1
|
Duggan JM, Okonta H, Elnaggar D, French J, West R, Chakraborty J. Retrovirus-induced lymphomagenesis: a correlation between disease pathogenesis and flow cytometric analysis. J Gen Virol 2012; 93:2028-2036. [PMID: 22673934 DOI: 10.1099/vir.0.043661-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Perinatal infection with a temperature-sensitive mutant (ts-1) of Moloney murine leukemia virus (MoMuLV) results in massive splenomegaly and thymomegaly in mice and development of lymphoma in >55 % of infected pups. Previous flow cytometry studies showed a decrease in CD4(+) cells in perinatally infected pups, but cell population changes in infected animals with lymphoma compared with infected animals without lymphoma has not yet been reported. In the current study, BALB/c mice were infected with ts-1 through breast milk transmission and observed until development of clinical signs and symptoms of lymphoma and/or symptomatic ts-1 infection. Flow cytometry studies were performed on blood, spleen and thymus samples and correlated with gross morphology and histological changes, resulting from the development of lymphoma. Infected animals with lymphoma had significant decreases in CD4(+) and CD8(+) cell counts in blood and spleen compared with controls. The spleens of infected animals without lymphoma showed a decrease in CD4(+) and CD8(+) cell counts, but this was not significant compared with controls. In the thymus, CD4(+) and CD8(+) cell counts also decreased, but this was not significant in infected animals with and without lymphoma compared with controls. Markers of myeloid cell dysfunction increased in the thymus of animals with infection with and without lymphoma compared with controls. Thus, immunosuppression and CD4(+)/CD8(+) cell decreases in the spleen and thymus are associated with malignant transformation and development of lymphoma in this animal model.
Collapse
Affiliation(s)
- Joan M Duggan
- Department of Physiology and Pharmacology, University of Toledo, HSC, Toledo, OH 43614, USA.,Department of Medicine, Division of Infectious Diseases, University of Toledo, HSC, Toledo, OH 43614, USA
| | - Henry Okonta
- Department of Physiology and Pharmacology, University of Toledo, HSC, Toledo, OH 43614, USA.,Department of Medicine, Division of Infectious Diseases, University of Toledo, HSC, Toledo, OH 43614, USA
| | - Dina Elnaggar
- Department of Physiology and Pharmacology, University of Toledo, HSC, Toledo, OH 43614, USA
| | - Juliet French
- Department of Physiology and Pharmacology, University of Toledo, HSC, Toledo, OH 43614, USA
| | - Richard West
- Van Andel Research Institute, Flow Cytometry Core Facility, Grand Rapids, MI. 49503, USA
| | - Joana Chakraborty
- Department of Physiology and Pharmacology, University of Toledo, HSC, Toledo, OH 43614, USA
| |
Collapse
|
2
|
MoMuLV-ts-1: A Unique Mouse Model of Retrovirus-Induced Lymphoma Transmitted by Breast Milk. Adv Virol 2011; 2011:813651. [PMID: 22312355 PMCID: PMC3265316 DOI: 10.1155/2011/813651] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 05/16/2011] [Accepted: 06/06/2011] [Indexed: 11/21/2022] Open
Abstract
Our laboratory has developed a murine model of lymphoma via breast milk transmission of MoMuLV-ts-1 (Moloney murine leukemia virus-temperature sensitive mutant-1). Uninfected offspring suckled from infected surrogate mothers become infected and develop lymphoma. Multiple gene integration sites of ts-1 into the infected mouse genome including tacc3, aurka, ndel1, tpx2, p53, and rhamm were identified, and mRNA expressions were quantitated. These genes produce centrosomal proteins, which may be involved in abnormal chromosomal segregation leading to aneuploidy or multiploidy, thus causing lymphoma. Since there is no report to date on this retroviral model leading to centrosomal abnormality, and causing lymphoma development, this is a valuable and unique model to study the centrosomal involvement in lymphomagenesis.
Collapse
|
3
|
Reddy PVB, Lungu G, Kuang X, Stoica G, Wong PKY. Neuroprotective effects of the drug GVT (monosodium luminol) are mediated by the stabilization of Nrf2 in astrocytes. Neurochem Int 2010; 56:780-8. [PMID: 20211212 DOI: 10.1016/j.neuint.2010.02.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 02/19/2010] [Accepted: 02/28/2010] [Indexed: 12/19/2022]
Abstract
Oxidative stress is implicated in various kinds of neurological disorders, including human immunodeficiency virus (HIV) associated dementia (HAD). Our laboratory has been studying the murine retrovirus ts1, a pathogenic mutant of the Moloney murine leukemia virus (MoMuLV), as a model for HAD. Like HIV in humans, ts1 induces oxidative stress and progressive neurodegeneration in mice. We have shown previously that an antioxidant and anti-inflammatory drug GVT or MSL (monosodium luminol) suppresses ts1-induced oxidative stress, attenuates the development of spongiform encephalopathy, and delays hind limb paralysis in infected mice. It is known that upregulation of the nuclear transcription factor NF-E2-related factor 2 (Nrf2) is involved in upregulating cellular antioxidant defenses. Since Nrf2 is associated with elevation of antioxidant defenses in general, and since GVT suppresses ts1-induced neurodegeneration, our aim in this study was to determine whether GVT neuroprotection is linked to Nrf2 upregulation in the brain. We report here that GVT upregulates the levels of Nrf2, both in primary astrocyte cultures and in brainstem of ts1-infected mice. Significant upregulation of Nrf2 expression by GVT occurs in both the cytosolic and nuclear fractions of cultured astrocytes and brainstem cells. Notably, although GVT treatment increases Nrf2 protein levels in cultured astrocytes and brainstem tissues, Nrf2 mRNA levels are not altered. This suggests that the neuroprotective effects of GVT may be mediated by the stabilization of the Nrf2 protein, allowing continuous upregulation of Nrf2 levels in the astrocytes.
Collapse
Affiliation(s)
- Pichili Vijaya Bhaskar Reddy
- Department of Carcinogenesis, The University of Texas, MD Anderson Cancer Center, Science Park-Research Division, Smithville, TX 78957, USA
| | | | | | | | | |
Collapse
|
4
|
Scofield VL, Yan M, Kuang X, Kim SJ, Crunk D, Wong PKY. The drug monosodium luminol (GVT) preserves thymic epithelial cell cytoarchitecture and allows thymocyte survival in mice infected with the T cell-tropic, cytopathic retrovirus ts1. Immunol Lett 2009; 122:159-69. [PMID: 19183564 DOI: 10.1016/j.imlet.2008.12.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Revised: 11/14/2008] [Accepted: 12/01/2008] [Indexed: 02/03/2023]
Abstract
A mutant of MoMuLV, called ts1, causes an AIDS-like syndrome in susceptible strains of mice. In mice infected at birth, thymic atrophy, CD4+ T cell loss, body wasting, and death occur by approximately 30-40 days postinfection (dpi). We have shown previously that the death of ts1-infected cells is not caused by viral replication per se, but by oxidative stress and apoptosis following their accumulation the ts1 viral envelope precursor protein, gPr80(env). In infected mice treated with the antioxidant monosodium alpha-luminol (GVT), T cell loss and thymic atrophy are delayed for many weeks, and body wasting and death do not occur until long after infected, untreated control mice have died. We show here that GVT treatment of ts1-infected mice maintains the thymic epithelial cell (TEC) cytoarchitecture and cytokeratin gradients required for thymocyte differentiation. It also suppresses thymocyte reactive oxygen species (ROS) levels, upregulates and stabilizes levels of the antioxidant-regulating transcription factor Nrf2, and prevents accumulation of gPr80(env) in thymocytes. We conclude that GVT treatment can make ts1 a non-cytopathic virus for thymocytes, although it cannot prevent thymocyte infection. Since oxidative stress also contributes to the loss of T cells in HIV-AIDS, the antioxidant effects of GVT may make it a useful therapeutic adjunct to HAART treatment.
