1
|
PI3K/AKT/mTOR Signaling Pathway Is Required for JCPyV Infection in Primary Astrocytes. Cells 2021; 10:cells10113218. [PMID: 34831441 PMCID: PMC8624856 DOI: 10.3390/cells10113218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/05/2021] [Accepted: 11/12/2021] [Indexed: 12/13/2022] Open
Abstract
Astrocytes are a main target of JC polyomavirus (JCPyV) in the central nervous system (CNS), where the destruction of these cells, along with oligodendrocytes, leads to the fatal disease progressive multifocal leukoencephalopathy (PML). There is no cure currently available for PML, so it is essential to discover antivirals for this aggressive disease. Additionally, the lack of a tractable in vivo models for studying JCPyV infection makes primary cells an accurate alternative for elucidating mechanisms of viral infection in the CNS. This research to better understand the signaling pathways activated in response to JCPyV infection reveals and establishes the importance of the PI3K/AKT/mTOR signaling pathway in JCPyV infection in primary human astrocytes compared to transformed cell lines. Using RNA sequencing and chemical inhibitors to target PI3K, AKT, and mTOR, we have demonstrated the importance of this signaling pathway in JCPyV infection of primary astrocytes not observed in transformed cells. Collectively, these findings illuminate the potential for repurposing drugs that are involved with inhibition of the PI3K/AKT/mTOR signaling pathway and cancer treatment as potential therapeutics for PML, caused by this neuroinvasive virus.
Collapse
|
2
|
Orimoto A, Kyakumoto S, Eitsuka T, Nakagawa K, Kiyono T, Fukuda T. Efficient immortalization of human dental pulp stem cells with expression of cell cycle regulators with the intact chromosomal condition. PLoS One 2020; 15:e0229996. [PMID: 32119713 PMCID: PMC7051082 DOI: 10.1371/journal.pone.0229996] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/19/2020] [Indexed: 12/23/2022] Open
Abstract
Clinical studies have recently demonstrated that autologous transplantation of mobilized dental pulp stem cells is a safe and efficacious potential therapy for pulp regeneration. However, some limitations need to be addressed, such as the high cost of the safety and quality control tests for isolated individual dental pulp cell products before transplantation. Therefore, more efficient in vitro culturing of human dental pulp stem cells might be useful for providing low cost and high reliability testing for pulp regeneration therapy. In this study, we established a novel immortalized dental pulp stem cell line by co-expressing a mutant cyclin-dependent kinase 4 (CDK4R24C), Cyclin D1, and telomerase reverse transcriptase (TERT). The established cell line maintained its original diploid chromosomes and stemness characteristics and exhibited an enhanced proliferation rate. In addition, we showed the immortalized human dental pulp stem cells still keeps their osteogenic and adipogenic differentiation abilities under appropriate culture conditions even though the cell proliferation was accelerated. Taken together, our established cell lines could serve as a useful in vitro tool for pulp regeneration therapy, and can contribute to reproducibility and ease of cell handling, thereby saving time and costs associated with safety and quality control tests.
Collapse
Affiliation(s)
- Ai Orimoto
- Graduate School of Science and Engineering, Iwate University, Morioka, Iwate, Japan
| | - Seiko Kyakumoto
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, Shiwa-gun, Iwate, Japan
| | - Takahiro Eitsuka
- Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Kiyotaka Nakagawa
- Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Tohru Kiyono
- Division of Carcinogenesis and Prevention, National Cancer Center Research Institute, Tokyo, Japan
| | - Tomokazu Fukuda
- Graduate School of Science and Engineering, Iwate University, Morioka, Iwate, Japan.,Soft-Path Engineering Research Center (SPERC), Iwate University, Morioka, Iwate, Japan
| |
Collapse
|
3
|
SV40 Transfected Human Anterior Cruciate Ligament Derived Ligamentocytes-Suitable as a Human in Vitro Model for Ligament Reconstruction? Int J Mol Sci 2020; 21:ijms21020593. [PMID: 31963350 PMCID: PMC7014138 DOI: 10.3390/ijms21020593] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 01/10/2020] [Accepted: 01/13/2020] [Indexed: 12/22/2022] Open
Abstract
Cultured human primary cells have a limited lifespan undergoing dedifferentiation or senescence. Anterior cruciate ligaments (ACL) are hypocellular but tissue engineering (TE) requires high cell numbers. Simian virus (SV) 40 tumor (T) antigen expression could extend the lifespan of cells. This study aimed to identify cellular changes induced by SV40 expression in human ACL ligamentocytes by comparing them with non-transfected ligamentocytes and tissue of the same donor to assess their applicability as TE model. Human ACL ligamentocytes (40-year-old female donor after ACL rupture) were either transfected with a SV40 plasmid or remained non-transfected (control) before monitored for SV40 expression, survival, and DNA content. Protein expression of cultured ligamentocytes was compared with the donor tissue. Ligamentocyte spheroids were seeded on scaffolds embroidered either from polylactic acid (PLA) threads solely or combined PLA and poly (L-lactide-co-ε-caprolactone) (P(LA-CL)) threads. These scaffolds were further functionalized with fluorination and fibrillated collagen foam. Cell distribution and survival were monitored for up to five weeks. The transfected cells expressed the SV40 antigen throughout the entire observation time, but often exhibited random and incomplete cell divisions with significantly more dying cells, significantly more DNA and more numerous nucleoli than controls. The expression profile of non-transfected and SV40-positive ligamentocytes was similar. In contrast to controls, SV40-positive cells formed larger spheroids, produced less vimentin and focal adhesions and died on the scaffolds after 21 d. Functionalized scaffolds supported human ligamentocyte growth. SV40 antigen expressing ligamentocytes share many properties with their non-transfected counterparts suggesting them as a model, however, applicability for TE is limited.
Collapse
|
4
|
P53 and The Immune Response: 40 Years of Exploration-A Plan for the Future. Int J Mol Sci 2020; 21:ijms21020541. [PMID: 31952115 PMCID: PMC7013403 DOI: 10.3390/ijms21020541] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/06/2020] [Accepted: 01/10/2020] [Indexed: 01/14/2023] Open
Abstract
The p53 field was born from a marriage of the techniques of cancer virus research and immunology. Over the past 40 years, it has followed the path of cancer research. Now cancer treatments are turning to immunotherapy, and there are many hints of the role of the p53 protein in both the regulation of the innate immune system and as an antigen in adaptive immune responses. The p53 gene and protein are part of the innate immune system, and play an important role in infectious diseases, senescence, aging, and the surveillance of repetitive DNA and RNAs. The mutant form of the p53 protein in cancers elicits both a B-cell antibody response (a tumor antigen) and a CD-8 killer T-cell response (a tumor-specific transplantation antigen). The future will take the p53-immune response field of research into cancer immunotherapy, autoimmunity, inflammatory responses, neuro-degeneration, aging, and life span, and the regulation of epigenetic stability and tissue regeneration. The next 40 years will bring the p53 gene and its proteins out of a cancer focus and into an organismic and environmental focus.
