1
|
Huang W, Zhang Y, Xiao N, Zhao W, Shi Y, Fang R. Trans-complementation of the viral movement protein mediates efficient expression of large target genes via a tobacco mosaic virus vector. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2957-2970. [PMID: 38923265 PMCID: PMC11500985 DOI: 10.1111/pbi.14418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/17/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024]
Abstract
The development of plant virus-based expression systems has expanded rapidly owing to their potential applications in gene functional and disease resistance research, and industrial production of pharmaceutical proteins. However, the low yield of certain proteins, especially high-molecular-mass proteins, restricts the production scale. In this study, we observed that the tobacco mosaic virus (TMV)-mediated expression of a foreign protein was correlated with the amount of the movement protein (MP) and developed a TMV-derived pAT-transMP vector system incorporating trans-complementation expression of MP. The system is capable of efficient expression of exogenous proteins, in particular those with a high molecular mass, and enables simultaneous expression of two target molecules. Furthermore, viral expression of competent CRISPR-Cas9 protein and construction of CRISPR-Cas9-mediated gene-editing system in a single pAT-transMP construct was achieved. The results demonstrated a novel role for TMV-MP in enhancing the accumulation of a foreign protein produced from the viral vector or a binary expression system. Further investigation of the mechanism underlying this role will be beneficial for optimization of plant viral vectors with broad applications.
Collapse
Affiliation(s)
- Weikuo Huang
- State Key Laboratory of Plant GenomicsInstitute of Microbiology, Chinese Academy of Sciences, and National Plant Gene Research CenterBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yuman Zhang
- State Key Laboratory of Plant GenomicsInstitute of Microbiology, Chinese Academy of Sciences, and National Plant Gene Research CenterBeijingChina
| | - Na Xiao
- State Key Laboratory of Plant GenomicsInstitute of Microbiology, Chinese Academy of Sciences, and National Plant Gene Research CenterBeijingChina
| | - Wenhui Zhao
- College of Veterinary Medicine, and College of AgronomyShanxi Agricultural UniversityJinzhongChina
| | - Ying Shi
- College of Veterinary Medicine, and College of AgronomyShanxi Agricultural UniversityJinzhongChina
| | - Rongxiang Fang
- State Key Laboratory of Plant GenomicsInstitute of Microbiology, Chinese Academy of Sciences, and National Plant Gene Research CenterBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
2
|
Wu Z, Ma G, Zhu H, Chen M, Huang M, Xie X, Li X. Plant Viral Coat Proteins as Biochemical Targets for Antiviral Compounds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8892-8900. [PMID: 35830295 DOI: 10.1021/acs.jafc.2c02888] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Coat proteins (CPs) of RNA plant viruses play a pivotal role in virus particle assembly, vector transmission, host identification, RNA replication, and intracellular and intercellular movement. Numerous compounds targeting CPs have been designed, synthesized, and screened for their antiviral activities. This review is intended to fill a knowledge gap where a comprehensive summary is needed for antiviral agent discovery based on plant viral CPs. In this review, major achievements are summarized with emphasis on plant viral CPs as biochemical targets and action mechanisms of antiviral agents. This review hopefully provides new insights and references for the further development of new safe and effective antiviral pesticides.
Collapse
Affiliation(s)
- Zilin Wu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Guangming Ma
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Hengmin Zhu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Meiqing Chen
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Min Huang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Xin Xie
- College of Agriculture, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Xiangyang Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| |
Collapse
|
3
|
Abstract
The modern view of the mechanism of intercellular movement of viruses is based largely on data from the study of the tobacco mosaic virus (TMV) 30-kDa movement protein (MP). The discovered properties and abilities of TMV MP, namely, (a) in vitro binding of single-stranded RNA in a non-sequence-specific manner, (b) participation in the intracellular trafficking of genomic RNA to the plasmodesmata (Pd), and (c) localization in Pd and enhancement of Pd permeability, have been used as a reference in the search and analysis of candidate proteins from other plant viruses. Nevertheless, although almost four decades have passed since the introduction of the term “movement protein” into scientific circulation, the mechanism underlying its function remains unclear. It is unclear why, despite the absence of homology, different MPs are able to functionally replace each other in trans-complementation tests. Here, we consider the complexity and contradictions of the approaches for assessment of the ability of plant viral proteins to perform their movement function. We discuss different aspects of the participation of MP and MP/vRNA complexes in intra- and intercellular transport. In addition, we summarize the essential MP properties for their functioning as “conditioners”, creating a favorable environment for viral reproduction.
Collapse
|
4
|
Sheshukova EV, Ershova NM, Kamarova KA, Dorokhov YL, Komarova TV. The Tobamoviral Movement Protein: A "Conditioner" to Create a Favorable Environment for Intercellular Spread of Infection. FRONTIERS IN PLANT SCIENCE 2020; 11:959. [PMID: 32670343 PMCID: PMC7328123 DOI: 10.3389/fpls.2020.00959] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 06/10/2020] [Indexed: 06/11/2023]
Abstract
During their evolution, viruses acquired genes encoding movement protein(s) (MPs) that mediate the intracellular transport of viral genetic material to plasmodesmata (Pd) and initiate the mechanisms leading to the increase in plasmodesmal permeability. Although the current view on the role of the viral MPs was primarily formed through studies on tobacco mosaic virus (TMV), the function of its MP has not been fully elucidated. Given the intercellular movement of MPs independent of genomic viral RNA (vRNA), this characteristic may induce favorable conditions ahead of the infection front for the accelerated movement of the vRNA (i.e. the MP plays a role as a "conditioner" of viral intercellular spread). This idea is supported by (a) the synthesis of MP from genomic vRNA early in infection, (b) the Pd opening and the MP transfer to neighboring cells without formation of the viral replication complex (VRC), and (c) the MP-mediated movement of VRCs beyond the primary infected cell. Here, we will consider findings that favor the TMV MP as a "conditioner" of enhanced intercellular virus movement. In addition, we will discuss the mechanism by which TMV MP opens Pd for extraordinary transport of macromolecules. Although there is no evidence showing direct effects of TMV MP on Pd leading to their dilatation, recent findings indicate that MPs exert their influence indirectly by modulating Pd external and structural macromolecules such as callose and Pd-associated proteins. In explaining this phenomenon, we will propose a mechanism for TMV MP functioning as a conditioner for virus movement.
Collapse
Affiliation(s)
| | - Natalia M. Ershova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Kamila A. Kamarova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Yuri L. Dorokhov
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Tatiana V. Komarova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
5
|
Aboul-Ata AAE, Vitti A, Nuzzaci M, El-Attar AK, Piazzolla G, Tortorella C, Harandi AM, Olson O, Wright SA, Piazzolla P. Plant-based vaccines: novel and low-cost possible route for Mediterranean innovative vaccination strategies. Adv Virus Res 2014; 89:1-37. [PMID: 24751193 DOI: 10.1016/b978-0-12-800172-1.00001-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A plant bioreactor has enormous capability as a system that supports many biological activities, that is, production of plant bodies, virus-like particles (VLPs), and vaccines. Foreign gene expression is an efficient mechanism for getting protein vaccines against different human viral and nonviral diseases. Plants make it easy to deal with safe, inexpensive, and provide trouble-free storage. The broad spectrum of safe gene promoters is being used to avoid risk assessments. Engineered virus-based vectors have no side effect. The process can be manipulated as follows: (a) retrieve and select gene encoding, use an antigenic protein from GenBank and/or from a viral-genome sequence, (b) design and construct hybrid-virus vectors (viral vector with a gene of interest) eventually flanked by plant-specific genetic regulatory elements for constitutive expression for obtaining chimeric virus, (c) gene transformation and/or transfection, for transient expression, into a plant-host model, that is, tobacco, to get protocols processed positively, and then moving into edible host plants, (d) confirmation of protein expression by bioassay, PCR-associated tests (RT-PCR), Northern and Western blotting analysis, and serological assay (ELISA), (e) expression for adjuvant recombinant protein seeking better antigenicity, (f) extraction and purification of expressed protein for identification and dosing, (g) antigenicity capability evaluated using parental or oral delivery in animal models (mice and/or rabbit immunization), and (h) growing of construct-treated edible crops in protective green houses. Some successful cases of heterologous gene-expressed protein, as edible vaccine, are being discussed, that is, hepatitis C virus (HCV). R9 mimotope, also named hypervariable region 1 (HVR1), was derived from the HVR1 of HCV. It was used as a potential neutralizing epitope of HCV. The mimotope was expressed using cucumber mosaic virus coat protein (CP), alfalfa mosaic virus CP P3/RNA3, and tobacco mosaic virus (TMV) CP-tobacco mild green mosaic virus (TMGMV) CP as expression vectors into tobacco plants. Expressed recombinant protein has not only been confirmed as a therapeutic but also as a diagnostic tool. Herpes simplex virus 2 (HSV-2), HSV-2 gD, and HSV-2 VP16 subunits were transfected into tobacco plants, using TMV CP-TMGMV CP expression vectors.
