial production of trans-4Hyp.
Collapse
Affiliation(s)
- Xing-Chu Wang
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Jiao Liu
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China.
| | - Jing Zhao
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China.
| | - Xiao-Meng Ni
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China.
| | - Ping Zheng
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China.
| | - Xuan Guo
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China.
| | - Cun-Min Sun
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China.
| | - Ji-Bin Sun
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China.
| | - Yan-He Ma
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China.
| |
Collapse
|
22
|
Zhang HL, Zhang C, Pei CH, Han MN, Xu ZD, Li CH, Li W. Efficient production of trans
-4-Hydroxy-l
-proline from glucose by metabolic engineering of recombinant Escherichia coli. Lett Appl Microbiol 2018; 66:400-408. [DOI: 10.1111/lam.12864] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 01/28/2018] [Accepted: 02/04/2018] [Indexed: 01/16/2023]
Affiliation(s)
- H.-L. Zhang
- Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education; College of Chemistry and Environmental Science; Hebei University; Baoding China
| | - C. Zhang
- Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education; College of Chemistry and Environmental Science; Hebei University; Baoding China
| | - C.-H. Pei
- Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education; College of Chemistry and Environmental Science; Hebei University; Baoding China
| | - M.-N. Han
- Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education; College of Chemistry and Environmental Science; Hebei University; Baoding China
| | - Z.-D. Xu
- Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education; College of Chemistry and Environmental Science; Hebei University; Baoding China
| | - C.-H. Li
- HeBei Brant Pharmaceutical Co., Ltd.; Shingjiazhuang China
| | - W. Li
- Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education; College of Chemistry and Environmental Science; Hebei University; Baoding China
- HeBei Brant Pharmaceutical Co., Ltd.; Shingjiazhuang China
| |
Collapse
|
23
|
Adamska-Bartłomiejczyk A, Borics A, Tömböly C, Dvorácskó S, Lisowski M, Kluczyk A, Wołczański G, Piekielna-Ciesielska J, Janecka A. Synthesis, receptor binding studies, optical spectroscopic and in silico structural characterization of morphiceptin analogs with cis-4-amino-L-proline residues. J Pept Sci 2017; 23:864-870. [PMID: 29110363 DOI: 10.1002/psc.3050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/26/2017] [Accepted: 10/04/2017] [Indexed: 01/10/2023]
Abstract
Three novel morphiceptin analogs, in which Pro in position 2 and/or 4 was replaced by cis-4-aminoproline connected with the preceding amino acid through the primary amino group, were synthesized. The opioid receptor affinities, functional assay results, enzymatic degradation studies and experimental and in silico structural analysis of such analogs are presented. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Anna Adamska-Bartłomiejczyk
- Department of Biomolecular Chemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215, Lodz, Poland
| | - Attila Borics
- Laboratory of Chemical Biology, Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt. 62, H-6726, Szeged, Hungary
| | - Csaba Tömböly
- Laboratory of Chemical Biology, Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt. 62, H-6726, Szeged, Hungary
| | - Szabolcs Dvorácskó
- Laboratory of Chemical Biology, Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt. 62, H-6726, Szeged, Hungary
| | - Marek Lisowski
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383, Wroclaw, Poland
| | - Alicja Kluczyk
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383, Wroclaw, Poland
| | - Grzegorz Wołczański
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383, Wroclaw, Poland
| | - Justyna Piekielna-Ciesielska
- Department of Biomolecular Chemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215, Lodz, Poland
| | - Anna Janecka
- Department of Biomolecular Chemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215, Lodz, Poland
| |
Collapse
|
24
|