Collapse
|
5
|
Inhibition of p53 by adenovirus type 12 E1B-55K deregulates cell cycle control and sensitizes tumor cells to genotoxic agents. J Virol 2011; 85:7976-88. [PMID: 21680522 DOI: 10.1128/jvi.00492-11] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Adenovirus E1B-55K represses p53-mediated transcription. However, the phenotypic consequence of p53 inhibition by E1B-55K for cell cycle regulation and drug sensitivity in tumor cells has not been examined. In HCT116 cells with constitutive E1B-55K expression, the activation of p53 target genes such as the p21, Mdm2, and Puma genes was attenuated, despite markedly elevated p53 protein levels. HCT116 cells with E1B-55K expression displayed a cell cycle profile similar to that of the isogenic HCT116p53(-/-) cells, including unhindered S-phase entry despite DNA damage. Surprisingly, E1B-55K-expressing cells were more sensitive to drug treatment than parental cells. Compared to HCT116 cells, HCT116p53(-/-) cells were more susceptible to both doxorubicin and etoposide, and E1B-55K expression had no effects on drug treatment. E1B-55K expression increased the rate of cell proliferation in HCT116 but not in HCT116p53(-/-) cells. Thus, deregulation of p53-mediated cell cycle control by E1B-55K probably underlies sensitization of HCT116 cells to anticancer drugs. Consistently, E1B-55K expression in A549, A172, and HepG2 cells, all containing wild-type (wt) p53, also enhanced etoposide-induced cytotoxicity, whereas in p53-null H1299 cells, E1B-55K had no effects. We generated several E1B-55K mutants with mutations at positions occupied by the conserved Phe/Trp/His residues. Most of these mutants showed no or reduced binding to p53, although some of them could still stabilize p53, suggesting that binding might not be essential for E1B-55K-induced p53 stabilization. Despite heightened p53 protein levels in cells expressing certain E1B-55K mutants, p53 activity was largely suppressed. Furthermore, most of these E1B-55K mutants could sensitize HCT116 cells to etoposide and doxorubicin. These results indicate that E1B-55K might have utility for enhancing chemotherapy.
Collapse
|
6
|
Abstract
Viruses have evolved with their hosts, which include all living species. This has been partly responsible for the development of highly advanced immune systems in the hosts. However, viruses too have evolved ways to regulate and evade the host's immune defence. In addition to mutational mechanisms that viruses employ to mimic the host genome and undergo latency to evade the host's recognition of the pathogen, they have also developed epigenetic mechanisms by which they can render the host's immune responses inactive to their antigens. The epigenetic regulation of gene expression is intrinsically active inside the host and is involved in regulating gene expression and cellular differentiation. Viral immune evasion strategies are an area of major concern in modern biomedical research. Immune evasion strategies may involve interference with the host antigen presentation machinery or host immune gene expression capabilities, and viruses, in these manners, introduce and propagate infection. The aim of this review is to elucidate the various epigenetic changes that viruses are capable of bringing about in their host in order to enhance their own survivability and pathogenesis.
Collapse
Affiliation(s)
- Dwaipayan Adhya
- National Brain Research Centre, Manesar, Haryana 122 050, India
| | | |
Collapse
|
7
|
Laantri N, Attaleb M, Kandil M, Naji F, Mouttaki T, Dardari R, Belghmi K, Benchakroun N, El Mzibri M, Khyatti M. Human papillomavirus detection in moroccan patients with nasopharyngeal carcinoma. Infect Agent Cancer 2011; 6:3. [PMID: 21352537 PMCID: PMC3060847 DOI: 10.1186/1750-9378-6-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Accepted: 02/25/2011] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Nasopharyngeal carcinoma (NPC) is a malignant tumor which arises in surface epithelium of the posterior wall of the nasopharynx. There's is evidence that Epstein Barr virus (EBV) is associated to NPC development. However, many epidemiologic studies point to a connection between viral infections by the human papillomavirus (HPV) and NPC. METHOD Seventy Moroccan patients with NPC were screened for EBV and HPV. EBV detection was performed by PCR amplification of BZLF1 gene, encoding the ZEBRA (Z Epstein-Barr Virus Replication Activator) protein, and HPV infection was screened by PCR amplification with subsequent typing by hybridization with specific oligonucleotides for HPV types 16, 18, 31, 33, 35, 45 and 59. RESULTS The age distribution of our patients revealed a bimodal pattern. Sixty two cases (88.9%) were classified as type 3 (undifferentiated carcinoma), 6 (8.6%) as type 2 (non keratinizing NPC) and only 2 (2.9%) cases were classified as type 1 (keratinizing NPC). EBV was detected in all NPC tumors, whereas HPV DNA was revealed in 34% of cases (24/70). Molecular analysis showed that 20.8% (5/24) were infected with HPV31, and the remaining were infected with other oncogenic types (i.e., HPV59, 16, 18, 33, 35 and 45). In addition, statistical analysis showed that there's no association between sex or age and HPV infection (P > 0.1). CONCLUSION Our data indicated that EBV is commonly associated with NPC in Moroccan patients and show for the first time that NPC tumours from Moroccan patients harbour high risk HPV genotypes.