Collapse
Affiliation(s)
- Aboul-Ata E Aboul-Ata
- Molecular Biology Laboratory II, Plant Virus and Phytoplasma Research Department, Plant Pathology Research Institute, ARC, Giza, Egypt.
| | - Antonella Vitti
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, Potenza, Italy
| | - Maria Nuzzaci
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, Potenza, Italy
| | - Ahmad K El-Attar
- Molecular Biology Laboratory II, Plant Virus and Phytoplasma Research Department, Plant Pathology Research Institute, ARC, Giza, Egypt
| | - Giuseppina Piazzolla
- Department of Emergency and Organ Transplantation, Section of Internal Medicine, Allergology and Immunology, University of Bari, Bari, Italy
| | - Cosimo Tortorella
- Department of Emergency and Organ Transplantation, Section of Internal Medicine, Allergology and Immunology, University of Bari, Bari, Italy
| | - Ali M Harandi
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Olof Olson
- Department of Pure and Applied Biochemistry, Lund University, Lund, Sweden
| | - Sandra A Wright
- Department of Electronics, Mathematics and Natural Sciences, University of Gävle, Gävle, Sweden
| | - Pasquale Piazzolla
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, Potenza, Italy
| |
Collapse
|
6
|
Kaido M, Abe K, Mine A, Hyodo K, Taniguchi T, Taniguchi H, Mise K, Okuno T. GAPDH--a recruits a plant virus movement protein to cortical virus replication complexes to facilitate viral cell-to-cell movement. PLoS Pathog 2014; 10:e1004505. [PMID: 25411849 PMCID: PMC4239097 DOI: 10.1371/journal.ppat.1004505] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 10/06/2014] [Indexed: 01/15/2023] Open
Abstract
The formation of virus movement protein (MP)-containing punctate structures on the cortical endoplasmic reticulum is required for efficient intercellular movement of Red clover necrotic mosaic virus (RCNMV), a bipartite positive-strand RNA plant virus. We found that these cortical punctate structures constitute a viral replication complex (VRC) in addition to the previously reported aggregate structures that formed adjacent to the nucleus. We identified host proteins that interacted with RCNMV MP in virus-infected Nicotiana benthamiana leaves using a tandem affinity purification method followed by mass spectrometry. One of these host proteins was glyceraldehyde 3-phosphate dehydrogenase-A (NbGAPDH-A), which is a component of the Calvin-Benson cycle in chloroplasts. Virus-induced gene silencing of NbGAPDH-A reduced RCNMV multiplication in the inoculated leaves, but not in the single cells, thereby suggesting that GAPDH-A plays a positive role in cell-to-cell movement of RCNMV. The fusion protein of NbGAPDH-A and green fluorescent protein localized exclusively to the chloroplasts. In the presence of RCNMV RNA1, however, the protein localized to the cortical VRC as well as the chloroplasts. Bimolecular fluorescence complementation assay and GST pulldown assay confirmed in vivo and in vitro interactions, respectively, between the MP and NbGAPDH-A. Furthermore, gene silencing of NbGAPDH-A inhibited MP localization to the cortical VRC. We discuss the possible roles of NbGAPDH-A in the RCNMV movement process.
Collapse
Affiliation(s)
- Masanori Kaido
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Kazutomo Abe
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Akira Mine
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Kiwamu Hyodo
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Takako Taniguchi
- Institute for Enzyme Research, The University of Tokushima, Tokushima, Japan
| | - Hisaaki Taniguchi
- Institute for Enzyme Research, The University of Tokushima, Tokushima, Japan
| | - Kazuyuki Mise
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Tetsuro Okuno
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
7
|
Loughran G, Chou MY, Ivanov IP, Jungreis I, Kellis M, Kiran AM, Baranov PV, Atkins JF. Evidence of efficient stop codon readthrough in four mammalian genes. Nucleic Acids Res 2014; 42:8928-38. [PMID: 25013167 PMCID: PMC4132726 DOI: 10.1093/nar/gku608] [Citation(s) in RCA: 161] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 05/31/2014] [Accepted: 06/24/2014] [Indexed: 12/04/2022] Open
Abstract
Stop codon readthrough is used extensively by viruses to expand their gene expression. Until recent discoveries in Drosophila, only a very limited number of readthrough cases in chromosomal genes had been reported. Analysis of conserved protein coding signatures that extend beyond annotated stop codons identified potential stop codon readthrough of four mammalian genes. Here we use a modified targeted bioinformatic approach to identify a further three mammalian readthrough candidates. All seven genes were tested experimentally using reporter constructs transfected into HEK-293T cells. Four displayed efficient stop codon readthrough, and these have UGA immediately followed by CUAG. Comparative genomic analysis revealed that in the four readthrough candidates containing UGA-CUAG, this motif is conserved not only in mammals but throughout vertebrates with the first six of the seven nucleotides being universally conserved. The importance of the CUAG motif was confirmed using a systematic mutagenesis approach. One gene, OPRL1, encoding an opiate receptor, displayed extremely efficient levels of readthrough (∼31%) in HEK-293T cells. Signals both 5' and 3' of the OPRL1 stop codon contribute to this high level of readthrough. The sequence UGA-CUA alone can support 1.5% readthrough, underlying its importance.
Collapse
Affiliation(s)
- Gary Loughran
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Ming-Yuan Chou
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Ivaylo P Ivanov
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Irwin Jungreis
- CSAIL, Massachusetts Institute of Technology, Cambridge, MA 02139-4307, USA
| | - Manolis Kellis
- CSAIL, Massachusetts Institute of Technology, Cambridge, MA 02139-4307, USA
| | - Anmol M Kiran
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Pavel V Baranov
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - John F Atkins
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland Department of Human Genetics, University of Utah, Salt Lake City, UT 84112-5330, USA
| |
Collapse
|
8
|
Zhao J, Liu Q, Zhang H, Jia Q, Hong Y, Liu Y. The rubisco small subunit is involved in tobamovirus movement and Tm-2²-mediated extreme resistance. PLANT PHYSIOLOGY 2013; 161:374-83. [PMID: 23148080 PMCID: PMC3532268 DOI: 10.1104/pp.112.209213] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 11/10/2012] [Indexed: 05/06/2023]
Abstract
The multifunctional movement protein (MP) of Tomato mosaic tobamovirus (ToMV) is involved in viral cell-to-cell movement, symptom development, and resistance gene recognition. However, it remains to be elucidated how ToMV MP plays such diverse roles in plants. Here, we show that ToMV MP interacts with the Rubisco small subunit (RbCS) of Nicotiana benthamiana in vitro and in vivo. In susceptible N. benthamiana plants, silencing of NbRbCS enabled ToMV to induce necrosis in inoculated leaves, thus enhancing virus local infectivity. However, the development of systemic viral symptoms was delayed. In transgenic N. benthamiana plants harboring Tobacco mosaic virus resistance-2² (Tm-2²), which mediates extreme resistance to ToMV, silencing of NbRbCS compromised Tm-2²-dependent resistance. ToMV was able to establish efficient local infection but was not able to move systemically. These findings suggest that NbRbCS plays a vital role in tobamovirus movement and plant antiviral defenses.
Collapse
Affiliation(s)
- Jinping Zhao
- Ministry of Education Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China (J.Z., Q.L., H.Z., Q.J., Y.L.); and Research Centre for Plant RNA Signaling, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China (Y.H.)
| | | | - Haili Zhang
- Ministry of Education Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China (J.Z., Q.L., H.Z., Q.J., Y.L.); and Research Centre for Plant RNA Signaling, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China (Y.H.)
| | - Qi Jia
- Ministry of Education Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China (J.Z., Q.L., H.Z., Q.J., Y.L.); and Research Centre for Plant RNA Signaling, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China (Y.H.)
| | - Yiguo Hong
- Ministry of Education Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China (J.Z., Q.L., H.Z., Q.J., Y.L.); and Research Centre for Plant RNA Signaling, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China (Y.H.)
| | - Yule Liu
- Ministry of Education Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China (J.Z., Q.L., H.Z., Q.J., Y.L.); and Research Centre for Plant RNA Signaling, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China (Y.H.)
| |
Collapse
|
9
|
Tadamura K, Nakahara KS, Masuta C, Uyeda I. Wound-induced rgs-CaM gets ready for counterresponse to an early stage of viral infection. PLANT SIGNALING & BEHAVIOR 2012; 7:1548-51. [PMID: 23073002 PMCID: PMC3578890 DOI: 10.4161/psb.22369] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Plants and animals can recognize the invasion of pathogens through their perception of pathogen-associated molecular patterns (PAMPs) by pattern recognition receptors (PRRs). Plant PRRs identified have been exclusively receptor-like kinases/proteins (RLK/Ps), and no RLK/P that can detect viruses has been identified to date. RNA silencing (RNA interference, RNAi) is regarded as an antiviral basal immunity because the majority of plant viruses has RNA as their genomes and encode RNA silencing suppressor (RSS) proteins to counterattack antiviral RNAi. Many RSSs were reported to bind to double-stranded RNAs (dsRNAs), which are regarded as viral PAMPs. We have recently identified a tobacco calmodulin (CaM)-like protein, rgs-CaM, as a PRR that binds to diverse viral RSSs through its affinity for the dsRNA-binding domains. Because rgs-CaM seems to target RSSs for autophagic degradation with self-sacrifice, the expression level of rgs-CaM is important for antiviral activity. Here, we found that the rgs-CaM expression was induced immediately (within 1 h) after wounding at a wound site on tobacco leaves. Since the invasion of plant viruses is usually associated with wounding, and several hours are required for viruses to replicate to a detectable level in invaded cells, the wound-induced expression of rgs-CaM seems to be linked to its antiviral function, which should be ready before the virus establishes infection. CaMs and CaM-like proteins usually transduce calcium signals through their binding to endogenous targets. Therefore, rgs-CaM is a unique CaM-like protein in terms of binding to exogenous targets and functioning as an antiviral PRR.
