1
|
Wang X, Luo H, Peng X, Chen J. Spider and scorpion knottins targeting voltage-gated sodium ion channels in pain signaling. Biochem Pharmacol 2024; 227:116465. [PMID: 39102991 DOI: 10.1016/j.bcp.2024.116465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/07/2024]
Abstract
In sensory neurons that transmit pain signals, whether acute or chronic, voltage-gated sodium channels (VGSCs) are crucial for regulating excitability. NaV1.1, NaV1.3, NaV1.6, NaV1.7, NaV1.8, and NaV1.9 have been demonstrated and defined their functional roles in pain signaling based on their biophysical properties and distinct patterns of expression in each subtype of sensory neurons. Scorpions and spiders are traditional Chinese medicinal materials, belonging to the arachnid class. Most of the studied species of them have evolved venom peptides that exhibit a wide variety of knottins specifically targeting VGSCs with subtype selectivity and conformational specificity. This review provides an overview on the exquisite knottins from scorpion and spider venoms targeting pain-related NaV channels, describing the sequences and the structural features as well as molecular determinants that influence their selectivity on special subtype and at particular conformation, with an aim for the development of novel research tools on NaV channels and analgesics with minimal adverse effects.
Collapse
Affiliation(s)
- Xiting Wang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Huan Luo
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Xiaozhen Peng
- School of Public Health & Laboratory Medicine, Hunan University of Medicine, Huaihua 418000, China.
| | - Jinjun Chen
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China; Hunan Provincial Engineering Technology Research Center for Cell Mechanics and Function Analysis, Changsha 418000, China.
| |
Collapse
|
2
|
Nonkhwao S, Rungsa P, Buraphaka H, Klaynongsruang S, Daduang J, Kornthong N, Daduang S. Characterization and Localization of Sol g 2.1 Protein from Solenopsis geminata Fire Ant Venom in the Central Nervous System of Injected Crickets ( Acheta domestica). Int J Mol Sci 2023; 24:14814. [PMID: 37834262 PMCID: PMC10573061 DOI: 10.3390/ijms241914814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/28/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Solenopsis geminata is recognized for containing the allergenic proteins Sol g 1, 2, 3, and 4 in its venom. Remarkably, Sol g 2.1 exhibits hydrophobic binding and has a high sequence identity (83.05%) with Sol i 2 from S. invicta. Notably, Sol g 2.1 acts as a mediator, causing paralysis in crickets. Given its structural resemblance and biological function, Sol g 2.1 may play a key role in transporting hydrophobic potent compounds, which induce paralysis by releasing the compounds through the insect's nervous system. To investigate this further, we constructed and characterized the recombinant Sol g 2.1 protein (rSol g 2.1), identified with LC-MS/MS. Circular dichroism spectroscopy was performed to reveal the structural features of the rSol g 2.1 protein. Furthermore, after treating crickets with S. geminata venom, immunofluorescence and immunoblotting results revealed that the Sol g 2.1 protein primarily localizes to the neuronal cell membrane of the brain and thoracic ganglia, with distribution areas related to octopaminergic neuron cell patterns. Based on protein-protein interaction predictions, we found that the Sol g 2.1 protein can interact with octopamine receptors (OctRs) in neuronal cell membranes, potentially mediating Sol g 2.1's localization within cricket central nervous systems. Here, we suggest that Sol g 2.1 may enhance paralysis in crickets by acting as carriers of active molecules and releasing them onto target cells through pH gradients. Future research should explore the binding properties of Sol g 2.1 with ligands, considering its potential as a transporter for active molecules targeting pest nervous systems, offering innovative pest control prospects.
Collapse
Affiliation(s)
- Siriporn Nonkhwao
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (S.N.); (P.R.); (H.B.)
| | - Prapenpuksiri Rungsa
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (S.N.); (P.R.); (H.B.)
| | - Hathairat Buraphaka
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (S.N.); (P.R.); (H.B.)
| | - Sompong Klaynongsruang
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Jureerut Daduang
- Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Napamanee Kornthong
- Chulabhorn International College of Medicine, Thammasat University, Pathumthani 12120, Thailand;
| | - Sakda Daduang
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (S.N.); (P.R.); (H.B.)
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, Khon Kaen 40002, Thailand;
| |
Collapse
|
3
|
Yang Q, Jiang M, Xu S, Yang L, Yang P, Song Y, Zhu H, Wang Y, Sun Y, Yan C, Yuan Z, Liu X, Bai Z. Mirror image pain mediated by D2 receptor regulation of astrocytic Cx43 phosphorylation and channel opening. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166657. [PMID: 36716897 DOI: 10.1016/j.bbadis.2023.166657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/21/2022] [Accepted: 01/20/2023] [Indexed: 01/29/2023]
Abstract
Mirror image pain (MIP), a clinical syndrome of contralateral pain hypersensitivity caused by unilateral injury, has been identified in various neuropathological conditions. Gap junctional protein Connexin 43 (Cx43), its phosphorylation levels and dopamine D2 receptor (DRD2) play key integrating roles in pain processing. We presume D2DR activity may affect Cx43 hemichannel opening via Cx43 phosphorylation levels to regulate MIP. This study shows that spinal astrocytic Cx43 directly interacts with DRD2 to mediate MIP. DRD2 and Cx43 expression levels were asymmetrically elevated in bilateral spinal during MIP, and DRD2 modulated the opening of primary astrocytic Cx43 hemichannels. Furthermore, Cx43 phosphorylation at Ser373 was increased during MIP, but decreased in DRD2 knockout (KO) mice. Finally, activation of spinal protein kinase A (PKA) altered the expression of Cx43 and its phosphorylation bilaterally, thus reversing the analgesic effect in DRD2 KO mice. Together, these data reveal that spinal Cx43 phosphorylation and channel opening are regulated by DRD2 via PKA activation, and that spinal Cx43 and DRD2 are key molecular sensors mediating mirror image pain.
Collapse
Affiliation(s)
- Qinghu Yang
- School of Life Science & Research Center for Natural Peptide Drugs, Shaanxi Engineering & Technological Research Centre for Conservation & Utilization of Regional Biological Resources, Yanan University, Yanan 716000, China; Yanan Engineering & Technological Research Centre for Resource Peptide Drugs, Yanan 716000, China; Yanan Key Laboratory for Neural Immuno-Tumor and Stem Cell, Yanan 716000, China
| | - Ming Jiang
- School of Life Science & Research Center for Natural Peptide Drugs, Shaanxi Engineering & Technological Research Centre for Conservation & Utilization of Regional Biological Resources, Yanan University, Yanan 716000, China; Yanan Engineering & Technological Research Centre for Resource Peptide Drugs, Yanan 716000, China; Yanan Key Laboratory for Neural Immuno-Tumor and Stem Cell, Yanan 716000, China
| | - Sen Xu
- School of Life Science & Research Center for Natural Peptide Drugs, Shaanxi Engineering & Technological Research Centre for Conservation & Utilization of Regional Biological Resources, Yanan University, Yanan 716000, China
| | - Liang Yang
- School of Life Science & Research Center for Natural Peptide Drugs, Shaanxi Engineering & Technological Research Centre for Conservation & Utilization of Regional Biological Resources, Yanan University, Yanan 716000, China; Yanan Engineering & Technological Research Centre for Resource Peptide Drugs, Yanan 716000, China; Yanan Key Laboratory for Neural Immuno-Tumor and Stem Cell, Yanan 716000, China
| | - Pan Yang
- School of Life Science & Research Center for Natural Peptide Drugs, Shaanxi Engineering & Technological Research Centre for Conservation & Utilization of Regional Biological Resources, Yanan University, Yanan 716000, China
| | - Yutian Song
- School of Life Science & Research Center for Natural Peptide Drugs, Shaanxi Engineering & Technological Research Centre for Conservation & Utilization of Regional Biological Resources, Yanan University, Yanan 716000, China
| | - Hongni Zhu
- School of Life Science & Research Center for Natural Peptide Drugs, Shaanxi Engineering & Technological Research Centre for Conservation & Utilization of Regional Biological Resources, Yanan University, Yanan 716000, China
| | - Yu Wang
- School of Life Science & Research Center for Natural Peptide Drugs, Shaanxi Engineering & Technological Research Centre for Conservation & Utilization of Regional Biological Resources, Yanan University, Yanan 716000, China
| | - Yahan Sun
- School of Life Science & Research Center for Natural Peptide Drugs, Shaanxi Engineering & Technological Research Centre for Conservation & Utilization of Regional Biological Resources, Yanan University, Yanan 716000, China
| | - Chengxiang Yan
- School of Life Science & Research Center for Natural Peptide Drugs, Shaanxi Engineering & Technological Research Centre for Conservation & Utilization of Regional Biological Resources, Yanan University, Yanan 716000, China
| | - Zhaoyue Yuan
- School of Life Science & Research Center for Natural Peptide Drugs, Shaanxi Engineering & Technological Research Centre for Conservation & Utilization of Regional Biological Resources, Yanan University, Yanan 716000, China
| | - Xia Liu
- School of Life Science & Research Center for Natural Peptide Drugs, Shaanxi Engineering & Technological Research Centre for Conservation & Utilization of Regional Biological Resources, Yanan University, Yanan 716000, China; Yanan Engineering & Technological Research Centre for Resource Peptide Drugs, Yanan 716000, China; Yanan Key Laboratory for Neural Immuno-Tumor and Stem Cell, Yanan 716000, China.
| | - Zhantao Bai
- School of Life Science & Research Center for Natural Peptide Drugs, Shaanxi Engineering & Technological Research Centre for Conservation & Utilization of Regional Biological Resources, Yanan University, Yanan 716000, China; Yanan Engineering & Technological Research Centre for Resource Peptide Drugs, Yanan 716000, China; Yanan Key Laboratory for Neural Immuno-Tumor and Stem Cell, Yanan 716000, China.
| |
Collapse
|
4
|
Liu Y, Li Y, Zhu Y, Zhang L, Ji J, Gui M, Li C, Song Y. Study of Anti-Inflammatory and Analgesic Activity of Scorpion Toxins DKK-SP1/2 from Scorpion Buthus martensii Karsch ( BmK). Toxins (Basel) 2021; 13:toxins13070498. [PMID: 34357970 PMCID: PMC8310270 DOI: 10.3390/toxins13070498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/03/2021] [Accepted: 07/10/2021] [Indexed: 11/16/2022] Open
Abstract
Buthus martensii Karsch (BmK), is a kind of traditional Chinese medicine, which has been used for a long history for the treatment of many diseases, such as inflammation, pain and cancer. In this study, DKK-SP1/2/3 genes were screened and extracted from the cDNA library of BmK. The DKK-SP1/2/3 were expressed by using plasmid pSYPU-1b in E. coli BL21, and recombinant proteins were obtained by column chromatography. In the xylene-induced mouse ear swelling and carrageenan-induced rat paw swelling model, DKK-SP1 exerted a significant anti-inflammatory effect by inhibiting the expression of Nav1.8 channel. Meanwhile, the release of pro-inflammatory cytokines (COX-2, IL-6) was decreased significantly and the release of anti-inflammatory cytokines (IL-10) were elevated significantly. Moreover, DKK-SP1 could significantly decrease the Nav1.8 current in acutely isolated rat DRG neurons. In the acetic acid-writhing and ION-CCI model, DKK-SP2 displayed significant analgesic activity by inhibiting the expression of the Nav1.7 channel. Moreover, DKK-SP2 could significantly inhibit the Nav1.7 current in the hNav1.7-CHO cells.