Collapse
Affiliation(s)
- Virginia L Scofield
- Department of Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Science Park-Research Division, Smithville, TX 78957, USA.
| | | | | | | | | | | |
Collapse
|
5
|
The drug monosodium luminol (GVT) preserves crypt-villus epithelial organization and allows survival of intestinal T cells in mice infected with the ts1 retrovirus. Immunol Lett 2009; 122:150-8. [PMID: 19186189 DOI: 10.1016/j.imlet.2008.12.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Revised: 11/13/2008] [Accepted: 12/01/2008] [Indexed: 12/27/2022]
Abstract
Of the cytopathic retroviruses that affect mammals, including HIV-1, many selectively infect CD4+ T cells and cause immunosuppressive syndromes. These diseases destroy both the thymus and the small and large intestines, after infecting and killing T-lineage cells in both tissues. A mutant of the murine leukemia retrovirus MoMuLV-TB, called ts1, causes this syndrome in susceptible strains of mice. In FVB/N strain mice that are infected at birth, thymic atrophy, CD4+ T cell loss, intestinal collapse, body wasting, and death occur by approximately 30-40 days postinfection (dpi). Apoptosis of ts1-infected T-lineage cells, in the thymus, peripheral lymphoid system and intestines is caused by accumulation of the ts1 mutant viral envelope preprotein gPr80(env), which is inefficiently cleaved into the mature viral proteins gp70 and PrP15E. We show here that ts1 infection in the small intestine is followed by loss of intestinal epithelial cell (IEC) thyroid-stimulating hormone (TSH) and cell cycling gradients (along the crypt-villus axes), accumulation of gPr80(env) in intestinal cells, apoptosis of developing T cells in the lamina propria (LP), and intestinal collapse by approximately 30 dpi. In infected mice treated with the antioxidant drug monosodium luminol (GVT), however, normal intestinal epithelial cell gradients are still in place at 30 dpi, and IECs covering both the crypts and villi contain large amounts of the antioxidant transcription factor Nrf2. In addition, no apoptotic cells are present, and accumulated gpr80(env) is absent from the tissue at this time. We conclude that GVT treatment can make ts1 a noncytopathic virus for intestinal lymphoid cells, as it does for thymocytes [25]. As in the thymus, GVT may protect the intestine by reducing oxidant stress in infected intestinal T cells, perhaps by prevention of gPr80(env) accumulation via Nrf2 upregulation in the IECs. These results identify GVT as a potential therapy for intestinal diseases or inflammatory conditions, including HIV-AIDS, in which oxidative stress is a triggering or exacerbating factor.
Collapse
|
6
|
Lungu GF, Stoica G, Wong PKY. Down-regulation of Jab1, HIF-1alpha, and VEGF by Moloney murine leukemia virus-ts1 infection: a possible cause of neurodegeneration. J Neurovirol 2008; 14:239-51. [PMID: 18569458 DOI: 10.1080/13550280802093919] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Moloney murine leukemia virus-temperature sensitive (MoMuLV-ts1)-mediated neuronal death is a result of both loss of glial support and release of cytokines and neurotoxins from ts1-infected glial cells. Here the authors propose vascular endothelial growth factor (VEGF) down-regulation as another contributory factor in neuronal degeneration induced by ts1 infection. To determine how ts1 affects VEGF expression in ts1-infected brain, the authors examined the expression of several proteins that are important in regulating the expression of VEGF. The authors found significant decreases in Jun-activating domain-binding protein 1 (Jab1), hypoxia-inducible factor (HIF)-1alpha, and VEGF levels and increases in p53 protein levels in ts1-infected brains compared to noninfected control brains. The authors suggest that a decrease Jab1 expression in ts1 infection leads to accumulation of p53, which binds to HIF-1alpha to accelerate its degradation. A rapid degradation of HIF-1alpha leads to decreased VEGF production and secretion. Considering that endothelial cells are the most conspicuous in virus replication and production in ts1 infection, but are not killed by the infection, the authors examined the expression of these proteins using infected and noninfected mouse cerebrovascular endothelial (CVE) cells. The ts1- infected CVE cells showed decreased Jab1, HIF-1alpha, and VEGF mRNA and protein levels and increased p53 protein levels compared with noninfected cells, consistent with the results found in vivo. These results confirm that ts1 infection results in insufficient secretion of VEGF from endothelial cells and may result in decreased neuroprotection. This study suggested that ts1-mediated neuropathology in mice may result from changes in expression and activity of Jab1, p53, and HIF-1alpha, with a final target on VEGF expression and neuronal degeneration.
Collapse
Affiliation(s)
- Gina F Lungu
- Department of Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, Texas, USA
| | | | | |
Collapse
|
7
|
Up-regulation of pro-nerve growth factor, neurotrophin receptor p75, and sortilin is associated with retrovirus-induced spongiform encephalomyelopathy. Brain Res 2008; 1208:204-16. [PMID: 18395188 DOI: 10.1016/j.brainres.2008.02.085] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2007] [Revised: 02/15/2008] [Accepted: 02/24/2008] [Indexed: 11/24/2022]
Abstract
The progressive spongiform encephalomyelopathy caused by ts1, a neuropathogenic temperature-sensitive mutant of Moloney murine leukemia virus (MoMuLV-ts1), results in motor neuronal loss without direct neuronal infection. We have previously reported that ts1-mediated neuronal degeneration in mice has a multifactorial pathogenesis. Here, we report that in the ts1-infected central nervous system (CNS) activated neural cells showed intense immunoreactivity for pro-nerve growth factor (proNGF), neurotrophin receptor p75 (p75(NTR)), and sortilin in the areas showing spongiform changes. Since recent studies suggested that proNGF is more active than mature NGF in inducing neuronal death after binding to co-receptors p75(NTR)/sortilin, we hypothesized that overexpression of proNGF, sortilin and p75(NTR) play a role in ts1-induced neurodegeneration. We found that proNGF and p75(NTR), but not sortilin, mRNA and protein were significantly elevated in ts1-infected brainstem compared to non-infected control tissue. There was extensive tyrosine phosphorylation of p75(NTR), a marker for its activation, in ts1-infected brainstem with abundance in degenerating neurons. We explored whether the increase in the in vivo proNGF expression also occurs in cultured immortalized C1 astrocytes infected by ts1 virus. The proNGF level was significantly increased in infected C1 cells compared to control cells only after addition of fibroblast growth factor (FGF-1). We also showed increased expression of FGF-1 in the CNS of ts1-infected mice. Our findings suggest that the FGF-1 signaling pathway may be responsible for the overexpression of proNGF in neural cells during pathogenesis of ts1-induced neurodegeneration. This study provides new in vivo insights into the possible role of proNGF and its receptors in ts1-induced neurodegeneration.
Collapse
|
8
|
Chen X, Da R, Jin X, Song W, Li X, Fu Y, Ling H, Zhong Z, Yamamura K, Ishimoto A, Zhang F. Cross-species infectivity and pathogenesis of the Friend murine leukemia virus complex in Syrian hamsters. Virus Res 2007; 130:281-4. [PMID: 17602778 DOI: 10.1016/j.virusres.2007.05.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2007] [Revised: 05/09/2007] [Accepted: 05/14/2007] [Indexed: 10/23/2022]
Abstract
To investigate cross-species infectivity and pathogenesis of Friend murine leukemia virus (MuLV) in hamsters, we infected newborn Syrian hamsters with ecotropic Friend MuLV that was passaged in BALB/c mice for approximately 30 years. During acute infection, 39.5% of newborn Syrian hamsters developed severe growth interruption and weight loss, spleen atrophy, severe lymphocyte depletion, and massive viral antigen loads in the spleen. The lymph nodes and thymuses were observed in all diseased hamsters. Ecotropic Friend MuLV was rescued from the sera and spleen and heart extracts of the diseased hamsters, and the same disease was confirmed by induction of erythroleukemia in BALB/c mice. Our results demonstrate that an ecotropic MuLV after extended passage in vivo to infect hamster cells that are resistant to infection by wild type MuLV, causing pathologic lesions and a wasting syndrome in newborn hamsters in vivo. This may occur with variants of Friend MuLV that have lower infectivity in hamster cells and are not cleared by the immune system of newborn hamsters. These findings suggest the potential danger of the interspecies transmission and pathogenesis of heterologous retroviruses in humans.
