1
|
Nichols SL, Haller C, Borodavka A, Esstman SM. Rotavirus NSP2: A Master Orchestrator of Early Viral Particle Assembly. Viruses 2024; 16:814. [PMID: 38932107 PMCID: PMC11209291 DOI: 10.3390/v16060814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/06/2024] [Accepted: 05/16/2024] [Indexed: 06/28/2024] Open
Abstract
Rotaviruses (RVs) are 11-segmented, double-stranded (ds) RNA viruses and important causes of acute gastroenteritis in humans and other animal species. Early RV particle assembly is a multi-step process that includes the assortment, packaging and replication of the 11 genome segments in close connection with capsid morphogenesis. This process occurs inside virally induced, cytosolic, membrane-less organelles called viroplasms. While many viral and cellular proteins play roles during early RV assembly, the octameric nonstructural protein 2 (NSP2) has emerged as a master orchestrator of this key stage of the viral replication cycle. NSP2 is critical for viroplasm biogenesis as well as for the selective RNA-RNA interactions that underpin the assortment of 11 viral genome segments. Moreover, NSP2's associated enzymatic activities might serve to maintain nucleotide pools for use during viral genome replication, a process that is concurrent with early particle assembly. The goal of this review article is to summarize the available data about the structures, functions and interactions of RV NSP2 while also drawing attention to important unanswered questions in the field.
Collapse
Affiliation(s)
- Sarah L. Nichols
- Department of Biology, Wake Forest University, Wake Downtown, 455 Vine Street, Winston-Salem, NC 27106, USA;
| | - Cyril Haller
- Department of Chemical Engineering and Biotechnology, Cambridge University, Philippa Fawcett Drive, Cambridge CB3 0AS, UK;
| | - Alexander Borodavka
- Department of Chemical Engineering and Biotechnology, Cambridge University, Philippa Fawcett Drive, Cambridge CB3 0AS, UK;
| | - Sarah M. Esstman
- Department of Biology, Wake Forest University, Wake Downtown, 455 Vine Street, Winston-Salem, NC 27106, USA;
| |
Collapse
|
2
|
Kanai Y, Kobayashi T. FAST Proteins: Development and Use of Reverse Genetics Systems for Reoviridae Viruses. Annu Rev Virol 2021; 8:515-536. [PMID: 34586868 DOI: 10.1146/annurev-virology-091919-070225] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Reverse genetics systems for viruses, the technology used to generate gene-engineered recombinant viruses from artificial genes, enable the study of the roles of the individual nucleotides and amino acids of viral genes and proteins in infectivity, replication, and pathogenicity. The successful development of a reverse genetics system for poliovirus in 1981 accelerated the establishment of protocols for other RNA viruses important for human health. Despite multiple efforts, rotavirus (RV), which causes severe gastroenteritis in infants, was refractory to reverse genetics analysis, and the first complete reverse genetics system for RV was established in 2017. This novel technique involves use of the fusogenic protein FAST (fusion-associated small transmembrane) derived from the bat-borne Nelson Bay orthoreovirus, which induces massive syncytium formation. Co-transfection of a FAST-expressing plasmid with complementary DNAs encoding RV genes enables rescue of recombinant RV. This review focuses on methodological insights into the reverse genetics system for RV and discusses applications and potential improvements to this system.
Collapse
Affiliation(s)
- Yuta Kanai
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan; ,
| | - Takeshi Kobayashi
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan; ,
| |
Collapse
|
3
|
A Point Mutation in the Rhesus Rotavirus VP4 Protein Generated through a Rotavirus Reverse Genetics System Attenuates Biliary Atresia in the Murine Model. J Virol 2017; 91:JVI.00510-17. [PMID: 28515290 DOI: 10.1128/jvi.00510-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 05/08/2017] [Indexed: 12/25/2022] Open
Abstract
Rotavirus infection is one of the most common causes of diarrheal illness in humans. In neonatal mice, rhesus rotavirus (RRV) can induce biliary atresia (BA), a disease resulting in inflammatory obstruction of the extrahepatic biliary tract and intrahepatic bile ducts. We previously showed that the amino acid arginine (R) within the sequence SRL (amino acids 445 to 447) in the RRV VP4 protein is required for viral binding and entry into biliary epithelial cells. To determine if this single amino acid (R) influences the pathogenicity of the virus, we generated a recombinant virus with a single amino acid mutation at this site through a reverse genetics system. We demonstrated that the RRV mutant (RRVVP4-R446G) produced less symptomatology and replicated to lower titers both in vivo and in vitro than those seen with wild-type RRV, with reduced binding in cholangiocytes. Our results demonstrate that a single amino acid change in the RRV VP4 gene influences cholangiocyte tropism and reduces pathogenicity in mice.IMPORTANCE Rotavirus is the leading cause of diarrhea in humans. Rhesus rotavirus (RRV) can also lead to biliary atresia (a neonatal human disease) in mice. We developed a reverse genetics system to create a mutant of RRV (RRVVP4-R446G) with a single amino acid change in the VP4 protein compared to that of wild-type RRV. In vitro, the mutant virus had reduced binding and infectivity in cholangiocytes. In vivo, it produced fewer symptoms and lower mortality in neonatal mice, resulting in an attenuated form of biliary atresia.
Collapse
|
4
|
African Swine Fever Virus NP868R Capping Enzyme Promotes Reovirus Rescue during Reverse Genetics by Promoting Reovirus Protein Expression, Virion Assembly, and RNA Incorporation into Infectious Virions. J Virol 2017; 91:JVI.02416-16. [PMID: 28298603 DOI: 10.1128/jvi.02416-16] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 03/07/2017] [Indexed: 12/25/2022] Open
Abstract
Reoviruses, like many eukaryotic viruses, contain an inverted 7-methylguanosine (m7G) cap linked to the 5' nucleotide of mRNA. The traditional functions of capping are to promote mRNA stability, protein translation, and concealment from cellular proteins that recognize foreign RNA. To address the role of mRNA capping during reovirus replication, we assessed the benefits of adding the African swine fever virus NP868R capping enzyme during reovirus rescue. C3P3, a fusion protein containing T7 RNA polymerase and NP868R, was found to increase protein expression 5- to 10-fold compared to T7 RNA polymerase alone while enhancing reovirus rescue from the current reverse genetics system by 100-fold. Surprisingly, RNA stability was not increased by C3P3, suggesting a direct effect on protein translation. A time course analysis revealed that C3P3 increased protein synthesis within the first 2 days of a reverse genetics transfection. This analysis also revealed that C3P3 enhanced processing of outer capsid μ1 protein to μ1C, a previously described hallmark of reovirus assembly. Finally, to determine the rate of infectious-RNA incorporation into new virions, we developed a new recombinant reovirus S1 gene that expressed the fluorescent protein UnaG. Following transfection of cells with UnaG and infection with wild-type virus, passage of UnaG through progeny was significantly enhanced by C3P3. These data suggest that capping provides nontraditional functions to reovirus, such as promoting assembly and infectious-RNA incorporation.IMPORTANCE Our findings expand our understanding of how viruses utilize capping, suggesting that capping provides nontraditional functions to reovirus, such as promoting assembly and infectious-RNA incorporation, in addition to enhancing protein translation. Beyond providing mechanistic insight into reovirus replication, our findings also show that reovirus reverse genetics rescue is enhanced 100-fold by the NP868R capping enzyme. Since reovirus shows promise as a cancer therapy, efficient reovirus reverse genetics rescue will accelerate production of recombinant reoviruses as candidates to enhance therapeutic potency. NP868R-assisted reovirus rescue will also expedite production of recombinant reovirus for mechanistic insights into reovirus protein function and structure.
Collapse
|
5
|
De Lorenzo G, Drikic M, Papa G, Eichwald C, Burrone OR, Arnoldi F. An Inhibitory Motif on the 5'UTR of Several Rotavirus Genome Segments Affects Protein Expression and Reverse Genetics Strategies. PLoS One 2016; 11:e0166719. [PMID: 27846320 PMCID: PMC5112996 DOI: 10.1371/journal.pone.0166719] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 11/02/2016] [Indexed: 12/18/2022] Open
Abstract
Rotavirus genome consists of eleven segments of dsRNA, each encoding one single protein. Viral mRNAs contain an open reading frame (ORF) flanked by relatively short untranslated regions (UTRs), whose role in the viral cycle remains elusive. Here we investigated the role of 5'UTRs in T7 polymerase-driven cDNAs expression in uninfected cells. The 5'UTRs of eight genome segments (gs3, gs5-6, gs7-11) of the simian SA11 strain showed a strong inhibitory effect on the expression of viral proteins. Decreased protein expression was due to both compromised transcription and translation and was independent of the ORF and the 3'UTR sequences. Analysis of several mutants of the 21-nucleotide long 5'UTR of gs 11 defined an inhibitory motif (IM) represented by its primary sequence rather than its secondary structure. IM was mapped to the 5' terminal 6-nucleotide long pyrimidine-rich tract 5'-GGY(U/A)UY-3'. The 5' terminal position within the mRNA was shown to be essentially required, as inhibitory activity was lost when IM was moved to an internal position. We identified two mutations (insertion of a G upstream the 5'UTR and the U to A mutation of the fifth nucleotide of IM) that render IM non-functional and increase the transcription and translation rate to levels that could considerably improve the efficiency of virus helper-free reverse genetics strategies.