Collapse
Affiliation(s)
- Yunxia Liu
- College of Medical Devices, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China; (Y.L.); (M.G.)
| | - Yan Li
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China; (Y.L.); (Y.Z.); (L.Z.); (J.J.)
| | - Yuchen Zhu
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China; (Y.L.); (Y.Z.); (L.Z.); (J.J.)
| | - Liping Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China; (Y.L.); (Y.Z.); (L.Z.); (J.J.)
| | - Junyu Ji
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China; (Y.L.); (Y.Z.); (L.Z.); (J.J.)
| | - Mingze Gui
- College of Medical Devices, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China; (Y.L.); (M.G.)
| | - Chunli Li
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China; (Y.L.); (Y.Z.); (L.Z.); (J.J.)
- Correspondence: (C.L.); (Y.S.)
| | - Yongbo Song
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China; (Y.L.); (Y.Z.); (L.Z.); (J.J.)
- Correspondence: (C.L.); (Y.S.)
| |
Collapse
|
5
|
Daoudi K, Malosse C, Lafnoune A, Darkaoui B, Chakir S, Sabatier JM, Chamot-Rooke J, Cadi R, Oukkache N. Mass spectrometry-based top-down and bottom-up approaches for proteomic analysis of the Moroccan Buthus occitanus scorpion venom. FEBS Open Bio 2021; 11:1867-1892. [PMID: 33715301 PMCID: PMC8255848 DOI: 10.1002/2211-5463.13143] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/18/2021] [Accepted: 03/11/2021] [Indexed: 12/18/2022] Open
Abstract
Buthus occitanus (B. occitanus) is one of the most dangerous scorpions in the world. Despite the involvement of B. occitanus scorpion in severe cases of envenomation in Morocco, no study has focused yet on the proteomic composition of the Moroccan B. occitanus scorpion venom. Mass spectrometry‐based proteomic techniques are commonly used in the study of scorpion venoms. The implementation of top‐down and bottom‐up approaches for proteomic analyses facilitates screening by allowing a global view of the structural aspects of such complex matrices. Here, we provide a partial overview of the venom of B. occitanus scorpion, in order to explore the diversity of its toxins and hereafter understand their effects. To this end, a combination of top‐down and bottom‐up approaches was applied using nano‐high liquid chromatography coupled to nano‐electrospray tandem mass spectrometry (nano‐LC‐ESI MS/MS). The LC‐MS results showed that B. occitanus venom contains around 200 molecular masses ranging from 1868 to 16 720 Da, the most representative of which are those between 5000 and 8000 Da. Interestingly, combined top‐down and bottom‐up LC‐MS/MS results allowed the identification of several toxins, which were mainly those acting on ion channels, including those targeting sodium (NaScTxs), potassium (KScTxs), chloride (ClScTxs), and calcium channels (CaScTx), as well as antimicrobial peptides (AMPs), amphipathic peptides, myotropic neuropeptides, and hypothetical secreted proteins. This study reveals the molecular diversity of B. occitanus scorpion venom and identifies components that may have useful pharmacological activities.
Collapse
Affiliation(s)
- Khadija Daoudi
- Laboratory of Venoms and Toxins, Pasteur Institute of Morocco, Casablanca, Morocco.,Laboratory of Molecular Genetics, Physiopathology and Biotechnology, Faculty of Sciences Ain Chock, Hassan II University of Casablanca, Morocco
| | - Christian Malosse
- Mass spectrometry for Biology Unit, Institut Pasteur, CNRS USR 2000, Paris, France
| | - Ayoub Lafnoune
- Laboratory of Venoms and Toxins, Pasteur Institute of Morocco, Casablanca, Morocco.,Laboratory of Molecular Genetics, Physiopathology and Biotechnology, Faculty of Sciences Ain Chock, Hassan II University of Casablanca, Morocco
| | - Bouchra Darkaoui
- Laboratory of Venoms and Toxins, Pasteur Institute of Morocco, Casablanca, Morocco.,Laboratory of Molecular Genetics, Physiopathology and Biotechnology, Faculty of Sciences Ain Chock, Hassan II University of Casablanca, Morocco
| | - Salma Chakir
- Laboratory of Venoms and Toxins, Pasteur Institute of Morocco, Casablanca, Morocco
| | | | - Julia Chamot-Rooke
- Mass spectrometry for Biology Unit, Institut Pasteur, CNRS USR 2000, Paris, France
| | - Rachida Cadi
- Laboratory of Molecular Genetics, Physiopathology and Biotechnology, Faculty of Sciences Ain Chock, Hassan II University of Casablanca, Morocco
| | - Naoual Oukkache
- Laboratory of Venoms and Toxins, Pasteur Institute of Morocco, Casablanca, Morocco
| |
Collapse
|
6
|
Up-regulation of P2X7 Receptors Contributes to Spinal Microglial Activation and the Development of Pain Induced by BmK-I. Neurosci Bull 2019; 35:624-636. [PMID: 30820829 DOI: 10.1007/s12264-019-00345-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 10/13/2018] [Indexed: 12/29/2022] Open
Abstract
Previous work has demonstrated that the sensitization of spinal neurons and microglia is important in the development of pain behaviors induced by BmK I, a Na+ channel activator and a major peptide component of the venom of the scorpion Buthus martensi Karsch (BmK). We found that the expression of P2X7 receptors (P2X7Rs) was up-regulated in the ipsilateral spinal dorsal horn after BmK I injection in rats. P2X7R was selectively localized in microglia but not astrocytes or neurons. Similarly, interleukin 1β (IL-1β) was selectively up-regulated in microglia in the spinal dorsal horn after BmK I injection. Intrathecal injection of P2X7R antagonists largely reduced BmK I-induced spontaneous and evoked pain behaviors, and the up-regulation of P2X7R and IL-1β in the spinal cord. These data suggested that the up-regulation of P2X7Rs mediates microglial activation in the spinal dorsal horn, and therefore contributes to the development of BmK I-induced pain.
Collapse
|
7
|
Qin S, Jiang F, Zhou Y, Zhou G, Ye P, Ji Y. Local knockdown of Nav1.6 relieves pain behaviors induced by BmK I. Acta Biochim Biophys Sin (Shanghai) 2017; 49:713-721. [PMID: 28655185 DOI: 10.1093/abbs/gmx064] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 06/05/2017] [Indexed: 12/13/2022] Open
Abstract
Voltage-gated sodium channels (VGSCs) in peripheral nociceptive sensory neurons are critical to transmit pain signals. BmK I purified from the venom of scorpion Buthus martensi Karsch (BmK) has been demonstrated to be the primary contributor of envenomation-associated pain. However, the role of distinct VGSCs such as Nav1.6 in the induction and maintenance of pain behaviors induced by BmK I was ambiguous. Herein, using molecular and behavioral approaches we investigated the mRNA and protein expression profiles of Nav1.6 in rat DRG after intraplantar injection of BmK I and tested the pain behaviors after knockdown of Nav1.6 in BmK I-treated rats. It was shown that during induction and maintenance of pain responses induced by BmK I, the expression of Nav1.6 in DRG was found to be significantly increased at both mRNA and protein levels. The percentage of co-localization of Nav1.6 and Isolectin B4, a molecular marker of small diameter non-peptidergic DRG neurons, was increased at the maintenance phase of pain responses. Furthermore, spontaneous pain and mechanical allodynia, but not thermal hyperalgesia induced by BmK I, were significantly alleviated after knockdown of Nav1.6. These data strongly suggest that Nav1.6 plays an indispensable role in the peripheral pain hypersensitivity induced by BmK I.
Collapse
Affiliation(s)
- Shichao Qin
- Laboratory of Neuropharmacology and Neurotoxicology, Shanghai University, Shanghai 200444, China
| | - Feng Jiang
- Shanghai Chongming Xinhua Translational Medical Institute for Cancer Pain, Shanghai 202150, China
| | - You Zhou
- Laboratory of Neuropharmacology and Neurotoxicology, Shanghai University, Shanghai 200444, China
| | - Guokun Zhou
- Laboratory of Neuropharmacology and Neurotoxicology, Shanghai University, Shanghai 200444, China
| | - Pin Ye
- Laboratory of Neuropharmacology and Neurotoxicology, Shanghai University, Shanghai 200444, China
| | - Yonghua Ji
- Laboratory of Neuropharmacology and Neurotoxicology, Shanghai University, Shanghai 200444, China
- Shanghai Chongming Xinhua Translational Medical Institute for Cancer Pain, Shanghai 202150, China
| |
Collapse
|
8
|
Luan N, Shen W, Liu J, Wen B, Lin Z, Yang S, Lai R, Liu S, Rong M. A Combinational Strategy upon RNA Sequencing and Peptidomics Unravels a Set of Novel Toxin Peptides in Scorpion Mesobuthus martensii. Toxins (Basel) 2016; 8:toxins8100286. [PMID: 27782050 PMCID: PMC5086646 DOI: 10.3390/toxins8100286] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 09/21/2016] [Indexed: 01/02/2023] Open
Abstract
Scorpion venom is deemed to contain many toxic peptides as an important source of natural compounds. Out of the two hundred proteins identified in Mesobuthus martensii (M. martensii), only a few peptide toxins have been found so far. Herein, a combinational approach based upon RNA sequencing and Liquid chromatography-mass spectrometry/mass spectrometry (LC MS/MS) was employed to explore the venom peptides in M. martensii. A total of 153 proteins were identified from the scorpion venom, 26 previously known and 127 newly identified. Of the novel toxins, 97 proteins exhibited sequence similarities to known toxins, and 30 were never reported. Combining peptidomic and transcriptomic analyses, the peptide sequence of BmKKx1 was reannotated and four disulfide bridges were confirmed within it. In light of the comparison of conservation and variety of toxin amino acid sequences, highly conserved and variable regions were perceived in 24 toxins that were parts of two sodium channel and two potassium channel toxins families. Taking all of this evidences together, the peptidomic analysis on M. martensii indeed identified numerous novel scorpion peptides, expanded our knowledge towards the venom diversity, and afforded a set of pharmaceutical candidates.
Collapse
Affiliation(s)
- Ning Luan
- Life Sciences College of Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Wang Shen
- Life Sciences College of Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Jie Liu
- BGI-Shenzhen, Shenzhen 518083, China.
- China National GeneBank-Shenzhen, BGI-Shenzhen, Shenzhen, Guangdong 518083, China.
| | - Bo Wen
- BGI-Shenzhen, Shenzhen 518083, China.
- China National GeneBank-Shenzhen, BGI-Shenzhen, Shenzhen, Guangdong 518083, China.
| | - Zhilong Lin
- BGI-Shenzhen, Shenzhen 518083, China.
- China National GeneBank-Shenzhen, BGI-Shenzhen, Shenzhen, Guangdong 518083, China.
| | - Shilong Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming 650223, Yunnan, China.
- United Laboratory of Natural Peptide of University of Science and Technology of China & Kunming Institute of Zoology, Chinese Academy of Science, Kunming 650223, Yunnan, China.
- Sino-African Joint Research Center, Chinese Academy of Science, Wuhan 430074, Hubei, China.
| | - Ren Lai
- Life Sciences College of Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming 650223, Yunnan, China.
- United Laboratory of Natural Peptide of University of Science and Technology of China & Kunming Institute of Zoology, Chinese Academy of Science, Kunming 650223, Yunnan, China.