Collapse
Affiliation(s)
- Xiaobei Chen
- Department of Microbiology, Pathology, Harbin Medical University, Bio-Pharmacological Key-Laboratory, Heilongjiang Province 150086, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Duggan J, Okonta H, Chakraborty J. Transmission of Moloney murine leukemia virus (ts-1) by breast milk. J Gen Virol 2006; 87:2679-2684. [PMID: 16894208 DOI: 10.1099/vir.0.82015-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A murine model has been developed to study maternal transmission of the temperature-sensitive Moloney murine leukemia virus (ts-1). The goal of this study was to confirm early and late mother-to-offspring transmission of the virus and demonstrate transmission via breast milk. A series of six experiments was performed using six groups of BALB/c mice. Group 1 consisted of pups born to ts-1-infected mothers removed at birth to suckle from surrogate uninfected mothers. Groups 2 and 5 consisted of pups born to ts-1-infected mothers that suckled from ts-1-infected mothers (surrogate and biological). Group 3 consisted of non-infected pups removed at birth to suckle from ts-1-infected mothers. Groups 4 and 6 consisted of non-infected pups suckled from non-infected mothers. The combined in utero, intrapartum and breast-milk infection rate was 100 % to the offspring (groups 2 and 5). The in utero to early post-partum group (group 1) had an infection rate of 78 %. Breast milk alone (group 3) resulted in a 97 % infection rate. Control groups (groups 4 and 6) had a 0 % infection rate. The relative frequency of maternal CD4(+) cells in peripheral blood mononuclear cells was consistently lower in infected mothers, whilst offspring did not show a significant decrease in CD4(+) frequency. Pups infected via breast milk had a lower CD4(+) frequency (group 3) than those infected by the uterine and/or intrapartum route (group 1). Breast milk from ts-1-infected mothers appears to be highly infectious for neonatal BALB/c mice.
Collapse
Affiliation(s)
- Joan Duggan
- Department of Medicine, Medical University of Ohio, 3000 Arlington Avenue, Toledo, OH 43614, USA
| | - Henry Okonta
- Department of Medicine, Medical University of Ohio, 3000 Arlington Avenue, Toledo, OH 43614, USA
| | - Joana Chakraborty
- Department of Physiology and Pharmacology, Medical University of Ohio, 3000 Arlington Avenue, Toledo, OH 43614, USA
| |
Collapse
|
10
|
Jiang Y, Scofield VL, Yan M, Qiang W, Liu N, Reid AJ, Lynn WS, Wong PKY. Retrovirus-induced oxidative stress with neuroimmunodegeneration is suppressed by antioxidant treatment with a refined monosodium alpha-luminol (Galavit). J Virol 2006; 80:4557-69. [PMID: 16611916 PMCID: PMC1472001 DOI: 10.1128/jvi.80.9.4557-4569.2006] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Oxidative stress is involved in many human neuroimmunodegenerative diseases, including human immunodeficiency virus disease/AIDS. The retrovirus ts1, a mutant of Moloney murine leukemia virus, causes oxidative stress and progressive neuro- and immunopathology in mice infected soon after birth. These pathological changes include spongiform neurodegeneration, astrogliosis, thymic atrophy, and T-cell depletion. Astrocytes and thymocytes are directly infected and killed by ts1. Neurons are not infected, but they also die, most likely as an indirect result of local glial infection. Cytopathic effects of ts1 infection in cultured astrocytes are associated with accumulation of the viral envelope precursor protein gPr80env in the endoplasmic reticulum (ER), which triggers ER stress and oxidative stress. We have reported (i) that activation of the Nrf2 transcription factor and upregulation of antioxidative defenses occurs in astrocytes infected with ts1 in vitro and (ii) that some ts1-infected astrocytes survive infection by mobilization of these pathways. Here, we show that treatment with a refined monosodium alpha-luminol (Galavit; GVT) suppresses oxidative stress and Nrf2 activation in cultured ts1-infected astrocytes. GVT treatment also inhibits the development of spongiform encephalopathy and gliosis in the central nervous system (CNS) in ts1-infected mice, preserves normal cytoarchitecture in the thymus, and delays paralysis, thymic atrophy, wasting, and death. GVT treatment of infected mice reduces ts1-induced oxidative stress, cell death, and pathogenesis in both the CNS and thymus of treated animals. These studies suggest that oxidative stress mediates ts1-induced neurodegeneration and T-cell loss.
Collapse
Affiliation(s)
- Yuhong Jiang
- The University of Texas M. D. Anderson Cancer Center, Science Park-Research Division, P.O. Box 389, Smithville, Texas 78957, USA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Qiang W, Kuang X, Liu J, Liu N, Scofield VL, Reid AJ, Jiang Y, Stoica G, Lynn WS, Wong PKY. Astrocytes survive chronic infection and cytopathic effects of the ts1 mutant of the retrovirus Moloney murine leukemia virus by upregulation of antioxidant defenses. J Virol 2006; 80:3273-84. [PMID: 16537594 PMCID: PMC1440401 DOI: 10.1128/jvi.80.7.3273-3284.2006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ts1 mutant of Moloney murine leukemia virus (MoMuLV) induces a neurodegenerative disease in mice, in which glial cells are infected by the retrovirus but neurons are not. ts1 infection of primary astrocytes, or of the immortalized astrocytic cell line C1, results in accumulation of the ts1 gPr80(env) envelope protein in the endoplasmic reticulum (ER), with ER and oxidative stress. Notably, only about half of the infected astrocytes die in these cultures, while the other half survive, continue to proliferate, and continue to produce virus. To determine how these astrocytes survive ts1 infection in culture, we established a chronically infected subline of the living cells remaining after the death of all acutely infected cells in an infected C1 cell culture (C1-ts1-S). We report here that C1-ts1-S cells proliferate more slowly, produce less virus, show reduced H2O2 levels, increase their uptake of cystine, and maintain higher levels of intracellular GSH and cysteine compared to acutely infected or uninfected C1 cells. C1-ts1-S cells also upregulate their thiol antioxidant defenses by activation of the transcription factor NF-E2-related factor 2 (Nrf2) and its target genes. Interestingly, despite maintenance of higher levels of intracellular reduced thiols, C1-ts1-S cells are more sensitive to cystine deprivation than uninfected C1 cells. We conclude that some ts1-infected astrocytes survive and adapt to virus-induced oxidative stress by successfully mobilizing their thiol redox defenses.
Collapse
Affiliation(s)
- Wenan Qiang
- Department of Carcinogenesis, The University of Texas M. D. Anderson Cancer Center, Science Park-Research Division, P.O. Box 389, Smithville, TX 78957, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Kim HT, Qiang W, Liu N, Scofield VL, Wong PKY, Stoica G. Up-regulation of astrocyte cyclooxygenase-2, CCAAT/enhancer-binding protein-homology protein, glucose-related protein 78, eukaryotic initiation factor 2 alpha, and c-Jun N-terminal kinase by a neurovirulent murine retrovirus. J Neurovirol 2005; 11:166-79. [PMID: 16036795 DOI: 10.1080/13550280590922810] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In susceptible strains of mice, infection with the mutant retrovirus MoMuLV-ts1 causes a neurodegeneration and immunodeficiency syndrome that resembles human human immunodeficiency virus-acquired immunodeficiency syndrome (HIV-AIDS). In this study the authors show increased expression of cyclooxygenase-2 (COX-2) in the brainstem tissues of ts1-infected mice. Up-regulated central nervous system (CNS) levels of this enzyme are associated with HIV-associated dementia and other inflammatory and neurodegenerative diseases such as amyotrophic lateral sclerosis, Alzheimer's disease, and Parkinson's disease. In brainstem sections, the authors find that astrocytes surrounding spongiform lesions contain increased amounts of immunoreactive COX-2. COX-2 is also up-regulated in cultured ts1-infected cells from the C1 astrocytic cell line, and activation of c-Jun N-terminal kinase, or JNK, pathway. Markers of endoplasmic reticulum (ER) stress, specifically the CCAAT/enhancer-binding protein (CHOP), the glucose-related protein 78 (GRP78), and phosphorylated eukaryotic initiation factor 2 alpha (eIF2 alpha), were also up-regulated in ts1-infected C1 astrocytes. Up-regulation of COX-2 and the above ER signaling factors was reversed by treatment of the infected cells with curcumin which specifically inhibits the JNK/c-Jun pathway. These findings indicate that the JNK/c-Jun pathway is most likely responsible for COX-2 expression induced by ts1 in astrocytes, and that ts1 infection in astrocytes may lead to up-regulation of both inflammatory and ER stress pathways in the central nervous system. Because COX-2 inhibitors are now widely used to treat inflammatory conditions in animals and humans, this finding suggests that these drugs may be useful for therapeutic intervention in neurodegenerative syndromes as well.