Theodosiou E, Frick O, Bühler B, Schmid A. Metabolic network capacity of Escherichia coli for Krebs cycle-dependent proline hydroxylation. Microb Cell Fact 2015. [PMID: 26215086 PMCID: PMC4517350 DOI: 10.1186/s12934-015-0298-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Background Understanding the metabolism of the microbial host is essential for the development and optimization of whole-cell based biocatalytic processes, as it dictates production efficiency. This is especially true for redox biocatalysis where metabolically active cells are employed because of the cofactor/cosubstrate regenerative capacity endogenous in the host. Recombinant Escherichia coli was used for overproducing proline-4-hydroxylase (P4H), a dioxygenase catalyzing the hydroxylation of free l-proline into trans-4-hydroxy-l-proline with a-ketoglutarate (a-KG) as cosubstrate. In this whole-cell biocatalyst, central carbon metabolism provides the required cosubstrate a-KG, coupling P4H biocatalytic performance directly to carbon metabolism and metabolic activity. By applying both experimental and computational biology tools, such as metabolic engineering and 13C-metabolic flux analysis (13C-MFA), we investigated and quantitatively described the physiological, metabolic, and bioenergetic response of the whole-cell biocatalyst to the targeted bioconversion and identified possible metabolic bottlenecks for further rational pathway engineering. Results A proline degradation-deficient E. coli strain was constructed by deleting the putA gene encoding proline dehydrogenase. Whole-cell biotransformations with this mutant strain led not only to quantitative proline hydroxylation but also to a doubling of the specific trans-4-l-hydroxyproline (hyp) formation rate, compared to the wild type. Analysis of carbon flux through central metabolism of the mutant strain revealed that the increased a-KG demand for P4H activity did not enhance the a-KG generating flux, indicating a tightly regulated TCA cycle operation under the conditions studied. In the wild type strain, P4H synthesis and catalysis caused a reduction in biomass yield. Interestingly, the ΔputA strain additionally compensated the associated ATP and NADH loss by reducing maintenance energy demands at comparably low glucose uptake rates, instead of increasing the TCA activity. Conclusions The putA knockout in recombinant E. coli BL21(DE3)(pLysS) was found to be promising for productive P4H catalysis not only in terms of biotransformation yield, but also regarding the rates for biotransformation and proline uptake and the yield of hyp on the energy source. The results indicate that, upon a putA knockout, the coupling of the TCA-cycle to proline hydroxylation via the cosubstrate a-KG becomes a key factor constraining and a target to further improve the efficiency of a-KG-dependent biotransformations. Electronic supplementary material The online version of this article (doi:10.1186/s12934-015-0298-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Eleni Theodosiou
- Department of Biochemical and Chemical Engineering, Laboratory of Chemical Biotechnology, TU Dortmund University, Emil-Figge-Strasse 66, 44227, Dortmund, Germany. .,Department of Solar Materials, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany.
| | - Oliver Frick
- Department of Solar Materials, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany.
| | - Bruno Bühler
- Department of Biochemical and Chemical Engineering, Laboratory of Chemical Biotechnology, TU Dortmund University, Emil-Figge-Strasse 66, 44227, Dortmund, Germany. .,Department of Solar Materials, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany.
| | - Andreas Schmid
- Department of Solar Materials, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany.
| |
Collapse
|
25
|
Christmann M, Hu J, Kitamura M, Stoltz B. Tetrahedron reports on organic chemistry. Tetrahedron 2015. [DOI: 10.1016/s0040-4020(15)00744-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
26
|
|
27
|
Koketsu K, Shomura Y, Moriwaki K, Hayashi M, Mitsuhashi S, Hara R, Kino K, Higuchi Y. Refined regio- and stereoselective hydroxylation of L-pipecolic acid by protein engineering of L-proline cis-4-hydroxylase based on the X-ray crystal structure. ACS Synth Biol 2015; 4:383-92. [PMID: 25171735 DOI: 10.1021/sb500247a] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Enzymatic regio- and stereoselective hydroxylation are valuable for the production of hydroxylated chiral ingredients. Proline hydroxylases are representative members of the nonheme Fe(2+)/α-ketoglutarate-dependent dioxygenase family. These enzymes catalyze the conversion of L-proline into hydroxy-L-prolines (Hyps). L-Proline cis-4-hydroxylases (cis-P4Hs) from Sinorhizobium meliloti and Mesorhizobium loti catalyze the hydroxylation of L-proline, generating cis-4-hydroxy-L-proline, as well as the hydroxylation of L-pipecolic acid (L-Pip), generating two regioisomers, cis-5-Hypip and cis-3-Hypip. To selectively produce cis-5-Hypip without simultaneous production of two isomers, protein engineering of cis-P4Hs is required. We therefore carried out protein engineering of cis-P4H to facilitate the conversion of the majority of L-Pip into the cis-5-Hypip isomer. We first solved the X-ray crystal structure of cis-P4H in complex with each of L-Pro and L-Pip. Then, we conducted three rounds of directed evolution and successfully created a cis-P4H triple mutant, V97F/V95W/E114G, demonstrating the desired regioselectivity toward cis-5-Hypip.