- Sino-African Joint Research Center, Chinese Academy of Science, Wuhan 430074, Hubei, China.
| | - Siqi Liu
- BGI-Shenzhen, Shenzhen 518083, China.
- China National GeneBank-Shenzhen, BGI-Shenzhen, Shenzhen, Guangdong 518083, China.
| | - Mingqiang Rong
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming 650223, Yunnan, China.
- United Laboratory of Natural Peptide of University of Science and Technology of China & Kunming Institute of Zoology, Chinese Academy of Science, Kunming 650223, Yunnan, China.
- Sino-African Joint Research Center, Chinese Academy of Science, Wuhan 430074, Hubei, China.
| |
Collapse
|
9
|
Li ZW, Wu B, Ye P, Tan ZY, Ji YH. Brain natriuretic peptide suppresses pain induced by BmK I, a sodium channel-specific modulator, in rats. J Headache Pain 2016; 17:90. [PMID: 27687165 PMCID: PMC5042912 DOI: 10.1186/s10194-016-0685-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 09/24/2016] [Indexed: 12/30/2022] Open
Abstract
Background A previous study found that brain natriuretic peptide (BNP) inhibited inflammatory pain via activating its receptor natriuretic peptide receptor A (NPRA) in nociceptive sensory neurons. A recent study found that functional NPRA is expressed in almost all the trigeminal ganglion (TG) neurons at membrane level suggesting a potentially important role for BNP in migraine pathophysiology. Methods An inflammatory pain model was produced by subcutaneous injection of BmK I, a sodium channel-specific modulator from venom of Chinese scorpion Buthus martensi Karsch. Quantitative PCR, Western Blot, and immunohistochemistry were used to detect mRNA and protein expression of BNP and NPRA in dorsal root ganglion (DRG) and dorsal horn of spinal cord. Whole-cell patch clamping experiments were conducted to record large-conductance Ca2+-activated K+ (BKCa) currents of membrane excitability of DRG neurons. Spontaneous and evoked pain behaviors were examined. Results The mRNA and protein expression of BNP and NPRA was up-regulated in DRG and dorsal horn of spinal cord after BmK I injection. The BNP and NPRA was preferentially expressed in small-sized DRG neurons among which BNP was expressed in both CGRP-positive and IB4-positive neurons while NPRA was preferentially expressed in CGRP-positive neurons. BNP increased the open probability of BKCa channels and suppressed the membrane excitability of small-sized DRG neurons. Intrathecal injection of BNP significantly inhibited BmK-induced pain behaviors including both spontaneous and evoked pain behaviors. Conclusions These results suggested that BNP might play an important role as an endogenous pain reliever in BmK I-induced inflammatory pain condition. It is also suggested that BNP might play a similar role in other pathophysiological pain conditions including migraine.
Collapse
Affiliation(s)
- Zheng-Wei Li
- Laboratory of Neuropharmacology and Neurotoxicology, Shanghai University, Nanchen Road 333, Shanghai, 200436, People's Republic of China
| | - Bin Wu
- Laboratory of Neuropharmacology and Neurotoxicology, Shanghai University, Nanchen Road 333, Shanghai, 200436, People's Republic of China
| | - Pin Ye
- Laboratory of Neuropharmacology and Neurotoxicology, Shanghai University, Nanchen Road 333, Shanghai, 200436, People's Republic of China
| | - Zhi-Yong Tan
- Department of Pharmacology and Toxicology and Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| | - Yong-Hua Ji
- Laboratory of Neuropharmacology and Neurotoxicology, Shanghai University, Nanchen Road 333, Shanghai, 200436, People's Republic of China.
| |
Collapse
|
10
|
Zhu H, Wang Z, Jin J, Pei X, Zhao Y, Wu H, Lin W, Tao J, Ji Y. Parkinson’s disease-like forelimb akinesia induced by BmK I, a sodium channel modulator. Behav Brain Res 2016; 308:166-76. [DOI: 10.1016/j.bbr.2016.04.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 04/16/2016] [Accepted: 04/19/2016] [Indexed: 12/16/2022]
|
11
|
Ye P, Hua L, Jiao Y, Li Z, Qin S, Fu J, Jiang F, Liu T, Ji Y. Functional up-regulation of Nav1.8 sodium channel on dorsal root ganglia neurons contributes to the induction of scorpion sting pain. Acta Biochim Biophys Sin (Shanghai) 2016; 48:132-44. [PMID: 26764239 DOI: 10.1093/abbs/gmv123] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 08/02/2015] [Indexed: 12/19/2022] Open
Abstract
BmK I, purified from the venom of scorpion Buthus martensi Karsch (BmK), is a receptor site-3-specific modulator of voltage-gated sodium channels (VGSCs) and can induce pain-related behaviors in rats. The tetrodotoxin-resistant (TTX-R) sodium channel Nav1.8 contributes to most of the sodium current underlying the action potential upstroke in dorsal root ganglia (DRG) neurons and may serve as a critical ion channel targeted by BmK I. Herein, using electrophysiological, molecular, and behavioral approaches, we investigated whether the aberrant expression of Nav1.8 in DRG contributes to generation of pain induced by BmK I. The expression of Nav1.8 was found to be significantly increased at both mRNA and protein levels following intraplantar injection of BmK I in rats. In addition, the current density of TTX-R Nav1.8 sodium channel is significantly increased and the gating kinetics of Nav1.8 is also altered in DRG neurons from BmK I-treated rats. Furthermore, spontaneous pain and mechanical allodynia, but not thermal hyperalgesia induced by BmK I, are significantly alleviated through either blockade of the Nav1.8 sodium channel by its selective blocker A-803467 or knockdown of the Nav1.8 expression in DRG by antisense oligodeoxynucleotide (AS-ODN) targeting Nav1.8 in rats. Finally, BmK I was shown to induce enhanced pain behaviors in complete freund's adjuvant (CFA)-inflamed rats, which was partly due to the over-expression of Nav1.8 in DRG. Our results suggest that functional up-regulation of Nav1.8 channel on DRG neurons contributes to the development of BmK I-induced pain in rats.
Collapse
Affiliation(s)
- Pin Ye
- Laboratory of Neuropharmacology and Neurotoxicology, Shanghai University, Shanghai 200436, China
| | - Liming Hua
- Laboratory of Neuropharmacology and Neurotoxicology, Shanghai University, Shanghai 200436, China
| | - Yunlu Jiao
- Laboratory of Neuropharmacology and Neurotoxicology, Shanghai University, Shanghai 200436, China
| | - Zhenwei Li
- Laboratory of Neuropharmacology and Neurotoxicology, Shanghai University, Shanghai 200436, China
| | - Shichao Qin
- Laboratory of Neuropharmacology and Neurotoxicology, Shanghai University, Shanghai 200436, China
| | - Jin Fu
- Laboratory of Neuropharmacology and Neurotoxicology, Shanghai University, Shanghai 200436, China
| | - Feng Jiang
- Laboratory of Neuropharmacology and Neurotoxicology, Shanghai University, Shanghai 200436, China
| | - Tong Liu
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and Institute of Neuroscience, Soochow University, Suzhou 215021, China
| | - Yonghua Ji
- Laboratory of Neuropharmacology and Neurotoxicology, Shanghai University, Shanghai 200436, China
| |
Collapse
|
12
|
Zou X, He Y, Qiao J, Zhang C, Cao Z. The natural scorpion peptide, BmK NT1 activates voltage-gated sodium channels and produces neurotoxicity in primary cultured cerebellar granule cells. Toxicon 2016; 109:33-41. [DOI: 10.1016/j.toxicon.2015.11.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 09/15/2015] [Accepted: 11/05/2015] [Indexed: 11/26/2022]
|
13
|
Feng YJ, Feng Q, Tao J, Zhao R, Ji YH. Allosteric interactions between receptor site 3 and 4 of voltage-gated sodium channels: a novel perspective for the underlying mechanism of scorpion sting-induced pain. J Venom Anim Toxins Incl Trop Dis 2015; 21:42. [PMID: 26491429 PMCID: PMC4612427 DOI: 10.1186/s40409-015-0043-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 10/13/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND BmK I, a site-3-specific modulator of voltage-gated sodium channels (VGSCs), causes pain and hyperalgesia in rats, while BmK IT2, a site-4-specific modulator of VGSCs, suppresses pain-related responses. A stronger pain-related effect has been previously attributed to Buthus martensi Karsch (BmK) venom, which points out the joint pharmacological effect in the crude venom. METHODS In order to detect the joint effect of BmK I and BmK IT2 on ND7-23 cells, the membrane current was measured by whole cell recording. BmK I and BmK IT2 were applied successively and jointly, and the synergistic modulations of VGSCs on ND7-23 cells were detected. RESULTS Larger peak INa and more negative half-activation voltage were elicited by joint application of BmK I and BmK IT2 than by application of BmK I or BmK IT2 alone. Compared to the control, co-applied BmK I and BmK IT2 also significantly prolonged the time constant of inactivation. CONCLUSIONS Our results indicated that site-4 toxin (BmK IT2) could enhance the pharmacological effect induced by site-3 toxin (BmK I), suggesting a stronger effect elicited by both toxins that alone usually exhibit opposite pharmacological effects, which is related to the allosteric interaction between receptor site 3 and site 4. Meanwhile, these results may bring a novel perspective for exploring the underlying mechanisms of scorpion sting-induced pain.
Collapse
Affiliation(s)
- Yi-Jun Feng
- Laboratory of Neuropharmacology and Neurotoxicology, Shanghai University, Nanchen Road 333, Shanghai, 200444 China
| | - Qi Feng
- Laboratory of Neuropharmacology and Neurotoxicology, Shanghai University, Nanchen Road 333, Shanghai, 200444 China
| | - Jie Tao
- Department of Nephrology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 164 Lanxi Road, Shanghai, 200062 China ; Department of Pharmacology, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203 China
| | - Rong Zhao
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA
| | - Yong-Hua Ji
- Laboratory of Neuropharmacology and Neurotoxicology, Shanghai University, Nanchen Road 333, Shanghai, 200444 China
| |
Collapse
|
14
|
Scorpion toxin BmK I directly activates Nav1.8 in primary sensory neurons to induce neuronal hyperexcitability in rats. Protein Cell 2015; 6:443-52. [PMID: 25903152 PMCID: PMC4444811 DOI: 10.1007/s13238-015-0154-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 03/05/2015] [Indexed: 01/09/2023] Open
Abstract
Voltage-gated sodium channels (VGSCs) in primary sensory neurons play a key role in transmitting pain signals to the central nervous system. BmK I, a site-3 sodium channel-specific toxin from scorpion Buthus martensi Karsch, induces pain behaviors in rats. However, the subtypes of VGSCs targeted by BmK I were not entirely clear. We therefore investigated the effects of BmK I on the current amplitude, gating and kinetic properties of Nav1.8, which is associated with neuronal hyperexcitability in DRG neurons. It was found that BmK I dose-dependently increased Nav1.8 current in small-sized (<25 μm) acutely dissociated DRG neurons, which correlated with its inhibition on both fast and slow inactivation. Moreover, voltage-dependent activation and steady-state inactivation curves of Nav1.8 were shifted in a hyperpolarized direction. Thus, BmK I reduced the threshold of neuronal excitability and increased action potential firing in DRG neurons. In conclusion, our data clearly demonstrated that BmK I modulated Nav1.8 remarkably, suggesting BmK I as a valuable probe for studying Nav1.8. And Nav1.8 is an important target related to BmK I-evoked pain.