Collapse
Affiliation(s)
- Hun-Taek Kim
- Department of Pathobiology, Texas A&M University, College Station, Texas 78957, USA
| | | | | | | | | | | |
Collapse
|
13
|
Kim HT, Waters K, Stoica G, Qiang W, Liu N, Scofield VL, Wong PKY. Activation of endoplasmic reticulum stress signaling pathway is associated with neuronal degeneration in MoMuLV-ts1-induced spongiform encephalomyelopathy. J Transl Med 2004; 84:816-27. [PMID: 15094714 DOI: 10.1038/labinvest.3700104] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Temperature-sensitive mutant of Moloney murine leukemia virus-TB (MoMuLV-ts1)-mediated neuronal death in mice is likely due to both loss of glial support and release of cytokines and neurotoxins from ts1-infected glial cells. Cytotoxic mediators present in ts1-induced spongiform lesions may generate endoplasmic reticulum (ER) stress, which has been implicated in the pathogenesis of a variety of neurodegenerative diseases. We investigated whether ER stress signaling is involved in ts1-mediated neuronal loss in the brain of infected mice. ts1-infected brainstems were found to show significant increases in phosphorylation of the double-stranded RNA-dependent protein kinase-like ER kinase and eukaryotic initiation factor 2-alpha. In addition, increased expression of growth arrest DNA damage 153 (GADD153), glucose-regulated protein 78, and caspase-12 were accompanied by increases in processing of caspase-12 and its downstream target, caspase-3. All of these events are markers of ER stress. We observed that GADD153 and cleaved caspase-3 were present in degenerative neurons in the lesions of infected mice, but not in uninfected controls. Phosphorylated calmodulin-dependent protein kinase II-alpha was significantly increased, and was coexpressed with GADD153 in a large proportion of neurons undergoing early and advanced degenerative changes. Finally, neuronal degeneration in spongiform lesions was associated with increase in calcium (Ca(2+)) accumulation in mitochondria. Together, these results suggest that ts1 infection-mediated neuronal degeneration in mice may result from activation of ER stress signaling pathways, presumably initiated by perturbation of Ca(2+) homeostasis. Our findings highlight the importance of the ER stress signaling pathway in ts1 infection-induced neuronal degeneration and death.
Collapse
Affiliation(s)
- Hun-Taek Kim
- Department of Pathobiology, Texas A&M University, College Station, TX 77843, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
Mechanism of maternal retroviral transmission remains an unsolved problem. The current investigation is a part of our ongoing research on vertical transmission of MoMuLV-TB ts1 in BALB/c mice. A total of 270 adult mice and 165 fetuses were used. Forty-four experimental mice were injected with 0.1 mL of 4.0 x 10(6) ffu/mL of ts1 virus at 72 h after birth; 24 controls were injected with DMEM. Almost half of the females went through two rounds of pregnancies. In the first round, 135 experimental and 57 control pups were produced. Forty-three experimental and 20 control pups were followed until they developed clinical symptoms. The second round of pregnancy produced a total of 46 mid-gestational and 119 full-term fetuses. PCR, and light and electron microscopy were performed to evaluate viral transmission. Overall, 99% vertical transmission occurred in pups of infected mothers. Twelve percent of mid-gestational and 39% full-term fetuses were PCR positive. We have established that, if mothers are infected with ts1 virus at 72 h after birth, then nearly 100% vertical transmission occurs, via in utero, intrapartum, or breast milk. Thirty-nine percent transmission occurred in utero alone. This is an excellent model to study the transplacental and post-gestational transmission of retroviruses, such as ts1.
Collapse
Affiliation(s)
- Joan Duggan
- Department of Physiology and Molecular Medicine, Medical College of Ohio, Toledo, Ohio 43614-5804, USA
| | | | | |
Collapse
|
15
|
Kay DG, Yue P, Hanna Z, Jothy S, Tremblay E, Jolicoeur P. Cardiac disease in transgenic mice expressing human immunodeficiency virus-1 nef in cells of the immune system. THE AMERICAN JOURNAL OF PATHOLOGY 2002; 161:321-35. [PMID: 12107117 PMCID: PMC1850688 DOI: 10.1016/s0002-9440(10)64184-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/28/2002] [Indexed: 11/28/2022]
Abstract
We previously reported that a severe acquired immune deficiency syndrome-like disease develops in transgenic (Tg) mice expressing the human immunodeficiency virus-1 in its natural target cells: immature and mature CD4(+) T cells and cells of the macrophage/dendritic lineage. Here, we show that these mice also develop cardiac disease, characterized most prominently by a focal myocytolysis, occasionally by myocarditis and by deposition of endogenous immunoglobulin on cardiomyocytes. Microfil perfusion demonstrated widespread coronary arteriospasm and echocardiographic analysis revealed depressed cardiac function in Tg mice. A higher (but still modest) level of cardiomyocyte apoptosis was detected in Tg as compared to non-Tg hearts. Tg expression was detected in some of the infiltrating mononuclear cells, but not in cardiomyocytes or in cells of the heart vessels, suggesting a human immunodeficiency virus-1-induced disease process mediated by cells of the immune system. The similarity of the heart disease observed in these Tg mice to that observed in acquired immune deficiency syndrome patients suggests a common pathogenesis.
Collapse
Affiliation(s)
- Denis G Kay
- Laboratory of Molecular Biology, Clinical Research Institute of Montreal, Montreal, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
16
|
Kim HT, Tasca S, Qiang W, Wong PKY, Stoica G. Induction of p53 accumulation by Moloney murine leukemia virus-ts1 infection in astrocytes via activation of extracellular signal-regulated kinases 1/2. J Transl Med 2002; 82:693-702. [PMID: 12065679 DOI: 10.1097/01.lab.0000017373.82871.45] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
SUMMARY We previously reported that Moloney murine leukemia virus-ts1-mediated neuronal degeneration in mice is likely a result of both loss of glial support and release of cytokines and neurotoxins from ts1-infected glial cells. Viral infection in some cell types regulates expression of p53 protein, a key regulator of cell proliferation and death. Therefore, we hypothesized that p53 and its dependent genes may be linked with ts1-mediated neuropathology. We examined the presence of p53 and its dependent gene product, a proapoptotic protein bax-alpha, in ts1-induced spongiform encephalomyelopathy. Compared with controls, the lesions of infected animals contained increased levels of p53 and bax-alpha in astrocytes, as shown by strong nuclear p53 and cytoplasmic bax-alpha immunoreactivity in astrocytes. To determine how ts1 affects p53 expression in astrocytes, we then assessed the expression of p53 and its dependent genes, such as bax-alpha and p21, in infected and uninfected immortalized C1 astrocytes and studied possible pathways responsible for p53 accumulation in infected astrocytes. In these studies using mitogen-activated protein kinase inhibitors, infection-induced increases in the p53 level were partially blocked by PD98059, a synthetic inhibitor of MEK1 that is the immediate upstream kinase of extracellular signal-regulated kinases 1/2 (ERK1/2), but not by SB202190, a potent p38 kinase inhibitor. Furthermore, treatment with PD98059 significantly decreased the level of p21 protein, a p53-dependent gene product. These results suggest that ts1 infection may stabilize p53 protein through activation of ERKs in C1 astrocytes, leading to increased expression of the p21 and bax-alpha proteins, both of which induce cell cycle arrest and apoptosis. Our studies suggest that ts1 neuropathology in mice may result from changes in expression and activity of p53, brought about in part by ts1 activation of ERK.
Collapse
Affiliation(s)
- Hun-Taek Kim
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas
| | | | | | | | | |
Collapse
|
17
|
Clark S, Duggan J, Chakraborty J. Tsl and LP-BM5: a comparison of two murine retrovirus models for HIV. Viral Immunol 2001; 14:95-109. [PMID: 11398815 DOI: 10.1089/088282401750234475] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The ts1 murine leukemia virus produces an immunodeficiency state in mice that parallels human immunodeficiency virus (HIV) infection in humans. Other murine leukemia viruses, such as LP-BM5 used in the murine acquired immune deficiency virus (MAIDS) model, have been studied extensively as a small animal model for HIV research, but lack many key similarities to HIV. Mice infected with ts1, however, utilize CD4 target cells for infection, undergo neuronal loss and demyelination, and develop clinical immunodeficiency. These features make this retrovirus in many ways an ideal candidate for a small animal model for HIV research. In this review article, the early development, the molecular and clinical pathogenesis of both the ts1 mutant of the Moloney murine leukemia virus and LP-BM5 are examined. Based on an extensive evaluation of the literature on LP-BM5 and ts1, it is concluded that the ts1 virus may serve as a better animal model to human retrovirus infection.