Collapse
Affiliation(s)
- Giuditta De Lorenzo
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Marija Drikic
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Guido Papa
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | | | - Oscar R. Burrone
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
- * E-mail: (FA); (OB)
| | - Francesca Arnoldi
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
- * E-mail: (FA); (OB)
| |
Collapse
|
6
|
Predicted structure and domain organization of rotavirus capping enzyme and innate immune antagonist VP3. J Virol 2014; 88:9072-85. [PMID: 24899176 DOI: 10.1128/jvi.00923-14] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
UNLABELLED Rotaviruses and orbiviruses are nonturreted Reoviridae members. The rotavirus VP3 protein is a multifunctional capping enzyme and antagonist of the interferon-induced cellular oligoadenylate synthetase-RNase L pathway. Despite mediating important processes, VP3 is the sole protein component of the rotavirus virion whose structure remains unknown. In the current study, we used sequence alignment and homology modeling to identify features common to nonturreted Reoviridae capping enzymes and to predict the domain organization, structure, and active sites of rotavirus VP3. Our results suggest that orbivirus and rotavirus capping enzymes share a domain arrangement similar to that of the bluetongue virus capping enzyme. Sequence alignments revealed conserved motifs and suggested that rotavirus and orbivirus capping enzymes contain a variable N-terminal domain, a central guanine-N7-methyltransferase domain that contains an additional inserted domain, and a C-terminal guanylyltransferase and RNA 5'-triphosphatase domain. Sequence conservation and homology modeling suggested that the insertion in the guanine-N7-methyltransferase domain is a ribose-2'-O-methyltransferase domain for most rotavirus species. Our analyses permitted putative identification of rotavirus VP3 active-site residues, including those that form the ribose-2'-O-methyltransferase catalytic tetrad, interact with S-adenosyl-l-methionine, and contribute to autoguanylation. Previous reports have indicated that group A rotavirus VP3 contains a C-terminal 2H-phosphodiesterase domain that can cleave 2'-5' oligoadenylates, thereby preventing RNase L activation. Our results suggest that a C-terminal phosphodiesterase domain is present in the capping enzymes from two additional rotavirus species. Together, these findings provide insight into a poorly understood area of rotavirus biology and are a springboard for future biochemical and structural studies of VP3. IMPORTANCE Rotaviruses are an important cause of severe diarrheal disease. The rotavirus VP3 protein caps viral mRNAs and helps combat cellular innate antiviral defenses, but little is known about its structure or enzymatic mechanisms. In this study, we used sequence- and structure-based alignments with related proteins to predict the structure of VP3 and identify enzymatic domains and active sites therein. This work provides insight into the mechanisms of rotavirus transcription and evasion of host innate immune defenses. An improved understanding of these processes may aid our ability to develop rotavirus vaccines and therapeutics.
Collapse
|
7
|
Crystallographic Analysis of Rotavirus NSP2-RNA Complex Reveals Specific Recognition of 5' GG Sequence for RTPase Activity. J Virol 2012; 86:10547-57. [PMID: 22811529 PMCID: PMC3457270 DOI: 10.1128/jvi.01201-12] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Rotavirus nonstructural protein NSP2, a functional octamer, is critical for the formation of viroplasms, which are exclusive sites for replication and packaging of the segmented double-stranded RNA (dsRNA) rotavirus genome. As a component of replication intermediates, NSP2 is also implicated in various replication-related activities. In addition to sequence-independent single-stranded RNA-binding and helix-destabilizing activities, NSP2 exhibits monomer-associated nucleoside and 5' RNA triphosphatase (NTPase/RTPase) activities that are mediated by a conserved H225 residue within a narrow enzymatic cleft. Lack of a 5' γ-phosphate is a common feature of the negative-strand RNA [(-)RNA] of the packaged dsRNA segments in rotavirus. Strikingly, all (-)RNAs (of group A rotaviruses) have a 5' GG dinucleotide sequence. As the only rotavirus protein with 5' RTPase activity, NSP2 is implicated in the removal of the γ-phosphate from the rotavirus (-)RNA. To understand how NSP2, despite its sequence-independent RNA-binding property, recognizes (-)RNA to hydrolyze the γ-phosphate within the catalytic cleft, we determined a crystal structure of NSP2 in complex with the 5' consensus sequence of minus-strand rotavirus RNA. Our studies show that the 5' GG of the bound oligoribonucleotide interacts extensively with highly conserved residues in the NSP2 enzymatic cleft. Although these residues provide GG-specific interactions, surface plasmon resonance studies suggest that the C-terminal helix and other basic residues outside the enzymatic cleft account for sequence-independent RNA binding of NSP2. A novel observation from our studies, which may have implications in viroplasm formation, is that the C-terminal helix of NSP2 exhibits two distinct conformations and engages in domain-swapping interactions, which result in the formation of NSP2 octamer chains.
Collapse
|
8
|
Hu L, Crawford SE, Hyser JM, Estes MK, Prasad BVV. Rotavirus non-structural proteins: structure and function. Curr Opin Virol 2012; 2:380-8. [PMID: 22789743 DOI: 10.1016/j.coviro.2012.06.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 06/13/2012] [Accepted: 06/13/2012] [Indexed: 10/28/2022]
Abstract
The replication of rotavirus is a complex process that is orchestrated by an exquisite interplay between the rotavirus non-structural and structural proteins. Subsequent to particle entry and genome transcription, the non-structural proteins coordinate and regulate viral mRNA translation and the formation of electron-dense viroplasms that serve as exclusive compartments for genome replication, genome encapsidation and capsid assembly. In addition, non-structural proteins are involved in antagonizing the antiviral host response and in subverting important cellular processes to enable successful virus replication. Although far from complete, new structural studies, together with functional studies, provide substantial insight into how the non-structural proteins coordinate rotavirus replication. This brief review highlights our current knowledge of the structure-function relationships of the rotavirus non-structural proteins, as well as fascinating questions that remain to be understood.
Collapse
Affiliation(s)
- Liya Hu
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, United States
| | | | | | | | | |
Collapse
|
9
|
Arnold MM, Patton JT. Rotavirus antagonism of the innate immune response. Viruses 2009; 1:1035-56. [PMID: 21994581 PMCID: PMC3185539 DOI: 10.3390/v1031035] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Revised: 11/05/2009] [Accepted: 11/20/2009] [Indexed: 12/17/2022] Open
Abstract
Rotavirus is a primary cause of severe dehydrating gastroenteritis in infants and young children. The virus is sensitive to the antiviral effects triggered by the interferon (IFN)-signaling pathway, an important component of the host cell innate immune response. To counteract these effects, rotavirus encodes a nonstructural protein (NSP1) that induces the degradation of proteins involved in regulating IFN expression, such as members of the IFN regulatory factor (IRF) family. In some instances, NSP1 also subverts IFN expression by causing the degradation of a component of the E3 ubiquitin ligase complex responsible for activating NF-κB. By antagonizing multiple components of the IFN-induction pathway, NSP1 aids viral spread and contributes to rotavirus pathogenesis.
Collapse
Affiliation(s)
- Michelle M Arnold
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 50 South Drive MSC 8026, Room 6314, Bethesda, MD 20892-8026, USA; E-Mail:
| | | |
Collapse
|
10
|
Abstract
Simple genome profile studies on polyacrylamide gels allow all non-group A rotaviruses isolated so far to be recognized by the absence of the tight triplet (7-9) of RNA segments seen in all group A viruses. However, reliance solely on genome profile studies for rotavirus grouping can be misleading and, for virus group definition, additional corroborating nucleic acid and serological studies are essential. Terminal fingerprint analysis was the first generation of nucleic acid-based assays that allowed discrimination between the various rotavirus groups. By means of this technique the clear definition of five rotavirus groups (A-E), correlating exactly with those found by a serological assay, has been possible, with preliminary evidence for at least two additional groups. The technical sophistication of fingerprinting techniques prevents their widespread use in epidemiological studies; the development of a second generation of nucleic acid-based assays is therefore under way. These employ molecularly cloned cDNA probes to the genomes of non-group A viruses which can be widely distributed for use in 'dot-blot' screening of faecal samples and, if expressed as protein in Escherichia coli, should provide a ready source of viral antigen for use in surveying viral prevalence through the screening of serum antibody levels.
Collapse
|
11
|
Kumar M, Jayaram H, Vasquez-Del Carpio R, Jiang X, Taraporewala ZF, Jacobson RH, Patton JT, Prasad BVV. Crystallographic and biochemical analysis of rotavirus NSP2 with nucleotides reveals a nucleoside diphosphate kinase-like activity. J Virol 2007; 81:12272-84. [PMID: 17804496 PMCID: PMC2168982 DOI: 10.1128/jvi.00984-07] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rotavirus, the major pathogen of infantile gastroenteritis, carries a nonstructural protein, NSP2, essential for viroplasm formation and genome replication/packaging. In addition to RNA-binding and helix-destabilizing properties, NSP2 exhibits nucleoside triphosphatase activity. A conserved histidine (H225) functions as the catalytic residue for this enzymatic activity, and mutation of this residue abrogates genomic double-stranded RNA synthesis without affecting viroplasm formation. To understand the structural basis of the phosphatase activity of NSP2, we performed crystallographic analyses of native NSP2 and a functionally defective H225A mutant in the presence of nucleotides. These studies showed that nucleotides bind inside a cleft between the two domains of NSP2 in a region that exhibits structural similarity to ubiquitous cellular HIT (histidine triad) proteins. Only minor conformational alterations were observed in the cleft upon nucleotide binding and hydrolysis. This hydrolysis involved the formation of a stable phosphohistidine intermediate. These observations, reminiscent of cellular nucleoside diphosphate (NDP) kinases, prompted us to investigate whether NSP2 exhibits phosphoryl-transfer activity. Bioluminometric assay showed that NSP2 exhibits an NDP kinase-like activity that transfers the bound phosphate to NDPs. However, NSP2 is distinct from the highly conserved cellular NDP kinases in both its structure and catalytic mechanism, thus making NSP2 a potential target for antiviral drug design. With structural similarities to HIT proteins, which are not known to exhibit NDP kinase activity, NSP2 represents a unique example among structure-activity relationships. The newly observed phosphoryl-transfer activity of NSP2 may be utilized for homeostasis of nucleotide pools in viroplasms during genome replication.
