1
|
El-Maradny YA, Badawy MA, Mohamed KI, Ragab RF, Moharm HM, Abdallah NA, Elgammal EM, Rubio-Casillas A, Uversky VN, Redwan EM. Unraveling the role of the nucleocapsid protein in SARS-CoV-2 pathogenesis: From viral life cycle to vaccine development. Int J Biol Macromol 2024; 279:135201. [PMID: 39216563 DOI: 10.1016/j.ijbiomac.2024.135201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/24/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND The nucleocapsid protein (N protein) is the most abundant protein in SARS-CoV-2. Viral RNA and this protein are bound by electrostatic forces, forming cytoplasmic helical structures known as nucleocapsids. Subsequently, these nucleocapsids interact with the membrane (M) protein, facilitating virus budding into early secretory compartments. SCOPE OF REVIEW Exploring the role of the N protein in the SARS-CoV-2 life cycle, pathogenesis, post-sequelae consequences, and interaction with host immunity has enhanced our understanding of its function and potential strategies for preventing SARS-CoV-2 infection. MAJOR CONCLUSION This review provides an overview of the N protein's involvement in SARS-CoV-2 infectivity, highlighting its crucial role in the virus-host protein interaction and immune system modulation, which in turn influences viral spread. GENERAL SIGNIFICANCE Understanding these aspects identifies the N protein as a promising target for developing effective antiviral treatments and vaccines against SARS-CoV-2.
Collapse
Affiliation(s)
- Yousra A El-Maradny
- Pharmaceutical and Fermentation Industries Development Center, City of Scientific Research and Technological Applications (SRTA-City), New Borg EL-Arab, Alexandria 21934, Egypt; Microbiology and Immunology, Faculty of Pharmacy, Arab Academy for Science, Technology and Maritime Transport (AASTMT), El Alamein 51718, Egypt.
| | - Moustafa A Badawy
- Industrial Microbiology and Applied Chemistry program, Faculty of Science, Alexandria University, Egypt.
| | - Kareem I Mohamed
- Microbiology and Immunology, Faculty of Pharmacy, Arab Academy for Science, Technology and Maritime Transport (AASTMT), El Alamein 51718, Egypt.
| | - Renad F Ragab
- Microbiology and Immunology, Faculty of Pharmacy, Arab Academy for Science, Technology and Maritime Transport (AASTMT), El Alamein 51718, Egypt.
| | - Hamssa M Moharm
- Genetics, Biotechnology Department, Faculty of Agriculture, Alexandria University, Egypt.
| | - Nada A Abdallah
- Medicinal Plants Department, Faculty of Agriculture, Alexandria University, Egypt.
| | - Esraa M Elgammal
- Microbiology and Immunology, Faculty of Pharmacy, Arab Academy for Science, Technology and Maritime Transport (AASTMT), El Alamein 51718, Egypt.
| | - Alberto Rubio-Casillas
- Autlan Regional Hospital, Health Secretariat, Autlan, JAL 48900, Mexico; Biology Laboratory, Autlan Regional Preparatory School, University of Guadalajara, Autlan, JAL 48900, Mexico.
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.
| | - Elrashdy M Redwan
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia; Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Therapeutic and Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg EL-Arab, 21934 Alexandria, Egypt.
| |
Collapse
|
2
|
Antiviral effects of Korean Red Ginseng on human coronavirus OC43. J Ginseng Res 2023; 47:329-336. [PMID: 36217314 PMCID: PMC9534539 DOI: 10.1016/j.jgr.2022.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/15/2022] [Accepted: 09/29/2022] [Indexed: 11/20/2022] Open
Abstract
Background Panax ginseng Meyer is a medicinal plant well-known for its antiviral activities against various viruses, but its antiviral effect on coronavirus has not yet been studied thoroughly. The antiviral activity of Korean Red Ginseng (KRG) and ten ginsenosides against Human coronavirus OC43 (HCoV-OC43) was investigated in vitro. Methods The antiviral response and mechanism of action of KRG extract and ginsenoside Rc, Re, Rf, Rg1, Rg2-20 (R) and -20 (S), Rg3-20 (R) and -20 (S), and Rh2-20 (R) and -20 (S), against the human coronavirus strain OC43 were investigated by using plaque assay, time of addition assay, real-time PCR, and FACS analysis. Results Virus plaque formation was reduced in KRG extract-treated and HCoV-OC43-infected HCT-8 cells. KRG extract decreased the viral proteins (Nucleocapsid protein and Spike protein) and mRNA (N and M gene) expression, while increased the expression of interferon genes. Conclusion KRG extract exhibits antiviral activity by enhancing the expression of interferons and can be used in treating infections caused by HCoV-OC43.
Collapse
|
3
|
Rani R, Long S, Pareek A, Dhaka P, Singh A, Kumar P, McInerney G, Tomar S. Multi-target direct-acting SARS-CoV-2 antivirals against the nucleotide-binding pockets of virus-specific proteins. Virology 2022; 577:1-15. [PMID: 36244310 PMCID: PMC9539459 DOI: 10.1016/j.virol.2022.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/20/2022] [Accepted: 08/20/2022] [Indexed: 11/30/2022]
Abstract
The nucleotide-binding pockets (NBPs) in virus-specific proteins have proven to be the most successful antiviral targets for several viral diseases. Functionally important NBPs are found in various structural and non-structural proteins of SARS-CoV-2. In this study, the first successful multi-targeting attempt to identify effective antivirals has been made against NBPs in nsp12, nsp13, nsp14, nsp15, nsp16, and nucleocapsid (N) proteins of SARS-CoV-2. A structure-based drug repurposing in silico screening approach with ADME analysis identified small molecules targeting NBPs in SARS-CoV-2 proteins. Further, isothermal titration calorimetry (ITC) experiments validated the binding of top hit molecules to the purified N-protein. Importantly, cell-based antiviral assays revealed antiviral potency for INCB28060, darglitazone, and columbianadin with EC50 values 15.71 μM, 5.36 μM, and 22.52 μM, respectively. These effective antivirals targeting multiple proteins are envisioned to direct the development of antiviral therapy against SARS-CoV-2 and its emerging variants.
Collapse
Affiliation(s)
- Ruchi Rani
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Siwen Long
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | - Akshay Pareek
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Preeti Dhaka
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Ankur Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Pravindra Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Gerald McInerney
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | - Shailly Tomar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India.
| |
Collapse
|
4
|
Tarczewska A, Kolonko-Adamska M, Zarębski M, Dobrucki J, Ożyhar A, Greb-Markiewicz B. The method utilized to purify the SARS-CoV-2 N protein can affect its molecular properties. Int J Biol Macromol 2021; 188:391-403. [PMID: 34371045 PMCID: PMC8343380 DOI: 10.1016/j.ijbiomac.2021.08.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 12/30/2022]
Abstract
One of the main structural proteins of Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the nucleocapsid protein (N). The basic function of this protein is to bind genomic RNA and to form a protective nucleocapsid in the mature virion. The intrinsic ability of the N protein to interact with nucleic acids makes its purification very challenging. Therefore, typically employed purification methods appear to be insufficient for removing nucleic acid contamination. In this study, we present a novel purification protocol that enables the N protein to be prepared without any bound nucleic acids. We also performed comparative structural analysis of the N protein contaminated with nucleic acids and free of contamination and showed significant differences in the structural and phase separation properties of the protein. These results indicate that nucleic-acid contamination may severely affect molecular properties of the purified N protein. In addition, the notable ability of the N protein to form condensates whose morphology and behaviour suggest more ordered forms resembling gel-like or solid structures is described.
Collapse
Affiliation(s)
- Aneta Tarczewska
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland.
| | - Marta Kolonko-Adamska
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland.
| | - Mirosław Zarębski
- Department of Cell Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Cracow, Poland
| | - Jurek Dobrucki
- Department of Cell Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Cracow, Poland
| | - Andrzej Ożyhar
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland
| | - Beata Greb-Markiewicz
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland.
| |
Collapse
|
5
|
Junaid M, Akter Y, Siddika A, Nayeem SMA, Nahrin A, Afrose SS, Ezaj MMA, Alam MS. Nature-derived hit, lead, and drug-like small molecules: Current status and future aspects against key target proteins of Coronaviruses. Mini Rev Med Chem 2021; 22:498-549. [PMID: 34353257 DOI: 10.2174/1389557521666210805113231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND COVID-19 pandemic, the most unprecedented event of the year 2020, has brought millions of scientists worldwide in a single platform to fight against it. Though several drugs are now in the clinical trial, few vaccines available on the market already but the lack of an effect of those is making the situation worse. AIM OF THE STUDY In this review, we demonstrated comprehensive data of natural antiviral products showing activities against different proteins of Human Coronaviruses (HCoV) that are responsible for its pathogenesis. Furthermore, we categorized the compounds into the hit, lead, and drug based on the IC50/EC50 value, drug-likeness, and lead-likeness test to portray their potentiality to be a drug. We also demonstrated the present status of our screened antiviral compounds with respect to clinical trials and reported the lead compounds that can be promoted to clinical trial against COVID-19. METHODS A systematic search strategy was employed focusing on Natural Products (NPs) with proven activity (in vitro, in vivo, or in silico) against human coronaviruses, in general, and data were gathered from databases like PubMed, Web of Science, Google Scholar, SciVerse, and Scopus. Information regarding clinical trials retrieved from the Clinical Trial database. RESULTS Total "245" natural compounds were identified initially from the literature study. Among them, Glycyrrhizin, Caffeic acid, Curcumin is in phase 3, and Tetrandrine, Cyclosporine, Tacrolimus, Everolimus are in phase 4 clinical trial. Except for Glycyrrhizin, all compounds showed activity against COVID-19. CONCLUSIONS In summary, our demonstrated specific small molecules with lead and drug-like capabilities clarified their position in the drug discovery pipeline and proposed their future research against COVID-19.