Collapse
Affiliation(s)
- S Clark
- Department of Physiology and Molecular Medicine, Medical College of Ohio, Toledo 43614-5804, USA
| | | | | |
Collapse
|
18
|
Kim HT, Qiang W, Wong PK, Stoica G. Enhanced proteolysis of IkappaBalpha and IkappaBbeta proteins in astrocytes by Moloney murine leukemia virus (MoMuLV)-ts1 infection: a potential mechanism of NF-kappaB activation. J Neurovirol 2001; 7:466-75. [PMID: 11582519 DOI: 10.1080/135502801753170327] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Moloney murine leukemia virus (MoMuLV)-ts1-mediated neuronal degeneration in mice is likely due to loss of glial support and release of inflammatory cytokines and neurotoxins from surrounding ts1-infected glial cells including astrocytes. NF-kappaB is a transcription factor that participates in the transcriptional activation of a variety of immune and inflammatory genes. We investigated whether ts1 activates NF-kappaB in astrocytes and examined the mechanism(s) responsible for the activation of NF-kappaB by ts1 infection in vitro. Here we present evidence that ts1 infection of astrocytes in vitro activates NF-kappaB by enhanced proteolysis of the NF-kappaB inhibitors, IkappaBalpha and IkappaBbeta. In in vitro studies using protease inhibitors, IkappaBalpha proteolysis in ts1-infected astrocytes was significantly blocked by a specific calpain inhibitor calpeptin but not by MG-132, a specific proteasome inhibitor, whereas rapid IkappaBbeta proteolysis was blocked by MG-132. Furthermore, treatment with MG-132 increased levels of multiubiquitinated IkappaBbeta protein in ts1-infected astrocytes. These results indicate that the calpain proteolysis is a major mechanism of IkappaBalpha proteolysis in ts1-infected astrocytes. Additionally, ts1 infection of astrocytes in vitro increased expression of inducible nitric oxide synthase (iNOS), a NF-kappaB-dependent gene product. Our results suggest that NF-kappaB activation in ts1-infected astrocytes is mediated by enhanced proteolysis of IkappaBalpha and IkappaBbeta through two different proteolytic pathways, the calpain and ubiquitin-proteasome pathways, resulting in increased expression of iNOS, a NF-kappaB-dependent gene.
Collapse
Affiliation(s)
- H T Kim
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas 77843, USA
| | | | | | | |
Collapse
|
19
|
Dallasta LM, Wang G, Bodnar RJ, Draviam R, Wiley CA, Achim CL, Hamilton RL. Differential expression of intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 in chronic murine retroviral encephalitis. Neuropathol Appl Neurobiol 2000; 26:332-41. [PMID: 10931366 DOI: 10.1046/j.1365-2990.2000.00249.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The cell adhesion molecules, intercellular adhesion molecule (ICAM)-1 and vascular cell adhesion molecule (VCAM)-1, are important mediators of immune interactions within the central nervous system (CNS). A wide variety of pro-inflammatory insults to the brain, including viral infection, result in upregulation of these molecules on brain endothelial cells, astrocytes, and microglia. This study investigated the expression of ICAM-1 and VCAM-1 in chronic encephalitis induced by infection with a temperature sensitive (ts-1) strain of Moloney murine leukaemia virus (MoMuLV), an ecotropic murine retrovirus. During the late stages of disease, viral antigen was present in both endothelial cells and microglia, but not astrocytes, in regions of spongiform change and gliosis. In these areas, ICAM-1 staining was detected on activated microglia, but not on endothelial cells or astrocytes. In contrast, no cells showed increased VCAM-1 expression in the CNS. These findings demonstrate that there is cell-specific, differential expression of these adhesion molecules in ts-1 retroviral encephalitis. The lack of endothelial cell expression correlates with the characteristic lack of lymphocytic infiltrate in this chronic retroviral encephalitis and suggests that increased microglial ICAM-1 expression may play a role in the pathogenesis of MoMuLV (ts-1)-mediated neurodegeneration.
Collapse
Affiliation(s)
- L M Dallasta
- Department of Pathology, Division of Neuropathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Poulsen DJ, Robertson SJ, Favara CA, Portis JL, Chesebro BW. Mapping of a neurovirulence determinant within the envelope protein of a polytropic murine retrovirus: induction of central nervous system disease by low levels of virus. Virology 1998; 248:199-207. [PMID: 9721229 DOI: 10.1006/viro.1998.9258] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Murine leukemia virus (MuLV) clone Fr98 is a recombinant polytropic virus that causes neurological disease characterized by ataxia in susceptible mouse strains. The envelope gene of Fr98 has been previously shown to encode at least two separate neurovirulence determinants. In the present study, the determinant encoded within the EcoRI/AvrII fragment of the envelope gene was further defined. In these experiments, neurovirulence was associated with a change from a serine to an arginine at position 195 and a glycine to an alanine at position 198 within the envelope protein. Neurovirulent and nonvirulent virus clones, which differed only at these two amino acid residues, showed no difference in the type or location of cells infected. Furthermore, equivalent levels of viral p30 capsid protein were detected in the brains of mice infected with either the neurovirulent or nonvirulent virus clones. These results were consistent with the interpretation that the envelope protein of the neurovirulent virus differed from that of the nonvirulent virus by having a greater toxic effect on central nervous system function.
Collapse
Affiliation(s)
- D J Poulsen
- Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 South 4th Street, Hamilton, Montana, 59840, USA
| | | | | | | | | |
Collapse
|
21
|
Mazgareanu S, Müller JG, Czub S, Schimmer S, Bredt M, Czub M. Suppression of rat bone marrow cells by Friend murine leukemia virus envelope proteins. Virology 1998; 242:357-65. [PMID: 9514963 DOI: 10.1006/viro.1997.8998] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In a retroviral rat model, we have investigated the nontransforming effects of murine leukemia virus FB29 on the bone marrow. Upon intraperitoneal inoculation with murine leukemia virus FB29 of either neonatal or adult rats, bone marrow cells became massively infected within the first 12 days postinoculation. In neonatally inoculated rats, a persistent productive bone marrow infection was established, whereas in rats inoculated as adults, no infected bone marrow cells could be detected beyond 12 days postinoculation. Retroviral infection was most likely cleared by an antiviral immune response (Hein et al., 1995, Virology 211, 408-417). Exposure to virus irreversibly decreased numbers of bone marrow cells staining with monoclonal antibody OX7 by 10-30%. Reduction of OX7+ bone marrow cells by 20% was also observed in vitro, after bone marrow cells from uninfected adult rats had been co-incubated with virus. FB29-envelope proteins were sufficient alone to reduce numbers of OX7+ bone marrow cells, both in vivo and in vitro. According to results on incorporation of propidium iodide, decreased numbers of OX7+ cells were due to cell death. By flow cytometric analyses OX7+ bone marrow cells as well as monocytes/macrophages were identified to be major target cells for infection with FB29 within the bone marrow. Thus, the mechanism(s) responsible for death of OX7+ bone marrow cells might be due to direct toxicity of viral envelope proteins and/or to interactions of viral envelope proteins with cells of the monocytic lineage.
Collapse
Affiliation(s)
- S Mazgareanu
- Institut für Virologie und Immunbiologie, Universität Würzburg, Germany
| | | | | | | | | | | |
Collapse
|
22
|
Affiliation(s)
- M B Gardner
- Department of Pathology, School of Medicine, University of California, Davis 95616
| | | |
Collapse
|
23
|
Saha K, Yuen PH, Wong PK. Murine retrovirus-induced depletion of T cells is mediated through activation-induced death by apoptosis. J Virol 1994; 68:2735-40. [PMID: 8139049 PMCID: PMC236752 DOI: 10.1128/jvi.68.4.2735-2740.1994] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
ts1, a mutant of Moloney murine leukemia virus, causes neurologic disorders and acute immunodeficiency associated with the destruction of thymocytes and helper T cells. In this study, we examined whether apoptosis was involved in ts1-induced killings of T cells. Neonatal mice were inoculated with ts1, and 20 to 23 days postinoculation, when cytopathic effects on T cells normally appear, thymocytes and splenic lymphocytes were isolated and examined. Our results showed that several features of apoptosis were present in ts1-infected thymocytes and splenic lymphocytes. Apoptotic fragmented DNA, condensation of the chromatin, and enhanced cell death after stimulation with mitogens which was preventable with protein synthesis inhibitors, all of which are common features of apoptotic cell death, were observed in ts1-infected cells. Several other viruses, including human immunodeficiency virus, have been shown to cause apoptotic death of T cells. Here we show for the first time that a murine retrovirus which also induces immunodeficiency can cause apoptotic T-cell death. Future studies with this murine retrovirus may provide important results to help us better understand the mechanisms of retrovirus-induced apoptosis of T cells.