Collapse
|
10
|
Tilsner J, Oparka KJ. Missing links? - The connection between replication and movement of plant RNA viruses. Curr Opin Virol 2012; 2:705-11. [PMID: 23036608 DOI: 10.1016/j.coviro.2012.09.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 09/11/2012] [Accepted: 09/11/2012] [Indexed: 12/18/2022]
Abstract
Plant virus infection spreads from cell-to-cell within the host with the aid of viral movement proteins (MPs) that transport infectious genomes through intercellular pores called plasmodesmata (PD). MPs are able to accomplish RNA trafficking independent of virus infection. However, although dispensable for replication, they often associate with or assist in the formation of viral replication complexes. Quantitative analyses of genetic bottlenecks during infection, as well as considerations of transport specificity, suggest that intricate links between replication and movement may facilitate efficient delivery of plant viruses through PD during early infection, at a stage when viral genomes are still rare.
Collapse
Affiliation(s)
- Jens Tilsner
- Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, United Kingdom.
| | | |
Collapse
|
11
|
Choi AG, Wong J, Marchant D, Luo H. The ubiquitin-proteasome system in positive-strand RNA virus infection. Rev Med Virol 2012; 23:85-96. [PMID: 22782620 PMCID: PMC7169083 DOI: 10.1002/rmv.1725] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 05/29/2012] [Accepted: 06/18/2012] [Indexed: 12/12/2022]
Abstract
Positive-stranded RNA viruses, like many other viruses, have evolved to exploit the host cellular machinery to their own advantage. In eukaryotic cells, the ubiquitin-proteasome system (UPS) that serves as the major intracellular pathway for protein degradation and modification plays a crucial role in the regulation of many fundamental cellular functions. A growing amount of evidence has suggested that the UPS can be utilized by positive-sense RNA viruses. The UPS eliminates excess viral proteins that prevent viral replication and modulates the function of viral proteins through post-translational modification mediated by ubiquitin or ubiquitin-like proteins. This review will discuss the current understanding of how positive RNA viruses have evolved various mechanisms to usurp the host UPS to modulate the function and stability of viral proteins. In addition to the pro-viral function, UPS-mediated viral protein degradation may also constitute a host defense process against some positive-stranded RNA viral infections. This issue will also be discussed in the current review.
Collapse
Affiliation(s)
- Alex GoEun Choi
- UBC James Hogg Research Centre, Institute for Heart + Lung Health, St. Paul's Hospital, Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | | | | | | |
Collapse
|
12
|
Amari K, Vazquez F, Heinlein M. Manipulation of plant host susceptibility: an emerging role for viral movement proteins? FRONTIERS IN PLANT SCIENCE 2012; 3:10. [PMID: 22639637 PMCID: PMC3355624 DOI: 10.3389/fpls.2012.00010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 01/11/2012] [Indexed: 05/05/2023]
Abstract
Viruses encode viral suppressors of RNA silencing (VSRs) to counteract RNA silencing, a major antiviral defense response in plants. Recent studies indicate a role of virus-derived siRNAs in manipulating the expression of specific host genes and that certain plant viral movement proteins (MPs) can act as viral enhancers of RNA silencing (VERs) by stimulating the spread of silencing between cells. This suggests that viruses have evolved complex responses capable to efficiently hijack the host RNA silencing machinery to their own advantage. We draw here a dynamic model of the interaction of plant viruses with the silencing machinery during invasion of the host. The model proposes that cells at the spreading front of infection, where infection starts from zero and the VSR levels are supposedly low, represent potential sites for viral manipulation of host gene expression by using virus- and host-derived small RNAs. Viral MPs may facilitate the spread of silencing to produce a wave of small RNA-mediated gene expression changes ahead of the infection to increase host susceptibility. When experimentally ascertained, this hypothetical model will call for re-defining viral movement and the function of viral MPs.
Collapse
Affiliation(s)
- Khalid Amari
- UPR2357 CNRS, Institut de Biologie Moléculaire des PlantesStrasbourg, France
| | - Franck Vazquez
- Department of Plant Physiology, Zürich-Basel Plant Science Center, Part of the Swiss Plant Science Web, Botanical Institute of the University of BaselBasel, Switzerland
| | - Manfred Heinlein
- UPR2357 CNRS, Institut de Biologie Moléculaire des PlantesStrasbourg, France
- Department of Plant Physiology, Zürich-Basel Plant Science Center, Part of the Swiss Plant Science Web, Botanical Institute of the University of BaselBasel, Switzerland
- *Correspondence: Manfred Heinlein, Institut de Biologie Moléculaire des Plantes, 12, rue du Général Zimmer, 67084 Strasbourg Cedex, France. e-mail:
| |
Collapse
|
13
|
Niehl A, Heinlein M. Cellular pathways for viral transport through plasmodesmata. PROTOPLASMA 2011; 248:75-99. [PMID: 21125301 DOI: 10.1007/s00709-010-0246-1] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Accepted: 11/16/2010] [Indexed: 05/03/2023]
Abstract
Plant viruses use plasmodesmata (PD) to spread infection between cells and systemically. Dependent on viral species, movement through PD can occur in virion or non-virion form, and requires different mechanisms for targeting and modification of the pore. These mechanisms are supported by viral movement proteins and by other virus-encoded factors that interact among themselves and with plant cellular components to facilitate virus movement in a coordinated and regulated fashion.
Collapse
Affiliation(s)
- Annette Niehl
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, 12 rue du Général Zimmer, 67084, Strasbourg, France
| | | |
Collapse
|
14
|
Tyulkina LG, Karger EM, Sheveleva AA, Atabekov JG. Binding of monoclonal antibodies to the movement protein (MP) of Tobacco mosaic virus: influence of subcellular MP localization and phosphorylation. J Gen Virol 2010; 91:1621-8. [PMID: 20164264 DOI: 10.1099/vir.0.018002-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Monoclonal antibodies (mAbs) to recombinant movement protein (MP(REC)) of Tobacco mosaic virus (TMV) were used to reveal the dependence of MP epitope accessibility to mAbs on subcellular MP localization and post-translational MP phosphorylation. Leaves of Nicotiana benthamiana or N. tabacum were inoculated mechanically with TMV or agroinjected with an MP expression vector. At different time post-inoculation, ER membrane- and cell wall-enriched fractions (ER-MP and CW-MP, respectively) were isolated and analysed. The N-terminal region (residues 1-30) as well as regions 186-222 and 223-257 of MP from the CW and ER fractions were accessible for interaction with mAbs. By contrast, the MP regions including residues 76-89 and 98-129 were not accessible. The C-terminal TMV MP region (residues 258-268) was inaccessible to mAbs not only in CW-MP, but also in ER-MP fractions. Evidence is presented that phosphorylation of the majority of TMV MP C-terminal sites occurred on ER membranes at an early stage of virus infection, i.e. not after, but before reaching the cell wall. C-terminal phosphorylation of purified MP(REC) abolished recognition of C-proximal residues 258-268 by specific mAbs, which could be restored by MP dephosphorylation. Likewise, accessibility to mAbs of the C-terminal MP epitope in ER-MP and CW-MP leaf fractions was restored by dephosphorylation. Substitution of three or four C-terminal Ser/Thr residues with non-phosphorylatable Ala also resulted in abolition of interaction of mAbs with MP.
Collapse
Affiliation(s)
- Lidia G Tyulkina
- Department of Virology, Moscow State University, Vorobjevi Gori, Moscow 119992, Russia.
| | | | | | | |
Collapse
|
15
|
Christensen N, Tilsner J, Bell K, Hammann P, Parton R, Lacomme C, Oparka K. The 5' cap of tobacco mosaic virus (TMV) is required for virion attachment to the actin/endoplasmic reticulum network during early infection. Traffic 2009; 10:536-51. [PMID: 19220815 DOI: 10.1111/j.1600-0854.2009.00889.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Almost nothing is known of the earliest stages of plant virus infections. To address this, we microinjected Cy3 (UTP)-labelled tobacco mosaic virus (TMV) into living tobacco trichome cells. The Cy3-virions were infectious, and the viral genome trafficked from cell to cell. However, neither the fluorescent vRNA pool nor the co-injected green fluorescent protein (GFP) left the injected trichome, indicating that the synthesis of (unlabelled) progeny viral (v)RNA is required to initiate cell-to-cell movement, and that virus movement is not accompanied by passive plasmodesmatal gating. Cy3-vRNA formed granules that became anchored to the motile cortical actin/endoplasmic reticulum (ER) network within minutes of injection. Granule movement on actin/ER was arrested by actin inhibitors indicating actin-dependent RNA movement. The 5' methylguanosine cap was shown to be required for vRNA anchoring to the actin/ER. TMV vRNA lacking the 5' cap failed to form granules and was degraded in the cytoplasm. Removal of the 3' untranslated region or replicase both inhibited replication but did not prevent granule formation and movement. Dual-labelled TMV virions in which the vRNA and the coat protein were highlighted with different fluorophores showed that both fluorescent signals were initially located on the same ER-bound granules, indicating that TMV virions may become attached to the ER prior to uncoating of the viral genome.