Collapse
Affiliation(s)
- Mukesh Kumar
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Patton JT, Silvestri LS, Tortorici MA, Vasquez-Del Carpio R, Taraporewala ZF. Rotavirus genome replication and morphogenesis: role of the viroplasm. Curr Top Microbiol Immunol 2006; 309:169-87. [PMID: 16909900 DOI: 10.1007/3-540-30773-7_6] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The rotaviruses, members of the family Reoviridae, are icosahedral triple-layered viruses with genomes consisting of 11 segments of double-stranded (ds)RNA. A characteristic feature of rotavirus-infected cells is the formation of large cytoplasmic inclusion bodies, termed viroplasms. These dynamic and highly organized structures serve as viral factories that direct the packaging and replication of the viral genome into early capsid assembly intermediates. Migration of the intermediates to the endoplasmic reticulum (ER) initiates a budding process that culminates in final capsid assembly. Recent information on the development and organization of viroplasms, the structure and function of its components, and interactive pathways linking RNA synthesis and capsid assembly provide new insight into how these microenvironments serve to interface the replication and morphogenetic processes of the virus.
Collapse
Affiliation(s)
- J T Patton
- Laboratory of Infectious Diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, 50 South Drive, MSC 8026, Room 6314, Bethesda, MD 20892-8026, USA.
| | | | | | | | | |
Collapse
|
13
|
Vasquez-Del Carpio R, Gonzalez-Nilo FD, Riadi G, Taraporewala ZF, Patton JT. Histidine triad-like motif of the rotavirus NSP2 octamer mediates both RTPase and NTPase activities. J Mol Biol 2006; 362:539-54. [PMID: 16934294 PMCID: PMC1924841 DOI: 10.1016/j.jmb.2006.07.050] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2006] [Revised: 07/13/2006] [Accepted: 07/20/2006] [Indexed: 01/21/2023]
Abstract
Rotavirus NSP2 is an abundant non-structural RNA-binding protein essential for forming the viral factories that support replication of the double-stranded RNA genome. NSP2 exists as stable doughnut-shaped octamers within the infected cell, representing the tail-to-tail interaction of two tetramers. Extending diagonally across the surface of each octamer are four highly basic grooves that function as binding sites for single-stranded RNA. Between the N and C-terminal domains of each monomer is a deep electropositive cleft containing a catalytic site that hydrolyzes the γ-β phosphoanhydride bond of any NTP. The catalytic site has similarity to those of the histidine triad (HIT) family of nucleotide-binding proteins. Due to the close proximity of the grooves and clefts, we investigated the possibility that the RNA-binding activity of the groove promoted the insertion of the 5′-triphosphate moiety of the RNA into the cleft, and the subsequent hydrolysis of its γ-β phosphoanhydride bond. Our results show that NSP2 hydrolyzes the γP from RNAs and NTPs through Mg2+-dependent activities that proceed with similar reaction velocities, that require the catalytic His225 residue, and that produce a phosphorylated intermediate. Competition assays indicate that although both substrates enter the active site, RNA is the preferred substrate due to its higher affinity for the octamer. The RNA triphosphatase (RTPase) activity of NSP2 may account for the absence of the 5′-terminal γP on the (−) strands of the double-stranded RNA genome segments. This is the first report of a HIT-like protein with a multifunctional catalytic site, capable of accommodating both NTPs and RNAs during γP hydrolysis.
Collapse
|
14
|
Komoto S, Sasaki J, Taniguchi K. Reverse genetics system for introduction of site-specific mutations into the double-stranded RNA genome of infectious rotavirus. Proc Natl Acad Sci U S A 2006; 103:4646-51. [PMID: 16537420 PMCID: PMC1450225 DOI: 10.1073/pnas.0509385103] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We describe here the successful establishment of a reverse genetics system for rotavirus (RV), a member of the Reoviridae family whose genome consists of 10-12 segmented dsRNA. The system is based on the recombinant vaccinia virus T7 RNA polymerase-driven procedure for supplying artificial viral mRNA in the cytoplasm. With the aid of helper virus (human RV strain KU) infection, intracellularly transcribed full-length VP4 mRNA of simian RV strain SA11 resulted in the rescue of the KU-based transfectant virus carrying the SA11 VP4 RNA segment derived from cDNA. In addition to the rescued transfectant virus with the authentic SA11 VP4 gene, three more infectious RV transfectants, into which silent mutation(s) were introduced to destroy both or one of the two restriction enzyme sites as gene markers in the SA11 VP4 genome, were also rescued with this method. The ability to artificially manipulate the RV genome will greatly increase the understanding of the replication and the pathogenicity of RV and will provide a tool for the design of attenuated vaccine vectors.
Collapse
Affiliation(s)
- Satoshi Komoto
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Jun Sasaki
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Koki Taniguchi
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
15
|
Abstract
RNA-binding proteins play a major part in the control of gene expression during early development. At this stage, the majority of regulation occurs at the levels of translation and RNA localization. These processes are, in general, mediated by RNA-binding proteins interacting with specific sequence motifs in the 3'-untranslated regions of their target RNAs. Although initial work concentrated on the analysis of these sequences and their trans-acting factors, we are now beginning to gain an understanding of the mechanisms by which some of these proteins function. In this review, we will describe a number of different families of RNA-binding proteins, grouping them together on the basis of common regulatory strategies, and emphasizing the recurrent themes that occur, both across different species and as a response to different biological problems.
Collapse
|
16
|
Cook JP, McCrae MA. Sequence analysis of the guanylyltransferase (VP3) of group A rotaviruses. J Gen Virol 2004; 85:929-932. [PMID: 15039535 DOI: 10.1099/vir.0.19629-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The RNA segment encoding the guanylyltransferase (VP3) from 12 group A rotavirus isolates has been sequenced following RT-PCR and molecular cloning of the full-length amplicons produced. Alignment of the derived amino acid sequences including those of the four VP3 sequences available from GenBank revealed two levels of sequence divergence. Virus isolates from humans showed greater than 94% sequence identity, whereas those isolated from different mammalian species showed as low as 79% sequence identity. The exceptions were avian virus isolates, which diverged approximately 45% from those of mammalian origin, and the human virus isolates DS1 and 69M, which showed much closer (over 90%) identity to viruses of bovine origin, suggesting that these human isolates may have undergone recent reassortment events with a bovine virus. Analysis of the sequences for a putative enzymic active site has revealed that the KXTAMDXEXP and KXXGNNH motifs around amino acids 385 and 545, respectively, are conserved across both group A and C rotaviruses.
Collapse
Affiliation(s)
- Jonathan P Cook
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Malcolm A McCrae
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
17
|
Mitzel DN, Weisend CM, White MW, Hardy ME. Translational regulation of rotavirus gene expression. J Gen Virol 2003; 84:383-391. [PMID: 12560571 DOI: 10.1099/vir.0.18558-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Rotavirus mRNAs are transcribed from 11 genomic dsRNA segments within a subviral particle. The mRNAs are extruded into the cytoplasm where they serve as mRNA for protein synthesis and as templates for packaging and replication into dsRNA. The molecular steps in the replication pathway that regulate the levels of viral gene expression are not well defined. We have investigated potential mechanisms of regulation of rotavirus gene expression by functional evaluation of two differentially expressed viral mRNAs. NSP1 (gene 5) and VP6 (gene 6) are expressed early in infection, and VP6 is expressed in excess over NSP1. We formulated the hypothesis that the amounts of NSP1 and VP6 were regulated by the translational efficiencies of the respective mRNAs. We measured the levels of gene 5 and gene 6 mRNA and showed that they were not significantly different, and protein analysis indicated no difference in stability of NSP1 compared with VP6. Polyribosome analysis showed that the majority of gene 6 mRNA was present on large polysomes. In contrast, sedimentation of more than half of the gene 5 mRNA was subpolysomal. The change in distribution of gene 5 mRNA in polyribosome gradients in response to treatment with low concentrations of cycloheximide suggested that gene 5 is a poor translation initiation template compared with gene 6 mRNA. These data define a regulatory mechanism for the difference in amounts of VP6 and NSP1 and provide evidence for post-transcriptional control of rotavirus gene expression mediated by the translational efficiency of individual viral mRNAs.