Collapse
Affiliation(s)
- Md Junaid
- Natural Products Research Division, Advanced Bioinformatics, Computational Biology and Data Science Laboratory. Bangladesh
| | - Yeasmin Akter
- Natural Products Research Division, Advanced Bioinformatics, Computational Biology and Data Science Laboratory. Bangladesh
| | - Aysha Siddika
- Natural Products Research Division, Advanced Bioinformatics, Computational Biology and Data Science Laboratory. Bangladesh
| | - S M Abdul Nayeem
- Natural Products Research Division, Advanced Bioinformatics, Computational Biology and Data Science Laboratory. Bangladesh
| | - Afsana Nahrin
- Department of Pharmacy, University of Science and Technology Chittagong. Bangladesh
| | - Syeda Samira Afrose
- Natural Products Research Division, Advanced Bioinformatics, Computational Biology and Data Science Laboratory. Bangladesh
| | - Md Muzahid Ahmed Ezaj
- Natural Products Research Division, Advanced Bioinformatics, Computational Biology and Data Science Laboratory. Bangladesh
| | | |
Collapse
|
6
|
EGR1 suppresses porcine epidemic diarrhea virus replication by regulating IRAV to degrade viral nucleocapsid protein. J Virol 2021; 95:e0064521. [PMID: 34287043 DOI: 10.1128/jvi.00645-21] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) is a globally distributed alphacoronavirus that has re-emerged lately, resulting in large economic losses. During viral infection, interferon (IFN-I) plays a vital role in the antiviral innate immunity. However, PEDV has evolved strategies to limit IFN-I production. To suppress virus replication, the host must activate the IFN-stimulated genes and some host restriction factors to circumvent viral replication. This study observed that PEDV infection-induced early growth response gene 1 (EGR1) expression in PEDV-permissive cells. EGR1 overexpression remarkably suppressed PEDV replication. In contrast, depletion of EGR1 led to a significant increase in viral replication. EGR1 suppressed PEDV replication by directly binding to the IFN-regulated antiviral (IRAV) promoter and upregulating IRAV expression. A detailed analysis revealed that IRAV interacts and colocalizes with the PEDV nucleocapsid (N) protein, inducing N protein degradation via E3 ubiquitin ligase MARCH8 to catalyze N protein ubiquitination. Knockdown of endogenous MARCH8 significantly reversed IRAV-mediated N protein degradation. The collective findings demonstrate a new mechanism of EGR1-mediated viral restriction, in which EGR1 upregulates the expression of IRAV to degrade PEDV N protein through MARCH8. IMPORTANCE PEDV is a highly contagious enteric coronavirus that has rapidly emerged worldwide and caused severe economic losses. No currently available drugs or vaccines could effectively control PEDV. PEDV has evolved many strategies to limit IFN-1 production. We identified EGR1 as a novel host restriction factor and demonstrated that EGR1 suppresses PEDV replication by directly binding to the IRAV promoter and upregulating the expression of IRAV, which interacts and degrades the PEDV N protein via E3 ubiquitin ligase MARCH8 to catalyze nucleocapsid protein ubiquitination, which adds another layer of complexity to innate antiviral immunity of this newly identified restriction factor. A better understanding of the innate immune response to PEDV infection will aid the development of novel therapeutic targets and more effective vaccines against virus infection.
Collapse
|
7
|
Supekar NT, Shajahan A, Gleinich AS, Rouhani DS, Heiss C, Chapla DG, Moremen KW, Azadi P. Variable post-translational modifications of SARS-CoV-2 nucleocapsid protein. Glycobiology 2021; 31:1080-1092. [PMID: 33997890 PMCID: PMC8241430 DOI: 10.1093/glycob/cwab044] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/19/2021] [Accepted: 04/30/2021] [Indexed: 12/27/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes coronavirus disease 2019 (COVID-19), started in 2019 in China and quickly spread into a global pandemic. Nucleocapsid protein (N protein) is highly conserved and is the most abundant protein in coronaviruses and is thus a potential target for both vaccine and point-of-care diagnostics. N Protein has been suggested in the literature as having posttranslational modifications (PTMs), and accurately defining these PTMs is critical for its potential use in medicine. Reports of phosphorylation of N protein have failed to provide detailed site-specific information. We have performed comprehensive glycomics, glycoproteomics and proteomics experiments on two different N protein preparations. Both were expressed in HEK293 cells; one was in-house expressed and purified without a signal peptide (SP) sequence, and the other was commercially produced with a SP channeling it through the secretory pathway. Our results show completely different PTMs on the two N protein preparations. The commercial product contained extensive N- and O-linked glycosylation as well as O-phosphorylation on site Thr393. Conversely, the native N Protein model had O-phosphorylation at Ser176 and no glycosylation, highlighting the importance of knowing the provenance of any commercial protein to be used for scientific or clinical studies. Recent studies have indicated that N protein can serve as an important diagnostic marker for COVID-19 and as a major immunogen by priming protective immune responses. Thus, detailed structural characterization of N protein may provide useful insights for understanding the roles of PTMs on viral pathogenesis, vaccine design and development of point-of-care diagnostics.
Collapse
Affiliation(s)
- Nitin T Supekar
- Complex Carbohydrate Research Center, The University of Georgia, Athens, GA 30602
| | - Asif Shajahan
- Complex Carbohydrate Research Center, The University of Georgia, Athens, GA 30602
| | - Anne S Gleinich
- Complex Carbohydrate Research Center, The University of Georgia, Athens, GA 30602
| | - Daniel S Rouhani
- Complex Carbohydrate Research Center, The University of Georgia, Athens, GA 30602
| | - Christian Heiss
- Complex Carbohydrate Research Center, The University of Georgia, Athens, GA 30602
| | | | - Kelley W Moremen
- Complex Carbohydrate Research Center, The University of Georgia, Athens, GA 30602
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, The University of Georgia, Athens, GA 30602
| |
Collapse
|
8
|
Maldonado LL, Bertelli AM, Kamenetzky L. Molecular features similarities between SARS-CoV-2, SARS, MERS and key human genes could favour the viral infections and trigger collateral effects. Sci Rep 2021; 11:4108. [PMID: 33602998 PMCID: PMC7893037 DOI: 10.1038/s41598-021-83595-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 01/26/2021] [Indexed: 01/31/2023] Open
Abstract
In December 2019, rising pneumonia cases caused by a novel β-coronavirus (SARS-CoV-2) occurred in Wuhan, China, which has rapidly spread worldwide, causing thousands of deaths. The WHO declared the SARS-CoV-2 outbreak as a public health emergency of international concern, since then several scientists are dedicated to its study. It has been observed that many human viruses have codon usage biases that match highly expressed proteins in the tissues they infect and depend on the host cell machinery for the replication and co-evolution. In this work, we analysed 91 molecular features and codon usage patterns for 339 viral genes and 463 human genes that consisted of 677,873 codon positions. Hereby, we selected the highly expressed genes from human lung tissue to perform computational studies that permit to compare their molecular features with those of SARS, SARS-CoV-2 and MERS genes. The integrated analysis of all the features revealed that certain viral genes and overexpressed human genes have similar codon usage patterns. The main pattern was the A/T bias that together with other features could propitiate the viral infection, enhanced by a host dependant specialization of the translation machinery of only some of the overexpressed genes. The envelope protein E, the membrane glycoprotein M and ORF7 could be further benefited. This could be the key for a facilitated translation and viral replication conducting to different comorbidities depending on the genetic variability of population due to the host translation machinery. This is the first codon usage approach that reveals which human genes could be potentially deregulated due to the codon usage similarities between the host and the viral genes when the virus is already inside the human cells of the lung tissues. Our work leaded to the identification of additional highly expressed human genes which are not the usual suspects but might play a role in the viral infection and settle the basis for further research in the field of human genetics associated with new viral infections. To identify the genes that could be deregulated under a viral infection is important to predict the collateral effects and determine which individuals would be more susceptible based on their genetic features and comorbidities associated.
Collapse
Affiliation(s)
- Lucas L Maldonado
- IMPaM, CONICET, Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina.
| | | | - Laura Kamenetzky
- IMPaM, CONICET, Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
- iB3 | Instituto de Biociencias, Biotecnología y Biología traslacional, Departamento de Fisiologia y Biologia Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
9
|
Azad GK. The molecular assessment of SARS-CoV-2 Nucleocapsid Phosphoprotein variants among Indian isolates. Heliyon 2021; 7:e06167. [PMID: 33553784 PMCID: PMC7848562 DOI: 10.1016/j.heliyon.2021.e06167] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/05/2020] [Accepted: 01/28/2021] [Indexed: 11/28/2022] Open
Abstract
Coronavirus disease- 2019 (COVID-19) has rapidly become a major threat to humans due to its high infection rate and deaths caused worldwide. This disease is caused by an RNA virus, Severe Acquired Respiratory Syndrome -Corona Virus-2 (SARS-CoV-2). This class of viruses have a high rate of mutation than DNA viruses that enables them to adapt and also evade host immune system. Here, we compared the first known Nucleocapsid Phosphoprotein (N protein) sequence of SARS-CoV-2 from China with the sequences from Indian COVID-19 patients to understand, if this virus is also mutating, as it is spreading to new locations. Our data revealed twenty mutations present among Indian isolates. Out of these, mutation at six positions led to changes in the secondary structure of N protein. Further, we also show that these mutations are primarily destabilising the protein structure. The candidate mutations identified in this study may help to speed up the understanding of variations occurring in SARS-CoV-2.
Collapse
|
10
|
Lu S, Ye Q, Singh D, Cao Y, Diedrich JK, Yates JR, Villa E, Cleveland DW, Corbett KD. The SARS-CoV-2 nucleocapsid phosphoprotein forms mutually exclusive condensates with RNA and the membrane-associated M protein. Nat Commun 2021; 12:502. [PMID: 33479198 PMCID: PMC7820290 DOI: 10.1038/s41467-020-20768-y] [Citation(s) in RCA: 244] [Impact Index Per Article: 81.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 12/17/2020] [Indexed: 02/07/2023] Open
Abstract
The multifunctional nucleocapsid (N) protein in SARS-CoV-2 binds the ~30 kb viral RNA genome to aid its packaging into the 80-90 nm membrane-enveloped virion. The N protein is composed of N-terminal RNA-binding and C-terminal dimerization domains that are flanked by three intrinsically disordered regions. Here we demonstrate that the N protein's central disordered domain drives phase separation with RNA, and that phosphorylation of an adjacent serine/arginine rich region modulates the physical properties of the resulting condensates. In cells, N forms condensates that recruit the stress granule protein G3BP1, highlighting a potential role for N in G3BP1 sequestration and stress granule inhibition. The SARS-CoV-2 membrane (M) protein independently induces N protein phase separation, and three-component mixtures of N + M + RNA form condensates with mutually exclusive compartments containing N + M or N + RNA, including annular structures in which the M protein coats the outside of an N + RNA condensate. These findings support a model in which phase separation of the SARS-CoV-2 N protein contributes both to suppression of the G3BP1-dependent host immune response and to packaging genomic RNA during virion assembly.
Collapse
Affiliation(s)
- Shan Lu
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
- Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, CA, 92093, USA
| | - Qiaozhen Ye
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Digvijay Singh
- Section of Molecular Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Yong Cao
- National Institute of Biological Sciences, 102206, Beijing, China
| | | | - John R Yates
- The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Elizabeth Villa
- Section of Molecular Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Don W Cleveland
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, 92093, USA.
- Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, CA, 92093, USA.
| | - Kevin D Corbett
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, 92093, USA.