Collapse
Affiliation(s)
- Kento Koketsu
- Bioprocess
Development Center, Kyowa Hakko Bio Co., Ltd., Tsukuba, Ibaraki 305-0841, Japan
| | - Yasuhito Shomura
- Graduate
School of Life Science, University of Hyogo, Koto 3-2-1, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| | - Kei Moriwaki
- Bioprocess
Development Center, Kyowa Hakko Bio Co., Ltd., Tsukuba, Ibaraki 305-0841, Japan
| | - Mikiro Hayashi
- Bioprocess
Development Center, Kyowa Hakko Bio Co., Ltd., Tsukuba, Ibaraki 305-0841, Japan
| | - Satoshi Mitsuhashi
- Bioprocess
Development Center, Kyowa Hakko Bio Co., Ltd., Tsukuba, Ibaraki 305-0841, Japan
| | - Ryotaro Hara
- Department
of Applied Chemistry, Faculty of Science and Engineering, Waseda University, Ohkubo 3-4-1, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Kuniki Kino
- Department
of Applied Chemistry, Faculty of Science and Engineering, Waseda University, Ohkubo 3-4-1, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Yoshiki Higuchi
- Graduate
School of Life Science, University of Hyogo, Koto 3-2-1, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| |
Collapse
|
28
|
Nisha N, Kumar K, Kumar V. Prodigiosin alkaloids: recent advancements in total synthesis and their biological potential. RSC Adv 2015. [DOI: 10.1039/c4ra10296g] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The present review article is focused on the medicinal potential and total synthesis of prodigiosins witnessed in the last decade. The aim will be to provide an inspiration to the marvels and pit falls of constructing the polypyrrole heterocycles with in the complex systems.
Collapse
Affiliation(s)
- Nisha Nisha
- Department of Chemistry
- Guru Nanak Dev University
- Amritsar-143005
- India
| | - Kewal Kumar
- Department of Chemistry
- Guru Nanak Dev University
- Amritsar-143005
- India
| | - Vipan Kumar
- Department of Chemistry
- Guru Nanak Dev University
- Amritsar-143005
- India
| |
Collapse
|
29
|
Arfaoui A, Saâdi F, Smida YB, Arfaoui Y, Nefzi A, Amri H. A convenient synthesis of 3,4-cis-disubstituted pyrrolidin-2-ones. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2014.11.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
30
|
Kumar KSA, Chattopadhyay S. d-Glucose based syntheses of β-hydroxy derivatives of l-glutamic acid, l-glutamine, l-proline and a dihydroxy pyrrolidine alkaloid. RSC Adv 2015. [DOI: 10.1039/c5ra01340b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The β-hydroxy derivatives of l-glutamic acid, l-glutamine and l-proline, useful for peptide/protein studies, were synthesized starting from d-glucose.
Collapse
|
31
|
Falcioni F, Bühler B, Schmid A. Efficient hydroxyproline production from glucose in minimal media byCorynebacterium glutamicum. Biotechnol Bioeng 2014; 112:322-30. [DOI: 10.1002/bit.25442] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 08/06/2014] [Accepted: 08/18/2014] [Indexed: 11/09/2022]
Affiliation(s)
- Francesco Falcioni
- Department of Biochemical and Chemical Engineering; Laboratory of Chemical Biotechnology; TU Dortmund University; Emil-Figge-Strasse 66 Dortmund 44227 Germany
| | - Bruno Bühler
- Department of Biochemical and Chemical Engineering; Laboratory of Chemical Biotechnology; TU Dortmund University; Emil-Figge-Strasse 66 Dortmund 44227 Germany
| | - Andreas Schmid
- Department of Biochemical and Chemical Engineering; Laboratory of Chemical Biotechnology; TU Dortmund University; Emil-Figge-Strasse 66 Dortmund 44227 Germany
| |
Collapse
|
32
|
Yi Y, Sheng H, Li Z, Ye Q. Biosynthesis of trans-4-hydroxyproline by recombinant strains of Corynebacterium glutamicum and Escherichia coli. BMC Biotechnol 2014; 14:44. [PMID: 24885047 PMCID: PMC4055215 DOI: 10.1186/1472-6750-14-44] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 05/15/2014] [Indexed: 12/23/2022] Open
Abstract