Collapse
Affiliation(s)
- Nynne Christensen
- Institute of Molecular Plant Sciences, University of Edinburgh, Mayfield Road, Edinburgh EH9 3JR, UK
| | | | | | | | | | | | | |
Collapse
|
16
|
Sasaki N, Ogata T, Deguchi M, Nagai S, Tamai A, Meshi T, Kawakami S, Watanabe Y, Matsushita Y, Nyunoya H. Over-expression of putative transcriptional coactivator KELP interferes with Tomato mosaic virus cell-to-cell movement. MOLECULAR PLANT PATHOLOGY 2009; 10:161-73. [PMID: 19236566 PMCID: PMC6640241 DOI: 10.1111/j.1364-3703.2008.00517.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Tomato mosaic virus (ToMV) encodes a movement protein (MP) that is necessary for virus cell-to-cell movement. We have demonstrated previously that KELP, a putative transcriptional coactivator of Arabidopsis thaliana, and its orthologue from Brassica campestris can bind to ToMV MP in vitro. In this study, we examined the effects of the transient over-expression of KELP on ToMV infection and the intracellular localization of MP in Nicotiana benthamiana, an experimental host of the virus. In co-bombardment experiments, the over-expression of KELP inhibited virus cell-to-cell movement. The N-terminal half of KELP (KELPdC), which had been shown to bind to MP, was sufficient for inhibition. Furthermore, the over-expression of KELP and KELPdC, both of which were co-localized with ToMV MP, led to a reduction in the plasmodesmal association of MP. In the absence of MP expression, KELP was localized in the nucleus and the cytoplasm by the localization signal in its N-terminal half. It was also shown that ToMV amplified normally in protoplasts prepared from leaf tissue that expressed KELP transiently. These results indicate that over-expressed KELP interacts with MP in vivo and exerts an inhibitory effect on MP function for virus cell-to-cell movement, but not on virus amplification in individual cells.
Collapse
Affiliation(s)
- Nobumitsu Sasaki
- Gene Research Centre, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Tomenius K, Clapham D, Meshi T. Localization by immunogold cytochemistry of the virus-coded 30K protein in plasmodesmata of leaves infected with tobacco mosaic virus. Virology 2008; 160:363-71. [PMID: 18644574 DOI: 10.1016/0042-6822(87)90007-9] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/1987] [Accepted: 04/29/1987] [Indexed: 10/26/2022]
Abstract
The 30K protein of tobacco mosaic virus (TMV) was localized to the plasmodesmata of infected tobacco leaves by immunogold cytochemistry. This protein has been reported to be in the nuclear fraction of TMV-infected protoplasts, but as it has been proposed to function in cell-to-cell transport of virus, probably via the plasmodesmata, intact tissue was investigated with particular attention directed to plasmodesmata and nuclei. Thin sections were made from leaves mechanically inoculated with TMV at different times. Affinity-purified antibodies against a synthetic peptide corresponding to the C-terminal sequence of the 30K protein were used in the incubations, and parallel sections were incubated with antibodies against TMV. The 30K protein label accumulated inside the plasmodesmata, with a maximum 24 hr after inoculation. No specific label was found in the nuclei or at any other site in the cells.
Collapse
Affiliation(s)
- K Tomenius
- Swedish University of Agricultural Sciences, Department of Plant and Forest Protection, P.O. Box 7044, S-750 07 Uppsala, Sweden
| | | | | |
Collapse
|
18
|
In vitro viral RNA synthesis by a subcellular fraction of TMV-inoculated tobacco protoplasts. Virology 2008; 149:64-73. [PMID: 18640592 DOI: 10.1016/0042-6822(86)90087-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/1985] [Accepted: 10/23/1985] [Indexed: 11/21/2022]
Abstract
A subcellular fraction which can synthesize viral RNA and subgenomic RNA in vitro was prepared from tobacco mosaic virus (TMV)-inoculated tobacco protoplasts. S(1)-Resistant fragment analysis with strand specific TMV cDNA showed that a large amount of plus-stranded and a small amount of minus-stranded, genome-size RNA was synthesized by this subcellular fraction. Plus-stranded subgenomic RNA of coat protein mRNA size was also synthesized. The time course of the appearance of viral RNA synthetic activity was consistent with that of the appearance of TMV infectivity in vivo.
Collapse
|
19
|
|
20
|
|
21
|
Asurmendi S, Berg R, Smith T, Bendhamane M, Beachy R. Aggregation of TMV CP plays a role in CP functions and in coat-protein-mediated resistance. Virology 2007; 366:98-106. [PMID: 17493658 PMCID: PMC2034504 DOI: 10.1016/j.virol.2007.03.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Revised: 03/06/2007] [Accepted: 03/08/2007] [Indexed: 10/23/2022]
Abstract
Tobacco mosaic virus (TMV) coat protein (CP) in absence of RNA self-assembles into several different structures depending on pH and ionic strength. Transgenic plants that produce self-assembling CP are resistant to TMV infection, a phenomenon referred to as coat-protein-mediated resistance (CP-MR). The mutant CP Thr42Trp (CP(T42W)) produces enhanced CP-MR compared to wild-type CP. To establish the relationship between the formation of 20S CP aggregates and CP-MR, virus-like particles (VLPs) produced by TMV variants that yield high levels of CP-MR were characterized. We demonstrate that non-helical structures are found in VLPs formed in vivo by CP(T42W) but not by wild-type CP and suggest that the mutation shifts the intracellular equilibrium of aggregates from low to higher proportions of non-helical 20S aggregates. A similar shift in equilibrium of aggregates was observed with CP(D77R), another mutant that confers high level of CP-MR. The mutant CP(D50R) confers a level of CP-MR similar to wild-type CP and aggregates in a manner similar to wild-type CP. We conclude that increased CP-MR is correlated with a shift in intracellular equilibrium of CP aggregates, including aggregates that interfere with virus replication.
Collapse
Affiliation(s)
- S. Asurmendi
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO 63132
| | - R.H. Berg
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO 63132
| | - T.J. Smith
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO 63132
| | - M. Bendhamane
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO 63132
| | - R.N. Beachy
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO 63132
- Corresponding author: Donald Danforth Plant Science Center, North Warson Road, St. Louis, MO 63132, Phone: 1 314 587 1201 Fax: 1 314 587 1301, E-mail address:
| |
Collapse
|
22
|
Tyulkina LG, Skurat EV, Zvereva AS, Dorokhov YL, Atabekov JG. Movement protein stimulates tobacco mosaic virus reproduction in infected cells. DOKL BIOCHEM BIOPHYS 2006; 409:253-6. [PMID: 16986444 DOI: 10.1134/s1607672906040168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- L G Tyulkina
- Faculty of Biology, Moscow State University, Vorob'evy gory, Moscow 119992, Russia
| | | | | | | | | |
Collapse
|
23
|
Rinne PLH, van den Boogaard R, Mensink MGJ, Kopperud C, Kormelink R, Goldbach R, van der Schoot C. Tobacco plants respond to the constitutive expression of the tospovirus movement protein NS(M) with a heat-reversible sealing of plasmodesmata that impairs development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 43:688-707. [PMID: 16115066 DOI: 10.1111/j.1365-313x.2005.02489.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Viral infection often results in typical symptoms, the biological background of which has remained elusive. We show that constitutive expression of the NSM viral movement protein (MP) of tomato spotted wilt virus in Nicotiana tabacum is sufficient to induce severe, infection-like symptoms, including pronounced deficiencies in root and shoot development. Leaves failed to expand and were arranged in a rosette due to the absence of internode elongation. Following the sink-source transition they accumulated excessive amounts of starch and developed fusing chlorotic patches in the mesophyll, resembling virus-induced chlorotic lesions. Eventually, the leaves became entirely white and brittle. With a combination of techniques, including photosystem II quantum-yield measurements, iontophoresis of symplasmic tracers, bombardment with pPVX.GFP and double immunolabelling it was shown that these symptoms correlated with the obstruction of NSM-targeted mesophyll plasmodesmata (Pd) in source tissues by depositions of 1,3-beta-D-glucan (GLU) or callose. Temperature-shift treatments (TST; 22-->32 degrees C), known to abolish chlorotic local lesions, also abolished the chlorotic 'superlesions' of transgenic plants and rescued plant development, by restoring the transport capacity of Pd through the action of 1,3-beta-D-glucanase (GLU-h) or callase. Return of these elongated, TST-recovered plants to 22 degrees C reintroduced superlesions and arrested shoot elongation, resulting in the formation of a rosette of clustered leaves at the shoot tip. Collectively, this indicates that the symptoms of NSM plants are self-inflicted and due to a basal defence response that counteracts prolonged interference of the MP with Pd functioning. This type of defence may also play a role in the formation of symptoms during viral infection.