Collapse
|
15
|
Liu ZR, Tao J, Dong BQ, Ding G, Cheng ZJ, He HQ, Ji YH. Pharmacological kinetics of BmK AS, a sodium channel site 4-specific modulator on Nav1.3. Neurosci Bull 2014; 28:209-21. [PMID: 22622820 DOI: 10.1007/s12264-012-1234-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
OBJECTIVE In this study, the pharmacological kinetics of Buthus martensi Karsch (BmK) AS, a specific modulator of voltage-gated sodium channel site 4, was investigated on Na(v)1.3 expressed in Xenopus oocytes. METHODS Two-electrode voltage clamp was used to record the whole-cell sodium current. RESULTS The peak currents of Na(v)1.3 were depressed by BmK AS over a wide range of concentrations (10, 100, and 500 nmol/L). Most remarkably, BmK AS at 100 nmol/L hyperpolarized the voltage-dependence and increased the voltage-sensitivity of steady-state activation/inactivation. In addition, BmK AS was capable of hyperpolarizing not only the fast inactivation but also the slow inactivation, with a greater preference for the latter. Moreover, BmK AS accelerated the time constant and increased the ratio of recovery in Na(v)1.3 at all concentrations. CONCLUSION This study provides direct evidence that BmK AS facilitates steady-state activation and inhibits slow inactivation by stabilizing both the closed and open states of the Na(v)1.3 channel, which might result from an integrative binding to two receptor sites on the voltage-gated sodium channels. These results may shed light on therapeutics against Na(v)1.3-targeted pathology.
Collapse
Affiliation(s)
- Zhi-Rui Liu
- Laboratory of Neuropharmacology and Neurotoxicology, Shanghai University, Shanghai 200444, China
| | | | | | | | | | | | | |
Collapse
|
16
|
Liu ZR, Zhang H, Wu JQ, Zhou JJ, Ji YH. PKA phosphorylation reshapes the pharmacological kinetics of BmK AS, a unique site-4 sodium channel-specific modulator. Sci Rep 2014; 4:3721. [PMID: 24430351 PMCID: PMC5379197 DOI: 10.1038/srep03721] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 12/19/2013] [Indexed: 01/14/2023] Open
Abstract
Although modulation of the activity of voltage-gated sodium channels (VGSCs) by protein kinase A (PKA) phosphorylation has been investigated in multiple preparations, the pharmacological sensitivity of VGSCs to scorpion toxins after PKA phosphorylation has rarely been approached. In this study, the effects of BmK AS, a sodium channel-specific modulator from Chinese scorpion Buthus martensi Karsch, on the voltage-dependent activation and inactivation of Nav1.2 were examined before and after PKA activation. After PKA phosphorylation, the pattern of dose-dependent modulation of BmK AS, on both Nav1.2α and Nav1.2 (α + β1) was reshaped. Meanwhile, the shifts in voltage-dependency of activation and inactivation induced by BmK AS were attenuated. The results suggested that PKA might play a role in different patterns how β-like toxins such as BmK AS modulate gating properties and peak currents of VGSCs.
Collapse
Affiliation(s)
- Z R Liu
- 1] Department of Pharmacology, Institute of Medical Science, Shanghai Jiao Tong University School of Medicine, South Chongqing Road 280, Shanghai 200025, P.R.China [2] Lab of Neuropharmacology and Neurotoxicology, Shanghai University, Nanchen Road 333, Shanghai 200436, P.R. China
| | - H Zhang
- Lab of Neuropharmacology and Neurotoxicology, Shanghai University, Nanchen Road 333, Shanghai 200436, P.R. China
| | - J Q Wu
- Lab of Neuropharmacology and Neurotoxicology, Shanghai University, Nanchen Road 333, Shanghai 200436, P.R. China
| | - J J Zhou
- Lab of Neuropharmacology and Neurotoxicology, Shanghai University, Nanchen Road 333, Shanghai 200436, P.R. China
| | - Y H Ji
- 1] Lab of Neuropharmacology and Neurotoxicology, Shanghai University, Nanchen Road 333, Shanghai 200436, P.R. China [2] Shanghai Chongmin Xinhua Translational Institute of Cancer Pain, Nanmen Road 25, Shanghai 202151, P.R. China
| |
Collapse
|
17
|
Wang J, Xiong Z, Yang Y, Zhao N, Wang Y. Significant expression of a Chinese scorpion peptide, BmK1, in Escherichia coli through promoter engineering and gene dosage strategy. Biotechnol Appl Biochem 2014; 61:466-73. [PMID: 24372571 PMCID: PMC4269186 DOI: 10.1002/bab.1194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 12/15/2013] [Indexed: 01/13/2023]
Abstract
Heterologous expression is an efficient alternative to conventional extraction to produce a specific Buthus martensii Karsch (BmK) peptide. In this work, BmK1 was successfully expressed in Escherichia coli after genetic codon optimization, but BmK1 content was <6% of total cellular protein. To improve BmK1 expression, a trc promoter library with a wide relative strength was constructed, and three promoters, PpJF136 (0.55), PpJF325 (1.29), and PpJF288 (2.31), were selected to control BmK1 expression. A higher BmK1 expression (>13.9% of total protein) was obtained using a stronger promoter, PpJF325. Furthermore, a maximum BmK1 content (>21.7% of total protein) was obtained by combining promoter PpJF325 and three copies of the BmK1 gene. The yield of the purified BmK1 achieved 196.74 mg L−1 in E. coli BL21(DE3) pJF431, which was improved 2.09-fold compared with the control. This was the highest reported production of scorpion peptides in E. coli.
Collapse
Affiliation(s)
- Jianfeng Wang
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China.,State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Zhiqiang Xiong
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Yingying Yang
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China.,State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Na Zhao
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Yong Wang
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China
| |
Collapse
|
18
|
Jiang F, Hua LM, Jiao YL, Ye P, Fu J, Cheng ZJ, Ding G, Ji YH. Activation of mammalian target of rapamycin contributes to pain nociception induced in rats by BmK I, a sodium channel-specific modulator. Neurosci Bull 2013; 30:21-32. [PMID: 24132796 DOI: 10.1007/s12264-013-1377-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Accepted: 04/15/2013] [Indexed: 02/02/2023] Open
Abstract
The mammalian target of rapamycin (mTOR) pathway is essential for maintenance of the sensitivity of certain adult sensory neurons. Here, we investigated whether the mTOR cascade is involved in scorpion envenomation-induced pain hypersensitivity in rats. The results showed that intraplantar injection of a neurotoxin from Buthus martensii Karsch, BmK I (10 μg), induced the activation of mTOR, as well as its downstream molecules p70 ribosomal S6 protein kinase (p70 S6K) and eukaryotic initiation factor 4E-binding protein 1 (4E-BP1), in lumbar 5-6 dorsal root ganglia neurons on both sides in rats. The activation peaked at 2 h and recovered 1 day after injection. Compared with the control group, the ratios of p-mTOR/p-p70 S6K/p-4EBP1 in three types of neurons changed significantly. The cell typology of p-mTOR/p-p70 S6K/p-4E-BP1 immuno-reactive neurons also changed. Intrathecal administration of deforolimus, a specific inhibitor of mTOR, attenuated BmK I-induced pain responses (spontaneous flinching, paroxysmal pain-like behavior, and mechanical hypersensitivity). Together, these results imply that the mTOR signaling pathway is mobilized by and contributes to experimental scorpion sting-induced pain.
Collapse
Affiliation(s)
- Feng Jiang
- Xinhua Hospital (Chongming) Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Chongming Xinhua Translational Medical Institute for Cancer Pain, Shanghai, 202150, China
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Jiang F, Pang XY, Niu QS, Hua LM, Cheng M, Ji YH. Activation of mammalian target of rapamycin mediates rat pain-related responses induced by BmK I, a sodium channel-specific modulator. Mol Pain 2013; 9:50. [PMID: 24099268 PMCID: PMC3842742 DOI: 10.1186/1744-8069-9-50] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 09/24/2013] [Indexed: 12/19/2022] Open
Abstract
The mammalian target of rapamycin (mTOR) is known to regulate cell proliferation and growth by controlling protein translation. Recently, it has been shown that mTOR signaling pathway is involved in long-term synaptic plasticity. However, the role of mTOR under different pain conditions is less clear. In this study, the spatiotemporal activation of mTOR that contributes to pain-related behaviors was investigated using a novel animal inflammatory pain model induced by BmK I, a sodium channel-specific modulator purified from scorpion venom. In this study, intraplantar injections of BmK I were found to induce the activation of mTOR, p70 ribosomal S6 protein kinase (p70 S6K) and eukaryotic initiation factor 4E-binding protein 1 (4E-BP1) in rat L5-L6 spinal neurons. In the spinal cord, mTOR, p70 S6K and 4E-BP1 were observed to be activated in the ipsilateral and contralateral regions, peaking at 1-2 h and recovery at 24 h post-intraplantar (i.pl.) BmK I administration. In addition, intrathecal (i.t.) injection of rapamycin - a specific inhibitor of mTOR - was observed to result in the reduction of spontaneous pain responses and the attenuation of unilateral thermal and bilateral mechanical hypersensitivity elicited by BmK I. Thus, these results indicate that the mTOR signaling pathway is mobilized in the induction and maintenance of pain-activated hypersensitivity.
Collapse
Affiliation(s)
- Feng Jiang
- Lab of Neuropharmacology & Neurotoxicology, Shanghai University, 200444 Shanghai, P,R, China.
| | | | | | | | | | | |
Collapse
|
20
|
Niu QS, Jiang F, Hua LM, Fu J, Jiao YL, Ji YH, Ding G. Microglial activation of p38 contributes to scorpion envenomation-induced hyperalgesia. Biochem Biophys Res Commun 2013; 440:374-80. [DOI: 10.1016/j.bbrc.2013.09.071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Accepted: 09/13/2013] [Indexed: 12/14/2022]
|
21
|
Min JW, Liu WH, He XH, Peng BW. Different types of toxins targeting TRPV1 in pain. Toxicon 2013; 71:66-75. [PMID: 23732125 DOI: 10.1016/j.toxicon.2013.05.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 05/14/2013] [Accepted: 05/22/2013] [Indexed: 02/06/2023]
Abstract
The transient receptor potential vanilloid 1(TRPV1) channels are members of the transient receptor potential (TRP) superfamily. Members of this family are expressed in primary sensory neurons and are best known for their role in nociception and sensory transmission. Multiple painful stimuli can activate these channels. In this review, we discussed the mechanisms of different types of venoms that target TRPV1, such as scorpion venom, botulinum neurotoxin, spider toxin, ciguatera fish poisoning (CFP) and neurotoxic shellfish poisoning (NSP). Some of these toxins activate TRPV1; however, some do not. Regardless of TRPV1 inhibition or activation, they occur through different pathways. For example, BoNT/A decreases TRPV1 expression levels by blocking TRPV1 trafficking to the plasma membrane, although the exact mechanism is still under debate. Vanillotoxins from tarantula (Psalmopoeus cambridgei) are proposed to activate TRPV1 via interaction with a region of TRPV1 that is homologous to voltage-dependent ion channels. Here, we offer a description of the present state of knowledge for this complex subject.