- Department of Chemistry & Biochemistry, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
11
|
Chen L, Zhong L. Genomics functional analysis and drug screening of SARS-CoV-2. Genes Dis 2020; 7:542-550. [PMID: 32363223 PMCID: PMC7195040 DOI: 10.1016/j.gendis.2020.04.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 04/03/2020] [Indexed: 01/11/2023] Open
Abstract
A novel coronavirus appeared in Wuhan, China has led to major outbreaks. Recently, rapid classification of virus species, analysis of genome and screening for effective drugs are the most important tasks. In the present study, through literature review, sequence alignment, ORF identification, motif recognition, secondary and tertiary structure prediction, the whole genome of SARS-CoV-2 were comprehensively analyzed. To find effective drugs, the parameters of binding sites were calculated by SeeSAR. In addition, potential miRNAs were predicted according to RNA base-pairing. After prediction by using NCBI, WebMGA and GeneMark and comparison, a total of 8 credible ORFs were detected. Even the whole genome have great difference with other CoVs, each ORF has high homology with SARS-CoVs (>90%). Furthermore, domain composition in each ORFs was also similar to SARS. In the DrugBank database, only 7 potential drugs were screened based on the sequence search module. Further predicted binding sites between drug and ORFs revealed that 2-(N-Morpholino)-ethanesulfonic acid could bind 1# ORF in 4 different regions ideally. Meanwhile, both benzyl (2-oxopropyl) carbamate and 4-(dimehylamina) benzoic acid have bene demonstrated to inhibit SARS-CoV infection effectively. Interestingly, 2 miRNAs (miR-1307-3p and miR-3613-5p) were predicted to prevent virus replication via targeting 3'-UTR of the genome or as biomarkers. In conclusion, the novel coronavirus may have consanguinity with SARS. Drugs used to treat SARS may also be effective against the novel virus. In addition, altering miRNA expression may become a potential therapeutic schedule.
Collapse
Affiliation(s)
- Long Chen
- Bioengineering Institute of Chongqing University, 174 Shazheng Street, Chongqing, China
| | - Li Zhong
- Bioengineering Institute of Chongqing University, 174 Shazheng Street, Chongqing, China
| |
Collapse
|
12
|
Lang Y, Chen K, Li Z, Li H. The nucleocapsid protein of zoonotic betacoronaviruses is an attractive target for antiviral drug discovery. Life Sci 2020; 282:118754. [PMID: 33189817 PMCID: PMC7658559 DOI: 10.1016/j.lfs.2020.118754] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/22/2020] [Accepted: 11/10/2020] [Indexed: 12/02/2022]
Abstract
Betacoronaviruses are in one genera of coronaviruses including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome-related coronavirus (MERS-CoV), etc. These viruses threaten public health and cause dramatic economic losses. The nucleocapsid (N) protein is a structural protein of betacoronaviruses with multiple functions such as forming viral capsids with viral RNA, interacting with viral membrane protein to form the virus core with RNA, binding to several cellular kinases for signal transductions, etc. In this review, we highlighted the potential of the N protein as a suitable antiviral target from different perspectives, including structure, functions, and antiviral strategies for combatting betacoronaviruses.
Collapse
Affiliation(s)
- Yuekun Lang
- Wadsworth Center, New York State Department of Health, 120 New Scotland Ave, Albany, NY 12208, USA
| | - Ke Chen
- Wadsworth Center, New York State Department of Health, 120 New Scotland Ave, Albany, NY 12208, USA
| | - Zhong Li
- Wadsworth Center, New York State Department of Health, 120 New Scotland Ave, Albany, NY 12208, USA
| | - Hongmin Li
- Wadsworth Center, New York State Department of Health, 120 New Scotland Ave, Albany, NY 12208, USA; Department of Biomedical Sciences, School of Public Health, University at Albany, 1 University Place, Rensselaer, NY 12144, USA.
| |
Collapse
|
13
|
Sirpilla O, Bauss J, Gupta R, Underwood A, Qutob D, Freeland T, Bupp C, Carcillo J, Hartog N, Rajasekaran S, Prokop JW. SARS-CoV-2-Encoded Proteome and Human Genetics: From Interaction-Based to Ribosomal Biology Impact on Disease and Risk Processes. J Proteome Res 2020; 19:4275-4290. [PMID: 32686937 PMCID: PMC7418564 DOI: 10.1021/acs.jproteome.0c00421] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Indexed: 12/12/2022]
Abstract
SARS-CoV-2 (COVID-19) has infected millions of people worldwide, with lethality in hundreds of thousands. The rapid publication of information, both regarding the clinical course and the viral biology, has yielded incredible knowledge of the virus. In this review, we address the insights gained for the SARS-CoV-2 proteome, which we have integrated into the Viral Integrated Structural Evolution Dynamic Database, a publicly available resource. Integrating evolutionary, structural, and interaction data with human proteins, we present how the SARS-CoV-2 proteome interacts with human disorders and risk factors ranging from cytokine storm, hyperferritinemic septic, coagulopathic, cardiac, immune, and rare disease-based genetics. The most noteworthy human genetic potential of SARS-CoV-2 is that of the nucleocapsid protein, where it is known to contribute to the inhibition of the biological process known as nonsense-mediated decay. This inhibition has the potential to not only regulate about 10% of all biological transcripts through altered ribosomal biology but also associate with viral-induced genetics, where suppressed human variants are activated to drive dominant, negative outcomes within cells. As we understand more of the dynamic and complex biological pathways that the proteome of SARS-CoV-2 utilizes for entry into cells, for replication, and for release from human cells, we can understand more risk factors for severe/lethal outcomes in patients and novel pharmaceutical interventions that may mitigate future pandemics.
Collapse
Affiliation(s)
- Olivia Sirpilla
- Department of Pediatrics and Human
Development, College of Human Medicine, Michigan State
University, Grand Rapids, Michigan 49503,
United States
- Department of Pharmacology and
Toxicology, Michigan State University, East
Lansing, Michigan 48824, United States
- Walsh
University, North Canton, Ohio 44720,
United States
| | - Jacob Bauss
- Department of Pediatrics and Human
Development, College of Human Medicine, Michigan State
University, Grand Rapids, Michigan 49503,
United States
| | - Ruchir Gupta
- Department of Pediatrics and Human
Development, College of Human Medicine, Michigan State
University, Grand Rapids, Michigan 49503,
United States
- Department of Pharmacology and
Toxicology, Michigan State University, East
Lansing, Michigan 48824, United States
| | - Adam Underwood
- Walsh
University, North Canton, Ohio 44720,
United States
| | - Dinah Qutob
- Walsh
University, North Canton, Ohio 44720,
United States
| | - Tom Freeland
- Walsh
University, North Canton, Ohio 44720,
United States
| | - Caleb Bupp
- Department of Pediatrics and Human
Development, College of Human Medicine, Michigan State
University, Grand Rapids, Michigan 49503,
United States
- Spectrum Health Medical
Genetics, Grand Rapids, Michigan 49503,
United States
| | - Joseph Carcillo
- Department of Critical Care Medicine
and Pediatrics, Children’s Hospital of Pittsburgh,
University of Pittsburgh School of
Medicine, Pittsburgh, Pennsylvania 15421,
United States
| | - Nicholas Hartog
- Allergy & Immunology,
Spectrum Health, Grand Rapids, Michigan 49503,
United States
| | - Surender Rajasekaran
- Department of Pediatrics and Human
Development, College of Human Medicine, Michigan State
University, Grand Rapids, Michigan 49503,
United States
- Pediatric Intensive Care
Unit, Helen DeVos Children’s Hospital,
Grand Rapids, Michigan 49503, United States
- Office of Research,
Spectrum Health, Grand Rapids, Michigan 49503,
United States
| | - Jeremy W. Prokop
- Department of Pediatrics and Human
Development, College of Human Medicine, Michigan State
University, Grand Rapids, Michigan 49503,
United States
- Department of Pharmacology and
Toxicology, Michigan State University, East
Lansing, Michigan 48824, United States
| |
Collapse
|
14
|
Morais IJ, Polveiro RC, Souza GM, Bortolin DI, Sassaki FT, Lima ATM. The global population of SARS-CoV-2 is composed of six major subtypes. Sci Rep 2020; 10:18289. [PMID: 33106569 PMCID: PMC7588421 DOI: 10.1038/s41598-020-74050-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 09/24/2020] [Indexed: 12/21/2022] Open
Abstract
The World Health Organization characterized COVID-19 as a pandemic in March 2020, the second pandemic of the twenty-first century. Expanding virus populations, such as that of SARS-CoV-2, accumulate a number of narrowly shared polymorphisms, imposing a confounding effect on traditional clustering methods. In this context, approaches that reduce the complexity of the sequence space occupied by the SARS-CoV-2 population are necessary for robust clustering. Here, we propose subdividing the global SARS-CoV-2 population into six well-defined subtypes and 10 poorly represented genotypes named tentative subtypes by focusing on the widely shared polymorphisms in nonstructural (nsp3, nsp4, nsp6, nsp12, nsp13 and nsp14) cistrons and structural (spike and nucleocapsid) and accessory (ORF8) genes. The six subtypes and the additional genotypes showed amino acid replacements that might have phenotypic implications. Notably, three mutations (one of them in the Spike protein) were responsible for the geographical segregation of subtypes. We hypothesize that the virus subtypes detected in this study are records of the early stages of SARS-CoV-2 diversification that were randomly sampled to compose the virus populations around the world. The genetic structure determined for the SARS-CoV-2 population provides substantial guidelines for maximizing the effectiveness of trials for testing candidate vaccines or drugs.
Collapse
Affiliation(s)
- Ivair José Morais
- Departamento de Fitopatologia, Universidade de Brasília, Brasília, DF, 70910-900, Brazil
| | - Richard Costa Polveiro
- Departamento de Veterinária, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Gabriel Medeiros Souza
- Instituto de Ciências Agrárias, Universidade Federal de Uberlândia, Uberlândia, MG, 38410-337, Brazil
| | - Daniel Inserra Bortolin
- Instituto de Ciências Agrárias, Universidade Federal de Uberlândia, Uberlândia, MG, 38410-337, Brazil
| | - Flávio Tetsuo Sassaki
- Instituto de Biotecnologia, Universidade Federal de Uberlândia, Monte Carmelo, MG, 38500-000, Brazil
| | - Alison Talis Martins Lima
- Instituto de Ciências Agrárias, Universidade Federal de Uberlândia, Uberlândia, MG, 38410-337, Brazil.
| |
Collapse
|
15
|
Lin P, Wang M, Wei Y, Kim T, Wei X. Coronavirus in human diseases: Mechanisms and advances in clinical treatment. MedComm (Beijing) 2020; 1:270-301. [PMID: 33173860 PMCID: PMC7646666 DOI: 10.1002/mco2.26] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 02/05/2023] Open
Abstract
Coronaviruses (CoVs), a subfamily of coronavirinae, are a panel of single-stranded RNA virus. Human coronavirus (HCoV) strains (HCoV-229E, HCoV-OC43, HCoV-HKU1, HCoV-NL63) usually cause mild upper respiratory diseases and are believed to be harmless. However, other HCoVs, associated with severe acute respiratory syndrome, Middle East respiratory syndrome, and COVID-19, have been identified as important pathogens due to their potent infectivity and lethality worldwide. Moreover, currently, no effective antiviral drugs treatments are available so far. In this review, we summarize the biological characters of HCoVs, their association with human diseases, and current therapeutic options for the three severe HCoVs. We also highlight the discussion about novel treatment strategies for HCoVs infections.