Collapse
Affiliation(s)
- Päivi L H Rinne
- Laboratory of Virology, Wageningen University, Binnenhaven 11, 6709 PD Wageningen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
24
|
Kawakami S, Watanabe Y, Beachy RN. Tobacco mosaic virus infection spreads cell to cell as intact replication complexes. Proc Natl Acad Sci U S A 2004; 101:6291-6. [PMID: 15079061 PMCID: PMC395962 DOI: 10.1073/pnas.0401221101] [Citation(s) in RCA: 240] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Plant viruses encode movement proteins (MPs) that facilitate cell-cell transport of infection through plasmodesmata. Intracellular and intercellular spread of virus replication complexes (VRCs) of tobacco mosaic virus was followed in intact leaf tissue from 12 to 36 h post infection (hpi) by using confocal microscopy. From 12 hpi, VRCs in primary infected cells were associated with cortical endoplasmic reticulum, and at 14 hpi, exhibited high intracellular mobility ( approximately 160 nm/sec); mobility was slowed between 14 and 16 hpi ( approximately 40 nm/sec), and by 18 hpi, VRCs were stationary, adjacent to plasmodesmata. VRCs traversed the plasmodesmata between 18 and 20 hpi. The process of formation and movement of VRCs was repeated in adjacent cells in 3-4 h vs. 20 h from primary infected cells. The rapid intracellular movement of the VRCs and the spread to adjacent cells was blocked by inhibitors of filamentous actin and myosin, but not by inhibitors of microtubules. We propose a model whereby cell-cell spread of tobamovirus infection is accomplished by subviral replication complexes that initiate TMV replication immediately after entry to adjacent cells.
Collapse
Affiliation(s)
- Shigeki Kawakami
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO 63132, USA
| | | | | |
Collapse
|
25
|
Kurihara Y, Watanabe Y. Cross-protection in Arabidopsis against crucifer tobamovirus Cg by an attenuated strain of the virus. MOLECULAR PLANT PATHOLOGY 2003; 4:259-69. [PMID: 20569386 DOI: 10.1046/j.1364-3703.2003.00174.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
SUMMARY Cross-protection is a procedure that has been utilized to protect crops against virulent strains of viruses by pre-treatment with closely related attenuated strains of the virus. We constructed a mutant of crucifer tobamovirus Cg, which is analogous to L(11)A, an attenuated strain of Tomato mosaic virus-L (ToMV-L). This mutant, named CgYD, caused few disease symptoms and could spread throughout Arabidopsis thaliana Col-0 plants. Initial infection with CgYD was shown to efficiently cross-protect against a challenge with wild-type Cg. Thus, we have established in Arabidopsis a powerful system for investigating mechanisms of cross-protection. Using this system, we showed that cross-protection was not overcome, even if a higher concentration of the virion, or purified virion RNA, were used in the challenge. We also demonstrated that cross-protection requires that the second virus be very similar in sequence to Cg, which is a characteristic of RNA silencing. However the RNA dependent RNA polymerase SDE1/SGS2 associated with post-transcriptional gene silencing was not required for cross-protection.
Collapse
Affiliation(s)
- Yukio Kurihara
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo 153-8902, Japan
| | | |
Collapse
|
26
|
Kawakami S, Hori K, Hosokawa D, Okada Y, Watanabe Y. Defective tobamovirus movement protein lacking wild-type phosphorylation sites can be complemented by substitutions found in revertants. J Virol 2003; 77:1452-61. [PMID: 12502860 PMCID: PMC140773 DOI: 10.1128/jvi.77.2.1452-1461.2003] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We reported previously that the movement protein (MP) of tomato mosaic tobamovirus is phosphorylated, and we proposed that MP phosphorylation is important for viral pathogenesis. Experimental data indicated that phosphorylation enhances the stability of MP in vivo and enables the protein to assume the correct intracellular location to perform its function. A mutant virus designated 37A238A was constructed; this virus lacked two serine residues within the MP, which prevented its phosphorylation. In the present study, we inoculated plants with the 37A238A mutant, and as expected, it was unable to produce local lesions on the leaves. However, after an extended period, we found that lesions did occur, which were due to revertant viruses. Several revertants were isolated, and the genetic changes in their MPs were examined together with any changes in their in vivo characteristics. We found that reversion to virulence was associated first with increased MP stability in infected cells and second with a shift in MP intracellular localization over time. In one case, the revertant MP was not phosphorylated in vivo, but it was functional.
Collapse
Affiliation(s)
- Shigeki Kawakami
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Japan
| | | | | | | | | |
Collapse
|
27
|
Beier H, Grimm M. Misreading of termination codons in eukaryotes by natural nonsense suppressor tRNAs. Nucleic Acids Res 2001; 29:4767-82. [PMID: 11726686 PMCID: PMC96686 DOI: 10.1093/nar/29.23.4767] [Citation(s) in RCA: 174] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Translational stop codon readthrough provides a regulatory mechanism of gene expression that is extensively utilised by positive-sense ssRNA viruses. The misreading of termination codons is achieved by a variety of naturally occurring suppressor tRNAs whose structure and function is the subject of this survey. All of the nonsense suppressors characterised to date (with the exception of selenocysteine tRNA) are normal cellular tRNAs that are primarily needed for reading their cognate sense codons. As a consequence, recognition of stop codons by natural suppressor tRNAs necessitates unconventional base pairings in anticodon-codon interactions. A number of intrinsic features of the suppressor tRNA contributes to the ability to read non-cognate codons. Apart from anticodon-codon affinity, the extent of base modifications within or 3' of the anticodon may up- or down-regulate the efficiency of suppression. In order to out-compete the polypeptide chain release factor an absolute prerequisite for the action of natural suppressor tRNAs is a suitable nucleotide context, preferentially at the 3' side of the suppressed stop codon. Three major types of viral readthrough sites, based on similar sequences neighbouring the leaky stop codon, can be defined. It is discussed that not only RNA viruses, but also the eukaryotic host organism might gain some profit from cellular suppressor tRNAs.
Collapse
Affiliation(s)
- H Beier
- Institut für Biochemie, Bayerische Julius-Maximilians-Universität, Biozentrum, Am Hubland, D-97074 Würzburg, Germany.
| | | |
Collapse
|
28
|
|
29
|
Watanabe Y, Meshi T, Okada Y. Infection of tobacco protoplasts with in vitro transcribed tobacco mosaic virus RNA using an improved electroporation method. FEBS Lett 2001. [DOI: 10.1016/0014-5793(87)81191-2] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
30
|
Knapp E, Lewandowski DJ. Tobacco mosaic virus, not just a single component virus anymore. MOLECULAR PLANT PATHOLOGY 2001; 2:117-123. [PMID: 20572999 DOI: 10.1046/j.1364-3703.2001.00064.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Summary Taxonomy: Tobacco mosaic virus (TMV) is the type species of the Tobamovirus genus and a member of the alphavirus-like supergroup. Historically, many tobamoviruses are incorrectly called strains of TMV, although they can differ considerably in sequence similarities and host range from each other and from TMV. Physical properties: TMV virions are 300 x 18 nm rods with a central hollow cavity (Fig. 1) and are composed of 95% capsid protein (CP), and 5% RNA. Each CP subunit interacts with 3-nts in a helical arrangement around the RNA. Virions are stable for decades; infectivity in sap survives heating to 90 degrees C. Hosts: The natural host range of TMV is limited; however, a broad range of weed and crop species, mostly Solanaceae that includes tobacco, pepper and tomato can be infected experimentally [Holmes, F.O. (1946) A comparison of the experimental host ranges of tobacco etch and tobacco mosaic viruses. Phytopathology, 36, 643-657]. TMV distribution is worldwide. No biological vectors are known. Useful website: http://www.ncbi.nlm.nih.gov/ICTVdb/ICTVdB/71010001.htm.
Collapse
Affiliation(s)
- E Knapp
- Department of Plant Pathology, University of Florida, Citrus Research and Education Center, Lake Alfred, FL 33850, USA
| | | |
Collapse
|
31
|
Prod'homme D, Le Panse S, Drugeon G, Jupin I. Detection and subcellular localization of the turnip yellow mosaic virus 66K replication protein in infected cells. Virology 2001; 281:88-101. [PMID: 11222099 DOI: 10.1006/viro.2000.0769] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Turnip yellow mosaic virus (TYMV) encodes a 206-kDa (206K) polyprotein with domains of methyltransferase, proteinase, NTPase/helicase, and RNA-dependent RNA polymerase (RdRp). In vitro, the 206K protein has been shown to undergo proteolytic processing, giving rise to the synthesis of 140-kDa (140K) and 66-kDa (66K) proteins, the latter comprising the RdRp protein domain. Antibodies were raised against the 66K protein and were used to detect the corresponding viral protein in infected cells; both leaf tissues and protoplasts were examined. The antiserum specifically recognized a protein of approximately 66 kDa, indicating that the cleavage observed in vitro is also functional in vivo. The 66K protein accumulates transiently during protoplast infection and localizes to cellular membrane fractions. Indirect immunofluorescence assays and electron microscopy of immunogold-decorated ultrathin sections of infected leaf tissue using anti-66K-specific antibody revealed labeling of membrane vesicles located at the chloroplast envelope.