Collapse
Affiliation(s)
- Jia-Wei Min
- Department of Physiology, School of Basic Medical Sciences, Wuhan University, 185 Donghu Road, Wuhan, Hubei 430071, PR China
| | | | | | | |
Collapse
|
22
|
Kim SD. α-Glucosidase inhibitor from Buthus martensi Karsch. Food Chem 2013; 136:297-300. [DOI: 10.1016/j.foodchem.2012.08.063] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 07/23/2012] [Accepted: 08/29/2012] [Indexed: 11/25/2022]
|
23
|
Mining the virgin land of neurotoxicology: a novel paradigm of neurotoxic peptides action on glycosylated voltage-gated sodium channels. J Toxicol 2012; 2012:843787. [PMID: 22829817 PMCID: PMC3399347 DOI: 10.1155/2012/843787] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 04/17/2012] [Accepted: 05/24/2012] [Indexed: 12/30/2022] Open
Abstract
Voltage-gated sodium channels (VGSCs) are important membrane protein carrying on the molecular basis for action potentials (AP) in neuronal firings. Even though the structure-function studies were the most pursued spots, the posttranslation modification processes, such as glycosylation, phosphorylation, and alternative splicing associating with channel functions captured less eyesights. The accumulative research suggested an interaction between the sialic acids chains and ion-permeable pores, giving rise to subtle but significant impacts on channel gating. Sodium channel-specific neurotoxic toxins, a family of long-chain polypeptides originated from venomous animals, are found to potentially share the binding sites adjacent to glycosylated region on VGSCs. Thus, an interaction between toxin and glycosylated VGSC might hopefully join the campaign to approach the role of glycosylation in modulating VGSCs-involved neuronal network activity. This paper will cover the state-of-the-art advances of researches on glycosylation-mediated VGSCs function and the possible underlying mechanisms of interactions between toxin and glycosylated VGSCs, which may therefore, fulfill the knowledge in identifying the pharmacological targets and therapeutic values of VGSCs.
Collapse
|
24
|
Exploring the obscure profiles of pharmacological binding sites on voltage-gated sodium channels by BmK neurotoxins. Protein Cell 2011; 2:437-44. [PMID: 21748593 DOI: 10.1007/s13238-011-1064-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Accepted: 06/08/2011] [Indexed: 10/18/2022] Open
Abstract
Diverse subtypes of voltage-gated sodium channels (VGSCs) have been found throughout tissues of the brain, muscles and the heart. Neurotoxins extracted from the venom of the Asian scorpion Buthus martensi Karsch (BmK) act as sodium channel-specific modulators and have therefore been widely used to study VGSCs. α-type neurotoxins, named BmK I, BmK αIV and BmK abT, bind to receptor site-3 on VGSCs and can strongly prolong the inactivation phase of VGSCs. In contrast, β-type neurotoxins, named BmK AS, BmK AS-1, BmK IT and BmK IT2, occupy receptor site-4 on VGSCs and can suppress peak currents and hyperpolarize the activation kinetics of sodium channels. Accumulating evidence from binding assays of scorpion neurotoxins on VGSCs, however, indicate that pharmacological sensitivity of VGSC subtypes to different modulators is much more complex than that suggested by the simple α-type and β-type neurotoxin distinction. Exploring the mechanisms of possible dynamic interactions between site 3-/4-specific modulators and region- and/or species-specific subtypes of VGSCs would therefore greatly expand our understanding of the physiological and pharmacological properties of diverse VGSCs. In this review, we discuss the pharmacological and structural diversity of VGSCs as revealed by studies exploring the binding properties and cross-competitive binding of site 3- or site 4-specific modulators in VGSC subtypes in synaptosomes from distinct tissues of diverse species.
Collapse
|
25
|
Zhao R, Weng CC, Feng Q, Chen L, Zhang XY, Zhu HY, Wang Y, Ji YH. Anticonvulsant activity of BmK AS, a sodium channel site 4-specific modulator. Epilepsy Behav 2011; 20:267-76. [PMID: 21239233 DOI: 10.1016/j.yebeh.2010.12.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 11/29/2010] [Accepted: 12/01/2010] [Indexed: 11/27/2022]
Abstract
The anticonvulsant activity of BmK AS, a sodium channel site 4-selective modulator purified from scorpion venom (Buthus martensi Karsch), was investigated in unanesthetized rats with acute pentylenetetrazole (PTZ)- and pilocarpine-induced seizures. Rats were microinjected in the CA1 region with either saline or BmK AS, followed by epileptogenic doses of PTZ or pilocarpine 30 minutes later. The anticonvulsant efficacy of BmK AS in PTZ- or pilocarpine-evoked seizure-like behavior and cortical epileptiform EEG activity was assessed. Intrahippocampal injections of BmK AS (0.05-1 μg in 1 μL) produced dose-dependent anticonvulsant activity in the PTZ model, suppressing seizure-associated behavior and reducing both the number and duration of high-amplitude, high-frequency discharges (HAFDs) on the EEG. In contrast, BmK AS did not affect the epileptiform EEG in the pilocarpine model over the same dose range, although it did increase the latency to status epilepticus onset and slightly, but significantly, reduced the seizure score. In summary, our results demonstrate that the sodium channel site 4-selective modulator BmK AS is an effective inhibitor of PTZ- but not pilocarpine-induced acute seizures. These results indicate that BmK AS may serve as a novel probe in exploring the role of different sodium channel subtypes in an epileptogenic setting and as a potential lead in developing antiepileptic drugs specifically for the therapy of sodium channel site 4-related epilepsy.
Collapse
Affiliation(s)
- Rong Zhao
- Laboratory of Neuropharmacology and Neurotoxicology, Shanghai University, Shanghai, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Bai ZT, Liu T, Jiang F, Cheng M, Pang XY, Hua LM, Shi J, Zhou JJ, Shu XQ, Zhang JW, Ji YH. Phenotypes and peripheral mechanisms underlying inflammatory pain-related behaviors induced by BmK I, a modulator of sodium channels. Exp Neurol 2010; 226:159-72. [DOI: 10.1016/j.expneurol.2010.08.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 08/05/2010] [Accepted: 08/12/2010] [Indexed: 10/19/2022]
|
27
|
Molecular determination of selectivity of the site 3 modulator (BmK I) to sodium channels in the CNS: a clue to the importance of Nav1.6 in BmK I-induced neuronal hyperexcitability. Biochem J 2010; 431:289-98. [PMID: 20678086 DOI: 10.1042/bj20100517] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BmK I, a site-3-specific modulator of VGSCs (voltage-gated sodium channels) from the Chinese scorpion Buthus martensi Karsch, can induce spontaneous nociception and hyperalgesia and generate epileptiform responses in rats, which is attributed to the modulation of VGSCs in the neural system. However, which VGSC subtype is targeted by BmK I remains to be identified. Using two-electrode voltage-clamp recording, we studied the efficacy and selectivity of BmK I to three neuronal VGSCs co-expressed with the auxiliary β1 subunit in Xenopus oocytes. Results revealed that BmK I induced a large increase in both transient and persistent currents in mNav1.6α/β1 (where m indicates mouse), which correlated with a prominent reduction in the fast component of inactivating current. In comparison, BmK I-increased currents of rNav1.2α/β1 (where r indicates rat) and rNav1.3α/β1 were much smaller. The EC50 values of BmK I for rNav1.2α/β1 (252±60 nM) and mNav1.6α/β1 (214±30 nM) were similar and roughly half of that for rNav1.3α/β1 (565±16 nM). Moreover, BmK I only accelerated the slow inactivation development and delay recovery of mNav1.6α/β1 through binding to the channel in the open state. Residue-swap analysis verified that an acidic residue (e.g. Asp1602 in mNav1.6) within the domain IV S3-S4 extracellular loop of VGSCs was crucial for the selectivity and modulation pattern of BmK I. Our findings thus provide the molecular determinant explaining the divergent and intriguing behaviour of neuronal VGSCs in response to site-3-specific modulators, indicating that these subtypes play different roles in BmK I-induced hyperexcitablity in rat models.
Collapse
|
28
|
Li CL, Yang BF, Zhang JH, Jiao JD, Li BX, Wu CF. Effect of ANEPIII, a novel recombinant neurotoxic polypeptide, on sodium channels in primary cultured rat hippocampal and cortical neurons. ACTA ACUST UNITED AC 2010; 164:105-12. [DOI: 10.1016/j.regpep.2010.05.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 05/23/2010] [Accepted: 05/25/2010] [Indexed: 10/19/2022]
|
29
|
Zhang NX, Wu G, Wang ZH, Wu HM. Purification, characterization and 1H NMR resonance assignment of an α-like neurotoxin BmK 16 from the venom of chinese scorpion Buthus martensii karsch. CHINESE J CHEM 2010. [DOI: 10.1002/cjoc.20030211029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
30
|
Gordon D, Savarin P, Gurevitz M, Zinn-Justin S. Functional Anatomy of Scorpion Toxins Affecting Sodium Channels. ACTA ACUST UNITED AC 2009. [DOI: 10.3109/15569549809009247] [Citation(s) in RCA: 140] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
31
|
Zhu MM, Tan M, Cheng HW, Ji YH. The α-like scorpion toxin BmK I enhances membrane excitability via persistent sodium current by preventing slow inactivation and deactivation of rNav1.2a expressed in Xenopus Oocytes. Toxicol In Vitro 2009; 23:561-8. [DOI: 10.1016/j.tiv.2008.12.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Revised: 10/13/2008] [Accepted: 12/17/2008] [Indexed: 10/21/2022]
|
32
|
Hyper-excitability in low threshold mechanical A fibers is potentially involved in scorpion BmK sting pain. Brain Res Bull 2009; 80:116-21. [PMID: 19393723 DOI: 10.1016/j.brainresbull.2009.04.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2009] [Revised: 04/13/2009] [Accepted: 04/14/2009] [Indexed: 01/28/2023]
Abstract
In the present study, using the single fiber recording technique, we found that BmK I, the main toxic component in scorpion Buthus martensi Karsch (BmK) venom, induced dramatic increase in excitability of rapidly adapting (RA) and type I slowly adapting (SAI) low threshold mechanical A fibers of rat. Five micrograms BmK I (691 nmol, in 10 microl saline) administrated to the receptive fields induced spontaneous activity in 80% of RA and SAI fibers, increased the response to 10 g-10 s stimulation at about 20 times and altered the firing pattern to burst mode with maximal NS (number of spikes in burst) averaging from all fibers studied as many as 59. The increase in the excitability of RA and SAI fibers did not recover completely in 2h. Our finding suggests that the gigantic abnormal activity in low threshold mechanical A fibers is involved in BmK scorpion sting pain, and the experimental model of BmK scorpion sting pain can be used to study A-fiber related central pathway which is important for relief of refractory neuropathic pain likewise.