Collapse
Affiliation(s)
- Nadia Laantri
- Laboratory of Oncovirology, Institut Pasteur du Maroc, 1 Place Louis Pasteur, 20 360 Casablanca, Morocco
- Laboratory of Anthropogenetics and Physiopathology of Chouaîb Doukkali University, 299 Eljadida 24 000, Morocco
| | - Mohammed Attaleb
- Biology and Medical Research Unit, Centre National de l'Energie, des Sciences et Techniques Nucléaires (CNESTEN), 10001 Rabat, Morocco
| | - Mostafa Kandil
- Laboratory of Anthropogenetics and Physiopathology of Chouaîb Doukkali University, 299 Eljadida 24 000, Morocco
| | - Fadwa Naji
- Laboratory of Oncovirology, Institut Pasteur du Maroc, 1 Place Louis Pasteur, 20 360 Casablanca, Morocco
| | - Tarik Mouttaki
- Laboratory of Oncovirology, Institut Pasteur du Maroc, 1 Place Louis Pasteur, 20 360 Casablanca, Morocco
| | - R'kia Dardari
- Laboratory of Oncovirology, Institut Pasteur du Maroc, 1 Place Louis Pasteur, 20 360 Casablanca, Morocco
| | | | - Nadia Benchakroun
- Service de Radiothérapie, Centre d'Oncologie IBN Rochd, Casablanca, Morocco
| | - Mohammed El Mzibri
- Biology and Medical Research Unit, Centre National de l'Energie, des Sciences et Techniques Nucléaires (CNESTEN), 10001 Rabat, Morocco
| | - Meriem Khyatti
- Laboratory of Oncovirology, Institut Pasteur du Maroc, 1 Place Louis Pasteur, 20 360 Casablanca, Morocco
| |
Collapse
|
8
|
The hepatitis B virus X protein modulates hepatocyte proliferation pathways to stimulate viral replication. J Virol 2010; 84:2675-86. [PMID: 20053744 DOI: 10.1128/jvi.02196-09] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Worldwide, there are over 350 million people who are chronically infected with the human hepatitis B virus (HBV); chronic HBV infections are associated with the development of hepatocellular carcinoma (HCC). The results of various studies suggest that the HBV X protein (HBx) has a role in the development of HBV-associated HCC. HBx can regulate numerous cellular signal transduction pathways, including those that modulate cell proliferation. Many previous studies that analyzed the impact of HBx on cell proliferation pathways were conducted using established or immortalized cell lines, and when HBx was expressed in the absence of HBV replication, and the precise effect of HBx on these pathways has often differed depending on experimental conditions. We have studied the effect of HBx on cell proliferation in cultured primary rat hepatocytes, a biologically relevant system. We demonstrate that HBx, both by itself and in the context of HBV replication, affected the levels and activities of various cell cycle-regulatory proteins to induce normally quiescent hepatocytes to enter the G(1) phase of the cell cycle but not to proceed to S phase. We linked HBx regulation of cell proliferation to cytosolic calcium signaling and HBx stimulation of HBV replication. Cumulatively, our studies suggest that HBx induces normally quiescent hepatocytes to enter the G(1) phase of the cell cycle and that this calcium-dependent HBx activity is required for HBV replication. These studies identify an essential function of HBx during HBV replication and a mechanism that may connect HBV infections to the development of HCC.
Collapse
|
9
|
Wild-type p53 enhances efficiency of simian virus 40 large-T-antigen-induced cellular transformation. J Virol 2009; 83:10106-18. [PMID: 19625393 DOI: 10.1128/jvi.00174-09] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Abortive infection of BALB/c mouse embryo fibroblasts differing in p53 gene status (p53(+/+) versus p53(-/)(-)) with simian virus 40 (SV40) revealed a quantitatively and qualitatively decreased transformation efficiency in p53(-/-) cells compared to p53(+/+) cells, suggesting a supportive effect of wild-type (wt) p53 in the SV40 transformation process. SV40 transformation efficiency also was low in immortalized p53(-/-) BALB/c 10-1 cells but could be restored to approximately the level in immortalized p53(+/+) BALB/c 3T3 cells by reconstituting wt p53, but not mutant p53 (mutp53), expression. Stable expression of large T antigen (LT) in p53(+/+) 3T3 cells resulted in full transformation, while LT expression in p53(-/-) 10-1 cells could not promote growth in suspension or in soft agar to a significant extent. The helper effect of wt p53 is mediated by its cooperation with LT and resides in the p53 N terminus, as an N-terminally truncated p53 (DeltaNp53) could not rescue the p53-null phenotype. The p53 N terminus serves as a scaffold for recruiting transcriptional regulators like p300/CBP and Mdm2 into the LT-p53 complex. Consequently, LT affected global and specific gene expression in p53(+/+) cells significantly more than in p53(-/-) cells. Our data suggest that recruitment of transcriptional regulators into the LT-p53 complex may help to modify cellular gene expression in response to the needs of cellular transformation.
Collapse
|
10
|
Abstract
Loss of polarity and disruption of cell junctions are common features of epithelial-derived cancer cells, and mounting evidence indicates that such defects have a direct function in the pathology of cancer. Supporting this idea, results with several different human tumor viruses indicate that their oncogenic potential depends in part on a common ability to inactivate key cell polarity proteins. For example, adenovirus (Ad) type 9 is unique among human Ads by causing exclusively estrogen-dependent mammary tumors in experimental animals and in having E4 region-encoded open reading frame 1 (E4-ORF1) as its primary oncogenic determinant. The 125-residue E4-ORF1 protein consists of two separate protein-interaction elements, one of which defines a PDZ domain-binding motif (PBM) required for E4-ORF1 to induce both cellular transformation in vitro and tumorigenesis in vivo. Most notably, the E4-ORF1 PBM mediates interactions with a selected group of cellular PDZ proteins, three of which include the cell polarity proteins Dlg1, PATJ and ZO-2. Data further indicate that these interactions promote disruption of cell junctions and a loss of cell polarity. In addition, one or more of the E4-ORF1-interacting cell polarity proteins, as well as the cell polarity protein Scribble, are common targets for the high-risk human papillomavirus (HPV) E6 or human T-cell leukemia virus type 1 (HTLV-1) Tax oncoproteins. Underscoring the significance of these observations, in humans, high-risk HPV and HTLV-1 are causative agents for cervical cancer and adult T-cell leukemia, respectively. Consequently, human tumor viruses should serve as powerful tools for deciphering mechanisms whereby disruption of cell junctions and loss of cell polarity contribute to the development of many human cancers. This review article discusses evidence supporting this hypothesis, with an emphasis on the human Ad E4-ORF1 oncoprotein.
Collapse
|
11
|
Ren YX, Finckenstein FG, Abdueva DA, Shahbazian V, Chung B, Weinberg KI, Triche TJ, Shimada H, Anderson MJ. Mouse mesenchymal stem cells expressing PAX-FKHR form alveolar rhabdomyosarcomas by cooperating with secondary mutations. Cancer Res 2008; 68:6587-97. [PMID: 18701482 DOI: 10.1158/0008-5472.can-08-0859] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Alveolar rhabdomyosarcomas (ARMS) are highly malignant soft-tissue sarcomas that arise in children, adolescents, and young adults. Although formation and expression of the PAX-FKHR fusion genes is thought to be the initiating event in this cancer, the role of PAX-FKHR in the neoplastic process remains largely unknown in a progenitor cell that is undefined. We hypothesize that PAX-FKHR determine the ARMS progenitor to the skeletal muscle lineage, which when coupled to the inactivation and/or activation of critical cell signaling pathways leads to the formation of ARMS. Because a number of studies have proposed that mesenchymal stem cells (MSC) are the progenitor for several of the sarcomas, we tested this hypothesis in MSCs. We show that PAX-FKHR induce skeletal myogenesis in MSCs by transactivating MyoD and myogenin. Despite exhibiting enhanced growth in vitro, the PAX-FKHR-expressing populations do not form colonies in soft agar or tumors in mice. Expression of dominant-negative p53, or the SV40 early region, elicits tumor formation in some of the PAX-FKHR-expressing populations. Additional activation of the Ras signaling pathway leads to highly malignant tumor formation for all of the populations. The PAX-FKHR-expressing tumors were shown to have histologic, immunohistochemical, and gene expression profiles similar to human ARMS. Our results show the critical role played by PAX-FKHR in determining the molecular, myogenic, and histologic phenotype of ARMS. More importantly, we identify MSCs as a progenitor that can give rise to ARMS.