Collapse
Affiliation(s)
- D Prod'homme
- Laboratoire de Virologie Moléculaire, Institut Jacques Monod, UMR 7592, CNRS, Universités Paris 6-Paris 7, 2 place Jussieu, 75251 Paris Cedex 05, France
| | | | | | | |
Collapse
|
32
|
Boyko V, van der Laak J, Ferralli J, Suslova E, Kwon MO, Heinlein M. Cellular targets of functional and dysfunctional mutants of tobacco mosaic virus movement protein fused to green fluorescent protein. J Virol 2000; 74:11339-46. [PMID: 11070034 PMCID: PMC113239 DOI: 10.1128/jvi.74.23.11339-11346.2000] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Intercellular transport of tobacco mosaic virus (TMV) RNA involves the accumulation of virus-encoded movement protein (MP) in plasmodesmata (Pd), in endoplasmic reticulum (ER)-derived inclusion bodies, and on microtubules. The functional significance of these interactions in viral RNA (vRNA) movement was tested in planta and in protoplasts with TMV derivatives expressing N- and C-terminal deletion mutants of MP fused to the green fluorescent protein. Deletion of 55 amino acids from the C terminus of MP did not interfere with the vRNA transport function of MP:GFP but abolished its accumulation in inclusion bodies, indicating that accumulation of MP at these ER-derived sites is not a requirement for function in vRNA intercellular movement. Deletion of 66 amino acids from the C terminus of MP inactivated the protein, and viral infection occurred only upon complementation in plants transgenic for MP. The functional deficiency of the mutant protein correlated with its inability to associate with microtubules and, independently, with its absence from Pd at the leading edge of infection. Inactivation of MP by N-terminal deletions was correlated with the inability of the protein to target Pd throughout the infection site, whereas its associations with microtubules and inclusion bodies were unaffected. The observations support a role of MP-interacting microtubules in TMV RNA movement and indicate that MP targets microtubules and Pd by independent mechanisms. Moreover, accumulation of MP in Pd late in infection is insufficient to support viral movement, confirming that intercellular transport of vRNA relies on the presence of MP in Pd at the leading edge of infection.
Collapse
Affiliation(s)
- V Boyko
- Friedrich Miescher Institute, CH-4058 Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
33
|
Matsushita Y, Hanazawa K, Yoshioka K, Oguchi T, Kawakami S, Watanabe Y, Nishiguchi M, Nyunoya H. In vitro phosphorylation of the movement protein of tomato mosaic tobamovirus by a cellular kinase. J Gen Virol 2000; 81:2095-2102. [PMID: 10900049 DOI: 10.1099/0022-1317-81-8-2095] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The movement protein (MP) of tomato mosaic virus (ToMV) was produced in E. coli as a soluble fusion protein with glutathione S-transferase. When immobilized on glutathione affinity beads, the recombinant protein was phosphorylated in vitro by incubating with cell extracts of Nicotiana tabacum and tobacco suspension culture cells (BY-2) in the presence of [gamma-(32)P]ATP. Phosphorylation occurred even after washing the beads with a detergent-containing buffer, indicating that the recombinant MP formed a stable complex with some protein kinase(s) during incubation with the cell extract. Phosphoamino acid analysis revealed that the MP was phosphorylated on serine and threonine residues. Phosphorylation of the MP was decreased by addition of kinase inhibitors such as heparin, suramin and quercetin, which are known to be effective for casein kinase II (CK II). The phosphorylation level was not changed by other types of inhibitor. In addition, as shown for animal and plant CK II, [gamma-(32)P]GTP was efficiently used as a phosphoryl donor. Phosphorylation was not affected by amino acid replacements at serine-37 and serine-238, but was completely inhibited by deletion of the carboxy-terminal 9 amino acids, including threonine-256, serine-257, serine-261 and serine-263. These results suggest that the MP of ToMV could be phosphorylated in plant cells by a host protein kinase that is closely related to CK II.
Collapse
Affiliation(s)
- Yasuhiko Matsushita
- Gene Research Center, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan1
| | - Kohtaro Hanazawa
- Gene Research Center, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan1
| | - Kuniaki Yoshioka
- Gene Research Center, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan1
| | - Taichi Oguchi
- Gene Research Center, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan1
| | - Shigeki Kawakami
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan2
| | - Yuichiro Watanabe
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan2
| | - Masamichi Nishiguchi
- National Institute of Agrobiological Resources, 2-1-2 Kan-nondai, Tsukuba, Ibaraki 305-8602, Japan3
| | - Hiroshi Nyunoya
- Gene Research Center, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan1
| |
Collapse
|
34
|
Abstract
The P30 movement protein (MP) of tobacco mosaic virus is essential for distribution of sites of replication within infected cells and for cell-cell spread of infection. MP is an integral membrane protein and in early and mid-stages of infection causes severe disruption of the cortical endoplasmic reticulum (ER). MP also associates with microtubules, and in late stages is targeted for degradation by the 26S proteosome. During these stages, the ER regains its normal pre-infection configuration. Viral RNA is associated with ER and microtubules in the presence of MP. The MP is phosphorylated and mutation of the phosphorylated amino acid reduced association of MP with the ER, plasmodesmata, and microtubules, and altered the stability of the MP. The nature of the association of MP with vRNA and ER and microtubules, and the role of phosphorylation of MP in each of these functions, if any, remains to be determined.
Collapse
Affiliation(s)
- R N Beachy
- Donald Danforth Plant Science Center, 7425 Forsyth Boulevard, Box 1098, St. Louis, MO 63105, USA.
| | | |
Collapse
|
35
|
Ji F, Luo L. A hypercycle theory of proliferation of viruses and resistance to the viruses of transgenic plant. J Theor Biol 2000; 204:453-65. [PMID: 10816368 DOI: 10.1006/jtbi.2000.2025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A set of dynamical equations for the proliferation of two typical viruses TMV and PVY has been derived from the reaction equations describing their replication, assembly and translation. These equations can be seen as the generalization of hypercycle theory to the system. The quantitative explanation on the phenomena of proliferation of plant virus and the mechanism of resistance to the disease of transgenic plant is offered. The phenomenon of specific cessation of minus-strand RNA accumulation in the proliferation of TMV, the cross-protection of plant viruses and the mechanism of resistance to viruses of transgenic plant are discussed based on the computer simulation of the proliferation of viruses and the prediction of the secondary structure of the genomic RNA.
Collapse
Affiliation(s)
- F Ji
- Department of Physics, Inner Mongolia University, Hohhot, 010021, China
| | | |
Collapse
|
36
|
Reichel C, Beachy RN. Degradation of tobacco mosaic virus movement protein by the 26S proteasome. J Virol 2000; 74:3330-7. [PMID: 10708450 PMCID: PMC111834 DOI: 10.1128/jvi.74.7.3330-3337.2000] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/1999] [Accepted: 12/02/1999] [Indexed: 11/20/2022] Open
Abstract
Cell-to-cell spread of tobacco mosaic virus is facilitated by the virus-encoded 30-kDa movement protein (MP). This process involves interaction of viral proteins with host components, including the cytoskeleton and the endoplasmic reticulum (ER). During virus infection, high-molecular-weight forms of MP were detected in tobacco BY-2 protoplasts. Inhibition of the 26S proteasome by MG115 and clasto-lactacystin-beta-lactone enhanced the accumulation of high-molecular-weight forms of MP and led to increased stability of the MP. Such treatment also increased the apparent accumulation of polyubiquitinated host proteins. By fusion of MP with the jellyfish green fluorescent protein (GFP), we demonstrated that inhibition of the 26S proteasome led to accumulation of the MP-GFP fusion preferentially on the ER, particularly the perinuclear ER. We suggest that polyubiquitination of MP and subsequent degradation by the 26S proteasome may play a substantial role in regulation of virus spread by reducing the damage caused by the MP on the structure of cortical ER.