Background Trans-4-hydroxy-L-proline (trans-Hyp), one of the hydroxyproline (Hyp) isomers, is a useful chiral building block in the production of many pharmaceuticals. Although there are some natural biosynthetic pathways of trans-Hyp existing in microorganisms, the yield is still too low to be scaled up for industrial applications. Until now the production of trans-Hyp is mainly from the acid hydrolysis of collagen. Due to the increasing environmental concerns on those severe chemical processes and complicated downstream separation, it is essential to explore some environment-friendly processes such as constructing new recombinant strains to develop efficient process for trans-Hyp production. Result In this study, the genes of trans-proline 4-hydroxylase (trans-P4H) from diverse resources were cloned and expressed in Corynebacterium glutamicum and Escherichia coli, respectively. The trans-Hyp production by these recombinant strains was investigated. The results showed that all the genes from different resources had been expressed actively. Both the recombinant C. glutamicum and E. coli strains could produce trans-Hyp in the absence of proline and 2-oxoglutarate. Conclusions The whole cell microbial systems for trans-Hyp production have been successfully constructed by introducing trans-P4H into C. glutamicum and E. coli. Although the highest yield was obtained in recombinant E. coli, using recombinant C. glutamicum strains to produce trans-Hyp was a new attempt.
Collapse
Affiliation(s)
| | | | - Zhimin Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | | |
Collapse
|
33
|
Hibi M, Ogawa J. Characteristics and biotechnology applications of aliphatic amino acid hydroxylases belonging to the Fe(II)/α-ketoglutarate-dependent dioxygenase superfamily. Appl Microbiol Biotechnol 2014; 98:3869-76. [PMID: 24682483 DOI: 10.1007/s00253-014-5620-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 02/14/2014] [Accepted: 02/14/2014] [Indexed: 11/28/2022]
Abstract
The asymmetric hydroxylation of inactive carbon atoms is still an important reaction in the industrial synthesis of valuable chiral compounds such as pharmaceuticals and fine chemicals. Applications of monooxygenation enzymes, like cytochrome P450 monooxygenases, flavin-containing monooxygenases, and Fe(II)/α-ketoglutarate-dependent dioxygenases (Fe/αKG-DOs), are strongly desired as hydroxylation biocatalysts because they have great advantages in regio- and stereoselectivity of the reactions. Recently, several novel Fe/αKG-DOs have been found to catalyze the asymmetric hydroxylation of aliphatic amino acids. Depending on their amino acid sequences, these Fe/αKG-DOs catalyze different types of regioselective hydroxylations, or C3-, C4-, and C5-hydroxylation. Additionally, most also have stereoselective sulfoxidation activities. Here, we have reviewed the characterization and process development of this novel functioning group of Fe/αKG-DOs.
Collapse
Affiliation(s)
- Makoto Hibi
- Industrial Microbiology, Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
| | | |
Collapse
|
34
|
Chang MY, Lin CY, Wu TC, Sun PP. Synthesis ofN-Tosylhomosphinganine andN-Tosylsedridine. J CHIN CHEM SOC-TAIP 2013. [DOI: 10.1002/jccs.200800063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
35
|
Stoltz B, Motherwell W. Tetrahedron reports on organic chemistry. Tetrahedron 2013. [DOI: 10.1016/s0040-4020(13)01252-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
36
|
Hanessian S, Dorich S, Menz H. Concise and Stereocontrolled Synthesis of the Tetracyclic Core of Daphniglaucin C. Org Lett 2013; 15:4134-7. [DOI: 10.1021/ol4018112] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Stephen Hanessian
- Department of Chemistry, Université de Montréal, P.O. Box 6128, Station Centre-ville, Montreal, QC, H3C 3J7, Canada
| | - Stéphane Dorich
- Department of Chemistry, Université de Montréal, P.O. Box 6128, Station Centre-ville, Montreal, QC, H3C 3J7, Canada
| | - Helge Menz
- Department of Chemistry, Université de Montréal, P.O. Box 6128, Station Centre-ville, Montreal, QC, H3C 3J7, Canada
| |
Collapse
|
37
|
Bach TMH, Takagi H. Properties, metabolisms, and applications of l-proline analogues. Appl Microbiol Biotechnol 2013; 97:6623-34. [DOI: 10.1007/s00253-013-5022-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 05/24/2013] [Accepted: 05/26/2013] [Indexed: 12/26/2022]
|
38
|