Collapse
Affiliation(s)
- K Saha
- Science Park-Research Division, University of Texas, M.D. Anderson Cancer Center, Smithville 78957
| | | | | |
Collapse
|
24
|
Abstract
Several decades have lapsed since the original description of retroviral infection of the central nervous system (CNS) appeared. With the recent arrival of the autoimmune deficiency syndrome (AIDS) epidemic and the associated human retroviral encephalitis, interest in murine models has been rekindled. In most of the published studies, susceptible mouse strains are infected as neonates with molecularly cloned type-C retroviruses. In most models, a spongiform encephalopathy follows an early CNS endothelial cell infection. The subsequent pathogenesis of this encephalopathy is unknown. In some models neuronal and glial infection is seen, while in others only non-neuroglial elements are infected. This variation can be traced to differences in strains of mice and viruses in addition to differences in assays. The different models offer fertile experimental ground to decipher the role of direct versus indirect neuroglial damage. Reconciliation of these various models where the final neuropathology appears so similar, may be the key to understanding their pathogenesis.
Collapse
Affiliation(s)
- C A Wiley
- Department of Pathology, University of California, San Diego, La Jolla 92093-0612
| | | |
Collapse
|
25
|
Shikova E, Lin YC, Saha K, Brooks BR, Wong PK. Correlation of specific virus-astrocyte interactions and cytopathic effects induced by ts1, a neurovirulent mutant of Moloney murine leukemia virus. J Virol 1993; 67:1137-47. [PMID: 8437206 PMCID: PMC237478 DOI: 10.1128/jvi.67.3.1137-1147.1993] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
ts1 is a highly neuropathogenic and lymphocytopathic mutant of Moloney murine leukemia virus TB (MoMuLV-TB). We previously reported that the primary neuropathogenic determinant of ts1 maps to a single amino acid substitution, Val-25-->Ile, in precursor envelope protein gPr80env. This Val-25-->Ile substitution apparently renders gPr80env inefficient for transport from the endoplasmic reticulum to the Golgi apparatus. These findings suggest that the cytopathic effect of ts1 in neural cells might be due to the accumulation of gPr80env in the endoplasmic reticulum. Since endothelial and glial cells are targets of ts1 infection in the central nervous system, we established primary endothelial and astrocyte cultures to investigate the mechanism of cell killing caused by ts1. A continuous cell line, TB, was used as a control. Our results showed that both ts1 and MoMuLV-TB replicated and induced a cytopathic effect in astrocyte cultures, albeit to different degrees; ts1 appeared to be more lethal than MoMuLV-TB. On the other hand, ts1 and MoMuLV-TB infections of endothelial or TB cells were not cytopathic. The cytopathic effect in infected astrocytes correlated with the inefficiency of gPr80env transport and the intracellular accumulation of gPr80env as well as aberrant virus particles.
Collapse
Affiliation(s)
- E Shikova
- University of Texas M. D. Anderson Cancer Center, Smithville 78957
| | | | | | | | | |
Collapse
|
26
|
Saha K, Wong PK. Protective role of cytotoxic lymphocytes against murine leukemia virus-induced neurologic disease and immunodeficiency is enhanced by the presence of helper T cells. Virology 1992; 188:921-5. [PMID: 1350127 DOI: 10.1016/0042-6822(92)90554-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We examined the role of T cells and their separated subsets in providing immunity against ts1 (a mutant of the Moloney murine leukemia virus) induced paralysis and immunodeficiency. Adoptive transfer of syngeneic total T cells from immunized mice protected newborn mice, at least partially, from ts1-induced disease syndrome. In infected mice who received total immune T cells, virus replication was reduced and the mice survived longer. When only separated immune CD8+ T cells were transferred to infected mice, similar protection, albeit to a lesser extent, was observed. Transfer of separated immune CD4+ T cells alone gave no protection. However, when recombined CD4+ and CD8+ cells were transferred together, an immune response similar to that when total T cells were transferred was observed. Cytotoxic assays from ts1-immunized mice revealed the presence of virus-specific CD8+ cytotoxic T lymphocytes that could lyse virus-expressing cells at a high effector/target ratio. We conclude that CD8+ T cells alone can provide immunity against ts1-induced paralysis and immunodeficiency and that the simultaneous presence of CD4+ T cells can also significantly enhance the immune response.
Collapse
Affiliation(s)
- K Saha
- University of Texas, M. D. Anderson Cancer Center, Science Park-Research Division, Smithville 78957
| | | |
Collapse
|
27
|
Saha K, Wong PK. ts1, a temperature-sensitive mutant of Moloney murine leukemia virus TB, can infect both CD4+ and CD8+ T cells but requires CD4+ T cells in order to cause paralysis and immunodeficiency. J Virol 1992; 66:2639-46. [PMID: 1348544 PMCID: PMC241017 DOI: 10.1128/jvi.66.5.2639-2646.1992] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
When neonatal FVB/N mice were inoculated with ts1, a temperature-sensitive mutant of Moloney murine leukemia virus TB, they developed a progressive bilateral hindlimb paralysis and immunodeficiency leading to death 4 to 6 weeks after inoculation. T lymphocytes have been shown to be primarily responsible for this ts1-induced syndrome. Here we compare the role played by each subset of T lymphocytes, i.e., CD4+ and CD8+ T cells, in disease development. Mice were depleted of a specific subset for the first 10 days of their lives by using either anti-CD4 or anti-CD8 monoclonal antibodies in vivo. Disease development in these mice was then monitored. Depletion of CD4+ T cells significantly attenuated the ts1-induced syndrome: virus replication was decreased, disease latency was extended, and death was prevented in 60% of the mice. Similar treatment with anti-CD8 antibody had almost no effect on disease progression. However, when depletion was begun 2 weeks after neonatal ts1 inoculation, CD4+ T cell depletion did not affect disease development. ts1 infected CD4+ and CD8+ T lymphocytes equally well in vivo, as shown by flow cytometric analysis, but virus replication was restricted primarily to the CD4+ subset of T cells, as found by in vitro assay. Hence, CD4+ T lymphocytes play an important role in the development of ts1-induced paralysis and immunodeficiency. The mechanism of this CD4+ T-cell-mediated disease production by ts1 is not clear; however, increased replication of ts1 in the CD4+ T cells, especially in the early stages of the disease, seems to play a crucial role.
Collapse
Affiliation(s)
- K Saha
- University of Texas M.D. Anderson Cancer Center, Science Park-Research Division, Smithville 78957
| | | |
Collapse
|
28
|
Rozendaal L, Pals ST, Melief CJ, Gleichmann E. Protection from lethal graft-vs.-host disease by donor stem cell repopulation. Eur J Immunol 1992; 22:575-9. [PMID: 1347016 DOI: 10.1002/eji.1830220241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Graft-vs.-host reaction (GVHR) induced in non-irradiated F1 mice with DBA/2J parental spleen and lymph node (LN) cells usually does not lead to acute GVH disease (GVHD). This contrasts with the GVHR induced in other parent-F1 combinations involving both major histocompatibility complex (MHC) class I and class II differences between donor and host. Most signs of acute GVHD in non-irradiated F1 mice relate to immunodeficiency following destruction of the lymphohemopoietic system of the host, which leads to wasting and death due to infections. This sequence of events is prevented when donor lymphoid cells, originating from grafted stem cells, repopulate the destroyed lymphohemopoietic system of the host. To examine whether a "silent" repopulation of the F1 host by donor stem cells might underly the absence of clinical signs of acute GVHD when GVHR is induced with DBA/2J lymphoid cells, GVHR was induced with LN cells, which do not contain stem cells. Indeed, GVHR induced in (C57BL/10 x DBA/2J)F1 (BDF1) mice with 80 x 10(6) DBA/2J LN cells led to acute GVHD. Signs of acute GVHD such as wasting and death did not occur when donor stem cells, from an inoculum of DBA/2J spleen and LN cells, were allowed to repopulate the lymphohemopoietic system of the host. The effect of donor stem cells on clinical signs of acute GVHD was more apparent when (B10.D2 x DBA/2J)F1, instead of DBA/2J, lymphoid cells were used to induce GVHR. The detection of alloreactive anti-host cytotoxic T lymphocyte (CTL) activity during acute GVHD induced with DBA/2J donor lymphoid cells supports the hypothesis that such CTL contribute to the destruction of the host immune system in acute GVHD.