Collapse
Affiliation(s)
- C Reichel
- Division of Plant Biology, Department of Cell Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | |
Collapse
|
37
|
Skulachev MV, Ivanov PA, Karpova OV, Korpela T, Rodionova NP, Dorokhov YL, Atabekov JG. Internal initiation of translation directed by the 5'-untranslated region of the tobamovirus subgenomic RNA I(2). Virology 1999; 263:139-54. [PMID: 10544089 DOI: 10.1006/viro.1999.9928] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previously we reported that, unlike RNA of typical tobamoviruses, the translation of the coat protein (CP) gene of a crucifer-infecting tobamovirus (crTMV) in vitro occurred by an internal ribosome entry mechanism mediated by the 148-nt region that contained an internal ribosome entry site (IRES(CP,148)(CR)). The equivalent 148-nt sequence from TMV U1 RNA (U1(CP,148)(SP)) was incapable of promoting internal initiation. In the present work, we have found that the 228-nt region upstream of the movement protein (MP) gene of crTMV RNA (IRES(MP,228)(CR)) contained an IRES element that directed in vitro translation of the 3'-proximal reporter genes from chimeric dicistronic transcripts. Surprisingly, the equivalent 228-nt sequence upstream from the MP gene of TMV U1 directed translation of the downstream gene of a dicistronic transcripts as well. Consequently this sequence was termed IRES(MP,228)(U1). It was shown that IRES(MP,228)(CR), IRES(MP,228)(U1), and IRES(CP,148)(CR) could mediate expression of the 3'-proximal GUS gene from dicistronic 35S promoter-based constructs in vivo in experiments on transfection of tobacco protoplasts and particle bombardment of Nicotiana benthamiana leaves. The results indicated that an IRES element was located within the 75-nt region upstream of MP gene (IRES(MP,75)), which corresponded closely to the length of the 5'UTR of TMV subgenomic RNA (sgRNA) I(2). The RNA transcripts structurally equivalent to I(2) sgRNAs of TMV U1 and crTMV, but containing a hairpin structure (H) immediately upstream of IRES(MP,75) (HIRES(MP), (75)(CR)-MP-CP-3'UTR; HIRES(MP,75)(U1)-MP-CP-3'UTR), were able to express the MP gene in vitro. The capacity of HIRES(MP,75)(CR) sequence for mediating internal translation of the 3'-proximal GUS gene in vivo, in tobacco protoplasts, was demonstrated. We suggested that expression of the MP gene from I(2) sgRNAs might proceed via internal ribosome entry pathway mediated by IRES(MP) element contained in the 75-nt 5'UTR. Our results admit that a ribosome scanning mechanism of the MP gene expression from I(2) sgRNA operates concurrently.
Collapse
Affiliation(s)
- M V Skulachev
- Department of Virology, Moscow State University, Moscow, 119899, Russia
| | | | | | | | | | | | | |
Collapse
|
38
|
Kawakami S, Padgett HS, Hosokawa D, Okada Y, Beachy RN, Watanabe Y. Phosphorylation and/or presence of serine 37 in the movement protein of tomato mosaic tobamovirus is essential for intracellular localization and stability in vivo. J Virol 1999; 73:6831-40. [PMID: 10400781 PMCID: PMC112768 DOI: 10.1128/jvi.73.8.6831-6840.1999] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/1997] [Accepted: 04/20/1999] [Indexed: 11/20/2022] Open
Abstract
The P30 movement protein (MP) of tomato mosaic tobamovirus (ToMV) is synthesized in the early stages of infection and is phosphorylated in vivo. Here, we determined that serine 37 and serine 238 in the ToMV MP are sites of phosphorylation. MP mutants in which serine was replaced by alanine at positions 37 and 238 (LQ37A238A) or at position 37 only (LQ37A) were not phosphorylated, and mutant viruses did not infect tobacco or tomato plants. By contrast, mutation of serine 238 to alanine did not affect the infectivity of the virus (LQ238A). To investigate the subcellular localization of mutant MPs, we constructed viruses that expressed each mutant MP fused with the green fluorescent protein (GFP) of Aequorea victoria. Wild-type and mutant LQ238A MP fusion proteins showed distinct temporally regulated patterns of MP-GFP localization in protoplasts and formation of fluorescent ring-shaped infection sites on Nicotiana benthamiana. However mutant virus LQ37A MP-GFP did not show a distinct pattern of localization or formation of fluorescent rings. Pulse-chase experiments revealed that MP produced by mutant virus LQ37A was less stable than wild-type and LQ238A MPs. MP which contained threonine at position 37 was phosphorylated, but the stability of the MP in vivo was very low. These studies suggest that the presence of serine at position 37 or phosphorylation of serine 37 is essential for intracellular localization and stability of the MP, which is necessary for the protein to function.
Collapse
Affiliation(s)
- S Kawakami
- Department of Life Sciences, Graduate School of Arts and Sciences, Meguro-ku, Tokyo 153-8902, Japan
| | | | | | | | | | | |
Collapse
|
39
|
Abstract
The replication of tobacco mosaic virus (TMV) RNA involves synthesis of a negative-strand RNA using the genomic positive-strand RNA as a template, followed by the synthesis of positive-strand RNA on the negative-strand RNA templates. Intermediates of replication isolated from infected cells include completely double-stranded RNA (replicative form) and partly double-stranded and partly single-stranded RNA (replicative intermediate), but it is not known whether these structures are double-stranded or largely single-stranded in vivo. The synthesis of negative strands ceases before that of positive strands, and positive and negative strands may be synthesized by two different polymerases. The genomic-length negative strand also serves as a template for the synthesis of subgenomic mRNAs for the virus movement and coat proteins. Both the virus-encoded 126-kDa protein, which has amino-acid sequence motifs typical of methyltransferases and helicases, and the 183-kDa protein, which has additional motifs characteristic of RNA-dependent RNA polymerases, are required for efficient TMV RNA replication. Purified TMV RNA polymerase also contains a host protein serologically related to the RNA-binding subunit of the yeast translational initiation factor, eIF3. Study of Arabidopsis mutants defective in RNA replication indicates that at least two host proteins are needed for TMV RNA replication. The tomato resistance gene Tm-1 may also encode a mutant form of a host protein component of the TMV replicase. TMV replicase complexes are located on the endoplasmic reticulum in close association with the cytoskeleton in cytoplasmic bodies called viroplasms, which mature to produce 'X bodies'. Viroplasms are sites of both RNA replication and protein synthesis, and may provide compartments in which the various stages of the virus mutiplication cycle (protein synthesis, RNA replication, virus movement, encapsidation) are localized and coordinated. Membranes may also be important for the configuration of the replicase with respect to initiation of RNA synthesis, and synthesis and release of progeny single-stranded RNA.
Collapse
Affiliation(s)
- K W Buck
- Department of Biology, Imperial College of Science, Technology and Medicine, London, UK.
| |
Collapse
|
40
|
Okada Y. Historical overview of research on the tobacco mosaic virus genome: genome organization, infectivity and gene manipulation. Philos Trans R Soc Lond B Biol Sci 1999; 354:569-82. [PMID: 10212936 PMCID: PMC1692538 DOI: 10.1098/rstb.1999.0408] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Early in the development of molecular biology, TMV RNA was widely used as a mRNA [corrected] that could be purified easily, and it contributed much to research on protein synthesis. Also, in the early stages of elucidation of the genetic code, artificially produced TMV mutants were widely used and provided the first proof that the genetic code was non-overlapping. In 1982, Goelet et al. determined the complete TMV RNA base sequence of 6395 nucleotides. The four genes (130K, 180K, 30K and coat protein) could then be mapped at precise locations in the TMV genome. Furthermore it had become clear, a little earlier, that genes located internally in the genome were expressed via subgenomic mRNAs. The initiation site for assembly of TMV particles was also determined. However, although TMV contributed so much at the beginning of the development of molecular biology, its influence was replaced by that of Escherichia coli and its phages in the next phase. As recombinant DNA technology developed in the 1980s, RNA virus research became more detached from the frontier of molecular biology. To recover from this setback, a gene-manipulation system was needed for RNA viruses. In 1986, two such systems were developed for TMV, using full-length cDNA clones, by Dawson's group and by Okada's group. Thus, reverse genetics could be used to elucidate the basic functions of all proteins encoded by the TMV genome. Identification of the function of the 30K protein was especially important because it was the first evidence that a plant virus possesses a cell-to-cell movement function. Many other plant viruses have since been found to encode comparable 'movement proteins'. TMV thus became the first plant virus for which structures and functions were known for all its genes. At the birth of molecular plant pathology, TMV became a leader again. TMV has also played pioneering roles in many other fields. TMV was the first virus for which the amino acid sequence of the coat protein was determined and first virus for which cotranslational disassembly was demonstrated both in vivo and in vitro. It was the first virus for which activation of a resistance gene in a host plant was related to the molecular specificity of a product of a viral gene. Also, in the field of plant biotechnology, TMV vectors are among the most promising. Thus, for the 100 years since Beijerinck's work, TMV research has consistently played a leading role in opening up new areas of study, not only in plant pathology, but also in virology, biochemistry, molecular biology, RNA genetics and biotechnology.
Collapse
Affiliation(s)
- Y Okada
- Department of Bioscience, Teikyo University, Utsunomiya, Japan
| |
Collapse
|
41
|
Reichel C, Beachy RN. Tobacco mosaic virus infection induces severe morphological changes of the endoplasmic reticulum. Proc Natl Acad Sci U S A 1998; 95:11169-74. [PMID: 9736708 PMCID: PMC21614 DOI: 10.1073/pnas.95.19.11169] [Citation(s) in RCA: 148] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/1998] [Indexed: 11/18/2022] Open
Abstract
The tobacco mosaic virus (TMV) movement protein (MP) facilitates transport of virus infection between adjacent cells by modifying plasmodesmata. Previous studies suggested that the cytoskeleton and the endomembrane system are involved in this transport. We examined the effects of TMV infection on the endoplasmic reticulum (ER) in transgenic Nicotiana benthamiana that accumulate the green fluorescent protein (GFP) in the ER. Fluorescence microscopy was used to show that early in infection the ER undergoes dramatic morphological changes that include the conversion of tubular ER into large aggregates that revert to tubular ER in later stages of infection. These changes parallel MP accumulation and degradation. Furthermore, a fusion protein comprising MP fused to GFP accumulates in or on these large aggregates of ER. Expression of MP-GFP in the absence of virus infection led to the production of fluorescent aggregates of the same apparent form and size. Microsomes isolated from infected leaves contain MP. We show that the MP appears to behave as an integral ER membrane protein and is exposed on the cytosolic face of the ER. The importance of the association of MP with ER and its possible role in intracellular and intercellular spread of infection is discussed.