Pandey AK, Naduthambi D, Thomas KM, Zondlo NJ. Proline editing: a general and practical approach to the synthesis of functionally and structurally diverse peptides. Analysis of steric versus stereoelectronic effects of 4-substituted prolines on conformation within peptides. J Am Chem Soc 2013; 135:4333-63. [PMID: 23402492 PMCID: PMC4209921 DOI: 10.1021/ja3109664] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Functionalized proline residues have diverse applications. Herein we describe a practical approach, proline editing, for the synthesis of peptides with stereospecifically modified proline residues. Peptides are synthesized by standard solid-phase peptide synthesis to incorporate Fmoc-hydroxyproline (4R-Hyp). In an automated manner, the Hyp hydroxyl is protected and the remainder of the peptide synthesized. After peptide synthesis, the Hyp protecting group is orthogonally removed and Hyp selectively modified to generate substituted proline amino acids, with the peptide main chain functioning to "protect" the proline amino and carboxyl groups. In a model tetrapeptide (Ac-TYPN-NH2), 4R-Hyp was stereospecifically converted to 122 different 4-substituted prolyl amino acids, with 4R or 4S stereochemistry, via Mitsunobu, oxidation, reduction, acylation, and substitution reactions. 4-Substituted prolines synthesized via proline editing include incorporated structured amino acid mimetics (Cys, Asp/Glu, Phe, Lys, Arg, pSer/pThr), recognition motifs (biotin, RGD), electron-withdrawing groups to induce stereoelectronic effects (fluoro, nitrobenzoate), handles for heteronuclear NMR ((19)F:fluoro; pentafluorophenyl or perfluoro-tert-butyl ether; 4,4-difluoro; (77)SePh) and other spectroscopies (fluorescence, IR: cyanophenyl ether), leaving groups (sulfonate, halide, NHS, bromoacetate), and other reactive handles (amine, thiol, thioester, ketone, hydroxylamine, maleimide, acrylate, azide, alkene, alkyne, aryl halide, tetrazine, 1,2-aminothiol). Proline editing provides access to these proline derivatives with no solution-phase synthesis. All peptides were analyzed by NMR to identify stereoelectronic and steric effects on conformation. Proline derivatives were synthesized to permit bioorthogonal conjugation reactions, including azide-alkyne, tetrazine-trans-cyclooctene, oxime, reductive amination, native chemical ligation, Suzuki, Sonogashira, cross-metathesis, and Diels-Alder reactions. These proline derivatives allowed three parallel bioorthogonal reactions to be conducted in one solution.
Collapse
Affiliation(s)
- Anil K. Pandey
- Department of Chemistry and Biochemistry, University of Delaware, Newark DE 19716
| | - Devan Naduthambi
- Department of Chemistry and Biochemistry, University of Delaware, Newark DE 19716
| | - Krista M. Thomas
- Department of Chemistry and Biochemistry, University of Delaware, Newark DE 19716
| | - Neal J. Zondlo
- Department of Chemistry and Biochemistry, University of Delaware, Newark DE 19716
| |
Collapse
|
39
|
Proline availability regulates proline-4-hydroxylase synthesis and substrate uptake in proline-hydroxylating recombinant Escherichia coli. Appl Environ Microbiol 2013; 79:3091-100. [PMID: 23455348 DOI: 10.1128/aem.03640-12] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Microbial physiology plays a crucial role in whole-cell biotransformation, especially for redox reactions that depend on carbon and energy metabolism. In this study, regio- and enantio-selective proline hydroxylation with recombinant Escherichia coli expressing proline-4-hydroxylase (P4H) was investigated with respect to its interconnectivity to microbial physiology and metabolism. P4H production was found to depend on extracellular proline availability and on codon usage. Medium supplementation with proline did not alter p4h mRNA levels, indicating that P4H production depends on the availability of charged prolyl-tRNAs. Increasing the intracellular levels of soluble P4H did not result in an increase in resting cell activities above a certain threshold (depending on growth and assay temperature). Activities up to 5-fold higher were reached with permeabilized cells, confirming that host physiology and not the intracellular level of active P4H determines the achievable whole-cell proline hydroxylation activity. Metabolic flux analysis revealed that tricarboxylic acid cycle fluxes in growing biocatalytically active cells were significantly higher than proline hydroxylation rates. Remarkably, a catalysis-induced reduction of substrate uptake was observed, which correlated with reduced transcription of putA and putP, encoding proline dehydrogenase and the major proline transporter, respectively. These results provide evidence for a strong interference of catalytic activity with the regulation of proline uptake and metabolism. In terms of whole-cell biocatalyst efficiency, proline uptake and competition of P4H with proline catabolism are considered the most critical factors.