Collapse
Affiliation(s)
- L Rozendaal
- Central Laboratory of the Netherlands Red Cross Blood Transfusion Service, Amsterdam
| | | | | | | |
Collapse
|
29
|
Plagemann PG, Moennig V. Lactate dehydrogenase-elevating virus, equine arteritis virus, and simian hemorrhagic fever virus: a new group of positive-strand RNA viruses. Adv Virus Res 1992; 41:99-192. [PMID: 1315480 PMCID: PMC7131515 DOI: 10.1016/s0065-3527(08)60036-6] [Citation(s) in RCA: 230] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The last comprehensive reviews of nonarbotogaviruses included discussions on pestiviruses, rubella virus, lactate dehydrogenase-elevating virus (LDV), equine arteritis virus (EAV), simian hemorrhagic fever virus (SHFV), cell fusion agent, and nonarboflaviviruses. The inclusion of all these viruses in the family Togaviridae was largely based on the similarities in morphological and physical–chemical properties of these viruses, and in the sizes and polarities of their genomes. In the intervening years, considerable new information on the replication strategies of these viruses and the structure and organization of their genomes has become available that has led to the reclassification or suggestions for reclassification of some of them. The replication strategy of EAV resembles that of the coronaviruses, involving a 3'-coterminal nested set of mRNAs. Therefore, EAV has been suggested to be included in a virus superfamily, along with coronaviruses and toroviruses. Recent evidence indicates that LDV not only resembles EAV in morphology, virion and genome size, and number and size of their structural proteins, but also in genome organization and replication via a 3'-coterminal set of mRNAs. SHFV, although not fully characterized, exhibits properties resembling those of LDV and EAV, and the recent evidence suggest that it may possess the same genome organization as these viruses. The three viruses may, therefore, represent a new family of positive-strand RNA viruses and are reviewed together in this chapter. In this chapter, emphasis is on the recent information concerning their molecular properties and pathogenesis in vitro and in vivo and on the host immune responses to infections by these viruses.
Collapse
Affiliation(s)
- P G Plagemann
- Department of Microbiology, University of Minnesota Medical School, Minneapolis 55455
| | | |
Collapse
|
30
|
Wong PK, Szurek PF, Floyd E, Saha K, Brooks BR. Alteration from T- to B-cell tropism reduces thymic atrophy and cytocidal effects in thymocytes but not neurovirulence induced by ts1, a mutant of Moloney murine leukemia virus TB. Proc Natl Acad Sci U S A 1991; 88:8991-5. [PMID: 1924361 PMCID: PMC52637 DOI: 10.1073/pnas.88.20.8991] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The ts1 mutant of Moloney murine leukemia virus TB causes degenerative neurologic and immunologic disease in mice, characterized by development of spongiform encephalomyelopathy resulting in hindlimb paralysis, marked thymic atrophy associated with immunodeficiency, and generalized body wasting. To investigate the pathogenesis of the thymic atrophy caused by ts1, we constructed a chimeric virus, ts1-Cas(NS), in which a major portion of the U3 region of the long terminal repeat of ts1, a T-lymphotropic and neurovirulent murine leukemia virus, was replaced by the corresponding U3 region of Cas-Br-E, a B-lymphotropic and neurovirulent murine leukemia virus. In FVB/N mice, ts1-Cas(NS) induced paralytic and wasting disease with incidence, severity, and latency similar to that induced by ts1, but it failed to cause thymic atrophy as severe as that observed in ts1-infected mice. Furthermore, thymocytes cultured from ts1-Cas(NS)-infected mice died at a much slower rate than those of ts1-infected mice. The U3 substitution in ts1-Cas(NS) specifically diminished the ability of the virus to replicate in the thymus, whereas viral replication in the spinal cord was not significantly affected; thus, neurovirulence was not changed. The correlation of reduced thymic atrophy with decreased thymic viral titers and the decreased ability of ts1-Cas(NS) to cause thymocyte death in mice suggest strongly that the marked thymic atrophy in ts1-infected mice is not an indirect effect occurring secondary to neurodegenerative and wasting disease but is a direct cytopathic effect of high-level viral replication in the thymus.
Collapse
Affiliation(s)
- P K Wong
- University of Texas M. D. Anderson Cancer Center, Science Park-Research Division, Smithville 78957
| | | | | | | | | |
Collapse
|
31
|
Kamps CA, Lin YC, Wong PK. Oligomerization and transport of the envelope protein of Moloney murine leukemia virus-TB and of ts1, a neurovirulent temperature-sensitive mutant of MoMuLV-TB. Virology 1991; 184:687-94. [PMID: 1887590 DOI: 10.1016/0042-6822(91)90438-h] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Ts1, a temperature-sensitive mutant of Moloney murine leukemia virus-TB (MoMuLV-TB), causes a progressive hindlimb paralytic disease in susceptible strains of mice. Previously, it has been shown that a single amino acid substitution, Val-25----Ile in gPr80env, is responsible for the temperature sensitivity, inefficient transport, and processing of gPr80env at the restrictive temperature and the neurovirulence of ts1. Since the neurovirulence of ts1 is associated with inefficient transport and processing of gPr80env and since in other systems involving viral envelope proteins it has been shown that correct folding and oligomerization of envelope monomers are required for efficient transport, we have investigated the ability of gPr80env derived from either wild-type MoMuLV-TB or ts1 to associate into oligomeric complexes. In these experiments, we establish that at both the restrictive and the nonrestrictive temperatures gPr80env molecules derived from MoMuLV-TB associate to form oligomeric complexes and these oligomers are most likely trimers. gPr80env molecules derived from ts1 also oligomerize at both temperatures; however, at the restrictive temperature, most of the molecules within the trimeric complexes remain as gPr80env and are not processed to gp70 and Prp15E. These results indicate that lack of oligomerization of gPr80env is not responsible for the transport defect of ts1. Therefore, by interacting specifically with critical sites within target cells, oligomers of mutant gPr80env rather than "tangles" of monomeric viral envelope proteins may be involved in the neurodegenerative disorder produced by ts1.
Collapse
Affiliation(s)
- C A Kamps
- University of Texas M. D. Anderson Cancer Center, Smithville 78957
| | | | | |
Collapse
|
32
|
Saha K, Wong PK. T, not B, lymphocytes are required for immunodeficiency and paralysis induced by ts1, a mutant of Moloney murine leukemia virus-TB. Virology 1991; 183:815-20. [PMID: 1853579 DOI: 10.1016/0042-6822(91)91017-b] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BALB/c mice when injected as newborn with ts1, a temperature-sensitive mutant of Moloney murine leukemia virus-TB, developed a fatal hindlimb paralysis and immunodeficiency. This disease induction was prevented, to a great extent, by transient depletion of the peripheral T lymphocytes during the early course of infection by using anti-Thy 1.2 antibody. FVB/N mice, which are highly susceptible to ts1, but express Thy 1.1 instead of Thy 1.2 on their T lymphocytes, did not show any difference in the disease profile when treated similarly with anti-Thy 1.2 antibody. Transient depletion of the peripheral B lymphocytes in BALB/c mice in the early course of ts1 infection had no effect on the disease induction. In the T cell depleted BALB/c mice, virus replication was reduced, survival of the mice was increased and viral specific antibodies were produced, whereas, in the B cell depleted mice the disease process went on in a fashion similar to untreated mice infected with ts1. Thus, this study demonstrates that the disease syndrome induced by ts1 in BALB/c mice is dependent upon the presence of T lymphocytes during the early course of infection, and that presence of B lymphocytes have little or no effect on the disease outcome.