Collapse
Affiliation(s)
- Panpan Lin
- Laboratory of Aging Research and Cancer Drug Target State Key Laboratory of Biotherapy and Cancer Center National Clinical Research Center for Geriatrics West China Hospital Sichuan University Chengdu China
| | - Manni Wang
- Laboratory of Aging Research and Cancer Drug Target State Key Laboratory of Biotherapy and Cancer Center National Clinical Research Center for Geriatrics West China Hospital Sichuan University Chengdu China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target State Key Laboratory of Biotherapy and Cancer Center National Clinical Research Center for Geriatrics West China Hospital Sichuan University Chengdu China
| | - Taewan Kim
- Wexner Medical Center The Ohio State University Columbus Ohio 43210 USA
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target State Key Laboratory of Biotherapy and Cancer Center National Clinical Research Center for Geriatrics West China Hospital Sichuan University Chengdu China
| |
Collapse
|
16
|
Lu S, Ye Q, Singh D, Villa E, Cleveland DW, Corbett KD. The SARS-CoV-2 Nucleocapsid phosphoprotein forms mutually exclusive condensates with RNA and the membrane-associated M protein. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.07.30.228023. [PMID: 32766587 PMCID: PMC7402048 DOI: 10.1101/2020.07.30.228023] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
Abstract
The multifunctional nucleocapsid (N) protein in SARS-CoV-2 binds the ~30 kb viral RNA genome to aid its packaging into the 80-90nm membrane-enveloped virion. The N protein is composed of N-terminal RNA-binding and C-terminal dimerization domains that are flanked by three intrinsically disordered regions. Here we demonstrate that a centrally located 40 amino acid intrinsically disordered domain drives phase separation of N protein when bound to RNA, with the morphology of the resulting condensates affected by inclusion in the RNA of the putative SARS-CoV-2 packaging signal. The SARS-CoV-2 M protein, normally embedded in the virion membrane with its C-terminus extending into the virion core, independently induces N protein phase separation that is dependent on the N protein's C-terminal dimerization domain and disordered region. Three-component mixtures of N+M+RNA form condensates with mutually exclusive compartments containing N+M or N+RNA, including spherical annular structures in which the M protein coats the outside of an N+RNA condensate. These findings support a model in which phase separation of the N protein with both the viral genomic RNA and the SARS-CoV-2 M protein facilitates RNA packaging and virion assembly.
Collapse
Affiliation(s)
- Shan Lu
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093
| | - Qiaozhen Ye
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Digvijay Singh
- Section of Molecular Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 93093
| | - Elizabeth Villa
- Section of Molecular Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 93093
| | - Don W Cleveland
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093
| | - Kevin D Corbett
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093
- Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, CA 92093
| |
Collapse
|
17
|
Han Y, Zhang J, Shi H, Zhou L, Chen J, Zhang X, Liu J, Zhang J, Wang X, Ji Z, Jing Z, Cong G, Ma J, Shi D, Li F. Epitope mapping and cellular localization of swine acute diarrhea syndrome coronavirus nucleocapsid protein using a novel monoclonal antibody. Virus Res 2019; 273:197752. [PMID: 31518629 PMCID: PMC7114574 DOI: 10.1016/j.virusres.2019.197752] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/30/2019] [Accepted: 09/09/2019] [Indexed: 12/23/2022]
Abstract
SADS-CoV N-specific monoclonal antibody (mAb) was generated and characterized. N mAb detected SADS-CoV in infected cells. Identified the motif 343DAPVFTPAP351 as the minimal unit of the linear B-cell epitope recognized by mAb 3E9.
A swine acute diarrhea syndrome coronavirus (SADS-CoV) that causes severe diarrhea in suckling piglets was identified in Southern China in 2017. To develop an antigen that is specific, sensitive, and easy to prepare for serological diagnosis, antigenic sites in the SADS-CoV nucleocapsid (N) protein were screened. We generated and characterized an N-reactive monoclonal antibody (mAb) 3E9 from mice immunized with recombinant N protein. Through fine epitope mapping of mAb 3E9 using a panel of eukaryotic-expressed polypeptides with GFP-tags, we identified the motif 343DAPVFTPAP351 as the minimal unit of the linear B-cell epitope recognized by mAb 3E9. Protein sequence alignment indicated that 343DAPVFTPAP351 was highly conserved in different SADS-CoV strains and SADS-related coronaviruses from bat, with one substitution in this motif in HKU2-related bat coronavirus. Using mAb 3E9, we observed that N protein was expressed in the cytoplasm and was in the nucleolus during SADS-CoV replication. N protein was immunoprecipitated from SADS-CoV-infected Vero E6 cells. Taken together, our results indicated that 3E9 mAb could be a useful tool to investigate the structure and function of N protein during viral replication.
Collapse
Affiliation(s)
- Yuru Han
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, Haping Road 678, Harbin, 150069, China
| | - Jiyu Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, Haping Road 678, Harbin, 150069, China
| | - Hongyan Shi
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, Haping Road 678, Harbin, 150069, China
| | - Ling Zhou
- College of Animal Science, South China Agricultural University, Tianhe District, Wushan Road 483, Guangzhou, 510642, China
| | - Jianfei Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, Haping Road 678, Harbin, 150069, China
| | - Xin Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, Haping Road 678, Harbin, 150069, China
| | - Jianbo Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, Haping Road 678, Harbin, 150069, China
| | - Jialin Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, Haping Road 678, Harbin, 150069, China
| | - Xiaobo Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, Haping Road 678, Harbin, 150069, China
| | - Zhaoyang Ji
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, Haping Road 678, Harbin, 150069, China
| | - Zhaoyang Jing
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, Haping Road 678, Harbin, 150069, China
| | - Guangyi Cong
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, Haping Road 678, Harbin, 150069, China
| | - Jingyun Ma
- College of Animal Science, South China Agricultural University, Tianhe District, Wushan Road 483, Guangzhou, 510642, China.
| | - Da Shi
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, Haping Road 678, Harbin, 150069, China.
| | - Feng Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, Haping Road 678, Harbin, 150069, China.
| |
Collapse
|
18
|
Beidas M, Chehadeh W. Effect of Human Coronavirus OC43 Structural and Accessory Proteins on the Transcriptional Activation of Antiviral Response Elements. Intervirology 2018; 61:30-35. [PMID: 30041172 PMCID: PMC7179558 DOI: 10.1159/000490566] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 06/03/2018] [Indexed: 12/25/2022] Open
Abstract
Objectives The molecular mechanisms underlying the pathogenesis of human coronavirus OC43 (HCoV-OC43) infection are poorly understood. In this study, we investigated the ability of HCoV-OC43 to antagonize the transcriptional activation of antiviral response elements. Methods HCoV-OC43 structural (membrane M and nucleocapsid N) and accessory proteins (ns2a and ns5a) were expressed individually in human embryonic kidney 293 (HEK-293) cells. The transcriptional activation of antiviral response elements was assessed by measuring the levels of firefly luciferase expressed under the control of interferon (IFN)-stimulated response element (ISRE), IFN-β promoter, or nuclear factor kappa B response element (NF-κB-RE). The antiviral gene expression profile in HEK-293 cells was determined by PCR array. Results The transcriptional activity of ISRE, IFN-β promoter, and NF-κB-RE was significantly reduced in the presence of HCoV-OC43 ns2a, ns5a, M, or N protein, following the challenge of cells with Sendai virus, IFN-α or tumor necrosis factor-α. The expression of antiviral genes involved in the type I IFN and NF-κB signaling pathways was also downregulated in the presence of HCoV-OC43 structural or accessory proteins. Conclusion Both structural and accessory HCoV-OC43 proteins are able to inhibit antiviral response elements in HEK-293 cells, and to block the activation of different antiviral signaling pathways.
Collapse
Affiliation(s)
| | - Wassim Chehadeh
- *Dr. Wassim Chehadeh, Department of Microbiology, Faculty of Medicine, Kuwait University, PO Box 24923, Safat 13310 (Kuwait), E-Mail
| |
Collapse
|
19
|
Ding Z, Fang L, Yuan S, Zhao L, Wang X, Long S, Wang M, Wang D, Foda MF, Xiao S. The nucleocapsid proteins of mouse hepatitis virus and severe acute respiratory syndrome coronavirus share the same IFN-β antagonizing mechanism: attenuation of PACT-mediated RIG-I/ MDA5 activation. Oncotarget 2018; 8:49655-49670. [PMID: 28591694 PMCID: PMC5564796 DOI: 10.18632/oncotarget.17912] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 05/01/2017] [Indexed: 01/08/2023] Open
Abstract
Coronaviruses (CoVs) are a huge threat to both humans and animals and have evolved elaborate mechanisms to antagonize interferons (IFNs). Nucleocapsid (N) protein is the most abundant viral protein in CoV-infected cells, and has been identified as an innate immunity antagonist in several CoVs, including mouse hepatitis virus (MHV) and severe acute respiratory syndrome (SARS)-CoV. However, the underlying molecular mechanism(s) remain unclear. In this study, we found that MHV N protein inhibited Sendai virus and poly(I:C)-induced IFN-β production by targeting a molecule upstream of retinoic acid-induced gene I (RIG-I) and melanoma differentiation gene 5 (MDA5). Further studies showed that both MHV and SARS-CoV N proteins directly interacted with protein activator of protein kinase R (PACT), a cellular dsRNA-binding protein that can bind to RIG-I and MDA5 to activate IFN production. The N–PACT interaction sequestered the association of PACT and RIG-I/MDA5, which in turn inhibited IFN-β production. However, the N proteins from porcine epidemic diarrhea virus (PEDV) and porcine reproductive and respiratory syndrome virus (PRRSV), which are also classified in the order Nidovirales, did not interact and counteract with PACT. Taken together, our present study confirms that both MHV and SARS-CoV N proteins can perturb the function of cellular PACT to circumvent the innate antiviral response. However, this strategy does not appear to be used by all CoVs N proteins.
Collapse
Affiliation(s)
- Zhen Ding
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Liurong Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Shuangling Yuan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Ling Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Xunlei Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Siwen Long
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Mohan Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Dang Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Mohamed Frahat Foda
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| |
Collapse
|
20
|
Beidas M, Chehadeh W. PCR array profiling of antiviral genes in human embryonic kidney cells expressing human coronavirus OC43 structural and accessory proteins. Arch Virol 2018; 163:2065-2072. [PMID: 29619598 PMCID: PMC7086905 DOI: 10.1007/s00705-018-3832-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 03/22/2018] [Indexed: 10/26/2022]
Abstract
Human coronavirus OC43 (HCoV-OC43) is a respiratory virus that usually causes a common cold. However, it has the potential to cause severe infection in young children and immunocompromised adults. Both SARS-CoV and MERS-CoV were shown to express proteins with the potential to evade early innate immune responses. However, the ability of HCoV-OC43 to antagonise the intracellular antiviral defences has not yet been investigated. The potential role of the HCoV-OC43 structural (M and N) and accessory proteins (ns2a and ns5a) in the alteration of antiviral gene expression was investigated in this study. HCoV-OC43M, N, ns2a and ns5a proteins were expressed in human embryonic kidney 293 (HEK-293) cells before challenge with Sendai virus. The Human Antiviral Response PCR array was used to profile the antiviral gene expression in HEK-293 cells. Over 30 genes were downregulated in the presence of one of the HCoV-OC43 proteins, e.g. genes representing mitogen-activated protein kinases, toll-like receptors, interferons, interleukins, and signaling transduction proteins. Our findings suggest that similarly to SARS-CoV and MERS-CoV, HCoV-OC43 has the ability to downregulate the transcription of genes critical for the activation of different antiviral signaling pathways. Further studies are needed to confirm the role of HCoV-OC43 structural and accessory proteins in antagonising antiviral gene expression.