Collapse
Affiliation(s)
- Yue-Xin Ren
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, CA 90027, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Cai HY, Wang XH, Tian Y, Gao LY, Zhang LJ, Zhang ZY. Changes of serum p53 antibodies and clinical significance of radiotherapy for esophageal squamous cell carcinoma. World J Gastroenterol 2008; 14:4082-6. [PMID: 18609695 PMCID: PMC2725350 DOI: 10.3748/wjg.14.4082] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To explore the relationship between serum p53 antibodies (p53-Abs) and clinicopathological characteristics and therapeutic effect in patients with esophageal carcinoma (EC), and to investigate sequential changing regularity of serum p53-Abs after radiotherapy.
METHODS: The serum p53-Ab levels were detected in 46 EC patients and 30 healthy adults by enzyme linked immunosorbent assay (ELISA). The blood samples were collected on the day before radiotherapy and on the administration of an irradiation dose of 20 Gy/10 f/12 d, 40 Gy/20 f/24 d and 60 Gy/30 f/36 d after radiotherapy.
RESULTS: The level and positive rate of serum p53-Abs in EC patients were significantly higher than those in normal individuals (P < 0.05). Serum anti-p53 antibodies were positive in 18 of 46 EC patients (39.1%). The positive rate of p53-Abs in EC was related to histological grade, disease stage and lymph node metastasis (P < 0.05), but it was not significantly related to sex, age and to the size and site of tumor. The level and positive rate of p53-Abs had significant differences between before radiotherapy and after administration of an irradiation dose of 40 Gy/20 f/24 d and 60 Gy/30 f/36 d (P < 0.05 or P < 0.01). The positive rate of p53-Abs in EC patients with effect was significantly lower than that in those without effect after radiotherapy (P < 0.0001).
CONCLUSION: Detection of serum p53-Abs is helpful to the diagnosis of esophageal carcinoma. Monitoring for sequential change of serum p53-Abs before and after radiotherapy in patients with esophageal carcinoma is also useful to evaluate the response to the treatment and prognosis of the patients.
Collapse
|
13
|
Miller DL, Myers CL, Rickards B, Coller HA, Flint SJ. Adenovirus type 5 exerts genome-wide control over cellular programs governing proliferation, quiescence, and survival. Genome Biol 2007; 8:R58. [PMID: 17430596 PMCID: PMC1896011 DOI: 10.1186/gb-2007-8-4-r58] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2006] [Revised: 10/20/2006] [Accepted: 04/12/2007] [Indexed: 02/05/2023] Open
Abstract
The effects of the adenovirus Ad5 on basic host cell programs, such as cell-cycle regulation, were studied in a microarray analysis of human fibroblasts. About 2,000 genes were up- or down-regulated after Ad5 infection and Ad5 infection was shown to induce reversal of the quiescence program and recapitulation of the core serum response. Background Human adenoviruses, such as serotype 5 (Ad5), encode several proteins that can perturb cellular mechanisms that regulate cell cycle progression and apoptosis, as well as those that mediate mRNA production and translation. However, a global view of the effects of Ad5 infection on such programs in normal human cells is not available, despite widespread efforts to develop adenoviruses for therapeutic applications. Results We used two-color hybridization and oligonucleotide microarrays to monitor changes in cellular RNA concentrations as a function of time after Ad5 infection of quiescent, normal human fibroblasts. We observed that the expression of some 2,000 genes, about 10% of those examined, increased or decreased by a factor of two or greater following Ad5 infection, but were not altered in mock-infected cells. Consensus k-means clustering established that the temporal patterns of these changes were unexpectedly complex. Gene Ontology terms associated with cell proliferation were significantly over-represented in several clusters. The results of comparative analyses demonstrate that Ad5 infection induces reversal of the quiescence program and recapitulation of the core serum response, and that only a small subset of the observed changes in cellular gene expression can be ascribed to well characterized functions of the viral E1A and E1B proteins. Conclusion These findings establish that the impact of adenovirus infection on host cell programs is far greater than appreciated hitherto. Furthermore, they provide a new framework for investigating the molecular functions of viral early proteins and information relevant to the design of conditionally replicating adenoviral vectors.
Collapse
Affiliation(s)
- Daniel L Miller
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
- Laboratory of Genetics, University of Wisconsin, 425-G Henry Mall, Madison, Wisconsin 53706, USA
| | - Chad L Myers
- Lewis-Sigler Institute for Integrative Genomics, Carl Icahn Laboratory, Princeton University, Princeton, NJ 08544, USA
- Department of Computer Science, Princeton University, Princeton, New Jersey 08544, USA
| | - Brenden Rickards
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Hilary A Coller
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - S Jane Flint
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
14
|
Valls E, Blanco-García N, Aquizu N, Piedra D, Estarás C, de la Cruz X, Martínez-Balbás MA. Involvement of chromatin and histone deacetylation in SV40 T antigen transcription regulation. Nucleic Acids Res 2007; 35:1958-68. [PMID: 17341466 PMCID: PMC1874590 DOI: 10.1093/nar/gkl1113] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Simian Virus 40 (SV40) large T antigen (T Ag) is a multifunctional viral oncoprotein that regulates viral and cellular transcriptional activity. However, the mechanisms by which such regulation occurs remain unclear. Here we show that T antigen represses CBP-mediated transcriptional activity. This repression is concomitant with histone H3 deacetylation and is TSA sensitive. Moreover, our results demonstrate that T antigen interacts with HDAC1 in vitro in an Rb-independent manner. In addition, the overexpression of HDAC1 cooperates with T antigen to antagonize CBP transactivation function and correlates with chromatin deacetylation of the TK promoter. Finally, decreasing HDAC1 levels with small interfering RNA (siRNA) partially abolishes T antigen-induced repression. These findings highlight the importance of the histone acetylation/deacetylation balance in the cellular transformation mediated by oncoviral proteins.