Collapse
Affiliation(s)
- Dana N Mitzel
- Veterinary Molecular Biology, PO Box 173610, Montana State University, Bozeman, MT 59717-3610, USA
| | - Carla M Weisend
- Veterinary Molecular Biology, PO Box 173610, Montana State University, Bozeman, MT 59717-3610, USA
| | - Michael W White
- Veterinary Molecular Biology, PO Box 173610, Montana State University, Bozeman, MT 59717-3610, USA
| | - Michele E Hardy
- Veterinary Molecular Biology, PO Box 173610, Montana State University, Bozeman, MT 59717-3610, USA
| |
Collapse
|
18
|
Barro M, Mandiola P, Chen D, Patton JT, Spencer E. Identification of sequences in rotavirus mRNAs important for minus strand synthesis using antisense oligonucleotides. Virology 2001; 288:71-80. [PMID: 11543659 DOI: 10.1006/viro.2001.1054] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The core of the rotavirion consists of three proteins, including the viral RNA polymerase, and 11 segments of double-stranded (ds)RNA. The RNA polymerase of disrupted (open) cores is able to catalyze the synthesis of dsRNA from exogenous viral mRNAs in vitro. In this study, we have identified sequences in exogenous viral mRNAs important for RNA replication using antisense oligonucleotides. The results showed that oligonucleotides complementary to the highly conserved 3'-terminal sequence of rotavirus mRNAs prevented all but basal levels of dsRNA synthesis. Notably, we observed that the addition of oligonucleotides which were complementary to nonconserved sequences present either at the 5'- or 3'-end of a viral mRNA effectively inhibited its replication without interfering with the replication of other viral mRNAs present in the same replication assay. Thus, the nonconserved sequences in rotavirus mRNAs contain gene-specific information that promotes RNA replication. The fact that antisense oligonucleotides inhibited dsRNA synthesis indicates that the strandedness (single- versus double-stranded) and secondary structure of the viral mRNA template are factors that affect the efficiency of minus strand synthesis.
Collapse
Affiliation(s)
- M Barro
- Laboratorio de Virología, Departamento de Ciencias Biológicas, Universidad de Santiago de Chile, Santiago, Chile
| | | | | | | | | |
Collapse
|
19
|
Patton JT, Taraporewala Z, Chen D, Chizhikov V, Jones M, Elhelu A, Collins M, Kearney K, Wagner M, Hoshino Y, Gouvea V. Effect of intragenic rearrangement and changes in the 3' consensus sequence on NSP1 expression and rotavirus replication. J Virol 2001; 75:2076-86. [PMID: 11160712 PMCID: PMC114792 DOI: 10.1128/jvi.75.5.2076-2086.2001] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The nonpolyadenylated mRNAs of rotavirus are templates for the synthesis of protein and the segmented double-stranded RNA (dsRNA) genome. During serial passage of simian SA11 rotaviruses in cell culture, two variants emerged with gene 5 dsRNAs containing large (1.1 and 0.5 kb) sequence duplications within the open reading frame (ORF) for NSP1. Due to the sequence rearrangements, both variants encoded only C-truncated forms of NSP1. Comparison of these and other variants encoding defective NSP1 with their corresponding wild-type viruses indicated that the inability to encode authentic NSP1 results in a small-plaque phenotype. Thus, although nonessential, NSP1 probably plays an active role in rotavirus replication in cell culture. In determining the sequences of the gene 5 dsRNAs of the SA11 variants and wild-type viruses, it was unexpectedly found that their 3' termini ended with 5'-UGAACC-3' instead of the 3' consensus sequence 5'-UGACC-3', which is present on the mRNAs of nearly all other group A rotaviruses. Cell-free assays indicated that the A insertion into the 3' consensus sequence interfered with its ability to promote dsRNA synthesis and to function as a translation enhancer. The results provide evidence that the 3' consensus sequence of the gene 5 dsRNAs of SA11 rotaviruses has undergone a mutation causing it to operate suboptimally in RNA replication and in the expression of NSP1 during the virus life cycle. Indeed, just as rotavirus variants which encode defective NSP1 appear to have a selective advantage over those encoding wild-type NSP1 in cell culture, it may be that the atypical 3' end of SA11 gene 5 has been selected for because it promotes the expression of lower levels of NSP1 than the 3' consensus sequence.
Collapse
Affiliation(s)
- J T Patton
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Lawton JA, Estes MK, Prasad BV. Identification and characterization of a transcription pause site in rotavirus. J Virol 2001; 75:1632-42. [PMID: 11160661 PMCID: PMC114072 DOI: 10.1128/jvi.75.4.1632-1642.2001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In rotavirus, transcription of the 11 double-stranded RNA genome segments occurs within the structurally intact subviral particle, and nascent transcripts are released through channels penetrating the two capsid layers at the icosahedral vertices. To gain insight into the early molecular events in transcription, we used high-resolution polyacrylamide gel electrophoresis to investigate the length distribution of transcription products at various times following initiation. We observed that, in the subviral particle under normal conditions, transcript initiation and capping are followed by a momentary pause in elongation after the addition of 6 to 7 nucleotides. In the absence of the capping reaction cofactor S-adenosylmethionine, conditions under which the rate of nucleotide incorporation is reduced, we observe a significant decrease in the ratio of paused to full-length transcripts. We propose that this pause site may represent the point at which specific molecular events take place to facilitate processive elongation. Furthermore, our results indicate that the presence of specific ligands on the viral surface, such as VP7 in the mature virion, inhibits polymerase function. From the perspective of the viral replication cycle, this inhibition may serve to ensure that transcription occurs with greatest efficiency only after the virus has entered the cytoplasm and assumed the form of a double-layered particle.
Collapse
Affiliation(s)
- J A Lawton
- Verna and Maars McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | |
Collapse
|
21
|
Abstract
Genome transcription is a critical stage in the life cycle of a virus, as this is the process by which the viral genetic information is presented to the host cell protein synthesis machinery for the production of the viral proteins needed for genome replication and progeny virion assembly. Viruses with dsRNA genomes face a particular challenge in that host cells do not produce proteins which can transcribe from a dsRNA template. Therefore, dsRNA viruses contain all of the necessary enzymatic machinery to synthesize complete mRNA transcripts within the core without the need for disassembly. Indeed one of the more striking observations about genome transcription in dsRNA viruses is that this process occurs efficiently only when the transcriptionally competent particle is fully intact. This observation suggests that all of the components of the TCP, including the viral genome, the transcription enzymes, and the viral capsid, function together to produce and release mRNA transcripts and that each component has a specific and critical role to play in promoting the efficiency of this process. This review has examined the process of genome transcription in dsRNA viruses from the perspective of rotavirus as a model system. However, despite numerous architectural and organizational differences among the families of dsRNA viruses, numerous studies suggest that the basic mechanism of mRNA production may be similar in most, if not all, viruses having dsRNA genomes. Important functional similarities include (1) the presence of a capsid-bound RNA-dependent RNA polymerase, which produces single-stranded mRNA transcripts from the dsRNA genome and regenerates the dsRNA genome from single-stranded RNA templates; (2) in viruses infecting eukaryotic hosts, the presence of all the enzymatic activities needed to generate the 5' cap required by the eukaryotic translation machinery; (3) the high degree of structural order present in the packaged genome, suggesting the requirement for organization in the viral core; (4) the role of the innermost capsid protein as a scaffold on which the core components of the transcription apparatus are assembled; and (5) the release of nascent mRNA transcripts through channels at the icosahedral vertices. The process of genome transcription in dsRNA viruses will become better understood as structural studies progress to higher resolution and as more viruses become amenable to study using site-directed mutagenesis coupled with viral reconstitution to generate recombinant particles having precise functional and structural changes. Future studies will dissect important intermolecular interactions required for efficient mRNA synthesis and will shed further light on the reasons for which the viral core must be structurally intact in order for transcription to occur efficiently. Structural studies of the capping enzymes at atomic resolution will reveal how multiple enzyme activities reside within a single polypeptide and how they act in concert to synthesize the 5' cap on the end of each mature transcript. Perhaps most interestingly, high resolution structural studies of actively transcribing virions will provide insight into the conformational changes that occur within the core during mRNA synthesis. Together, these studies will clarify the function of this complex macromolecular machine and will also shed additional light on the basic principles of virus architecture and assembly, as well as provide avenues for the design of antiviral therapies.
Collapse
Affiliation(s)
- J A Lawton
- Verna and Maars McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | |
Collapse
|
22
|
Chen D, Luongo CL, Nibert ML, Patton JT. Rotavirus open cores catalyze 5'-capping and methylation of exogenous RNA: evidence that VP3 is a methyltransferase. Virology 1999; 265:120-30. [PMID: 10603323 DOI: 10.1006/viro.1999.0029] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Rotavirus open cores prepared from purified virions consist of three proteins: the RNA-dependent RNA polymerase, VP1; the core shell protein, VP2; and the guanylyltransferase, VP3. In addition to RNA polymerase activity, open cores have been shown to contain a nonspecific guanylyltransferase activity that caps viral and nonviral RNAs in vitro. In this study, we examined the structure of RNA caps made by open cores and have analyzed open cores for other capping-related enzymatic activities. Utilizing RNase digestion and thin-layer chromatography, we found that the majority ( approximately 70%) of caps made by open cores contain the tetraphosphate linkage, GppppG, rather than the triphosphate linkage, GpppG, found on mRNAs made by rotavirus double-layered particles. Enzymatic analysis indicated that the GppppG caps resulted from the lack of a functional RNA 5'-triphosphatase in open cores, to remove the gamma-phosphate from the RNA prior to capping. RNA 5'-triphosphatases commonly exhibit an associated nucleoside triphosphatase activity, and this too was not detected in open cores. Caps of some RNAs contained an extra GMP moiety (underlined) and had the structure 3'-GpGp(p)ppGpGpC-RNA-3'. The origin of the extra GMP is not known but may reflect the cap serving as a primer for RNA synthesis. Methylated caps were produced in the presence of the substrate, S-adenosyl-l-methionine (SAM), indicating that open cores contain methyltransferase activity. UV cross-linking showed that VP3 specifically binds SAM. Combined with the results of earlier studies, our results suggest that the viral guanylyltransferase and methyltransferase are both components of VP3 and, therefore, that VP3 is a multifunctional capping enzyme.