Collapse
Affiliation(s)
- Meshal Beidas
- Department of Microbiology, Faculty of Medicine, Kuwait University, PO Box 24923, 13310, Safat, Kuwait
| | - Wassim Chehadeh
- Department of Microbiology, Faculty of Medicine, Kuwait University, PO Box 24923, 13310, Safat, Kuwait.
| |
Collapse
|
21
|
Characterization of Two Monoclonal Antibodies That Recognize Linker Region and Carboxyl Terminal Domain of Coronavirus Nucleocapsid Protein. PLoS One 2016; 11:e0163920. [PMID: 27689694 PMCID: PMC5045181 DOI: 10.1371/journal.pone.0163920] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 09/17/2016] [Indexed: 12/27/2022] Open
Abstract
The transmissible gastroenteritis virus (TGEV) nucleocapsid (N) protein plays important roles in the replication and translation of viral RNA. The present study provides the first description of two monoclonal antibodies (mAbs) (5E8 and 3D7) directed against the TGEV N protein linker region (LKR) and carboxyl terminal domain (CTD). The mAbs 5E8 and 3D7 reacted with native N protein in western blotting and immunofluorescence assay (IFA). Two linear epitopes, 189SVEQAVLAALKKLG202 and 246VTRFYGARSSSA257, located in the LKR and CTD of TGEV N protein, respectively, were identified after truncating the protein and applying a peptide scanning technique. Using mAb 5E8, we observed that the N protein was expressed in the cytoplasm during TGEV replication and that the protein could be immunoprecipitated from TGEV-infected PK-15 cells. The mAb 5E8 can be applied for different approaches to diagnosis of TGEV infection. In addition, the antibodies represent useful tools for investigating the antigenic properties of the N protein.
Collapse
|
22
|
McBride R, van Zyl M, Fielding BC. The coronavirus nucleocapsid is a multifunctional protein. Viruses 2014; 6:2991-3018. [PMID: 25105276 PMCID: PMC4147684 DOI: 10.3390/v6082991] [Citation(s) in RCA: 638] [Impact Index Per Article: 63.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 07/09/2014] [Accepted: 07/11/2014] [Indexed: 12/12/2022] Open
Abstract
The coronavirus nucleocapsid (N) is a structural protein that forms complexes with genomic RNA, interacts with the viral membrane protein during virion assembly and plays a critical role in enhancing the efficiency of virus transcription and assembly. Recent studies have confirmed that N is a multifunctional protein. The aim of this review is to highlight the properties and functions of the N protein, with specific reference to (i) the topology; (ii) the intracellular localization and (iii) the functions of the protein.
Collapse
Affiliation(s)
- Ruth McBride
- Molecular Biology and Virology Research Laboratory, Department of Medical Biosciences, Faculty of Natural Sciences, University of the Western Cape, Private Bag X17, Modderdam Road, Bellville, Western Cape 7535, South Africa.
| | - Marjorie van Zyl
- Molecular Biology and Virology Research Laboratory, Department of Medical Biosciences, Faculty of Natural Sciences, University of the Western Cape, Private Bag X17, Modderdam Road, Bellville, Western Cape 7535, South Africa.
| | - Burtram C Fielding
- Molecular Biology and Virology Research Laboratory, Department of Medical Biosciences, Faculty of Natural Sciences, University of the Western Cape, Private Bag X17, Modderdam Road, Bellville, Western Cape 7535, South Africa.
| |
Collapse
|
23
|
Chang CK, Hou MH, Chang CF, Hsiao CD, Huang TH. The SARS coronavirus nucleocapsid protein--forms and functions. Antiviral Res 2014; 103:39-50. [PMID: 24418573 PMCID: PMC7113676 DOI: 10.1016/j.antiviral.2013.12.009] [Citation(s) in RCA: 339] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 12/08/2013] [Accepted: 12/20/2013] [Indexed: 12/14/2022]
Abstract
Coronavirus N proteins share the same modular organization. Structures of SARS-CoV N protein provide insight into nucleocapsid formation. N protein binds to nucleic acid at multiple sites in a coupled-allostery manner. A RNP packaging model highlighting the importance of disorder and modularity is proposed.
The nucleocapsid phosphoprotein of the severe acute respiratory syndrome coronavirus (SARS-CoV N protein) packages the viral genome into a helical ribonucleocapsid (RNP) and plays a fundamental role during viral self-assembly. It is a protein with multifarious activities. In this article we will review our current understanding of the N protein structure and its interaction with nucleic acid. Highlights of the progresses include uncovering the modular organization, determining the structures of the structural domains, realizing the roles of protein disorder in protein–protein and protein–nucleic acid interactions, and visualizing the ribonucleoprotein (RNP) structure inside the virions. It was also demonstrated that N-protein binds to nucleic acid at multiple sites with a coupled-allostery manner. We propose a SARS-CoV RNP model that conforms to existing data and bears resemblance to the existing RNP structures of RNA viruses. The model highlights the critical role of modular organization and intrinsic disorder of the N protein in the formation and functions of the dynamic RNP capsid in RNA viruses. This paper forms part of a symposium in Antiviral Research on “From SARS to MERS: 10 years of research on highly pathogenic human coronaviruses.”
Collapse
Affiliation(s)
- Chung-ke Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan, ROC
| | - Ming-Hon Hou
- Department of Life Science, National Chung Hsing University, Taichung 40254, Taiwan, ROC
| | - Chi-Fon Chang
- The Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan, ROC
| | - Chwan-Deng Hsiao
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan, ROC
| | - Tai-huang Huang
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan, ROC; The Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan, ROC; Department of Physics, National Taiwan Normal University, Taipei 11677, Taiwan, ROC.
| |
Collapse
|
24
|
Yang W, Li G, Ren Y, Suo S, Ren X. Phylogeny and expression of the nucleocapsid gene of porcine epidemic diarrhoea virus. Acta Vet Hung 2013; 61:257-69. [PMID: 23661393 DOI: 10.1556/avet.2013.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Porcine epidemic diarrhoea virus (PEDV) is one of the important pathogens that may cause severe diarrhoea in piglets. In this study, the nucleocapsid (N) gene of a Chinese PEDV isolate designated HLJBY was cloned. The phylogeny of PEDV strains was investigated by constructing a phylogenetic tree based on the N protein sequences. The results indicate that there are two major groups of Chinese PEDVs, a Japanese PEDV group and a Korean PEDV group. High-level expression of the N protein was achieved in Escherichia coli. The immunoreactivity between PEDV particles or the bacterially expressed N protein and rabbit anti-PEDV serum was confirmed by immunofluorescence assays and Western blot. Both PEDV N protein and the polyclonal antibody generated in this study are valuable diagnostic reagents for PEDV surveillance.
Collapse
Affiliation(s)
- Wei Yang
- 1 Northeast Agricultural University College of Veterinary Medicine 59 Mucai Street, Xiangfang District 150030 Harbin China
| | - Guangxing Li
- 1 Northeast Agricultural University College of Veterinary Medicine 59 Mucai Street, Xiangfang District 150030 Harbin China
| | | | - Siqingaowa Suo
- 1 Northeast Agricultural University College of Veterinary Medicine 59 Mucai Street, Xiangfang District 150030 Harbin China
| | - Xiaofeng Ren
- 1 Northeast Agricultural University College of Veterinary Medicine 59 Mucai Street, Xiangfang District 150030 Harbin China
| |
Collapse
|
25
|
Keane SC, Liu P, Leibowitz JL, Giedroc DP. Functional transcriptional regulatory sequence (TRS) RNA binding and helix destabilizing determinants of murine hepatitis virus (MHV) nucleocapsid (N) protein. J Biol Chem 2012; 287:7063-73. [PMID: 22241479 DOI: 10.1074/jbc.m111.287763] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Coronavirus (CoV) nucleocapsid (N) protein contains two structurally independent RNA binding domains. These are denoted N-terminal domain (NTD) and C-terminal domain and are joined by a charged linker region rich in serine and arginine residues (SR linker). In mouse hepatitis virus (MHV), the NTD binds the transcriptional regulatory sequence (TRS) RNA, a conserved hexanucleotide sequence required for subgenomic RNA synthesis. The NTD is also capable of disrupting a short RNA duplex. We show here that three residues on the β3 (Arg-125 and Tyr-127) and β5 (Tyr-190) strands play key roles in TRS RNA binding and helix destabilization with Ala substitutions of these residues lethal to the virus. NMR studies of the MHV NTD·TRS complex revealed that this region defines a major RNA binding interface in MHV with site-directed spin labeling studies consistent with a model in which the adenosine-rich 3'-region of TRS is anchored by Arg-125, Tyr-127, and Tyr-190 in a way that is critical for efficient subgenomic RNA synthesis in MHV. Characterization of CoV N NTDs from infectious bronchitis virus and from severe acute respiratory syndrome CoV revealed that, although detailed NTD-TRS determinants are distinct from those of MHV NTD, rapid helix destabilization activity of CoV N NTDs is most strongly correlated with CoV function and virus viability.
Collapse
Affiliation(s)
- Sarah C Keane
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, USA
| | | | | | | |
Collapse
|
26
|
Abstract
Coronaviruses infect many species of animals including humans, causing acute and chronic diseases. This review focuses primarily on the pathogenesis of murine coronavirus mouse hepatitis virus (MHV) and severe acute respiratory coronavirus (SARS-CoV). MHV is a collection of strains, which provide models systems for the study of viral tropism and pathogenesis in several organs systems, including the central nervous system, the liver, and the lung, and has been cited as providing one of the few animal models for the study of chronic demyelinating diseases such as multiple sclerosis. SARS-CoV emerged in the human population in China in 2002, causing a worldwide epidemic with severe morbidity and high mortality rates, particularly in older individuals. We review the pathogenesis of both viruses and the several reverse genetics systems that made much of these studies possible. We also review the functions of coronavirus proteins, structural, enzymatic, and accessory, with an emphasis on roles in pathogenesis. Structural proteins in addition to their roles in virion structure and morphogenesis also contribute significantly to viral spread in vivo and in antagonizing host cell responses. Nonstructural proteins include the small accessory proteins that are not at all conserved between MHV and SARS-CoV and the 16 conserved proteins encoded in the replicase locus, many of which have enzymatic activities in RNA metabolism or protein processing in addition to functions in antagonizing host response.