Collapse
Affiliation(s)
- Ester Valls
- Instituto de Biología Molecular de Barcelona. CID. Consejo Superior de Investigaciones Científicas (CSIC). Josep Samitier 1,5. Parc Cientific de Barcelona. E-08028 Barcelona. Spain, Institut de Recerca Biomédica-PCB. Josep Samitier 1, 5. E-08028 Barcelona, Spain and Institut Català per la Recerca i Estudis Avançats (ICREA). Passeig Lluís Companys, 23. E-08018 Barcelona, Spain
| | - Noemí Blanco-García
- Instituto de Biología Molecular de Barcelona. CID. Consejo Superior de Investigaciones Científicas (CSIC). Josep Samitier 1,5. Parc Cientific de Barcelona. E-08028 Barcelona. Spain, Institut de Recerca Biomédica-PCB. Josep Samitier 1, 5. E-08028 Barcelona, Spain and Institut Català per la Recerca i Estudis Avançats (ICREA). Passeig Lluís Companys, 23. E-08018 Barcelona, Spain
| | - Naiara Aquizu
- Instituto de Biología Molecular de Barcelona. CID. Consejo Superior de Investigaciones Científicas (CSIC). Josep Samitier 1,5. Parc Cientific de Barcelona. E-08028 Barcelona. Spain, Institut de Recerca Biomédica-PCB. Josep Samitier 1, 5. E-08028 Barcelona, Spain and Institut Català per la Recerca i Estudis Avançats (ICREA). Passeig Lluís Companys, 23. E-08018 Barcelona, Spain
| | - David Piedra
- Instituto de Biología Molecular de Barcelona. CID. Consejo Superior de Investigaciones Científicas (CSIC). Josep Samitier 1,5. Parc Cientific de Barcelona. E-08028 Barcelona. Spain, Institut de Recerca Biomédica-PCB. Josep Samitier 1, 5. E-08028 Barcelona, Spain and Institut Català per la Recerca i Estudis Avançats (ICREA). Passeig Lluís Companys, 23. E-08018 Barcelona, Spain
| | - Conchi Estarás
- Instituto de Biología Molecular de Barcelona. CID. Consejo Superior de Investigaciones Científicas (CSIC). Josep Samitier 1,5. Parc Cientific de Barcelona. E-08028 Barcelona. Spain, Institut de Recerca Biomédica-PCB. Josep Samitier 1, 5. E-08028 Barcelona, Spain and Institut Català per la Recerca i Estudis Avançats (ICREA). Passeig Lluís Companys, 23. E-08018 Barcelona, Spain
| | - Xavier de la Cruz
- Instituto de Biología Molecular de Barcelona. CID. Consejo Superior de Investigaciones Científicas (CSIC). Josep Samitier 1,5. Parc Cientific de Barcelona. E-08028 Barcelona. Spain, Institut de Recerca Biomédica-PCB. Josep Samitier 1, 5. E-08028 Barcelona, Spain and Institut Català per la Recerca i Estudis Avançats (ICREA). Passeig Lluís Companys, 23. E-08018 Barcelona, Spain
| | - Marian A. Martínez-Balbás
- Instituto de Biología Molecular de Barcelona. CID. Consejo Superior de Investigaciones Científicas (CSIC). Josep Samitier 1,5. Parc Cientific de Barcelona. E-08028 Barcelona. Spain, Institut de Recerca Biomédica-PCB. Josep Samitier 1, 5. E-08028 Barcelona, Spain and Institut Català per la Recerca i Estudis Avançats (ICREA). Passeig Lluís Companys, 23. E-08018 Barcelona, Spain
- *To whom correspondance should be addressed. 34-93-403496134-93-4034979
| |
Collapse
|
15
|
Abstract
Theadenovirus type 5 (Ad5) E1B-55K and E4orf6 proteins are required together to stimulate viral late nuclear mRNA export to the cytoplasm and to restrict host cell nuclear mRNA export during the late phase of infection. Previous studies have shown that these two viral proteins interact with the cellular proteins elongins B and C, cullin 5, RBX1, and additional cellular proteins to form an E3 ubiquitin-protein ligase that polyubiquitinates p53 and probably one or more subunits of the MRE11-RAD50-NBS1 (MRN) complex, directing their proteasomal degradation. The MRN complex is required for cellular DNA double-strand break repair and induction of the DNA damage response by adenovirus infection. To determine if the ability of E1B-55K and E4orf6 to stimulate viral late mRNA nuclear export requires the ubiquitin-protein ligase activity of this viral ubiquitin-protein ligase complex, we designed and expressed a dominant-negative mutant form of cullin 5 in HeLa cells before infection with wild-type Ad5 or the E1B-55K null mutant dl1520. The dominant-negative cullin 5 protein stabilized p53 and the MRN complex, indicating that it inhibited the viral ubiquitin-protein ligase but had no effect on viral early mRNA synthesis, early protein synthesis, or viral DNA replication. However, expression of the dominant-negative cullin 5 protein caused a decrease in viral late protein synthesis and viral nuclear mRNA export similar to the phenotype produced by mutations in E1B-55K. We conclude that the stimulation of adenovirus late mRNA nuclear export by E1B-55K and E4orf6 results from the ubiquitin-protein ligase activity of the adenovirus ubiquitin-protein ligase complex.
Collapse
Affiliation(s)
- Jennifer L Woo
- Molecular Biology Institute, Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California, USA
| | | |
Collapse
|
16
|
Wang X, Liu Y, Dong R, Jin Y. The induction of growth arrest in fibroblasts by SV40 T antigen. Mol Biol Rep 2006; 33:181-6. [PMID: 16850187 DOI: 10.1007/s11033-005-2306-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2005] [Indexed: 10/24/2022]
Abstract
DNA tumor viruses such as SV40, Ras and papillomaviruses are the most commonly used agents in immortalization of non-hematopoietic cells, but the results are quite different. Some of them even lead instead to a senescence-like state. To verify the potential of SV40 T antigen-mediated immortalization or properties and functions of it to regulate cell growth, human dermal fibroblasts were cultured and then transfected with eukaryotic expressing plasmid psv3-neo which containing SV40 T DNA. We found that expression of oncogenic SV40 T in human dermal fibroblasts resulted in growth, arrest, earlier than the occurrence of control cell senescence, although telomerase was positive and cells grew faster than control ones in early stage following transfection. These observations suggest that SV40 T antigen can activate growth arrest in human dermal fibroblasts under normal growth condition instead of always prolonging the lifespan of fibroblasts. Moreover, high rate of cell division in early stage after transfection may be associated with the expression of telomerase activity.