Collapse
Affiliation(s)
- D Chen
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 7 Center Drive, MSC 0720, Room 117, Bethesda, Maryland, 20892, USA
| | | | | | | |
Collapse
|
23
|
Patton JT, Chnaiderman J, Spencer E. Open reading frame in rotavirus mRNA specifically promotes synthesis of double-stranded RNA: template size also affects replication efficiency. Virology 1999; 264:167-80. [PMID: 10544142 DOI: 10.1006/viro.1999.9989] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The 11 rotavirus mRNAs are capped, but not polyadenylated, have a high AU content, and serve as templates for the synthesis of double-stranded (ds)RNA. Earlier studies using a cell-free replication system showed that the 5'- and 3'-untranslated regions (UTRs) of the mRNAs have cis-acting signals that promote minus-strand synthesis. To identify additional factors that affect RNA replication, chimeric RNAs were made that consisted of portions of the gene 8 mRNA of SA11 rotavirus and of the gene for green fluorescent protein (gfp) or for the N protein of respiratory syncytial virus. Analysis of the chimeras in the cell-free replication system under noncompetitive conditions showed that the open reading frame (ORF) of viral mRNAs contains information that specifically promotes minus-strand synthesis. Results were also obtained indicating that a high AU content may increase the replication efficiency of RNAs and that, in general, an inverse correlation exists between replication efficiency and the length of the RNA template. Replication assays performed under competitive conditions showed that nonviral RNAs can interfere significantly with the replication of viral mRNAs, mostly likely by sequestering nonspecific RNA-binding proteins that are of limited concentration in the replication system and that are essential for dsRNA synthesis. In summary, rotavirus dsRNA synthesis is affected by many factors including cis-acting replication signals located in the 5'-UTR, 3'-UTR, and ORF of the mRNA as well as the size and possibly the AU content of the mRNA.
Collapse
Affiliation(s)
- J T Patton
- National Institutes of Allergy and Infectious Diseases, National Institutes of Health, 7 Center Drive, MSC 0720, Room 117, Bethesda, Maryland 20892, USA.
| | | | | |
Collapse
|
24
|
Patton JT, Chen D. RNA-binding and capping activities of proteins in rotavirus open cores. J Virol 1999; 73:1382-91. [PMID: 9882343 PMCID: PMC103962 DOI: 10.1128/jvi.73.2.1382-1391.1999] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/1998] [Accepted: 11/05/1998] [Indexed: 11/20/2022] Open
Abstract
Guanylyltransferases are members of the nucleotidyltransferase family and function in mRNA capping by transferring GMP to the phosphate end of nascent RNAs. Although numerous guanylyltransferases have been identified, studies which define the nature of the interaction between the capping enzymes of any origin and their RNA substrates have been limited. Here, we have characterized the RNA-binding activity of VP3, a minor protein component of the core of rotavirions that has been proposed to function as the viral guanylyltransferase and to direct the capping of the 11 transcripts synthesized from the segmented double-stranded RNA (dsRNA) genome of these viruses. Gel shift analysis performed with disrupted (open) virion-derived cores and virus-specific RNA probes showed that VP3 has affinity for single-stranded RNA (ssRNA) but not for dsRNA. While the ssRNA-binding activity of VP3 was found to be sequence independent, the protein does exhibit preferential affinity for uncapped over capped RNA. Like the RNA-binding activity, RNA capping assays performed with open cores indicates that the guanylyltransferase activity of VP3 is nonspecific and is able to cap RNAs initiating with a G or an A residue. These data establish that all three rotavirus core proteins, VP1, the RNA polymerase; VP2, the core capsid protein; and VP3, the guanylyltransferase, have affinity for RNA but that only in the case of the RNA polymerase is the affinity sequence specific.
Collapse
Affiliation(s)
- J T Patton
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
25
|
Patton JT, Jones MT, Kalbach AN, He YW, Xiaobo J. Rotavirus RNA polymerase requires the core shell protein to synthesize the double-stranded RNA genome. J Virol 1997; 71:9618-26. [PMID: 9371626 PMCID: PMC230270 DOI: 10.1128/jvi.71.12.9618-9626.1997] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Rotavirus cores contain the double-stranded RNA (dsRNA) genome, RNA polymerase VP1, and guanylyltransferase VP3 and are enclosed within a lattice formed by the RNA-binding protein VP2. Analysis of baculovirus-expressed core-like particles (CLPs) has shown that VP1 and VP2 assemble into the simplest core-like structures with replicase activity and that VP1, but not VP3, is essential for replicase activity. To further define the role of VP1 and VP2 in the synthesis of dsRNA from viral mRNA, recombinant baculoviruses containing gene 1 (rBVg1) and gene 2 (rBVg2) of SA11 rotavirus were generated and used to express recombinant VP1 (rVP1) and rVP2, respectively. After purification, the proteins were assayed individually and together for the ability to catalyze the synthesis of dsRNA in a cell-free replication system. The results showed that dsRNA was synthesized only in assays containing rVP1 and rVP2, thus establishing that both proteins are essential for replicase activity. Even in assays containing a primer-linked mRNA template, neither rVP1 nor rVP2 alone directed RNA synthesis. Characterization of the cis-acting replication signals in mRNA recognized by the replicase of rVP1 and rVP2 showed that they were the same as those recognized by the replicase of virion-derived cores, thus excluding a role for VP3 in recognition of the mRNA template by the replicase. Analysis of RNA-protein interactions indicated that the mRNA template binds strongly to VP2 in replicase assays but that the majority of the dsRNA product neither is packaged nor stably associates with VP2. The results of replicase assays performed with mutant VP2 containing a deletion in its RNA-binding domain suggests that the essential role for VP2 in replication is linked to the protein's ability to bind the mRNA template for minus-strand synthesis.
Collapse
Affiliation(s)
- J T Patton
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
26
|
Wentz MJ, Patton JT, Ramig RF. The 3'-terminal consensus sequence of rotavirus mRNA is the minimal promoter of negative-strand RNA synthesis. J Virol 1996; 70:7833-41. [PMID: 8892905 PMCID: PMC190854 DOI: 10.1128/jvi.70.11.7833-7841.1996] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We used an in vitro template-dependent replicase assay (D. Chen, C. Zeng, M. Wentz, M. Gorziglia, M. Estes, and R. Ramig. J. Virol. 68:7030-7039, 1994) to identify the cis-acting signals required for replication of a genome segment 9 template from the group A rotavirus strain OSU. The replicase phenotypes for a panel of templates with internal deletions or 3'-terminal truncations indicated that no essential replication signals were present within the open reading frame and that key elements were present in the 5' and 3' noncoding regions. Chimeric constructs containing portions of viral sequence ligated to a nonviral backbone were generated to further map the regions required for in vitro replication of segment 9. The data from these constructs showed that the 3'-terminal seven nucleotides of the segment 9 mRNA provided the minimum requirement for replication (minimal promoter). Analysis of additional chimeric templates demonstrated that sequences capable of enhancing replication from the minimal promoter were located immediately upstream of the minimal promoter and at the extreme 5' terminus of the template. Mutational analysis of the minimal promoter revealed that the 3'-terminal -CC residues are required for efficient replication. Comparison of the replication levels for templates with guanosines and uridines at nucleotides -4 to -6 from the 3' terminus compared with levels for templates containing neither of these residues at these positions indicated that either or both residues must be present in this region for efficient replication in vitro.
Collapse
Affiliation(s)
- M J Wentz
- Division of Molecular Virology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | |
Collapse
|
27
|
Patton JT. Rotavirus VP1 alone specifically binds to the 3' end of viral mRNA, but the interaction is not sufficient to initiate minus-strand synthesis. J Virol 1996; 70:7940-7. [PMID: 8892917 PMCID: PMC190866 DOI: 10.1128/jvi.70.11.7940-7947.1996] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Recent studies have shown that disrupted (open) rotavirus cores have an associated replicase activity which supports the synthesis of dsRNA from viral mRNA in a cell-free system (D. Chen, C. Q.-Y. Zeng, M. J. Wentz, M. Gorziglia, M. K. Estes, and R. F. Ramig, J. Virol. 68:7030-7039, 1994). To determine which of the core proteins, VP1, VP2, or VP3, recognizes the template mRNA during RNA replication, SA11 open cores were incubated with 32P-labeled RNA probes of viral and nonviral origin and the reaction mixtures were analyzed for the formation of RNA-protein complexes by gel mobility shift assay. In mixtures containing a probe representing the 3' end of SA11 gene 8 mRNA, two closely migrating RNA-protein complexes, designated s and f, were detected. The interaction between the RNA and protein of the s and f complexes was shown to be specific by competitive binding assay with tRNA and brome mosaic virus RNA. By electrophoretic analysis of RNA-protein complexes recovered from gels, VP1 was shown to be the only viral protein component of the complexes, thereby indicating that VP1 specifically recognizes the 3' end of gene 8 mRNA. Analysis of VP1 purified from open cores by glycerol gradient centrifugation verified that VP1 recognizes the 3' end of viral mRNA but also showed that in the absence of other viral proteins, VP1 lacks replicase activity. When reconstituted with VP2-rich portions of the gradient, VP1 stimulated levels of replicase activity severalfold. These data indicate that VP1 can bind to viral mRNA in the absence of any other viral proteins and suggest that VP2 must interact with the RNA-protein complex before VP1 gains replicase activity.