Collapse
Affiliation(s)
- Susan R Weiss
- Department of Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, USA
| | | |
Collapse
|
27
|
Asano A, Torigoe D, Sasaki N, Agui T. Identification of antigenic peptides derived from B-cell epitopes of nucleocapsid protein of mouse hepatitis virus for serological diagnosis. J Virol Methods 2011; 177:107-11. [DOI: 10.1016/j.jviromet.2011.07.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 06/20/2011] [Accepted: 07/18/2011] [Indexed: 11/15/2022]
|
28
|
Abstract
Coronaviruses infect many species of animals including humans, causing acute and chronic diseases. This review focuses primarily on the pathogenesis of murine coronavirus mouse hepatitis virus (MHV) and severe acute respiratory coronavirus (SARS-CoV). MHV is a collection of strains, which provide models systems for the study of viral tropism and pathogenesis in several organs systems, including the central nervous system, the liver, and the lung, and has been cited as providing one of the few animal models for the study of chronic demyelinating diseases such as multiple sclerosis. SARS-CoV emerged in the human population in China in 2002, causing a worldwide epidemic with severe morbidity and high mortality rates, particularly in older individuals. We review the pathogenesis of both viruses and the several reverse genetics systems that made much of these studies possible. We also review the functions of coronavirus proteins, structural, enzymatic, and accessory, with an emphasis on roles in pathogenesis. Structural proteins in addition to their roles in virion structure and morphogenesis also contribute significantly to viral spread in vivo and in antagonizing host cell responses. Nonstructural proteins include the small accessory proteins that are not at all conserved between MHV and SARS-CoV and the 16 conserved proteins encoded in the replicase locus, many of which have enzymatic activities in RNA metabolism or protein processing in addition to functions in antagonizing host response.
Collapse
Affiliation(s)
- Susan R Weiss
- Department of Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, USA
| | | |
Collapse
|
29
|
Accessory protein 5a is a major antagonist of the antiviral action of interferon against murine coronavirus. J Virol 2010; 84:8262-74. [PMID: 20519394 DOI: 10.1128/jvi.00385-10] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The type I interferon (IFN) response plays an essential role in the control of in vivo infection by the coronavirus mouse hepatitis virus (MHV). However, in vitro, most strains of MHV are largely resistant to the action of this cytokine, suggesting that MHV encodes one or more functions that antagonize or evade the IFN system. A particular strain of MHV, MHV-S, exhibited orders-of-magnitude higher sensitivity to IFN than prototype strain MHV-A59. Through construction of interstrain chimeric recombinants, the basis for the enhanced IFN sensitivity of MHV-S was found to map entirely to the region downstream of the spike gene, at the 3' end of the genome. Sequence analysis revealed that the major difference between the two strains in this region is the absence of gene 5a from MHV-S. Creation of a gene 5a knockout mutant of MHV-A59 demonstrated that a major component of IFN resistance maps to gene 5a. Conversely, insertion of gene 5a, or its homologs from related group 2 coronaviruses, at an upstream genomic position in an MHV-A59/S chimera restored IFN resistance. This is the first demonstration of a coronavirus gene product that can protect that same virus from the antiviral state induced by IFN. Neither protein kinase R, which phosphorylates eukaryotic initiation factor 2, nor oligoadenylate synthetase, which activates RNase L, was differentially activated in IFN-treated cells infected with MHV-A59 or MHV-S. Thus, the major IFN-induced antiviral activities that are specifically inhibited by MHV, and possibly by other coronaviruses, remain to be identified.
Collapse
|
30
|
Abstract
The murine coronavirus, mouse hepatitis virus (MHV) strain A59, causes acute encephalitis and chronic demyelinating disease as well as hepatitis in mice. The JHM strain (also called MHV-4 or JHM.SD) causes fatal encephalitis and only minimal hepatitis. Previous analysis of chimeric recombinant MHVs in which the spike gene, encoding the protein that mediates viral entry and cell-to-cell fusion, was exchanged between JHM and A59 showed that the spike plays a major role in determining organ tropism and neurovirulence but that other genes also play important roles in pathogenic outcome. Here, we have investigated the role of the nucleocapsid protein in MHV-induced disease. The multifunctional nucleocapsid protein is complexed with the genomic RNA, interacts with the viral membrane protein during virion assembly, and plays an import role in enhancing the efficiency of transcription. A pair of chimeric recombinant viruses in which the nucleocapsid gene was exchanged between JHM and A59 was selected and compared to wild-type parental strains in terms of virulence. Importantly, expression of the JHM nucleocapsid in the context of the A59 genome conferred increased mortality and spread of viral antigen in the mouse central nervous system compared to the parental A59 strain, while having little effect on the induction of hepatitis. While the JHM nucleocapsid did not appear to enhance neuron-to-neuron spread in primary neuronal cultures, the increased neurovirulence it conferred may be due in part to the induction of a less robust T-cell response than that induced by strain A59.
Collapse
|
31
|
Coronavirus nucleocapsid protein facilitates template switching and is required for efficient transcription. J Virol 2009; 84:2169-75. [PMID: 19955314 DOI: 10.1128/jvi.02011-09] [Citation(s) in RCA: 154] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Purified nucleocapsid protein (N protein) from transmissible gastroenteritis virus (TGEV) enhanced hammerhead ribozyme self-cleavage and favored nucleic acid annealing, properties that define RNA chaperones, as previously reported. Several TGEV N-protein deletion mutants were expressed in Escherichia coli and purified, and their RNA binding ability and RNA chaperone activity were evaluated. The smallest N-protein domain analyzed with RNA chaperone activity, facilitating DNA and RNA annealing, contained the central unstructured region (amino acids 117 to 268). Interestingly, N protein and its deletion mutants with RNA chaperone activity enhanced template switching in a retrovirus-derived heterologous system, reinforcing the concept that TGEV N protein is an RNA chaperone that could be involved in template switching. This result is in agreement with the observation that in vivo, N protein is not necessary for TGEV replication, but it is required for efficient transcription.
Collapse
|
32
|
Identification of in vivo-interacting domains of the murine coronavirus nucleocapsid protein. J Virol 2009; 83:7221-34. [PMID: 19420077 DOI: 10.1128/jvi.00440-09] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The coronavirus nucleocapsid protein (N), together with the large, positive-strand RNA viral genome, forms a helically symmetric nucleocapsid. This ribonucleoprotein structure becomes packaged into virions through association with the carboxy-terminal endodomain of the membrane protein (M), which is the principal constituent of the virion envelope. Previous work with the prototype coronavirus mouse hepatitis virus (MHV) has shown that a major determinant of the N-M interaction maps to the carboxy-terminal domain 3 of the N protein. To explore other domain interactions of the MHV N protein, we expressed a series of segments of the MHV N protein as fusions with green fluorescent protein (GFP) during the course of viral infection. We found that two of these GFP-N-domain fusion proteins were selectively packaged into virions as the result of tight binding to the N protein in the viral nucleocapsid, in a manner that did not involve association with either M protein or RNA. The nature of each type of binding was further explored through genetic analysis. Our results defined two strongly interacting regions of the N protein. One is the same domain 3 that is critical for M protein recognition during assembly. The other is domain N1b, which corresponds to the N-terminal domain that has been structurally characterized in detail for two other coronaviruses, infectious bronchitis virus and the severe acute respiratory syndrome coronavirus.
Collapse
|
33
|
Hu H, Huang X, Tao L, Huang Y, Cui BA, Wang H. Comparative analysis of the immunogenicity of SARS-CoV nucleocapsid DNA vaccine administrated with different routes in mouse model. Vaccine 2009; 27:1758-63. [PMID: 19186202 PMCID: PMC7115532 DOI: 10.1016/j.vaccine.2009.01.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Revised: 01/03/2009] [Accepted: 01/11/2009] [Indexed: 01/14/2023]
Abstract
The development of strategies to augment the immunogenicity of DNA vaccines is critical for improving their clinical utility. One such strategy involves using the different immune routes with DNA vaccines. In the present study, the immunogenicity of SARS-CoV nucleocapsid DNA vaccine, induced by using the current routine vaccination routes (intramuscularly, by electroporation, or orally using live-attenuated Salmonella typhimurium), was compared in mouse model. The comparison between the three vaccination routes indicated that immunization intramuscularly induced a moderate T cell response and antibody response. Mice administrated by electroporation induced the highest antibody response among the three immunization groups and a mid-level of cellular response. In contrast, the orally DNA vaccine evoked vigorous T cell response and a weak antibody production. These results indicated that the distinct types of immune responses were generated by the different routes of DNA immunization. In addition, our results also show that the delivery of DNA vaccines by electroporation and orally using live-attenuated Salmonella in vivo is an effective method to increase the immune responses. Further studies could be carried out using a combination strategy of both oral and electroporation immunizations to stimulate higher cellular and humoral immune responses.
Collapse
MESH Headings
- Administration, Oral
- Animals
- Antibodies, Viral/analysis
- Antibodies, Viral/biosynthesis
- Antibody Formation/immunology
- Capsid/immunology
- Cell Proliferation
- DNA, Viral/genetics
- DNA, Viral/immunology
- Electroporation
- Female
- Immunity, Cellular/immunology
- Injections, Intramuscular
- Interferon-gamma/biosynthesis
- Interleukin-4/biosynthesis
- Lymphocytes/immunology
- Mice
- Mice, Inbred BALB C
- Plasmids/immunology
- Severe acute respiratory syndrome-related coronavirus/immunology
- Salmonella typhimurium/immunology
- Severe Acute Respiratory Syndrome/immunology
- Vaccines, Attenuated/immunology
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/immunology
- Viral Vaccines/administration & dosage
- Viral Vaccines/immunology
Collapse
Affiliation(s)
- Hui Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Science, Wuhan 430071, PR China.
| | | | | | | | | | | |
Collapse
|
34
|
Multiple nucleic acid binding sites and intrinsic disorder of severe acute respiratory syndrome coronavirus nucleocapsid protein: implications for ribonucleocapsid protein packaging. J Virol 2008; 83:2255-64. [PMID: 19052082 DOI: 10.1128/jvi.02001-08] [Citation(s) in RCA: 150] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The nucleocapsid protein (N) of the severe acute respiratory syndrome coronavirus (SARS-CoV) packages the viral genomic RNA and is crucial for viability. However, the RNA-binding mechanism is poorly understood. We have shown previously that the N protein contains two structural domains--the N-terminal domain (NTD; residues 45 to 181) and the C-terminal dimerization domain (CTD; residues 248 to 365)--flanked by long stretches of disordered regions accounting for almost half of the entire sequence. Small-angle X-ray scattering data show that the protein is in an extended conformation and that the two structural domains of the SARS-CoV N protein are far apart. Both the NTD and the CTD have been shown to bind RNA. Here we show that all disordered regions are also capable of binding to RNA. Constructs containing multiple RNA-binding regions showed Hill coefficients greater than 1, suggesting that the N protein binds to RNA cooperatively. The effect can be explained by the "coupled-allostery" model, devised to explain the allosteric effect in a multidomain regulatory system. Although the N proteins of different coronaviruses share very low sequence homology, the physicochemical features described above may be conserved across different groups of Coronaviridae. The current results underscore the important roles of multisite nucleic acid binding and intrinsic disorder in N protein function and RNP packaging.