Collapse
|
40
|
Orellana A, Pandey SK, Carret S, Greene AE, Poisson JF. A Diels–Alder-Based Total Synthesis of (−)-Kainic Acid. J Org Chem 2012; 77:5286-96. [DOI: 10.1021/jo300608g] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Arturo Orellana
- Département de Chimie Moléculaire (SERCO)
CNRS, UMR-5250, ICMG FR-2607, Université Joseph Fourier BP-53, 38041 Grenoble Cedex 9, France
| | - Sushil K. Pandey
- Département de Chimie Moléculaire (SERCO)
CNRS, UMR-5250, ICMG FR-2607, Université Joseph Fourier BP-53, 38041 Grenoble Cedex 9, France
| | - Sébastien Carret
- Département de Chimie Moléculaire (SERCO)
CNRS, UMR-5250, ICMG FR-2607, Université Joseph Fourier BP-53, 38041 Grenoble Cedex 9, France
| | - Andrew E. Greene
- Département de Chimie Moléculaire (SERCO)
CNRS, UMR-5250, ICMG FR-2607, Université Joseph Fourier BP-53, 38041 Grenoble Cedex 9, France
| | - Jean-François Poisson
- Département de Chimie Moléculaire (SERCO)
CNRS, UMR-5250, ICMG FR-2607, Université Joseph Fourier BP-53, 38041 Grenoble Cedex 9, France
| |
Collapse
|
41
|
|
42
|
l-Leucine 5-hydroxylase of Nostoc punctiforme is a novel type of Fe(II)/α-ketoglutarate-dependent dioxygenase that is useful as a biocatalyst. Appl Microbiol Biotechnol 2012; 97:2467-72. [DOI: 10.1007/s00253-012-4136-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 04/22/2012] [Accepted: 04/23/2012] [Indexed: 10/28/2022]
|
43
|
Klein C, Hüttel W. Tertiary alcohol preferred: Hydroxylation of trans-3-methyl-L-proline with proline hydroxylases. Beilstein J Org Chem 2012; 7:1643-7. [PMID: 22238542 PMCID: PMC3252868 DOI: 10.3762/bjoc.7.193] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 11/14/2011] [Indexed: 01/17/2023] Open
Abstract
The enzymatic synthesis of tertiary alcohols by the stereospecific oxidation of tertiary alkyl centers is a most-straightforward but challenging approach, since these positions are sterically hindered. In contrast to P450-monooxygenases, there is little known about the potential of non-heme iron(II) oxygenases to catalyze such reactions. We have studied the hydroxylation of trans-3-methyl-L-proline with the α-ketoglutarate (α-KG) dependent oxygenases, cis-3-proline hydroxylase type II and cis-4-proline hydroxylase (cis-P3H_II and cis-P4H). With cis-P3H_II, the tertiary alcohol product (3R)-3-hydroxy-3-methyl-L-proline was obtained exclusively but in reduced yield (~7%) compared to the native substrate L-proline. For cis-P4H, a complete shift in regioselectivity from C-4 to C-3 was observed so that the same product as with cis-P3H_II was obtained. Moreover, the yields were at least as good as in control reactions with L-proline (~110% relative yield). This result demonstrates a remarkable potential of non-heme iron(II) oxygenases to oxidize substrates selectively at sterically hindered positions.