Collapse
Affiliation(s)
- J T Patton
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20892, USA
| |
Collapse
|
28
|
Patton JT, Wentz M, Xiaobo J, Ramig RF. cis-Acting signals that promote genome replication in rotavirus mRNA. J Virol 1996; 70:3961-71. [PMID: 8648733 PMCID: PMC190274 DOI: 10.1128/jvi.70.6.3961-3971.1996] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
A previous study has shown that rotavirus cores have an associated replicase activity which can direct the synthesis of double-stranded RNA from viral mRNA in a cell-free system (D. Y. Chen, C. Q.-Y. Zeng, M. J. Wentz, M. Gorziglia, M. K. Estes, and R. F. Ramig, J. Virol. 68:7030-7039, 1994). To define the cis-acting signals in rotavirus mRNA that are important for RNA replication, gene 8 transcripts which contained internal and terminal deletions and chimeric transcripts which linked gene 8-specific 3'-terminal sequences to the ends of nonviral sequences were generated. Analysis of these RNAs in the cell-free system led to the identification of a cis-acting signal in the gene 8 mRNA which is essential for RNA replication and two cis-acting signals which, while not essential for replication, serve to enhance the process. The sequence of the essential replication signal is located at the extreme 3' end of the gene 8 mRNA and, because of its highly conserved nature, is probably a common feature of all 11 viral mRNAs. By site-specific mutagenesis of the gene 8 mRNA, residues at positions -1, -2, -5, -6, and -7 of the 3' essential signal were found to be particularly important for promoting RNA replication. One of the cis-acting signals shown to enhance the replication in the cell-free system was located near the 5' end of the 3' untranslated region (UTR) of the gene 8 mRNA, while remarkably the other was located in the 5' UTR of the message. The existence of an enhancement signal in the 5' UTR raises the possibility that the 5' and 3' ends of the rotavirus mRNA may interact with each other and/or with the viral replicase during genome replication.
Collapse
Affiliation(s)
- J T Patton
- Department of Microbiology and Immunology, University of Miami School of Medicine, Florida 33101, USA
| | | | | | | |
Collapse
|
29
|
Wentz MJ, Zeng CQ, Patton JT, Estes MK, Ramig RF. Identification of the minimal replicase and the minimal promoter of (-)-strand synthesis, functional in rotavirus RNA replication in vitro. ARCHIVES OF VIROLOGY. SUPPLEMENTUM 1996; 12:59-67. [PMID: 9015102 DOI: 10.1007/978-3-7091-6553-9_7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
An in vitro replication system supporting the initiation and synthesis of complete rotavirus (-)-strands on (+)-strand template RNA (Chen et al., J Virol 68: 7030, 1994) was used to examine several parameters related to rotavirus RNA replication. Coexpression of VP1/2/3 in all possible combinations from baculovirus vectors revealed: [i] Virus-like particles (VLPs) were formed only if VP2 was present, and [ii] VP1/2 and VP1/2/3 VLPs had replicase activity in the in vitro system whereas VP2/3 and VP2 VLPs did not. Thus, the minimal replicase is composed of VP1 and VP2 and replicase activity is associated with VP1. In vitro replication reactions, using T7 transcripts of porcine rotavirus OSU genome segment 9 as reporter template, were performed to map cis-acting elements that regulate replication. Internal deletions and terminal truncations of the reporter RNA localized a replication signal, conferring full template activity, to the 5'-terminal 27 nucleotides (nt 1-27) and the 3'-terminal 26 nucleotides (nt 1037-1062). Further analysis showed that a minimal promoter of (-)-strand synthesis was contained in the 3'-terminal 7 nucleotides (nt 1056-1062); the sequence conserved at the 3'-terminus of all rotavirus genes. Hybrid constructs with this promoter had minimal, but detectable, template activity. This result indicated that upstream sequences between nucleotides 1037-1055 positively regulate the activity of the minimal promoter.
Collapse
Affiliation(s)
- M J Wentz
- Division of Molecular Virology, Baylor College of Medicine, Houston, USA
| | | | | | | | | |
Collapse
|
30
|
Affiliation(s)
- J T Patton
- Department of Microbiology and Immunology, University of Miami School of Medicine, FL 33101
| |
Collapse
|
31
|
Affiliation(s)
- L J Saif
- Department of Veterinary Preventive Medicine, Ohio State University, Wooster 44691
| | | |
Collapse
|
32
|
Affiliation(s)
- U Desselberger
- Clinical Microbiology and Public Health Laboratory, Addenbrooke's Hospital, Cambridge, United Kingdom
| | | |
Collapse
|
33
|
Eiden JJ, Vonderfecht S, Petric M. Terminal sequence conservation among the genomic segments of a group B rotavirus (IDIR strain). Virology 1992; 191:495-7. [PMID: 1329334 DOI: 10.1016/0042-6822(92)90218-e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Terminal nucleic acid sequences were determined for all 11 segments of the IDIR strain of group B rotavirus. Consensus sequences were defined at both ends of the (+) RNA strands as 5' GGN(A/U)NA(A/U)(A/U)(A/U)---and---(A/U)NA(A/G)N(A/C)(C/A)CC3 '. The 5' and 3' terminal sequences of the (+) strand IDIR RNA were not complementary to one another. The IDIR terminal sequences and those of group A rotaviruses (GAR) were similar in that each of the (+) strands began with "GG" and ended with "CC." Otherwise, the IDIR terminal sequences did not match the consensus sequences that have been reported for the ends of the GAR genomic segments.
Collapse
Affiliation(s)
- J J Eiden
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | | | | |
Collapse
|
34
|
Gorziglia MI, Collins PL. Intracellular amplification and expression of a synthetic analog of rotavirus genomic RNA bearing a foreign marker gene: mapping cis-acting nucleotides in the 3'-noncoding region. Proc Natl Acad Sci U S A 1992; 89:5784-8. [PMID: 1321421 PMCID: PMC402102 DOI: 10.1073/pnas.89.13.5784] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
cDNAs were constructed to encode plus- or minus-sense analogs of gene 9 RNA of porcine rotavirus strain OSU in which the bacterial chloramphenicol acetyltransferase (CAT) reporter gene was flanked by the 5'-terminal 44 nucleotides (nt) and 3'-terminal 35 nt of the authentic rotavirus gene. Transfection of plus-sense gene-9-CAT RNA into rotavirus-infected cells resulted in its amplification and in the efficient expression of CAT; this was greatly enhanced by the presence of a 5' cap structure. Amplification was ablated by omitting the rotavirus superinfection or by removing the 3'-terminal 35-nt rotavirus sequence from the RNA. This result indicated that amplification depended both on rotavirus proteins supplied in trans and on cis-acting rotavirus sequences. Minus-sense or double-stranded gene-9-CAT RNA was essentially inactive, indicating that synthetic RNAs can be introduced into the rotavirus replicative cycle in vivo only when provided in the plus sense. However, incorporation of the CAT-bearing RNA into infectious rotavirus was not detected. Two heterologous rotaviruses, the simian RRV and chicken Ch2 strains, efficiently complemented the OSU-based gene-9-CAT RNA, even though the Ch2 strain was only 50%-66% related in the noncoding regions. Mutational analysis of the 35-nt 3'-noncoding region showed that the 3'-terminal 12 or 17 nt were sufficient for reduced (12% or 23%, respectively) levels of amplification, whereas inclusion of the 3'-terminal 19 nt fully restored amplification. Thus, the 3'-terminal cis-acting signals required for amplification include the 7-nt-terminal consensus sequence together with 12 nt of adjoining, less-well-conserved sequence.
Collapse
Affiliation(s)
- M I Gorziglia
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | | |
Collapse
|
35
|
Tarlow O, McCrae MA. Nucleotide sequence of gene 1 of the UK tissue culture adapted strain of bovine rotavirus. Nucleic Acids Res 1990; 18:7150. [PMID: 2175888 PMCID: PMC332796 DOI: 10.1093/nar/18.23.7150] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- O Tarlow
- Department of Biological Science, University of Warwick, Coventry, UK
| | | |
Collapse
|
36
|
Patton JT. Evidence for equimolar synthesis of double-strand RNA and minus-strand RNA in rotavirus-infected cells. Virus Res 1990; 17:199-208. [PMID: 1963957 DOI: 10.1016/0168-1702(90)90065-j] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The genome of the rotaviruses consists of eleven segments of double-strand RNA (dsRNA). Each segment is replicated asymmetrically with viral plus-strand RNA, i.e. messenger (m)RNA, serving as the template for the synthesis of minus-strand RNA to produce dsRNA. To examine the relative frequency of replication of each of the eleven genome segments, MA104 cells were infected with low (3rd) and high (12th) passage stocks of simian rotavirus SA11. The total cytoplasmic RNA of the infected cell was radiolabeled either by maintaining the infected cells in the presence [3H]uridine prior to harvest or by 3'-endlabeling the purified RNA with [32P]pCp and T4 RNA ligase. The RNA was then analyzed for the presence of 3H- and 32P-labeled dsRNA by electrophoresis on 10% polyacrylamide gels. Total cytoplasmic RNA from infected cells was also 3'-end-labeled with [32P]pCp and T4 RNA ligase and examined for the presence of minus-strand RNA by electrophoresis on low pH agarose-urea gels. Bands representing dsRNAs and minus-strand RNAs on autoradiographs of the gels were analyzed for intensity by densitometry. The results showed that the eleven segments of viral dsRNA were present in equimolar concentrations in cells either infected with low or high passage stocks of virus. Like intracellular dsRNAs, full-length minus-strand RNAs were also present in equimolar concentration in cells either infected with low or high passage rotavirus. These data indicate that, despite the non-equimolar levels of viral RNAs in the cell, the eleven genome segments of rotavirus are replicated with equal frequencies in vivo.