Collapse
Affiliation(s)
- Xinwen Wang
- Department of Oral Histology and Pathology, Center for Tissue Engineering, Stomatological College, The Fourth Military Medical University, Xi'an 710032, China
| | | | | | | |
Collapse
|
17
|
Ternovoi VV, Curiel DT, Smith BF, Siegal GP. Adenovirus-mediated p53 tumor suppressor gene therapy of osteosarcoma. J Transl Med 2006; 86:748-66. [PMID: 16751779 DOI: 10.1038/labinvest.3700444] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The clinical outcome for osteosarcoma (OS) remains discouraging despite efforts to optimize treatment using conventional modalities including surgery, radiotherapy and chemotherapy. Novel therapeutic approaches based on our expanding understanding of the mechanisms of tumor cell killing have the potential to alter this situation. Tumor suppressor gene therapy aims to restore the function of a tumor suppressor gene lost or functionally inactivated in cancer cells. One such molecule, the p53 tumor suppressor gene plays a critical role in safeguarding the integrity of the genome and preventing tumorigenesis. Introduction of wild-type (wt) p53 into transformed cells has been shown to be lethal for most cancer cells in vitro, but clinical trials of p53 gene replacement have had limited success. Analysis of these clinical trials highlighted the insufficient efficacy of current vectors and low proapoptotic activity of wt p53 as a single agent in vivo. In this review, a contemporary summarization of the current status of adenovirus-mediated p53 gene therapy of OS is presented. Advancement in our understanding of p53 tumor suppressor activity, the molecular biology of chemoresistant OS, and recent advances in tumor targeting with adenoviral vectors are also addressed. Based on these parameters, prospects for future investigations are proposed.
Collapse
Affiliation(s)
- Vladimir V Ternovoi
- Division of Human Gene Therapy, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | | | | | | |
Collapse
|
18
|
Fujii S, Maeda H, Wada N, Kano Y, Akamine A. Establishing and characterizing human periodontal ligament fibroblasts immortalized by SV40T-antigen and hTERT gene transfer. Cell Tissue Res 2006; 324:117-25. [PMID: 16408200 DOI: 10.1007/s00441-005-0101-4] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2005] [Accepted: 10/10/2005] [Indexed: 01/17/2023]
Abstract
The periodontal ligament (PDL) is a highly specialized tissue connecting the cementum with the tooth socket bone and affects the life span of the tooth. However, little is known about the precise characteristics and regenerative mechanism of PDL cells because of the absence of specific markers and cell lines. Therefore, we aimed to establish three immortalized human PDL fibroblast cell lines by using simian virus40 T-antigen (SV40T-Ag) and human telomerase reverse transcriptase (hTERT) transfection, expecting these cells to have the characteristics of primary cells. The transfected cells were named STPLF. The expression of SV40T-Ag and hTERT in all STPLF lines was verified by using the semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR) method, stretch PCR analysis, or Western blotting analysis. All STPLF showed stable proliferation at more than 120 population doublings (PD), whereas primary human PDL fibroblasts (HPLF) stopped at 10-20 PD. Characterization by RT-PCR analysis revealed that all STPLF genes mimicked the expression of their respective original HPLF genes. STPLF expressed runt-related transcription factor-2, osterix, alkaline phosphatase, osteopontin, osteocalcin, periostin, receptor activator of NF-kappa B ligand, osteoprotegerin, epidermal growth factor receptor, alpha-smooth muscle actin, and type XII collagen. STPLF stimulated with 50 micro g/ml ascorbic acid and 2 mM beta-glycerophosphate for 4 weeks produced more calcified deposits than did HPLF cultured with the same reagents. These results suggest that each STPLF line retained the characteristics of the respective original HPLF, that STPLF gained increased calcification activity, and that STPLF are helpful tools for studying the biology and regenerative mechanisms of human PDL.
Collapse
Affiliation(s)
- Shinsuke Fujii
- Department of Endodontology and Operative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Fukuoka, Japan
| | | | | | | | | |
Collapse
|
19
|
Wong SK, Seow-Choen F, Leong APK, Ho YH, Aw SE. Mutant plasma p53 protein levels: Prognostication in colorectal carcinoma. Br J Surg 2005. [DOI: 10.1046/j.1365-2168.1997.02643.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
20
|
Abstract
Adenovirus continues to be an important model system for investigating basic aspects of cell biology. Interactions of several cellular proteins with E1A conserved regions (CR) 1 and 2, and inhibition of apoptosis by E1B proteins are required for oncogenic transformation. CR2 binds RB family members, de-repressing E2F transcription factors, thus activating genes required for cell cycling. E1B-19K is a BCL2 homolog that binds and inactivates proapoptotic BAK and BAX. E1B-55K binds p53, inhibiting its transcriptional activation function. In productively infected cells, E1B-55K and E4orf6 assemble a ubiquitin ligase with cellular proteins Elongins B and C, Cullin 5 and RBX1 that polyubiquitinates p53 and one or more subunits of the MRN complex involved in DNA double-strand break repair, directing them to proteosomal degradation. E1A CR3 activates viral transcription by interacting with the MED23 Mediator subunit, stimulating preinitiation complex assembly on early viral promoters and probably also the rate at which they initiate transcription. The viral E1B-55K/E4orf6 ubiquitin ligase is also required for efficient viral late protein synthesis in many cell types, but the mechanism is not understood. E1A CR1 binds several chromatin-modifying complexes, but how this contributes to stimulation of cellular DNA synthesis and transformation is not clear. E1A CR4 binds the CtBP corepressor, but the mechanism by which this modulates the frequency of transformation remains to be determined. Clearly, adenovirus has much left to teach us about fundamental cellular processes.