Collapse
|
35
|
Zúñiga S, Sola I, Cruz JLG, Enjuanes L. Role of RNA chaperones in virus replication. Virus Res 2008; 139:253-66. [PMID: 18675859 PMCID: PMC7114511 DOI: 10.1016/j.virusres.2008.06.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Revised: 06/18/2008] [Accepted: 06/23/2008] [Indexed: 01/06/2023]
Abstract
RNA molecules are functionally diverse in part due to their extreme structural flexibility that allows rapid regulation by refolding. RNA folding could be a difficult process as often molecules adopt a spatial conformation that is very stable but not biologically functional, named a kinetic trap. RNA chaperones are non-specific RNA binding proteins that help RNA folding by resolving misfolded structures or preventing their formation. There is a large number of viruses whose genome is RNA that allows some evolutionary advantages, such as rapid genome mutation. On the other hand, regions of the viral RNA genomes can adopt different structural conformations, some of them lacking functional relevance and acting as misfolded intermediates. In fact, for an efficient replication, they often require RNA chaperone activities. There is a growing list of RNA chaperones encoded by viruses involved in different steps of the viral cycle. Also, cellular RNA chaperones have been involved in replication of RNA viruses. This review briefly describes RNA chaperone activities and is focused in the roles that viral or cellular nucleic acid chaperones have in RNA virus replication, particularly in those viruses that require discontinuous RNA synthesis.
Collapse
Affiliation(s)
- Sonia Zúñiga
- Centro Nacional de Biotecnología, CSIC, Department of Molecular and Cell Biology, Campus Universitario de Cantoblanco, Darwin 3, 28049 Madrid, Spain
| | | | | | | |
Collapse
|
36
|
Suresh MR, Bhatnagar PK, Das D. Molecular targets for diagnostics and therapeutics of severe acute respiratory syndrome (SARS-CoV). JOURNAL OF PHARMACY AND PHARMACEUTICAL SCIENCES 2008; 11:1s-13s. [PMID: 19203466 DOI: 10.18433/j3j019] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE The large number of deaths in a short period of time due to the spread of severe acute respiratory syndrome (SARS) infection led to the unparalleled collaborative efforts world wide to determine and characterize the new coronavirus (SARS-CoV). The full genome sequence was determined within weeks of the first outbreak by the Canadian group with international collaboration. As per the World Health Organization (WHO), the continual lack of a rapid laboratory test to aid the early diagnosis of suspected cases of SARS makes this area a priority for future research. To prevent deaths in the future, early diagnosis and therapy of this infectious disease is of paramount importance. METHODS This review describes the specific molecular targets for diagnostics and therapeutics of viral infection. RESULTS The three major diagnostic methods available for SARS includes viral RNA detection by reverse transcription polymerase chain reaction (RT-PCR), virus induced antibodies by immunofluorescence assay (IFA) or by enzyme linked immunosorbant assay (ELISA) of nucleocapsid protein (NP). The spike glycoprotein of SARS-CoV is the major inducer of neutralizing antibodies. The receptor binding domain (RBD) in the S1 region of the spike glycoprotein contains multiple conformational epitopes that induces highly potent neutralizing antibodies. The genetically engineered attenuated form of the virus or viral vector vaccine encoding for the SARS-CoV spike glycoprotein has been shown to elicit protective immunity in vaccinated animals. CONCLUSION NP is the preferred target for routine detection of SARS-CoV infection by ELISA which is an economical method compared to other methods. The RBD of the spike glycoprotein is both a functional domain for cell receptor binding and also a major neutralizing determinant of SARS-CoV. The progress in evaluating a therapeutic or vaccine would depend on the avail ability of clinically relevant animal model.
Collapse
Affiliation(s)
- Mavanur R Suresh
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada.
| | | | | |
Collapse
|
37
|
Dutta NK, Mazumdar K, Lee BH, Baek MW, Kim DJ, Na YR, Park SH, Lee HK, Kariwa H, Mai LQ, Park JH. Search for potential target site of nucleocapsid gene for the design of an epitope-based SARS DNA vaccine. Immunol Lett 2008; 118:65-71. [PMID: 18440652 PMCID: PMC7112843 DOI: 10.1016/j.imlet.2008.03.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Revised: 03/03/2008] [Accepted: 03/11/2008] [Indexed: 11/30/2022]
Abstract
It is believed today that nucleocapsid protein (N) of severe acute respiratory syndrome (SARS)-CoV is one of the most promising antigen candidates for vaccine design. In this study, three fragments [N1 (residues: 1–422); N2 (residues: 1–109); N3 (residues: 110–422)] of N protein of SARS-CoV were expressed in Escherichia coli and analyzed by pooled sera of convalescence phase of SARS patients. Three gene fragments [N1 (1–1269 nt), N2 (1–327 nt) and N3 (328–1269 nt)—expressing the same proteins of N1, N2 and N3, respectively] of SARS-N were cloned into pVAX-1 and used to immunize BALB/c mice by electroporation. Humoral (by enzyme-linked immunosorbent assay, ELISA) and cellular (by cell proliferation and CD4+:CD8+ assay) immunity was detected by using recombinant N1 and N3 specific antigen. Results showed that N1 and N3 fragments of N protein expressed by E. coli were able to react with sera of SARS patients but N2 could not. Specific humoral and cellular immunity in mice could be induced significantly by inoculating SARS-CoV N1 and N3 DNA vaccine. In addition, the immune response levels in N3 were significantly higher for antibody responses (IgG and IgG1 but not IgG2a) and cell proliferation but not in CD4+:CD8+ assay compared to N1 vaccine. The identification of antigenic N protein fragments has implications to provide basic information for the design of DNA vaccine against SARS-CoV. The present results not only suggest that DNA immunization with pVax-N3 could be used as potential DNA vaccination approaches to induce antibody in BALB/c mice, but also illustrates that gene immunization with these SARS DNA vaccines can generate different immune responses.
Collapse
Affiliation(s)
- Noton Kumar Dutta
- Laboratory Animal Medicine, College of Veterinary Medicine and KRF Zoonotic Disease Priority Research Institute, Seoul National University, Gwanak-Gu, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Genetic interactions between an essential 3' cis-acting RNA pseudoknot, replicase gene products, and the extreme 3' end of the mouse coronavirus genome. J Virol 2007; 82:1214-28. [PMID: 18032506 DOI: 10.1128/jvi.01690-07] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The upstream end of the 3' untranslated region (UTR) of the mouse hepatitis virus genome contains two essential and overlapping RNA secondary structures, a bulged stem-loop and a pseudoknot, which have been proposed to be elements of a molecular switch that is critical for viral RNA synthesis. It has previously been shown that a particular six-base insertion in loop 1 of the pseudoknot is extremely deleterious to the virus. We have now isolated multiple independent second-site revertants of the loop 1 insertion mutant, and we used reverse-genetics methods to confirm the identities of suppressor mutations that could compensate for the original insertion. The suppressors were localized to two separate regions of the genome. Members of one class of suppressor were mapped to the portions of gene 1 that encode nsp8 and nsp9, thereby providing the first evidence for specific interactions between coronavirus replicase gene products and a cis-acting genomic RNA element. The second class of suppressor was mapped to the extreme 3' end of the genome, a result which pointed to the existence of a direct base-pairing interaction between loop 1 of the pseudoknot and the genomic terminus. The latter finding was strongly supported by phylogenetic evidence and by the construction of a deletion mutant that reduced the 3' UTR to its minimal essential elements. Taken together, the interactions revealed by the two classes of suppressors suggest a model for the initiation of coronavirus negative-strand RNA synthesis.
Collapse
|
39
|
Spencer KA, Dee M, Britton P, Hiscox JA. Role of phosphorylation clusters in the biology of the coronavirus infectious bronchitis virus nucleocapsid protein. Virology 2007; 370:373-81. [PMID: 17931676 PMCID: PMC7103301 DOI: 10.1016/j.virol.2007.08.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Revised: 08/11/2007] [Accepted: 08/16/2007] [Indexed: 01/15/2023]
Abstract
The coronavirus infectious bronchitis virus (IBV) nucleocapsid (N) protein is an RNA binding protein which is phosphorylated at two conserved clusters. Kinetic analysis of RNA binding indicated that the C-terminal phosphorylation cluster was involved in the recognition of viral RNA from non-viral RNA. The IBV N protein has been found to be essential for the successful recovery of IBV using reverse genetics systems. Rescue experiments indicated that phosphorylated N protein recovered infectious IBV more efficiently when compared to modified N proteins either partially or non-phosphorylated. Our data indicate that the phosphorylated form of the IBV N protein plays a role in virus biology.
Collapse
Affiliation(s)
- Kelly-Anne Spencer
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | | | | | | |
Collapse
|
40
|
Zhang X, Wu K, Wang D, Yue X, Song D, Zhu Y, Wu J. Nucleocapsid protein of SARS-CoV activates interleukin-6 expression through cellular transcription factor NF-kappaB. Virology 2007; 365:324-35. [PMID: 17490702 PMCID: PMC7103332 DOI: 10.1016/j.virol.2007.04.009] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2006] [Revised: 01/20/2007] [Accepted: 04/09/2007] [Indexed: 12/22/2022]
Abstract
High levels of interleukin-6 (IL-6) in the acute stage associated with lung lesions were found in SARS patients. To evaluate the mechanisms behind this event, we investigated the roles of SARS-CoV proteins in the regulation of IL-6. Results showed that the viral nucleocapsid (N) protein activated IL-6 expression in a concentration-dependent manner. Promoter analyses suggested that NF-κB binding element was required for IL-6 expression regulated by N protein. Further studies demonstrated that N protein bound directly to NF-κB element on the promoter. We also showed that N protein activated IL-6 expression through NF-κB by facilitating the translocation of NF-κB from cytosol to nucleus. Mutational analyses revealed that two regions of N protein were essential for its function in the activation of IL-6. These results provided new insights into understanding the mechanism involved in the function of SARS-CoV N protein and pathogenesis of the virus.
Collapse
Affiliation(s)
- Xue Zhang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, P.R. China
| | - Kailang Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, P.R. China
| | - Di Wang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, P.R. China
| | - Xin Yue
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, P.R. China
| | - Degui Song
- College of Biological Sciences, Guangxi Normal University, Guilin 541004, P.R. China
| | - Ying Zhu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, P.R. China
- Corresponding authors. J. Wu is to be contacted at fax: +86 27 68754592.
| | - Jianguo Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, P.R. China
- Corresponding authors. J. Wu is to be contacted at fax: +86 27 68754592.
| |
Collapse
|
41
|
White TC, Yi Z, Hogue BG. Identification of mouse hepatitis coronavirus A59 nucleocapsid protein phosphorylation sites. Virus Res 2007; 126:139-48. [PMID: 17367888 PMCID: PMC2001268 DOI: 10.1016/j.virusres.2007.02.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2006] [Revised: 02/04/2007] [Accepted: 02/08/2007] [Indexed: 01/28/2023]
Abstract
The coronavirus nucleocapsid (N) is a multifunctional phosphoprotein that encapsidates the genomic RNA into a helical nucleocapsid within the mature virion. The protein also plays roles in viral RNA transcription and/or replication and possibly viral mRNA translation. Phosphorylation is one of the most common post-translation modifications that plays important regulatory roles in modulating protein functions. It has been speculated for sometime that phosphorylation could play an important role in regulation of coronavirus N protein functions. As a first step toward positioning to address this we have identified the amino acids that are phosphorylated on the mouse hepatitis coronavirus (MHV) A59 N protein. High performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS) was used to identify phosphorylated sites on the N protein from both infected cells and purified extracellular virions. A total of six phosphorylated sites (S162, S170, T177, S389, S424 and T428) were identified on the protein from infected cells. The same six sites were also phosphorylated on the extracellular mature virion N protein. This is the first identification of phosphorylated sites for a group II coronavirus N protein.