Collapse
Affiliation(s)
- C Reichel
- Division of Plant Biology, BCC 206, Department of Cell Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | |
Collapse
|
42
|
Más P, Beachy RN. Distribution of TMV movement protein in single living protoplasts immobilized in agarose. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1998; 15:835-842. [PMID: 29368812 DOI: 10.1046/j.1365-313x.1998.00253.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Recent studies of the tobacco mosaic virus (TMV) P30 movement protein (MP) fused with green fluorescent protein (GFP) during TMV infection described the involvement of elements of the cytoskeleton and components of the endoplasmic reticulum (ER) in the intracellular trafficking of MP:GFP from the sites of synthesis in the cytoplasm to plasmodesmata. To examine in real-time the pattern of synthesis, accumulation and degradation of MP:GFP, we developed a method to immobilize protoplasts in agarose such that they are maintained alive for extended periods of time. The pattern of MP:GFP accumulation in single living protoplasts visualized by confocal laser scanning microscopy (CLSM) was parallel to that previously described in a population of protoplasts harvested at different times post-infection. Additionally, a network of weakly fluorescent filaments, which are apparently different from microtubules, was observed to surround the nucleus and these filaments were associated with fluorescent bodies (previously identified as ER-derived structures). Later in infection, the fluorescent bodies increased in size and coalesced to form larger structures that accumulated near the periphery of the cells while highly fluorescent non-cortical filaments were observed distributed in the cytoplasm. The putative involvement of these filaments in targeting the fluorescent bodies to the periphery of the cell is discussed. Studies of single, embedded protoplasts make it possible to observe changes in amount and subcellular localization of viral and other proteins.
Collapse
Affiliation(s)
- Paloma Más
- The Scripps Research Institute, Division of Plant Biology, Department of Cell Biology, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Roger N Beachy
- The Scripps Research Institute, Division of Plant Biology, Department of Cell Biology, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
43
|
Nelson RS, van Bel AJE. The Mystery of Virus Trafficking Into, Through and Out of Vascular Tissue. PROGRESS IN BOTANY 1998. [DOI: 10.1007/978-3-642-80446-5_17] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
44
|
Deom CM, He XZ. Second-site reversion of a dysfunctional mutation in a conserved region of the tobacco mosaic tobamovirus movement protein. Virology 1997; 232:13-8. [PMID: 9185584 DOI: 10.1006/viro.1997.8554] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The N-terminal two-thirds of tobamovirus movement proteins (MPs) contain two well conserved regions. Within region I (amino acids 56-96) is an area predicted by computer analysis to have loop secondary structure (amino acids 76-87). A single or two double amino acid mutations were introduced into the loop in region I of the TMV MP to destabilize the structure. The three mutant MPs were defective in movement function. The single amino acid mutation resulted in a Pro81-->Ser substitution. The mutant virus, TP81S, containing the Pro81-->Ser substitution, was propagated on a transgenic line of Nicotiana tabacum that expresses the sunn-hemp mosaic tobamovirus MP. Inoculation of virus progeny from the transgenic plants onto hypersensitive N. tabacum indicated the presence of infectious virus at a low frequency. Necrotic lesions were detected at 4 days postinoculation, 2 days later than those induced by wild-type TMV. Inoculation of virus extracted from necrotic lesions onto N. tabacum resulted in a delayed and attenuated systemic infection relative to that induced by TMV, indicating that a second-site mutation restored movement function rather than a reversion of the original mutation. Sequence analysis revealed that the revertant MP gene had two additional amino acid substitutions, a Thr104-->Ile and a Arg167-->Lys. Introduction of the amino acid substitutions individually or in combination into the MP of TP81S indicated that both substitutions were required for the revertant phenotype. The data indicate that structure within region I is important in maintaining an active conformation for functional MP, that changes outside region I can compensate for alterations within the region, and suggest that region I may interact with a distal portion of the protein.
Collapse
Affiliation(s)
- C M Deom
- Department of Plant Pathology, The University of Georgia, Athens 30602, USA.
| | | |
Collapse
|
45
|
Kim KH, Hemenway C. Mutations that alter a conserved element upstream of the potato virus X triple block and coat protein genes affect subgenomic RNA accumulation. Virology 1997; 232:187-97. [PMID: 9185602 DOI: 10.1006/viro.1997.8565] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The putative subgenomic RNA (sgRNA) promoter regions upstream of the potato virus X (PVX) triple block and coat protein (CP) genes contain sequences common to other potexviruses. The importance of these sequences to PVX sgRNA accumulation was determined by inoculation of Nicotiana tabacum NT1 cell suspension protoplasts with transcripts derived from wild-type and modified PVX cDNA clones. Analyses of RNA accumulation by S1 nuclease digestion and primer extension indicated that a conserved octanucleotide sequence element and the spacing between this element and the start-site for sgRNA synthesis are critical for accumulation of the two major sgRNA species. The impact of mutations on CP sgRNA levels was also reflected in the accumulation of CP. In contrast, genomic minus- and plus-strand RNA accumulation were not significantly affected by mutations in these regions. Studies involving inoculation of tobacco plants with the modified transcripts suggested that the conserved octanucleotide element functions in sgRNA accumulation and some other aspect of the infection process.
Collapse
Affiliation(s)
- K H Kim
- Department of Biochemistry, North Carolina State University, Raleigh 27695-7622, USA
| | | |
Collapse
|
46
|
Roth DA, He X. Viral-dependent phosphorylation of a dsRNA-dependent kinase. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 1994; 14:28-47. [PMID: 7914805 DOI: 10.1007/978-3-642-78549-8_3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- D A Roth
- Dept. Plant, Soil and Insect Sciences, University of Wyoming, Laramie 82071
| | | |
Collapse
|
47
|
Abstract
The 30-kDa protein of tobacco mosaic virus, which is involved in cell-to-cell movement function, is phosphorylated in tobacco protoplasts. To investigate which portion of the protein is phosphorylated we inoculated several truncated 30-kDa protein mutants into protoplasts and determined whether or not those truncated proteins are phosphorylated. The results showed that amino acid residues 234-261 of the 30-kDa protein are required for this phosphorylation.
Collapse
Affiliation(s)
- Y Watanabe
- Department of Biosciences, Teikyo University, Tochigi, Japan
| | | | | |
Collapse
|
48
|
Perl M, Gafni R, Beachy RN. Phosphodiesterase activities in transgenic tobacco plants associated with the movement protein of tobacco mosaic virus. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 1992; 84:730-734. [PMID: 24201366 DOI: 10.1007/bf00224177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/1992] [Accepted: 03/10/1992] [Indexed: 06/02/2023]
Abstract
Hydrolytic activities of leaf extracts from normal and transgenic plants, with (+ MP) and without (-MP) the movement protein of tobacco mosaic virus, were examined. In the + MP transgenic plants, as compared with non-transgenic and - MP plants, higher hydrolytic activities were found on the following substrates: bis-(nitrophenyl)-phosphate (BPNPP, phosphodiesterase), p-nitrophenyl-(phenyl)-phosphate (PNPPP, nucleotidephosphodiesterase) and thymidine-3'-monophosphate p-nitrophenyl ester (T3MPP; 3'nucleotide phosphodiesterase.) The + MP plant lines, as compared with other transgenic plants, exhibited higher nucleotide-phosphodiesterase activity in the soluble as well as in the membrane fraction. Substrate concentration kinetic studies revealed the presence of a nucleotide-phospho-diesterase with a high substrate affinity in the +MP extracts in addition to the enzyme with a relatively low substrate affinity present also in the - MP transgenic plants. This "high affinity" enzyme could be removed from the soluble fraction by precipitation with anti-MP serum, indicating its possible association with the movement protein.
Collapse
Affiliation(s)
- M Perl
- Department of Biology, Washington University, Box 1137, 63130, St. Louis, MO, USA
| | | | | |
Collapse
|
49
|
Abstract
It is clear that the genetic information responsible for the phenomenon we think of as TMV not only consists of the genes carried in the viral genome, but that numerous plant genes are equally important in viral gene functions. These gene products not only allow the virus to replicate, but may effect functions of evolution that determine what the virus is. Even the processes of pathogenesis and resistance appear to involve similarly precise plant interactions. The challenge of the future is to identify the plant genes involved in these precise interactions and to understand both components of genetic information that comprise plant viruses.
Collapse
Affiliation(s)
- W O Dawson
- Department of Plant Pathology, University of California, Riverside 92521
| |
Collapse
|
50
|
David C, Gargouri-Bouzid R, Haenni AL. RNA replication of plant viruses containing an RNA genome. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1992; 42:157-227. [PMID: 1574587 DOI: 10.1016/s0079-6603(08)60576-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- C David
- Institut Jacques Monod, Paris, France
| | | | | |
Collapse
|