Collapse
Affiliation(s)
- Arnold J Berk
- Department of Microbiology, Immunology and Molecular Genetics, Molecular Biology Institute, University of California, Los Angeles (UCLA), 90095-1570, USA.
| |
Collapse
|
21
|
Liu Y, Shevchenko A, Shevchenko A, Berk AJ. Adenovirus exploits the cellular aggresome response to accelerate inactivation of the MRN complex. J Virol 2005; 79:14004-16. [PMID: 16254336 PMCID: PMC1280221 DOI: 10.1128/jvi.79.22.14004-14016.2005] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2005] [Accepted: 08/18/2005] [Indexed: 12/26/2022] Open
Abstract
Results reported here indicate that adenovirus 5 exploits the cellular aggresome response to accelerate inactivation of MRE11-RAD50-NBS1 (MRN) complexes that otherwise inhibit viral DNA replication and packaging. Aggresomes are cytoplasmic inclusion bodies, observed in many degenerative diseases, that are formed from aggregated proteins by dynein-dependent retrograde transport on microtubules to the microtubule organizing center. Viral E1B-55K protein forms aggresomes that sequester p53 and MRN in transformed cells and in cells transfected with an E1B-55K expression vector. During adenovirus infection, the viral protein E4orf3 associates with MRN in promyelocytic leukemia protein nuclear bodies before MRN is bound by E1B-55K. Either E4orf3 or E4orf6 is required in addition to E1B-55K for E1B-55K aggresome formation and MRE11 export to aggresomes in adenovirus-infected cells. Aggresome formation contributes to the protection of viral DNA from MRN activity by sequestering MRN in the cytoplasm and greatly accelerating its degradation by proteosomes following its ubiquitination by the E1B-55K/E4orf6/elongin BC/Cullin5/Rbx1 ubiquitin ligase. Our results show that aggresomes significantly accelerate protein degradation by the ubiquitin-proteosome system. The observation that a normal cellular protein is inactivated when sequestered into an aggresome through association with an aggresome-inducing protein has implications for the potential cytotoxicity of aggresome-like inclusion bodies in degenerative diseases.
Collapse
Affiliation(s)
- Yue Liu
- Molecular Biology Institute and Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California 90095-1570, USA
| | | | | | | |
Collapse
|
22
|
Abstract
Tumors arise from normal cells through the acquisition of multiple genetic alterations that endow cancer cells with the phenotypes associated with neoplasia. Although we still lack a complete understanding of the specific complement of mutations that together program the behavior of any particular cancer, several lines of evidence indicate that many of these alterations perturb regulatory networks critical for cell proliferation, growth, and survival. As such, cancer cells maintain a precarious balance among unfettered proliferation, genomic instability, cell cycle arrest, and apoptosis. This year's Beatson International Cancer Conference focused on recent advances in our understanding of the pathways that regulate senescence, apoptosis, and cancer.
Collapse
Affiliation(s)
- William C Hahn
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney Street, Boston, MA 02115, USA.
| |
Collapse
|
23
|
Abstract
Human papillomavirus (HPV) infection with high-risk types 16 and 18 has widely been reported as one of the prominent mechanisms behind the development of cervical squamous cell carcinoma. Links between HPV and oral cavity cancer have been suggested as well, based on epidemiologic and molecular means, though the association is less well-established. It is likely that HPV plays a role in oral cavity carcinogenesis, though only in a small subset of cases. The difficulty in providing true causal evidence of HPV's role in oral cancer lies in our lack of understanding of the significance of mechanisms by which HPV leads to oral carcinogenesis, as well as limitations in the molecular analysis of HPV. Further studies are necessary for the contribution of HPV in oral cavity malignancy to be better demonstrated.
Collapse
Affiliation(s)
- Patrick K Ha
- The Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins Medical Institutions, 601 N. Caroline St., 6th Floor, Baltimore, MD 21287, USA.
| | | |
Collapse
|
24
|
Naganuma A, Dansako H, Nakamura T, Nozaki A, Kato N. Promotion of microsatellite instability by hepatitis C virus core protein in human non-neoplastic hepatocyte cells. Cancer Res 2004; 64:1307-14. [PMID: 14973066 DOI: 10.1158/0008-5472.can-03-2992] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hepatitis C virus proteins exert an effect on a variety of cellular functions, including gene expression, signal transduction, and apoptosis, and because they possess oncogenic potentials, they have also been suggested to play an important role in hepatocarcinogenesis. Although the mechanisms of hepatocarcinogenesis remain poorly understood, we hypothesized that the disease may arise because of a disturbance of the DNA repair system by hepatitis C virus proteins. To test this hypothesis, we developed a reproducible microsatellite instability assay system for mismatch-repair using human-cultured cells transducted with pCXpur retrovirus expression vector, in which the puromycin resistance gene was rendered out-of-frame by insertion of a (CA)(17) dinucleotide repeat tract immediately following the ATG start codon. Using several human cancer cell lines known to be replication error positive or negative, we demonstrated that this assay system was useful for monitoring the propensity for mismatch-repair in the cells. This assay system was applicable to non-neoplastic human PH5CH8 hepatocytes, which could support hepatitis C virus replication. Using PH5CH8 cells, in which hepatitis C virus proteins were stably expressed by the retrovirus-mediated gene transfer, we found that the core protein promoted microsatellite instability in PH5CH8 cells. Interestingly, such promotion by the core protein only occurred in cells having the core protein belonging to genotype 1b or 2a and did not occur in cells having the core protein belonging to genotype 1a, 2b, or 3a. This is the first report to demonstrate that the core protein may disturb the DNA repair system.
Collapse
Affiliation(s)
- Atsushi Naganuma
- Department of Molecular Biology, Okayama University Graduate School of Medicine and Dentistry, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
| | | | | | | | | |
Collapse
|
25
|
Cavalcanti GB, Vasconcelos FDC, Pinto de Faria G, Scheiner MAM, de Almeida Dobbin J, Klumb CE, Maia RC. Coexpression of p53 protein and MDR functional phenotype in leukemias: The predominant association in chronic myeloid leukemia. ACTA ACUST UNITED AC 2004; 61:1-8. [PMID: 15351976 DOI: 10.1002/cyto.b.20013] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND One of the best characterized resistance mechanisms of leukemias is multidrug resistance (MDR) mediated by P-glycoprotein (Pgp) and multidrug-resistant related protein (MRP). In addition to Pgp and MRP, p53 mutation or inactivation might play a relevant role in therapeutic failure. Some studies have demonstrated that Pgp and MRP may be activated in association with overexpression of mutant or inactivated p53 protein. The aim of this study was to investigate the association between p53 expression and MDR functional phenotype analyzed by flow cytometry (FCM). METHODS Rhodamine-123 assay analyzed by FCM was used to detect the MDR phenotype that was positive in 18 out of 41 (43.9%) cases of chronic myeloid leukemia (CML), 16 out of 28 (57.1%) chronic lymphoid leukemia (CLL) cases, 11 out of 28 (39.3%) acute myeloid leukemia (AML) cases, and four out of 22 (18.2%) acute lymphoid leukemia (ALL) cases. RESULTS Variable levels of p53 expression were observed in leukemic cells: 12 out of 41 (29.2%) in CML, nine out of 28 (32.1%) in CLL, 15 out of 28 (53.6%) in AML, and eight out of 22 (36.4%) in ALL samples. CONCLUSIONS In our study, no significant association between p53 expression and MDR functional phenotype was observed in ALL, CLL, and AML. On the other hand, a significant association (P = 0.0003) of the coexpression was observed in CML. The p53 overexpression was more frequently seen in the accelerated phase and the blastic phase of this disease. Our results suggest that an MDR functional phenotype could be associated with p53 mutation in the advanced stage of leukemias.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/biosynthesis
- Blast Crisis
- Bone Marrow Cells
- Drug Resistance, Multiple
- Flow Cytometry
- Fluorescent Dyes/pharmacology
- Genes, MDR
- Humans
- K562 Cells
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Mutation
- Phenotype
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism
- Recurrence
- Rhodamine 123/pharmacology
- Syndrome
- Time Factors
- Tumor Suppressor Protein p53/biosynthesis
- Tumor Suppressor Protein p53/metabolism
Collapse
Affiliation(s)
- Geraldo Barroso Cavalcanti
- Laboratório de Hematologia Celular e Molecular, Serviço de Hematologia, Hospital do Câncer I, Instituto Nacional de Câncer (INCA), Rio de Janeiro, Brazil
| | | | | | | | | | | | | |
Collapse
|
26
|
Valls E, de la Cruz X, Martínez-Balbás MA. The SV40 T antigen modulates CBP histone acetyltransferase activity. Nucleic Acids Res 2003; 31:3114-22. [PMID: 12799439 PMCID: PMC162251 DOI: 10.1093/nar/gkg418] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Histone acetyltransferases (HATs) play a key role in transcription control, cell proliferation and differentiation by modulating chromatin structure; however, little is known about their own regulation. Here we show that expression of the viral oncoprotein SV40 T antigen increases histone acetylation and global cellular HAT activities. In addition, it enhances CREB-binding protein HAT activity and modulates its transcriptional activity. Finally, we show that inhibition of cellular histone deacetylases by trichostatin A increases the SV40 infectivity rate. These findings highlight the importance of histone acetylation in the regulation of the cell cycle by oncoviral proteins.