Collapse
Affiliation(s)
- K Saha
- Department of Carcinogenesis, University of Texas, M.D. Anderson Cancer Center, Smithville 78957
| | | |
Collapse
|
33
|
Yu Y, Kamps CA, Yuen PH, Wong PK. Construction and characterization of expression systems for the env gene of ts1, a mutant of Moloney murine leukemia virus-TB. Virus Res 1991; 19:83-92. [PMID: 1867010 DOI: 10.1016/0168-1702(91)90096-e] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A temperature-sensitive mutant of the Moloney murine leukemia virus-TB, ts1, causes hindlimb paralysis and immunodeficiency in mice. At the restrictive temperature, the envelope precursor polyprotein, gPr80env, is inefficiently processed intracellularly, and this is associated with the neurovirulence of ts1. To test the hypothesis that expression of the envelope proteins of ts1 alone without infectious virus production can induce paralysis, it is necessary to use either transmissible retroviral expression vectors or microinjection of eukaryotic gene expression plasmid to introduce the env gene of ts1 into germlines of mice. In this study, we have constructed three retrovirus vectors and three gene expression plasmids, all of which contain the env gene of ts1. By comparing the different expression systems, we found that one construct, pts1-env(F) can express the envelope proteins at a level comparable to the level expressed in ts1-infected cells. Furthermore, the expressed envelope proteins of pts1-env(F)-transfected cells possess the phenotypes of the proteins expressed by the env gene of ts1.
Collapse
Affiliation(s)
- Y Yu
- University of Texas, M.D. Anderson Cancer Center, Smithville 78957
| | | | | | | |
Collapse
|
34
|
High susceptibility of FVB/N mice to the paralytic disease induced by ts1, a mutant of Moloney murine leukemia virus TB. Virology 1991; 180:365-71. [PMID: 1984656 DOI: 10.1016/0042-6822(91)90041-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The ts1 mutant of Moloney murine leukemia virus TB causes a degenerative neurologic and immunologic disease in susceptible strains of mice. This disease syndrome is characterized by development of spongiform encephalomyelopathy resulting in hindlimb paralysis, generalized bodywasting, and marked thymic atrophy associated with immune deficiency. The viral genetic determinants responsible for hindlimb paralysis in BALB/c and CFW/D mice have been localized to two point mutations in the env gene: one results in a Val-25----IIe substitution in the envelope precursor polyprotein gPr80env and the other, in an Arg-430----Lys substitution in the gp70. In this report we present studies showing that FVB/N mice were highly susceptible to ts1 and exhibited the shortest and most uniform latency period of all the murine strains tested. In addition, we have found that, unlike in CFW/D and BALB/c mice, only the Val-25----IIe substitution in the gPr80env is required to induce hindlimb paralysis in FVB/N mice. Our studies show that there was enhanced replication of ts1 in all tissues of FVB/N mice and that the virus titer in the spinal cord was more than 10-fold higher in FVB/N than in BALB/c mice by 30 days postinoculation, when the clinical signs of paralysis became evident in FVB/N mice. Apparently, other host factors that do not require the Arg-430----Lys substitution allowed high levels of viral replication within the central nervous system of FVB/N mice. These results, together with the finding that 100% of FVB/N mice that were inoculated with ts1 at 5 days of age developed hindlimb paralysis at 30-60 days postinoculation, whereas only 33% of 5-day-old BALB/c mice developed hindlimb paralysis with a much longer latency period, suggest that subtle virus-host interactions determine the incidence, the latency period, and the severity of the disease caused by ts1.
Collapse
|
35
|
Szurek PF, Floyd E, Yuen PH, Wong PK. Site-directed mutagenesis of the codon for Ile-25 in gPr80env alters the neurovirulence of ts1, a mutant of Moloney murine leukemia virus TB. J Virol 1990; 64:5241-9. [PMID: 2214016 PMCID: PMC248556 DOI: 10.1128/jvi.64.11.5241-5249.1990] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
ts1, a spontaneous temperature-sensitive mutant of Moloney murine leukemia virus TB, causes hind-limb paralysis in mice. A Val-25----Ile substitution in gPr80env is responsible for temperature sensitivity, inefficient processing of gPr80env, and neurovirulence. In this study, the Ile-25 in gPr80env was replaced with Thr, Ala, Leu, Gly, and Glu by site-directed mutagenesis of the codon for Ile-25 to generate a new set of mutant viruses, i.e., ts1-T, -A, -L, -G, and -E, respectively. The phenotypic characteristics of these mutant viruses differed from those of ts1. For each mutant, the degree of temperature sensitivity was correlated with the degree of inefficient processing of gPr80env, and the following rank order was observed for both parameters: ts1-E greater than ts1-G greater than ts1-L greater than ts1-A greater than ts1 greater than ts1-T. In FVB/N mice, mutant viruses of low and intermediate temperature sensitivity and inefficiency in processing of gPr80env were neurovirulent and consistently caused mutant-specific disease profiles: ts1-T caused severe whole-body tremor, ts1-A generally caused hind-limb paralysis, and ts1-L generally caused a delayed-onset paraparesis. By 150 days postinfection, FVB/N mice that were infected with ts1-G and -E, mutants of high temperature sensitivity and inefficiency in processing of gPr80env, had lymphoid leukemia instead of a neurological disease. These results suggest that the dynamics of gPr80env processing are important in determining the neurovirulent phenotype in vivo.
Collapse
Affiliation(s)
- P F Szurek
- Science Park-Research Division, University of Texas M. D. Anderson Cancer Center, Smithville 78957
| | | | | | | |
Collapse
|
36
|
Simonian NA, Rosenthal LA, Korostoff J, Hickey WF, Blank KJ, Gaulton GN. Specific infection of central nervous system white matter by a variant of gross murine leukemia virus. Virology 1990; 177:384-7. [PMID: 2353463 DOI: 10.1016/0042-6822(90)90496-e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Exposure of neonatal Balb.B mice to a variant of Gross murine leukemia virus, termed WB91-GV, resulted in selective white matter infection within the central nervous system. Viral antigens were detected in brain sections of animals inoculated by either intracerebral or intraperitoneal routes, but were only seen in mice exposed within the first day after birth. This distinct tropism was confirmed by virus replication and gp70 expression in isolated glial cultures in vitro. Analysis of gp70 expression in highly enriched glial subpopulations indicated that oligodendrocytes and perhaps a subset of astrocytes were the targets of this infection.
Collapse
Affiliation(s)
- N A Simonian
- Department of Pathology, University of Pennsylvania School of Medicine, Philadelphia 19104
| | | | | | | | | | | |
Collapse
|
37
|
Szurek PF, Yuen PH, Ball JK, Wong PK. A Val-25-to-Ile substitution in the envelope precursor polyprotein, gPr80env, is responsible for the temperature sensitivity, inefficient processing of gPr80env, and neurovirulence of ts1, a mutant of Moloney murine leukemia virus TB. J Virol 1990; 64:467-75. [PMID: 2296075 PMCID: PMC249133 DOI: 10.1128/jvi.64.2.467-475.1990] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
ts1 is a neurovirulent spontaneous temperature-sensitive mutant of Moloney murine leukemia virus TB which causes hindlimb paralysis in mice. Previously, it had been shown that the temperature-sensitive defect resided in the env gene. At the restrictive temperature, the envelope precursor polyprotein, gPr80env, is inefficiently processed intracellularly into two cleavage products, gp70 and Prp15E. This inefficient processing of gPr80env is correlated with neurovirulence. In this study, it was shown that a single amino acid substitution, Val-25----Ile in gPr80env, is responsible for the temperature sensitivity, inefficient processing of gPr80env at the restrictive temperature, and neurovirulence of ts1. At the restrictive temperature, a steady-state level of nonprocessed, endoglycosidase H-sensitive gPr80env remained in the endoplasmic reticulum of cells infected by ts1, but no endoglycosidase H-resistant gPr80env and only trace amounts of gp70 were detected in the infected cells. Since the host cell-encoded processing protease resides in the cis cisternae of the Golgi apparatus, inefficient processing of gPr80env at the restrictive temperature is most likely due to inefficient transport of gPr80env from the endoplasmic reticulum to the cis cisternae of the Golgi apparatus rather than due to misfolded gPr80env being a poor substrate for the processing protease at the restrictive temperature.
Collapse
Affiliation(s)
- P F Szurek
- University of Texas M. D. Anderson Cancer Center, Science Park-Research Division, Smithville 78957
| | | | | | | |
Collapse
|
38
|
Wong PK. Moloney murine leukemia virus temperature-sensitive mutants: a model for retrovirus-induced neurologic disorders. Curr Top Microbiol Immunol 1990; 160:29-60. [PMID: 2162285 DOI: 10.1007/978-3-642-75267-4_3] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- P K Wong
- University of Texas, MD Anderson Cancer Center, Smithville 78957
| |
Collapse
|