Collapse
Affiliation(s)
- Christian Klein
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical and Medicinal Chemistry, Albert-Ludwigs-Universität Freiburg, Albertstr. 25, 79104 Freiburg, Germany
| | | |
Collapse
|
44
|
Krow GR, Yu F, Sender M, Gandla D, Lin G, DeBrosse C, Ross CW. Introduction of C(5/6) side chains onto 2-azabicyclo[2.1.1]hexanes via a 6-anti-bromo-5-anti-hydroxy derivative. CAN J CHEM 2012. [DOI: 10.1139/v11-112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Oxidation of the title bromoalcohol provided the strained ketone, 5-bromo-6-oxo-2-azabicyclo[2.1.1]hexane. Additions of nucleophiles to either this or the debrominated ketone have been used to introduce 5(6)-syn-alkyl and aryl groups, 5(6)-alkylidene linkages, and 5(6)-anti-alkyl and acyl substituents. Facial selectivity is for additions to the 6-bromo-5-ketone and 5-alkylidene azabicycles to occur from the face syn to the nitrogen atom. The bromine atom of the title alcohol has also been replaced by a 6-anti-(1-hydroxyethyl) substituent using a directed radical addition process. The stereoselective functionalization reactions expand the range of available methano-bridged pyrrolidines.
Collapse
Affiliation(s)
- Grant R. Krow
- Department of Chemistry, Temple University, Philadelphia, PA 19122, USA
| | - Fang Yu
- Department of Chemistry, Temple University, Philadelphia, PA 19122, USA
| | - Matthew Sender
- Department of Chemistry, Temple University, Philadelphia, PA 19122, USA
| | - Deepa Gandla
- Department of Chemistry, Temple University, Philadelphia, PA 19122, USA
| | - Guoliang Lin
- Department of Chemistry, Temple University, Philadelphia, PA 19122, USA
| | - Charles DeBrosse
- Department of Chemistry, Temple University, Philadelphia, PA 19122, USA
| | - Charles W. Ross
- Department of Medicinal Chemistry, Merck Research Laboratories, Merck & Co., Inc., West Point, PA 19486-004, USA
| |
Collapse
|
45
|
Stoltz B, Motherwell W. Tetrahedron reports on organic chemistry. Tetrahedron 2011. [DOI: 10.1016/s0040-4020(11)00770-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
46
|
Klein C, Hüttel W. A Simple Procedure for Selective Hydroxylation of L-Proline and L-Pipecolic Acid with Recombinantly Expressed Proline Hydroxylases. Adv Synth Catal 2011. [DOI: 10.1002/adsc.201000863] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
47
|
Stoltz B, Motherwell W. Tetrahedron reports on organic chemistry. Tetrahedron 2010. [DOI: 10.1016/s0040-4020(10)01735-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
48
|
Gómez-Bengoa E, Maestro M, Mielgo A, Otazo I, Palomo C, Velilla I. A 4-Hydroxypyrrolidine-Catalyzed Mannich Reaction of Aldehydes: Control ofanti-Selectivity by Hydrogen Bonding Assisted by Brønsted Acids. Chemistry 2010; 16:5333-42. [DOI: 10.1002/chem.200903537] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
49
|
Atta AK, Pathak T. A General and Diastereoselective Route to Five-Membered Carbocycles and Heterocycles from Acyclic Vinyl Sulfone-Modified Carbohydrates. European J Org Chem 2010. [DOI: 10.1002/ejoc.200900957] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
50
|
Krow GR, Edupuganti R, Gandla D, Choudhary A, Lin G, Sonnet PE, DeBrosse C, Ross CW, Cannon KC, Raines RT. 5(6)-anti-Substituted-2-azabicyclo[2.1.1]hexanes: a nucleophilic displacement route. J Org Chem 2009; 74:8232-42. [PMID: 19799411 PMCID: PMC3374851 DOI: 10.1021/jo901725k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Nucleophilic displacements of 5(6)-anti-bromo substituents in 2-azabicyclo[2.1.1]hexanes (methanopyrrolidines) have been accomplished. These displacements have produced 5-anti-X-6-anti-Y-difunctionalized-2-azabicyclo[2.1.1]hexanes containing bromo, fluoro, acetoxy, hydroxy, azido, imidazole, thiophenyl, and iodo substituents. Such displacements of anti-bromide ions require an amine nitrogen and are a function of the solvent and the choice of metal salt. Reaction rates were faster and product yields were higher in DMSO when compared to DMF and with CsOAc compared to NaOAc. Sodium or lithium salts gave products, except with NaF, where silver fluoride in nitromethane was best for substitution by fluoride. The presence of electron-withdrawing F, OAc, N(3), Br, or SPh substituents in the 6-anti-position slows bromide displacements at the 5-anti-position.
Collapse
Affiliation(s)
- Grant R Krow
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|