Collapse
Affiliation(s)
- J T Patton
- Department of Microbiology and Immunology, University of Miami School of Medicine, Florida 33101
| |
Collapse
|
37
|
Bremont M, Chabanne-Vautherot D, Vannier P, McCrae MA, Cohen J. Sequence analysis of the gene (6) encoding the major capsid protein (VP6) of group C rotavirus: higher than expected homology to the corresponding protein from group A virus. Virology 1990; 178:579-83. [PMID: 2171196 DOI: 10.1016/0042-6822(90)90357-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Two overlapping c-DNA clones, which hybridized in Northern blots to RNA segment 6 of the prototype strain (Cowden) of group C rotavirus, were selected from a c-DNA library in pBR322 and sequenced. The gene 6 sequence obtained was 1349 nucleotides and contained a single long open reading frame encoding a protein of 394 amino acids (total MW, 44,479) which is in line with the size of the major capsid protein VP6. Comparison of the group C sequence with that of the corresponding group A rotavirus gene revealed homology levels of 55 and 42% for nucleotides and amino acids, respectively. These values were surprisingly high in view of previous immunological and nucleic acid hybridization data which failed to show any cross-reaction between group A and non-group A rotaviruses. The epidemiological implications of these observations are discussed.
Collapse
Affiliation(s)
- M Bremont
- Laboratoire de Virologie et d'Immunologie Moléculaires INRA, C.R.J. Domaine de Vilvert, Jouy-en-Josas, France
| | | | | | | | | |
Collapse
|
38
|
Chen D, Gombold JL, Ramig RF. Intracellular RNA synthesis directed by temperature-sensitive mutants of simian rotavirus SA11. Virology 1990; 178:143-51. [PMID: 2167546 DOI: 10.1016/0042-6822(90)90387-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The kinetics of intracellular synthesis of single-stranded (ss) RNA and double-stranded (ds) RNA directed by prototype temperature-sensitive (ts) mutants representing the 10 mutant groups of rotavirus SA11 were examined. Cells were infected with individual mutants or wild type under one-step growth conditions and maintained at permissive temperature (31 degrees) or nonpermissive temperature (39 degrees). At various times postinfection, infected cells were pulse-labeled, ssRNA and dsRNA were purified, RNA species were resolved by electrophoresis and autoradiography, and RNA synthesis was quantitated by computer-assisted densitometry. The mutants representing all groups synthesized significantly less ssRNA and dsRNA at both 31 degrees and 39 degrees, when compared to wild type. When the ratio of synthesis at 39 degrees/31 degrees was determined for ssRNA and dsRNA of each mutant, three RNA synthesis phenotypes were evident. The tsB(339), tsC(606), and tsE(1400) mutants synthesized both ssRNA and dsRNA in a temperature-dependent manner. The group G mutant, tsG(2130), synthesized ssRNA in temperature-independent fashion but was temperature-dependent for the synthesis of dsRNA. The remaining mutants, tsA(778), tsD(975), tsF(2124), tsH(2384), tsI(2403), and tsJ(2131), synthesized both ssRNA and dsRNA in a temperature-independent fashion. The RNA synthesis phenotypes of the ts mutants are discussed in terms of what is known of the function(s) of the protein species to which ts lesions have been assigned.
Collapse
Affiliation(s)
- D Chen
- Division of Molecular Virology, Baylor College of Medicine, Houston, Texas 77030
| | | | | |
Collapse
|
39
|
Tarlow O, McCrae MA. Nucleotide sequence of group antigen (VP6) of the UK tissue culture adapted strain of bovine rotavirus. Nucleic Acids Res 1990; 18:4921. [PMID: 2168543 PMCID: PMC331986 DOI: 10.1093/nar/18.16.4921] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- O Tarlow
- Department of Biological Sciences, University of Warwick, Coventry, UK
| | | |
Collapse
|
40
|
Tian Y, Tarlow O, McCrae MA. Nucleotide sequence of gene 2 of the UK tissue culture adapted strain of bovine rotavirus. Nucleic Acids Res 1990; 18:4015. [PMID: 2165258 PMCID: PMC331131 DOI: 10.1093/nar/18.13.4015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Y Tian
- Department of Biological Sciences, University of Warwick, Coventry, UK
| | | | | |
Collapse
|
41
|
Xu L, Harbour D, McCrae MA. The application of polymerase chain reaction to the detection of rotaviruses in faeces. J Virol Methods 1990; 27:29-37. [PMID: 2155248 DOI: 10.1016/0166-0934(90)90143-4] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
An assay protocol based on exploiting the polymerase chain reaction (PCR) for the detection of rotavirus in infected faeces is described. The assay is 100,000 times more sensitive than the standard electropherotype method that is widely used. It also gives a 5000-fold increase in sensitivity over the hybridisation based assay previously developed (Pedley and McCrae, 1984) and does not require the use of radioisotopes. The amplified product is a full length c-DNA copy of the gene encoding the major neutralisation antigen of the virus whose molecular cloning and sequence analysis will allow detailed information on the molecular basis of epidemiological variation to be rapidly collected.
Collapse
Affiliation(s)
- L Xu
- School of Veterinary Science, University of Bristol, Langford, U.K
| | | | | |
Collapse
|
42
|
Abstract
Knowledge of the structure and function of the genes and proteins of the rotaviruses has expanded rapidly. Information obtained in the last 5 years has revealed unexpected and unique molecular properties of rotavirus proteins of general interest to virologists, biochemists, and cell biologists. Rotaviruses share some features of replication with reoviruses, yet antigenic and molecular properties of the outer capsid proteins, VP4 (a protein whose cleavage is required for infectivity, possibly by mediating fusion with the cell membrane) and VP7 (a glycoprotein), show more similarities with those of other viruses such as the orthomyxoviruses, paramyxoviruses, and alphaviruses. Rotavirus morphogenesis is a unique process, during which immature subviral particles bud through the membrane of the endoplasmic reticulum (ER). During this process, transiently enveloped particles form, the outer capsid proteins are assembled onto particles, and mature particles accumulate in the lumen of the ER. Two ER-specific viral glycoproteins are involved in virus maturation, and these glycoproteins have been shown to be useful models for studying protein targeting and retention in the ER and for studying mechanisms of virus budding. New ideas and approaches to understanding how each gene functions to replicate and assemble the segmented viral genome have emerged from knowledge of the primary structure of rotavirus genes and their proteins and from knowledge of the properties of domains on individual proteins. Localization of type-specific and cross-reactive neutralizing epitopes on the outer capsid proteins is becoming increasingly useful in dissecting the protective immune response, including evaluation of vaccine trials, with the practical possibility of enhancing the production of new, more effective vaccines. Finally, future analyses with recently characterized immunologic and gene probes and new animal models can be expected to provide a basic understanding of what regulates the primary interactions of these viruses with the gastrointestinal tract and the subsequent responses of infected hosts.
Collapse
|
43
|
Fukuhara N, Nishikawa K, Gorziglia M, Kapikian AZ. Nucleotide sequence of gene segment 1 of a porcine rotavirus strain. Virology 1989; 173:743-9. [PMID: 2556853 DOI: 10.1016/0042-6822(89)90590-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The nucleotide sequence of gene segment 1, which encodes VP1 of porcine rotavirus strain Gottfried, was determined. VP1 is associated with single-shelled rotavirus particles and has been linked to virus transcriptase and replicase enzymatic activities. Gene segment 1 is 3302 nucleotides long with a single open reading frame capable of coding for a protein of 1088 amino acids (calculated mol wt 125 kDa). The predicted amino acid sequence revealed that VP1 is basic, with a net positive charge of 18 at pH 7.0. It shares five consensus sequences with several well-characterized RNA-dependent RNA polymerases. Gottfried VP1 also shares consensus sequences with certain GTP-binding proteins; however, we could not detect any GTP-binding activity in VP1. Our preliminary experiments suggest that VP3, another polypeptide located in single-shelled rotavirus particles, possesses GTP-binding activity. These results suggest that mRNA synthesis and capping enzyme activities are related to VP1 and VP3, respectively.