Collapse
|
33
|
Feng XH, Chen JX, Liu Y, Ji YH. Electrophysiological characterization of BmK I, an α-like scorpion toxin, on rNav1.5 expressed in HEK293t cells. Toxicol In Vitro 2008; 22:1582-7. [DOI: 10.1016/j.tiv.2008.06.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2008] [Revised: 06/01/2008] [Accepted: 06/23/2008] [Indexed: 11/30/2022]
|
34
|
Bai ZT, Liu T, Pang XY, Jiang F, Cheng M, Ji YH. Functional depletion of capsaicin-sensitive primary afferent fibers attenuates rat pain-related behaviors and paw edema induced by the venom of scorpion Buthus martensi Karch. Neurosci Res 2008; 62:78-85. [PMID: 18619501 DOI: 10.1016/j.neures.2008.06.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Revised: 06/09/2008] [Accepted: 06/10/2008] [Indexed: 11/25/2022]
Abstract
The role of capsaicin-sensitive primary afferent fibers in rat pain-related behaviors and paw edema induced by scorpion Buthus martensi Karch (BmK) venom was investigated in this study. It was found that functional depletion of capsaicin-sensitive primary afferent fibers with a single systemic injection of resiniferatoxin (RTX) dramatically decreased spontaneous nociceptive behaviors, prevented the development of primary mechanical and thermal hyperalgesia as well as mirror-image mechanical hyperalgesia. RTX treatment significantly attenuated BmK venom-induced c-Fos expression in all laminaes of bilateral L4-L5 lumbar spinal cord, especially in superficial laminaes. Moreover, RTX treatment markedly reduced the early paw edema induced by BmK venom. Thus, the results indicate that capsaicin-sensitive primary afferent fibers play a critical role in various pain-related behaviors and paw edema induced by BmK venom in rats.
Collapse
Affiliation(s)
- Zhan-Tao Bai
- College of Life Sciences, Yanan University, Yanan 716000, PR China
| | | | | | | | | | | |
Collapse
|
35
|
Liu T, Pang XY, Jiang F, Bai ZT, Ji YH. Anti-nociceptive effects induced by intrathecal injection of BmK AS, a polypeptide from the venom of Chinese-scorpion Buthus martensi Karsch, in rat formalin test. JOURNAL OF ETHNOPHARMACOLOGY 2008; 117:332-338. [PMID: 18343613 DOI: 10.1016/j.jep.2008.02.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Revised: 01/11/2008] [Accepted: 02/02/2008] [Indexed: 05/26/2023]
Abstract
AIM OF THE STUDY Asian scorpion Buthus martensi Karsch (BmK) is widely used to treat neurological symptoms, especially chronic pain, in traditional Chinese medicine for thousands of years. BmK AS, a polypeptide from BmK venom, could produce peripheral potent anti-nociceptive effects in rats. In the present study, spinal anti-nociceptive effects of BmK AS were investigated in rat formalin test. MATERIALS AND METHODS Spinal anti-nociceptive activity of BmK AS was studied using formalin test in rats. BmK AS in doses of 0.02, 0.1 and 0.5 microg was administered intrathecally before formalin injection 10 min. The suppression by intrathecal injection of BmK AS on formalin-induced spontaneous nociceptive behaviors and spinal c-Fos expression were investigated. RESULTS Intrathecal injection of BmK AS markedly reduced formalin-evoked biphasic spontaneous nociceptive behaviors in a dose-dependent manner. Formalin-induced c-Fos expression could be dose-dependently inhibited by BmK AS in superficial (I-II), the nucleus proprius (III and IV) and deep (V-VI) dorsal horn laminae, but not in the ventral gray laminae (VII-X) of lumbar spinal cord. The suppression by BmK AS on c-Fos expression in superficial laminaes was much stronger than that in deep laminaes. CONCLUSION The present study demonstrates that BmK AS is capable of producing remarkable anti-nociceptive effects not only in periphery but also in spinal cord.
Collapse
Affiliation(s)
- Tong Liu
- Graduate School of the Chinese Academy of Sciences, Institute of Physiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, PR China
| | | | | | | | | |
Collapse
|
36
|
Anticonvulsant effect of BmK IT2, a sodium channel-specific neurotoxin, in rat models of epilepsy. Br J Pharmacol 2008; 154:1116-24. [PMID: 18587450 DOI: 10.1038/bjp.2008.156] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND AND PURPOSE The sodium channel is a primary target for treating central nervous system disorders such as epilepsy. In this study the anticonvulsant effect of BmK IT2, a sodium channel-specific neurotoxin, was evaluated in different animal models of epilepsy. EXPERIMENTAL APPROACH Experiments were performed on freely moving rats made epileptic by administration of either pentylenetetrazole (PTZ) or pilocarpine. BmK IT2 (0.05-0.5 microg in 2 microl) was microinjected into the CA1 area and its effects on PTZ-induced widespread, seizure-like behaviour and cortex epileptiform EEG, as well as on pilocarpine-induced seizure-like behaviour and c-Fos expression were studied. KEY RESULTS Intrahippocampal application of BmK IT2 dose-dependently inhibited PTZ-induced seizure-like behaviour, and reduced the numbers and duration of the high amplitude and frequency discharges (HAFDs) of the epileptiform EEG component induced by PTZ. Similarly, in the pilocarpine-induced status epilepticus (SE) model, BmK IT2 significantly prolonged the latency to onset of the SE, reduced the severity of SE and suppressed hippocampal c-Fos expression during SE. CONCLUSIONS AND IMPLICATIONS BmK IT2 showed anticonvulsant activity as it inhibited the widespread seizures induced by PTZ and pilocarpine-induced SE in rats. This activity might be due to the modulation of sodium channels in the hippocampus. Hence, BmK IT2 could be used as a novel tool to explore the molecular and pathological mechanisms of epilepsy with regard to the involvement of sodium channels.
Collapse
|
37
|
Pang XY, Liu T, Jiang F, Ji YH. Activation of spinal ERK signaling pathway contributes to pain-related responses induced by scorpion Buthus martensi Karch venom. Toxicon 2008; 51:994-1007. [PMID: 18328523 DOI: 10.1016/j.toxicon.2008.01.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Revised: 12/24/2007] [Accepted: 01/09/2008] [Indexed: 01/15/2023]
Abstract
It has been demonstrated that spontaneous nociceptive behaviors, cutaneous hyperalgesia and paw edema can be induced by intraplantar injection of scorpion Buthus martensi Karch (BmK) venom in rats. In the present study, activation of spinal extracellular signal-regulated kinase (ERK) signaling pathway and its contribution to pain-related responses induced by scorpion BmK venom were investigated. It was found that ERK was activated not only in the superficial layers but also in deep layers of L4-L5 spinal cord dorsal horn, which started at 2 min, peaked at 30-60 min and almost disappeared at 4h following intraplantar injection of BmK venom. Intrathecal injection of U0126 (0.1, 1.0 and 10 microg), a widely used specific MAP kinase kinase (MEK) inhibitor, suppressed spontaneous nociceptive responses and reduced primary heat hyperalgesia and bilateral mechanical hyperalgesia induced by BmK venom. In addition, BmK venom-induced spinal c-Fos expression could be inhibited by U0126 dose-dependently. Intrathecal delivery of NMDA receptor antagonist (5R, 10S)-(+)-5-methyl-10, 11-dihydro-5H-dibenzo [a,d]-cyclohepten-5-10-imine hydrogen maleate (MK-801) and the non-NMDA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) could partially inhibit activation of spinal ERK induced by BmK venom at 30 min. Thus, activation of ERK in spinal cord dorsal horn, partially mediated by NMDA and non-NMDA receptor, potentially contributes to BmK venom-induced pain-related behaviors.
Collapse
Affiliation(s)
- Xue-Yan Pang
- School of Life Sciences, Shanghai University, Shang-Da Road 99, Shanghai 200444, PR China
| | | | | | | |
Collapse
|
38
|
Liu T, Pang XY, Bai ZT, Chai ZF, Jiang F, Ji YH. Intrathecal injection of glutamate receptor antagonists/agonist selectively attenuated rat pain-related behaviors induced by the venom of scorpion Buthus martensi Karsch. Toxicon 2007; 50:1073-84. [PMID: 17850839 DOI: 10.1016/j.toxicon.2007.07.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2007] [Revised: 07/03/2007] [Accepted: 07/24/2007] [Indexed: 10/23/2022]
Abstract
The present study investigated the involvement of spinal glutamate receptors in the induction and maintenance of the pain-related behaviors induced by the venom of scorpion Buthus martensi Karsch (BmK). (5R,10S)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]-cyclohepten-5-10-imine hydrogen maleate (MK-801; 40nmol; a non-competitive NMDA receptor antagonist), 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX; 40nmol; a non-NMDA receptor antagonist), dl-amino-3-phosphonopropionic acid (dl-AP3; 100nmol; a group I metabotropic glutamate receptor antagonist) and 4-aminopyrrolidine-2,4-dicarboxylate (APDC; 100nmol; a group II metabotropic glutamate receptor agonist) were employed. On intrathecal injection of glutamate receptor antagonists/agonist before BmK venom administration by 10min, BmK venom-induced spontaneous nociceptive responses could be suppressed by all tested agents. Primary thermal hyperalgesia could be inhibited by MK-801 and dl-AP3, while bilateral mechanical hyperalgesia could be inhibited by CNQX and dl-AP3 and contralateral mechanical hyperalgesia could be inhibited by APDC. On intrathecal injection of glutamate receptor antagonists/agonist after BmK venom injection by 4.5h, primary thermal hyperalgesia could be partially reversed by all tested agents, while bilateral mechanical hyperalgesia could only be inhibited by APDC. The results suggest that the role of spinal glutamate receptors may be different on the various manifestations of BmK venom-induced pain-related behaviors.
Collapse
Affiliation(s)
- Tong Liu
- Graduate School of the Chinese Academy of Sciences, Institute of Physiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, PR China
| | | | | | | | | | | |
Collapse
|
39
|
Liu T, Bai ZT, Pang XY, Chai ZF, Jiang F, Ji YH. Degranulation of mast cells and histamine release involved in rat pain-related behaviors and edema induced by scorpion Buthus martensi Karch venom. Eur J Pharmacol 2007; 575:46-56. [PMID: 17716653 DOI: 10.1016/j.ejphar.2007.07.057] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2007] [Revised: 07/20/2007] [Accepted: 07/23/2007] [Indexed: 10/23/2022]
Abstract
In the present study, it was investigated whether the degranulation of mast cells and histamine release were involved in rat pain-related behaviors and edema induced by the venom of scorpion Buthus martensi Karch (BmK) or not. It was found that the obvious degranulation of mast cells could be triggered in rat hindpaw skin by BmK venom. The chronic degranulation of mast cells using compound 48/80 relieved the spontaneous nociceptive responses, the primary thermal and bilateral mechanical hyperalgesia and the rat paw edema, as well as partially reduced c-Fos expression in superficial layers (laminae I-II) of bilateral spinal cord induced by BmK venom. In addition, individual peripheral co-administration of either 100 nmol chlorpheniramine or 100 nmol pyrilamine (histamine H(1) receptor antagonist) or 500 nmol cimetidine (histamine H(2) receptor antagonist) and BmK venom suppressed the spontaneous nociceptive responses, partially the primary thermal and bilateral mechanical hyperalgesia and rat paw edema induced by BmK venom. Thus, these results suggest that the peripheral cellular incidents of mast cells degranulation and histamine release are involved in BmK venom-induced pain-related behaviors and inflammation.