Collapse
Affiliation(s)
- Tiana C White
- The Biodesign Institute, Center for Infectious Diseases and Vaccinology, Arizona State University, Tempe, AZ 85287-5401, USA
| | | | | |
Collapse
|
42
|
Zúñiga S, Sola I, Moreno JL, Sabella P, Plana-Durán J, Enjuanes L. Coronavirus nucleocapsid protein is an RNA chaperone. Virology 2007; 357:215-27. [PMID: 16979208 PMCID: PMC7111943 DOI: 10.1016/j.virol.2006.07.046] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2006] [Revised: 07/11/2006] [Accepted: 07/29/2006] [Indexed: 01/19/2023]
Abstract
RNA chaperones are nonspecific nucleic acid binding proteins with long disordered regions that help RNA molecules to adopt its functional conformation. Coronavirus nucleoproteins (N) are nonspecific RNA-binding proteins with long disordered regions. Therefore, we investigated whether transmissible gastroenteritis coronavirus (TGEV) N protein was an RNA chaperone. Purified N protein enhanced hammerhead ribozyme self-cleavage and nucleic acids annealing, which are properties that define RNA chaperones. In contrast, another RNA-binding protein, PTB, did not show these activities. N protein chaperone activity was blocked by specific monoclonal antibodies. Therefore, it was concluded that TGEV N protein is an RNA chaperone. In addition, we have shown that purified severe acute respiratory syndrome (SARS)-CoV N protein also has RNA chaperone activity. In silico predictions of disordered domains showed a similar pattern for all coronavirus N proteins evaluated. Altogether, these data led us to suggest that all coronavirus N proteins might be RNA chaperones.
Collapse
Affiliation(s)
- Sonia Zúñiga
- Centro Nacional de Biotecnología, CSIC, Department of Molecular and Cell Biology, Campus Universidad Autónoma, Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
43
|
Enjuanes L, Almazán F, Sola I, Zuñiga S. Biochemical aspects of coronavirus replication and virus-host interaction. Annu Rev Microbiol 2006; 60:211-30. [PMID: 16712436 DOI: 10.1146/annurev.micro.60.080805.142157] [Citation(s) in RCA: 157] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Infection by different coronaviruses (CoVs) causes alterations in the transcriptional and translational patterns, cell cycle, cytoskeleton, and apoptosis pathways of the host cells. In addition, CoV infection may cause inflammation, alter immune and stress responses, and modify the coagulation pathways. The balance between the up- and downregulated genes could explain the pathogenesis caused by these viruses. We review specific aspects of CoV-host interactions. CoV genome replication takes place in the cytoplasm in a membrane-protected microenvironment and may control the cell machinery by locating some of their proteins in the host cell nucleus. CoVs initiate translation by cap-dependent and cap-independent mechanisms. CoV transcription involves a discontinuous RNA synthesis (template switching) during the extension of a negative copy of the subgenomic mRNAs. The requirement for base-pairing during transcription has been formally demonstrated in arteriviruses and CoVs. CoV N proteins have RNA chaperone activity that may help initiate template switching. Both viral and cellular proteins are required for replication and transcription, and the role of selected proteins is addressed.
Collapse
Affiliation(s)
- Luis Enjuanes
- Department of Molecular and Cell Biology, CNB, CSIC, 28049 Madrid, Spain.
| | | | | | | |
Collapse
|
44
|
Perlman S, Holmes KV. Three-dimensional reconstruction of the nucleolus using meta-confocal microscopy in cells expressing the coronavirus nucleoprotein. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2006; 581:313-8. [PMID: 17037551 PMCID: PMC7124029 DOI: 10.1007/978-0-387-33012-9_55] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Affiliation(s)
- Stanley Perlman
- Department of Pediatrics, University of Iowa, 52242 Iowa City, IA USA
| | - Kathryn V. Holmes
- Department of Microbiology, University of Colorado Health Sciences Center at Fitzsimons, 80045-8333 Aurora, CO USA
| |
Collapse
|
45
|
Perlman S, Holmes KV. Genetic and molecular biological analysis of protein-protein interactions in coronavirus assembly. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2006; 581:163-73. [PMID: 17037525 PMCID: PMC7123481 DOI: 10.1007/978-0-387-33012-9_29] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Stanley Perlman
- Department of Pediatrics, University of Iowa, 52242 Iowa City, IA USA
| | - Kathryn V. Holmes
- Department of Microbiology, University of Colorado Health Sciences Center at Fitzsimons, 80045-8333 Aurora, CO USA
| |
Collapse
|
46
|
Abstract
Coronaviruses are large, enveloped RNA viruses of both medical and veterinary importance. Interest in this viral family has intensified in the past few years as a result of the identification of a newly emerged coronavirus as the causative agent of severe acute respiratory syndrome (SARS). At the molecular level, coronaviruses employ a variety of unusual strategies to accomplish a complex program of gene expression. Coronavirus replication entails ribosome frameshifting during genome translation, the synthesis of both genomic and multiple subgenomic RNA species, and the assembly of progeny virions by a pathway that is unique among enveloped RNA viruses. Progress in the investigation of these processes has been enhanced by the development of reverse genetic systems, an advance that was heretofore obstructed by the enormous size of the coronavirus genome. This review summarizes both classical and contemporary discoveries in the study of the molecular biology of these infectious agents, with particular emphasis on the nature and recognition of viral receptors, viral RNA synthesis, and the molecular interactions governing virion assembly.
Collapse
Affiliation(s)
- Paul S Masters
- Wadsworth Center, New York State Department of Health, Albany, 12201, USA
| |
Collapse
|
47
|
Reed ML, Dove BK, Jackson RM, Collins R, Brooks G, Hiscox JA. Delineation and modelling of a nucleolar retention signal in the coronavirus nucleocapsid protein. Traffic 2006; 7:833-48. [PMID: 16734668 PMCID: PMC7488588 DOI: 10.1111/j.1600-0854.2006.00424.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Unlike nuclear localization signals, there is no obvious consensus sequence for the targeting of proteins to the nucleolus. The nucleolus is a dynamic subnuclear structure which is crucial to the normal operation of the eukaryotic cell. Studying nucleolar trafficking signals is problematic as many nucleolar retention signals (NoRSs) are part of classical nuclear localization signals (NLSs). In addition, there is no known consensus signal with which to inform a study. The avian infectious bronchitis virus (IBV), coronavirus nucleocapsid (N) protein, localizes to the cytoplasm and the nucleolus. Mutagenesis was used to delineate a novel eight amino acid motif that was necessary and sufficient for nucleolar retention of N protein and colocalize with nucleolin and fibrillarin. Additionally, a classical nuclear export signal (NES) functioned to direct N protein to the cytoplasm. Comparison of the coronavirus NoRSs with known cellular and other viral NoRSs revealed that these motifs have conserved arginine residues. Molecular modelling, using the solution structure of severe acute respiratory (SARS) coronavirus N‐protein, revealed that this motif is available for interaction with cellular factors which may mediate nucleolar localization. We hypothesise that the N‐protein uses these signals to traffic to and from the nucleolus and the cytoplasm.
Collapse
Affiliation(s)
- Mark L. Reed
- Institute of Molecular and Cellular Biology, University of Leeds, Leeds, UK
| | - Brian K. Dove
- Institute of Molecular and Cellular Biology, University of Leeds, Leeds, UK
| | - Richard M. Jackson
- Institute of Molecular and Cellular Biology, University of Leeds, Leeds, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Rebecca Collins
- Institute of Molecular and Cellular Biology, University of Leeds, Leeds, UK
| | - Gavin Brooks
- School of Pharmacy, University of Reading, Reading, UK
| | - Julian A. Hiscox
- Institute of Molecular and Cellular Biology, University of Leeds, Leeds, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| |
Collapse
|
48
|
Verma S, Bednar V, Blount A, Hogue BG. Identification of functionally important negatively charged residues in the carboxy end of mouse hepatitis coronavirus A59 nucleocapsid protein. J Virol 2006; 80:4344-55. [PMID: 16611893 PMCID: PMC1472032 DOI: 10.1128/jvi.80.9.4344-4355.2006] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The coronavirus nucleocapsid (N) protein is a multifunctional viral gene product that encapsidates the RNA genome and also plays some as yet not fully defined role in viral RNA replication and/or transcription. A number of conserved negatively charged amino acids are located within domain III in the carboxy end of all coronavirus N proteins. Previous studies suggested that the negatively charged residues are involved in virus assembly by mediating interaction between the membrane (M) protein carboxy tail and nucleocapsids. To determine the importance of these negatively charged residues, a series of alanine and other charged-residue substitutions were introduced in place of those in the N gene within a mouse hepatitis coronavirus A59 infectious clone. Aspartic acid residues 440 and 441 were identified as functionally important. Viruses could not be isolated when both residues were replaced by positively charged amino acids. When either amino acid was replaced by a positively charged residue or both were changed to alanine, viruses were recovered that contained second-site changes within N, but not in the M or envelope protein. The compensatory role of the new changes was confirmed by the construction of new viruses. A few viruses were recovered that retained the D441-to-arginine change and no compensatory changes. These viruses exhibited a small-plaque phenotype and produced significantly less virus. Overall, results from our analysis of a large panel of plaque-purified recovered viruses indicate that the negatively charged residues at positions 440 and 441 are key residues that appear to be involved in virus assembly.
Collapse
Affiliation(s)
- Sandhya Verma
- School of Life Sciences and The Biodesign Institute, P.O. Box 875401, Arizona State University, Tempe, Arizona 85287-5401, USA
| | | | | | | |
Collapse
|
49
|
Perlman S, Holmes KV. Importance of MHV-CoV A59 nucleocapsid protein COOH-terminal negative charges. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2006; 581:127-32. [PMID: 17037518 PMCID: PMC3764308 DOI: 10.1007/978-0-387-33012-9_22] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Stanley Perlman
- Department of Pediatrics, University of Iowa, 52242 Iowa City, IA USA
| | - Kathryn V. Holmes
- Department of Microbiology, University of Colorado Health Sciences Center at Fitzsimons, 80045-8333 Aurora, CO USA
| |
Collapse
|
50
|
Perlman S, Holmes KV. Biochemical aspects of coronavirus replication. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2006; 581:13-24. [PMID: 17037498 PMCID: PMC7123974 DOI: 10.1007/978-0-387-33012-9_2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Stanley Perlman
- Department of Pediatrics, University of Iowa, 52242 Iowa City, IA USA
| | - Kathryn V. Holmes
- Department of Microbiology, University of Colorado Health Sciences Center at Fitzsimons, 80045-8333 Aurora, CO USA
| |
Collapse
|