Collapse
Affiliation(s)
- N Fukuhara
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20892
| | | | | | | |
Collapse
|
44
|
Gallegos CO, Patton JT. Characterization of rotavirus replication intermediates: a model for the assembly of single-shelled particles. Virology 1989; 172:616-27. [PMID: 2552662 DOI: 10.1016/0042-6822(89)90204-3] [Citation(s) in RCA: 108] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The segmented double-stranded (ds)RNA genome of the rotaviruses is replicated asymmetrically with viral mRNA serving as the template for minus-strand RNA synthesis. To identify intermediate structures in rotavirus replication, subviral particles (SVPs) purified from the cytoplasm of simian rotavirus SA11-infected cells were assayed for RNA polymerase activity in a cell-free system that supports viral RNA replication. Intact SVPs containing newly made RNA were resolved by electrophoresis under nondenaturing conditions on 0.6% agarose gels (50 mM Tris-glycine, pH 8.8). This gel system was found to separate without disrupting SA11 single- and double-shelled virions and virion-derived core particles. SVPs from the cell-free system that contained newly made dsRNA migrated in the agarose gels at positions between virion-derived cores and intermediate of single- and double-shelled virions. SVPs containing newly made dsRNA were eluted from the gel and analyzed for protein content by electrophoresis on polyacrylamide gels. The results showed that three distinct types of replication intermediates (RIs) were present in SA11-infected cells. The smallest intermediate (precore RI, 45 nm, 220 S) contained the structural proteins VP1, VP3, and VP9 and the nonstructural proteins NS53, NS35, and NS34. A second intermediate (core RI, 60 nm, 310 S) contained the core proteins VP1, VP2, and VP3 and the proteins VP9, NS35 and NS34. The largest RI (single-shelled RI, 75 nm, 420 S) contained the inner shell proteins VP1, VP2, VP3, and VP6 and the proteins VP9, NS35 and NS34. Analysis of the formation and turnover of RIs in infected cells pulse-labeled with 35S-amino acids supports a hypothesis that rotavirus single-shelled particles are assembled in vivo by the sequential addition of VP2 and VP6 to precore RIs consisting of VP1, VP3, VP9, NS35, and NS34.
Collapse
Affiliation(s)
- C O Gallegos
- Department of Microbiology and Immunology, University of Miami School of Medicine, Florida 33101
| | | |
Collapse
|
45
|
Abstract
A genome rearrangement involving RNA segment 11 of a bovine rotavirus has been analysed by molecular cloning and sequencing. This revealed that the rearranged genome segment was generated by a head to tail concatemerisation of two almost full length copies of segment 11. The upstream copy of the gene has lost its 3' end and the downstream copy its 5' end. The truncation of the upstream copy of the gene occurs within the termination codon for VP11 converting it from a UAG to a UGA, the rearranged gene is therefore still able to encode a normal VP11. The possible mechanisms by which this rearrangement may have been generated are discussed.
Collapse
Affiliation(s)
- G E Scott
- Department of Biological Sciences, University of Warwick, Coventry, West Midlands, U.K
| | | | | |
Collapse
|
46
|
Abstract
To understand the role of viral proteins in the replication of rotavirus RNA, we have characterized the structure of subviral particles (SVPs) that synthesize double-stranded RNA (DS RNA). Pulse-labeling of newly made RNA in infected cells showed that rotavirus DS RNA was synthesized either in single-shell (SS)-like particles or in precursor particles that rapidly mature into SS particles. Experiments using a cell-free system demonstrated that most replicase particles containing newly made DS RNA were of greater density in CsCl than single-shelled (SS) particles. However, this was partly due to the presence of single-stranded RNAs as the treatment of replicase particles with micrococcal nuclease reduced their density to between core particles and SS particles. Electrophoretic analysis indicated that replicase particles, purified by centrifugation on CsCl and glycerol gradients, were similar to SS particles, containing the structural proteins VP1, VP2, and VP6. Rotavirus replicase particles were also found to contain the nonstructural proteins NS34 and NS35 and possible host components. The presence of VP6 in enzymatically active replicase particles suggests that, like transcription, this protein may be required for rotavirus RNA replication.
Collapse
Affiliation(s)
- J T Patton
- Department of Microbiology and Immunology, University of Miami School of Medicine, Florida 33101
| | | |
Collapse
|
47
|
Abstract
The genomes of the rotaviruses consist of 11 segments of double-stranded RNA. During RNA replication, the viral plus-strand RNA serves as the template for minus-strand RNA synthesis. To characterize the kinetics of RNA replication, the synthesis and steady-state levels of viral plus- and minus-strand RNA and double-stranded RNA in simian rotavirus SA11-infected MA104 cells were analyzed by electrophoresis on 1.75% agarose gels containing 6 M urea (pH 3.0). Synthesis of viral plus-strand and minus-strand RNAs was detected initially at 3 h postinfection. The steady-state levels of plus- and minus-strand RNAs increased from this time until 9 to 12 h postinfection, at which time the levels were maximal. Pulse-labeling of infected cells with [3H]uridine showed that the ratio of plus- to minus-strand RNA synthesis changed during infection and that the maximal level of minus-strand RNA synthesis occurred several hours prior to the peak of plus-strand RNA synthesis. No direct correlation was found between the levels of plus-strand and minus-strand RNA synthesis in the infected cell. Pulse-labelling studies indicated that both newly synthesized and preexisting plus-strand RNA can act as templates for minus-strand RNA synthesis throughout infection. Studies also showed that less than 1 h was required between the synthesis of minus-strand RNA in vivo and its release from the cell within virions.
Collapse
Affiliation(s)
- S Stacy-Phipps
- Department of Biology, University of South Florida, Tampa 33620
| | | |
Collapse
|
48
|
Abstract
A cell-free system was developed to study the replication of simian rotavirus SA11. The components of the system included (i) subviral particles prepared from infected cells to template the synthesis of viral RNA and (ii) an mRNA-dependent rabbit reticulocyte lysate to support protein synthesis. Based upon nuclease-sensitivity, approximately 20% of the RNA made in vitro was double-stranded (dsRNA) and 80% single-stranded (ssRNA). Electrophoretic analysis of the RNA products on polyacrylamide and low pH agarose gels showed that the system supported the synthesis of 11 dsRNAs and 11 positive-sense ssRNAs that corresponded in size to authentic viral RNAs. The synthesis of dsRNA in vitro was determined to be an asymmetrical process in which a nuclease-sensitive positive-strand RNA acted as a template for the synthesis of negative-strand RNA. The system also supported the initiation of negative-strand RNA using exogenous viral positive-strand RNA as a template. Finally, analysis of subviral particles recovered from reactions suggested that viral proteins made in vitro assembled into nucleoprotein complexes which were similar to those present in infected cells. Together, these results indicate that the cell-free system supported rotavirus RNA replication, transcription and the assembly of subviral particles.
Collapse
|
49
|
Helmberger-Jones M, Patton JT. Characterization of subviral particles in cells infected with simian rotavirus SA11. Virology 1986; 155:655-65. [PMID: 3024405 DOI: 10.1016/0042-6822(86)90225-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Subviral particles were isolated from lysates of simian rotavirus SA11-infected cells by sedimentation through sucrose gradients and separated by equilibrium centrifugation in CsCl gradients. A cell-free system that supports rotavirus RNA replication and transcription was used to identify particles in the CsCl gradients with associated polymerase activity. These data indicated that particles with densities of 1.34 and 1.38 g/cm3 were responsible for most of the transcriptase activity present in infected cells. Electrophoretic analysis showed that particles at 1.34 g/cm3 were analogous to double-shelled virus, consisting of the inner shell proteins VP1, VP2, and VP6, the outer shell proteins VP3 and VP7, and DS RNA. Particles of 1.38 g/cm3 were similar to single-shelled virus containing the inner shell proteins and DS RNA. The pellets of the CsCl gradients were enriched for subviral particles with replicase activity. Analysis of the pellets suggested that replicase particles contain a core of VP1 and VP2 that is similar to that found in single- and double-shelled virus but contain significantly less VP6 protein per particle than those with transcriptase activity. Two particles were detected in infected cells that contain no detectable polymerase activity; one consisted primarily of the structural proteins VP2, VP3, and VP6 and the other of the nonstructural protein NS35.
Collapse
|
50
|
Ward CW, Azad AA, Dyall-Smith ML. Structural homologies between RNA gene segments 10 and 11 from UK bovine, simian SA11, and human Wa rotaviruses. Virology 1985; 144:328-36. [PMID: 2998051 DOI: 10.1016/0042-6822(85)90275-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The nucleotide sequences of gene segments 10 and 11 from UK bovine rotavirus have been determined. Gene 10 is 751 nucleotides long and contains a single long open reading frame capable of coding for a protein of 175 amino acids. When compared with the published data for gene 10 of the simian rotavirus SA11 and human Wa strains it was found to be more closely related to the SA11 structure (92% nucleotide sequence homology; 97% amino acid sequence homology) than to the human Wa structure (84% nucleotide, 86% amino acid sequence homology). All three strains have two potential N-glycosylation sites in the hydrophobic N terminus of the gene 10 protein. Gene 11 from UK bovine rotavirus is 667 nucleotides long with a single long open reading frame capable of coding for a protein of 198 amino acids. When compared with the published sequence of gene 11 from the human rotavirus Wa, the UK bovine rotavirus gene 11 was found to be one nucleotide longer in the 5'-noncoding region and three nucleotides longer in the coding region. The nucleotide sequence homology was 86%. The predicted proteins coded by segment 11 in UK and Wa rotaviruses are both rich in serine and threonine (23%) and very hydrophilic, but differ appreciably in amino acid sequence (83% homology).
Collapse
|