Collapse
Affiliation(s)
- Tong Liu
- Graduate School of the Chinese Academy of Sciences, Institute of Physiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, PR China
| | | | | | | | | | | |
Collapse
|
40
|
Tan M, Zhu MM, Liu Y, Cheng HW, Ji YH. Effects of BmK AS on Nav1.2 expressed in Xenopus laevis oocytes. Cell Biol Toxicol 2007; 24:143-9. [PMID: 17674132 DOI: 10.1007/s10565-007-9023-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2007] [Accepted: 07/11/2007] [Indexed: 11/30/2022]
Abstract
In the present study, the pharmacological effects of BmK AS, a beta-like scorpion toxin on rNav1.2 alpha-subunit expressed in Xenopus laevis oocytes were investigated using a two-electrode voltage-clamp recording. It was found that the voltage dependence of rNav1.2 inactivation was significantly shifted towards positive membrane potential by 500 nM BmK AS, whereas the activation curves of rNav1.2 were unruffled at the same dosage. The inactivation curves of both slow and fast inactivation currents were positively moved about 12.8 and 9.7 mV, respectively. In addition, the persistent currents of rNav1.2 were invariable. The effects of BmK AS on the rNav1.2 inactivation were opposite to the previous results found in the peripheral sensory neurons. The results suggested that Nav1.2 might be the target of BmK AS in the central nervous system, and BmK AS might have an excitatory effect on the central neuron through enhancing Nav1.2.
Collapse
Affiliation(s)
- Miao Tan
- Graduate School of the Chinese Academy of Sciences, Institute of Physiology, Shanghai Institutes for Biological Sciences, Shanghai, People's Republic of China
| | | | | | | | | |
Collapse
|
41
|
De Lima ME, Figueiredo SG, Pimenta AMC, Santos DM, Borges MH, Cordeiro MN, Richardson M, Oliveira LC, Stankiewicz M, Pelhate M. Peptides of arachnid venoms with insecticidal activity targeting sodium channels. Comp Biochem Physiol C Toxicol Pharmacol 2007; 146:264-279. [PMID: 17218159 DOI: 10.1016/j.cbpc.2006.10.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2006] [Revised: 10/19/2006] [Accepted: 10/21/2006] [Indexed: 12/18/2022]
Abstract
Arachnids have a venom apparatus and secrete a complex chemical mixture of low molecular mass organic molecules, enzymes and polypeptide neurotoxins designed to paralyze or kill their prey. Most of these toxins are specific for membrane voltage-gated sodium channels, although some may also target calcium or potassium channels and other membrane receptors. Scorpions and spiders have provided the greatest number of the neurotoxins studied so far, for which, a good number of primary and 3D structures have been obtained. Structural features, comprising a folding that determines a similar spatial distribution of charged and hydrophobic side chains of specific amino acids, are strikingly common among the toxins from spider and scorpion venoms. Such similarities are, in turn, the key feature to target and bind these proteins to ionic channels. The search for new insecticidal compounds, as well as the study of their modes of action, constitutes a current approach to rationally design novel insecticides. This goal tends to be more relevant if the resistance to the conventional chemical products is considered. A promising alternative seems to be the biotechnological approach using toxin-expressing recombinant baculovirus. Spider and scorpion toxins having insecticidal activity are reviewed here considering their structures, toxicities and action mechanisms in sodium channels of excitable membranes.
Collapse
Affiliation(s)
- M E De Lima
- Lab. Venenos e Toxinas Animais, Universidade Federal de Minas Gerais, 31.270-901, Belo Horizonte, MG, Brasil; Núcleo de Biomoléculas - Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31.270-901, Belo Horizonte, MG, Brasil.
| | - S G Figueiredo
- Centro de Ciências Fisiológicas, CBM - Universidade Federal do Espírito Santo, Vitória, ES, Brasil
| | - A M C Pimenta
- Lab. Venenos e Toxinas Animais, Universidade Federal de Minas Gerais, 31.270-901, Belo Horizonte, MG, Brasil; Núcleo de Biomoléculas - Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31.270-901, Belo Horizonte, MG, Brasil
| | - D M Santos
- Lab. Venenos e Toxinas Animais, Universidade Federal de Minas Gerais, 31.270-901, Belo Horizonte, MG, Brasil; Núcleo de Biomoléculas - Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31.270-901, Belo Horizonte, MG, Brasil
| | - M H Borges
- Lab. Venenos e Toxinas Animais, Universidade Federal de Minas Gerais, 31.270-901, Belo Horizonte, MG, Brasil; Centro de Pesquisa Prof. Carlos R. Diniz, Fundação Ezequiel Dias, Belo Horizonte, MG, Brasil
| | - M N Cordeiro
- Centro de Pesquisa Prof. Carlos R. Diniz, Fundação Ezequiel Dias, Belo Horizonte, MG, Brasil
| | - M Richardson
- Centro de Pesquisa Prof. Carlos R. Diniz, Fundação Ezequiel Dias, Belo Horizonte, MG, Brasil
| | - L C Oliveira
- Departamento de Farmácia Bioquímica - Universidade Federal dos Vales do Jequitinhonha e Mucuri, 39100-000, Diamantina, MG, Brasil
| | - M Stankiewicz
- Laboratory of Biophysics - Institute of General and Molecular Biology, N. Copernicus University, 87-100, Torun, Poland
| | - M Pelhate
- Lab. Récepteurs et Canaux Ioniques Membranaires, Université d'Angers, 49045, Angers, France
| |
Collapse
|
42
|
Mortari MR, Cunha AOS, Ferreira LB, dos Santos WF. Neurotoxins from invertebrates as anticonvulsants: From basic research to therapeutic application. Pharmacol Ther 2007; 114:171-83. [PMID: 17399793 DOI: 10.1016/j.pharmthera.2007.01.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2007] [Revised: 01/19/2007] [Accepted: 01/19/2007] [Indexed: 12/21/2022]
Abstract
Invertebrate venoms have attracted considerable interest as a potential source of bioactive substances, especially neurotoxins. These molecules have proved to be extremely useful tools for the understanding of synaptic transmission events, and they have contributed to the design of novel drugs for the treatment of neurological disorders and pain. In this context, as epilepsy involves neuronal substrates, which are sites of action of many neurotoxins; venoms may be particularly useful for antiepileptic drug (AED) research. Epilepsy is a chronic disease whose treatment consists of controlling seizures with antiepileptics that very often induce strong undesirable side effects that may limit treatment. Here, we review the vast, but yet unexplored, world of neurotoxins from invertebrates used as probes in pharmacological screening for novel and less toxic antiepileptics. We briefly review (1) the molecular basis of epilepsy, as well as the sites of action of commonly used anticonvulsants (we bring a comprehensive review of the elements from invertebrate venoms which are mostly studied in neuroscience research and may be useful for drug development); (2) peptides from conus snails; (3) peptides and polyamine toxins from spiders and wasps; and (4) peptides from scorpions.
Collapse
Affiliation(s)
- Márcia Renata Mortari
- Neurobiology and Venoms Laboratory, Department of Biology, School of Philosophy, Sciences and Literature, University of São Paulo Ribeirão Preto, Brazil
| | | | | | | |
Collapse
|
43
|
Bai ZT, Liu T, Pang XY, Chai ZF, Ji YH. Suppression by intrathecal BmK IT2 on rat spontaneous pain behaviors and spinal c-Fos expression induced by formalin. Brain Res Bull 2007; 73:248-53. [PMID: 17562390 DOI: 10.1016/j.brainresbull.2007.03.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2006] [Revised: 02/04/2007] [Accepted: 03/14/2007] [Indexed: 01/22/2023]
Abstract
The central anti-nociception of BmK IT2, a sodium channel modulator from scorpion Buthus martensi Karsh (BmK) was investigated in this study. It was found that the formalin-induced rat spontaneous flinches and spinal c-Fos expression could be significantly suppressed by intrathecal BmK IT2 pre- or post-formalin injection in a dose-dependent manner. The time course of inhibitory effect exerted by intrathecal BmK IT2 on spontaneous flinches was longer in the pre-treatment group than in post-treatment group. This was consistent with the stronger suppression on spinal c-Fos expression exerted by intrathecal BmK IT2 pre-treatment. In addition, the suppression by intrathecal BmK IT2 on formalin-induced c-Fos expression in superficial laminae was more significant than that in deeper laminae. These results indicate that BmK IT2 can induce central anti-nociceptive response and might thus be a valuable molecular tool for the understanding of pain mechanisms.
Collapse
Affiliation(s)
- Zhan-Tao Bai
- College of Life Sciences, Yanan University, Yanan 716000, PR China
| | | | | | | | | |
Collapse
|
44
|
Chai ZF, Zhu MM, Bai ZT, Liu T, Tan M, Pang XY, Ji YH. Chinese-scorpion (Buthus martensi Karsch) toxin BmK alphaIV, a novel modulator of sodium channels: from genomic organization to functional analysis. Biochem J 2006; 399:445-53. [PMID: 16800812 PMCID: PMC1615898 DOI: 10.1042/bj20060035] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In the present study, BmK alphaIV, a novel modulator of sodium channels, was cloned from venomous glands of the Chinese scorpion (Buthus martensi Karsch) and expressed successfully in Escherichia coli. The BmK alphaIV gene is composed of two exons separated by a 503 bp intron. The mature polypeptide contains 66 amino acids. BmK alphaIV has potent toxicity in mice and cockroaches. Surface-plasmon-resonance analysis found that BmK alphaIV could bind to both rat cerebrocortical synaptosomes and cockroach neuronal membranes, and shared similar binding sites on sodium channels with classical AaH II (alpha-mammal neurotoxin from the scorpion Androctonus australis Hector), BmK AS (beta-like neurotoxin), BmK IT2 (the depressant insect-selective neurotoxin) and BmK abT (transitional neurotoxin), but not with BmK I (alpha-like neurotoxin). Two-electrode voltage clamp recordings on rNav1.2 channels expressed in Xenopus laevis oocytes revealed that BmK alphaIV increased the peak amplitude and prolonged the inactivation phase of Na+ currents. The structural and pharmacological properties compared with those of other scorpion alpha-toxins suggests that BmK alphaIV represents a novel subgroup or functional hybrid of alpha-toxins and might be an evolutionary intermediate neurotoxin for alpha-toxins.
Collapse
Affiliation(s)
- Zhi-Fang Chai
- *Graduate School of the Chinese Academy of Sciences, Shanghai Institute of Physiology, Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, People's Republic of China
| | - Mang-Mang Zhu
- *Graduate School of the Chinese Academy of Sciences, Shanghai Institute of Physiology, Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, People's Republic of China
| | - Zhan-Tao Bai
- *Graduate School of the Chinese Academy of Sciences, Shanghai Institute of Physiology, Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, People's Republic of China
| | - Tong Liu
- *Graduate School of the Chinese Academy of Sciences, Shanghai Institute of Physiology, Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, People's Republic of China
| | - Miao Tan
- *Graduate School of the Chinese Academy of Sciences, Shanghai Institute of Physiology, Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, People's Republic of China
| | - Xue-Yan Pang
- †School of Life Sciences of Shanghai University, Shanghai 200444, People's Republic of China
| | - Yong-Hua Ji
- *Graduate School of the Chinese Academy of Sciences, Shanghai Institute of Physiology, Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, People's Republic of China
- †School of Life Sciences of Shanghai University, Shanghai 200444, People's Republic of China
- To whom correspondence should be addressed (email or )
| |
Collapse
|
45
|
Bai ZT, Liu T, Chai ZF, Pang XY, Ji YH. Rat pain-related responses induced by experimental scorpion BmK sting. Eur J Pharmacol 2006; 552:67-77. [PMID: 17055482 DOI: 10.1016/j.ejphar.2006.09.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2006] [Revised: 09/07/2006] [Accepted: 09/08/2006] [Indexed: 11/20/2022]
Abstract
The developmental and pharmacological characteristics of pain responses induced by the experimental scorpion BmK (Buthus martensi Karsch) sting were detailed in this study. Following the unilateral intraplantar injection of BmK venom into rat hind paw, it was found: 1) BmK venom induced an edematogenic response, spontaneous pain and pain hypersensitivity in a dose-dependent manner; 2) the paw edema and flare were induced rapidly and restricted at the injected paw for about 24-48 h; 3) the monophasic tonic spontaneous pain manifested as continuous paw flinching and lifting/licking of the injected paw and lasted for more than 2 h; 4) the detectable thermal hypersensitivity to radiant heat stimuli was just at the injected side for about 72-96 h; 5) the mechanical hypersensitivity to von Frey filaments was evoked surprisingly to be the bilateral and mirror-like for about 2-3 weeks; 6) morphine, indomethacin and bupivacaine could suppress BmK venom-induced pain responses with different intensity and time courses. The results indicated that the experimental BmK sting could evoke the prolonged paw inflammation, tonic spontaneous behaviors, unilateral thermal and bilateral mechanical hypersensitivity. The distinct time development of pain responses induced by experimental BmK sting might be involved in different nervous and/or tissue mechanisms. The experimental BmK sting test thus may be an available tissue injury-induced tonic inflammatory pain model for understanding the mechanisms underlying clinical spontaneous pain, thermal and mirror-imaged bilateral mechanical pain hypersensitivity.
Collapse
Affiliation(s)
- Zhan-Tao Bai
- Graduate School of the Chinese Academy of Sciences, Institute of Physiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, PR China
| | | | | | | | | |
Collapse
|
46
|
Uawonggul N, Thammasirirak S, Chaveerach A, Arkaravichien T, Bunyatratchata W, Ruangjirachuporn W, Jearranaiprepame P, Nakamura T, Matsuda M, Kobayashi M, Hattori S, Daduang S. Purification and characterization of Heteroscorpine-1 (HS-1) toxin from Heterometrus laoticus scorpion venom. Toxicon 2006; 49:19-29. [PMID: 17056081 DOI: 10.1016/j.toxicon.2006.09.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2005] [Revised: 09/01/2006] [Accepted: 09/05/2006] [Indexed: 10/24/2022]
Abstract
Crude venom from Thai giant scorpion, Heterometrus laoticus, most commonly found in the northeastern area of Thailand, was evaluated for PD50 (paralytic dose 50) activities from abdominal injection to cricket (Gryllus sp.) and activities against various kinds of microorganisms. It exhibited good results in disc diffusion assay for Bacillus subtilis, Klebsiella pneumoniae, Pseudomonas aeruginosa and Staphylococcus aureus. After purification, toxin showed acceptable results for PD50 determination in entrapped cricket as well as inhibitory activity against B. subtilis, K. pneumoniae, and P. aeruginosa with activities over 300 times higher than that of the crude venom. The purified fraction was showed to contain a single band in SDS-PAGE. MALDI-TOF-MS/MS analysis showed one peak of major protein with 8293Da. Partial amino acid sequence show high homology to Scorpine-a polypeptide toxin family with potassium channel blocking and defensin activity. The novel toxin was named "Heteroscorpine-1" (HS-1) as the first Scorpine from genus Heterometrus. After full length determination by PCR, HS-1 gene was found to be composed of two exons, separated by an intron. Deduction revealed 95 amino acid residues with 19 residues as the leading sequence. It showed about 80% similarity to Panscorpine and Opiscorpine.
Collapse
Affiliation(s)
- Nunthawun Uawonggul
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Zuo XP, He HQ, He M, Liu ZR, Xu Q, Ye JG, Ji YH. Comparative pharmacology and cloning of two novel arachnid sodium channels: Exploring the adaptive insensitivity of scorpion to its toxins. FEBS Lett 2006; 580:4508-14. [PMID: 16870180 DOI: 10.1016/j.febslet.2006.07.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Revised: 07/07/2006] [Accepted: 07/07/2006] [Indexed: 11/24/2022]
Abstract
Scorpion toxins have been found lacking effect on Na(+) current of its own sodium channel, whereas the molecular mechanism remains mystery. In this study, the binding affinity of pharmacologically distinct scorpion toxins was found much weaker to scorpion (Buthus martensii) nerve synaptosomes than to spider (Ornithoctonus huwena) ones. The sodium channel cDNA from these two species were further cloned. The deduced proteins contain 1871 and 1987 amino acids respectively. Several key amino acid substitutions, i.e., A1610V, I1611L and S1617K, are found in IVS3-S4 constituting receptor site-3, and for receptor site-4, two residues (Leu-Pro) are inserted near IIS4 of scorpion sodium channel.
Collapse
Affiliation(s)
- Xiao-Pan Zuo
- Graduate School of the Chinese Academy of Sciences, Shanghai Institute of Physiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, PR China
| | | | | | | | | | | | | |
Collapse
|
48
|
Zhijian C, Yun X, Chao D, Shunyi Z, Shijin Y, Yingliang W, Wenxin L. Cloning and characterization of a novel calcium channel toxin-like gene BmCa1 from Chinese scorpion Mesobuthus martensii Karsch. Peptides 2006; 27:1235-40. [PMID: 16298458 DOI: 10.1016/j.peptides.2005.10.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2005] [Revised: 10/08/2005] [Accepted: 10/10/2005] [Indexed: 11/25/2022]
Abstract
Many studies have been carried on peptides and genes encoding scorpion toxins from the venom of Mesobuthus martensii Karsch (synonym: Buthus martensii Karsch, BmK), such as Na+, K+ and Cl- channel modulators. In this study, a novel calcium channel toxin-like gene BmCa1 was isolated and characterized from the venom of Mesobuthus martensii Karsch. First, a partial cDNA sequence of the Ca2+ channel toxin-like gene was identified by random sequencing method from a venomous gland cDNA library of Mesobuthus martensii Karsch. The full-length sequence of BmCa1 was then obtained by 5'RACE technique. The peptide deduced from BmCa1 precursor nucleotide sequence contains a 27-residue signal peptide and a 37-residue mature peptide. Although BmCa1 and other scorpion toxins are different at the gene and protein primary structure levels, BmCa1 has the same precursor nucleotide organization and cysteine arrangement as that of the first subfamily members of calcium channel scorpion toxins. Genomic DNA sequence of BmCa1 was also cloned by PCR. Sequence analysis showed that BmCa1 gene consists of three exons separated by two introns of 72 bp and 1076 bp in length, respectively. BmCa1 is the first calcium channel toxin-like gene cloned from the venom of Mesobuthus martensii Karsch and potentially represents a novel class of calcium channel toxins in scorpion venoms.
Collapse
Affiliation(s)
- Cao Zhijian
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, PR China.
| | | | | | | | | | | | | |
Collapse
|
49
|
Maertens C, Cuypers E, Amininasab M, Jalali A, Vatanpour H, Tytgat J. Potent Modulation of the Voltage-Gated Sodium Channel Nav1.7 by OD1, a Toxin from the Scorpion Odonthobuthus doriae. Mol Pharmacol 2006; 70:405-14. [PMID: 16641312 DOI: 10.1124/mol.106.022970] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Voltage-gated sodium channels are essential for the propagation of action potentials in nociceptive neurons. Nav1.7 is found in peripheral sensory and sympathetic neurons and involved in short-term and inflammatory pain. Nav1.8 and Nav1.3 are major players in nociception and neuropathic pain, respectively. In our effort to identify isoform-specific and high-affinity ligands for these channels, we investigated the effects of OD1, a scorpion toxin isolated from the venom of the scorpion Odonthobuthus doriae. Nav1.3, Nav1.7, and Nav1.8 channels were coexpressed with beta1-subunits in Xenopus laevis oocytes. Na+ currents were recorded with the two-electrode voltage-clamp technique. OD1 modulates Nav1.7 at low nanomolar concentrations: 1) fast inactivation is dramatically impaired, with an EC50 value of 4.5 nM; 2) OD1 substantially increases the peak current at all voltages; and 3) OD1 induces a substantial persistent current. Nav1.8 was not affected by concentrations up to 2 microM, whereas Nav1.3 was sensitive only to concentrations higher than 100 nM. OD1 impairs the inactivation process of Nav1.3 with an EC50 value of 1127 nM. Finally, the effects of OD1 were compared with a classic alpha-toxin, AahII from Androctonus australis Hector and a classic alpha-like toxin, BmK M1 from Buthus martensii Karsch. At a concentration of 50 nM, both toxins affected Nav1.7. Nav1.3 was sensitive to AahII but not to BmK M1, whereas Nav1.8 was affected by neither toxin. In conclusion, the present study shows that the scorpion toxin OD1 is a potent modulator of Nav1.7, with a unique selectivity pattern.
Collapse
Affiliation(s)
- Chantal Maertens
- Laboratory of Toxicology, University of Leuven, Onderwijs and Navorsing II, Herestraat 49 - Box 922, B-3000 Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
50
|
Chen YN, Li KC, Li Z, Shang GW, Liu DN, Lu ZM, Zhang JW, Ji YH, Gao GD, Chen J. Effects of bee venom peptidergic components on rat pain-related behaviors and inflammation. Neuroscience 2006; 138:631-40. [PMID: 16446039 DOI: 10.1016/j.neuroscience.2005.11.022] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2005] [Revised: 11/11/2005] [Accepted: 11/17/2005] [Indexed: 11/25/2022]
Abstract
To identify the active components of honeybee venom in production of inflammation and pain-related behaviors, five major peptidergic subfractions were separated, purified and identified from the whole honeybee venom. Among them, four active peptidergic components were characterized as apamin, mast-cell degranulating peptide (MCDP), phospholipase A(2) (PLA(2))-related peptide and melittin, respectively. All five subfractions were effective in production of local inflammatory responses (paw edema) in rats although the efficacies were different. Among the five identified subfractions, only MCDP, PLA(2)-related peptide and melittin were able to produce ongoing pain-related behaviors shown as paw flinches, while only apamin and melittin were potent to produce both thermal and mechanical hypersensitivity. As shown in our previous report, melittin was the most potent polypeptide in production of local inflammation as well as ongoing pain and hypersensitivity. To further explore the peripheral mechanisms underlying melittin-induced nociception and hypersensitivity, a single dose of capsazepine, a blocker of thermal nociceptor transient receptor potential vanilloid receptor 1, was treated s.c. prior to or after melittin administration. The results showed that both pre- and post-treatment of capsazepine could significantly prevent and suppress the melittin-induced ongoing nociceptive responses and thermal hypersensitivity, but were without influencing mechanical hypersensitivity. The present results suggest that the naturally occurring peptidergic substances of the whole honeybee venom have various pharmacological potencies to produce local inflammation, nociception and pain hypersensitivity in mammals, and among the five identified reverse-phase high pressure liquid chromatography subfractions (four polypeptides), melittin, a polypeptide occupying over 50% of the whole honeybee venom, plays a central role in production of local inflammation, nociception and hyperalgesia or allodynia following the experimental honeybee's sting. Peripheral transient receptor potential vanilloid receptor 1 is likely to be involved in melittin-produced ongoing pain and heat hyperalgesia, but not mechanical hyperalgesia, in rats.
Collapse
Affiliation(s)
- Y-N Chen
- Institute for Functional Brain Disorders and Institute for Biomedical Sciences of Pain, Tangdu Hospital, Fourth Military Medical University, #1 Xinsi Road, Baqiao, Xi'an 710038, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|