Collapse
Affiliation(s)
- Ester Valls
- Instituto de Biología Molecular de Barcelona, CID, Consejo Superior de Investigaciones Científicas, Jordi Girona 18-26, E-08034 Barcelona, Spain
| | | | | |
Collapse
|
27
|
Kojima A, Maeda H, Sugita Y, Tanaka S, Kameyama Y. Human papillomavirus type 38 infection in oral squamous cell carcinomas. Oral Oncol 2002; 38:591-6. [PMID: 12167437 DOI: 10.1016/s1368-8375(01)00112-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this study, 53 paraffin-embedded oral squamous cell carcinoma (OSCC) biopsy specimens were used. Human papillomavirus type 38 (HPV-38) infection was demonstrated in OSCCs using the PCR technique, DNA sequencing analysis, in situ hybridization, and immunohistochemical techniques. Additionally, the correlation between HPV-38 infection and expressions of proliferating cell nuclear antigens (PCNA) or p53 protein was analyzed immunohistochemically. Using consensus primers for the L1 region (L1-PCR), we identified 35 of 53 specimens (66%) as positive for HPV-38 DNA. Furthermore, specimens from patients over 60 years of age revealed a lower prevalence for the HPV-38 (56.7%) than did those below that age (78.3%). Immunohistochemically, positive stainings for PCNA and p53 protein were more frequently detected in HPV-38 positive OSCCs than HPV negative ones. These results indicate that HPV-38 positive OSCCs were higher in proliferative cellular activity than HPV negative ones. Moreover, the findings suggest that HPV-38 infection may cause malignant transformation of the oral mucosal epithelium.
Collapse
Affiliation(s)
- A Kojima
- Department of Pathology, School of Dentistry, Aichi-Gakuin University, 1-100, Kusumoto-Cho, Chikusa-KU, Nagoya, Japan
| | | | | | | | | |
Collapse
|
28
|
Nicholls CD, McLure KG, Shields MA, Lee PWK. Biogenesis of p53 involves cotranslational dimerization of monomers and posttranslational dimerization of dimers. Implications on the dominant negative effect. J Biol Chem 2002; 277:12937-45. [PMID: 11805092 DOI: 10.1074/jbc.m108815200] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Precisely how mutant p53 exerts a dominant negative effect over wild type p53 has been an enigma. To understand how wild type and mutant p53 form hetero-oligomers, we studied p53 biogenesis in vitro. We show here that p53 dimers are formed cotranslationally (on the polysome), whereas tetramers are formed posttranslationally (by the dimerization of dimers in solution). Coexpression of wild type and mutant p53 therefore results in 50% of the p53 generated being heterotetramers comprised of a single species: wild type dimer/mutant dimer. Using hot spot mutants of p53 and a variety of natural target sites, we show that all wild type/mutant heterotetramers manifest impaired DNA binding activity. This impairment is not due to the mutant dimeric subunit inhibiting association of the complex with DNA but rather due to the lack of significant contribution (positive cooperativity) from the mutant partner. For all heterotetramers, bias in binding is particularly pronounced against those sequences in genes responsible for apoptosis rather than cell growth arrest. These results explain the molecular basis of p53 dominant negative effect and suggest a functional role in the regulation of p53 tetramerization.
Collapse
Affiliation(s)
- Chris D Nicholls
- Department of Microbiology and Infectious Diseases, Cancer Biology Research Group, University of Calgary Health Sciences Centre, Calgary, Alberta, Canada, T2N 4N1
| | | | | | | |
Collapse
|
29
|
Abstract
The human polyomavirus JC virus is the etiologic agent of progressive multifocal leukoencephalopathy (PML). As the JC virus early promoter directs cell-specific expression of the viral replication factor large T antigen, transcriptional regulation constitutes a major mechanism of glial tropism in PML. It has been demonstrated that SV40 or JC virus large T antigen interacts with p53 protein and regulates many viral and cellular genes. In this study we found that p53 represses the JC virus early promoter in both glial and nonglial cells. To identify the cis-regulatory elements responsible for p53-mediated repression, deletional and site-directed mutational analyses were performed. Deletion of the enhancer region diminished p53-mediated transcriptional repression. However, point mutations of several transcription factor binding sites in the basal promoter region did not produce any significant changes. In support of this observation, when the enhancer was fused to a heterologous promoter, p53 reduced the promoter activity about three fold. These results indicate that the enhancer region is important for the repression of JC virus transcription by p53. Furthermore, coexpression of JC virus T antigen with a p53 protein abolished p53-mediated repression of the JC virus early promoter in non-glial cells, but not in glial cells. This finding suggests that T antigen interacts with p53 and regulates JC virus transcription in a cell-specific manner.
Collapse
Affiliation(s)
- Hee-Sun Kim
- Department of Brain and Neuroscience, Ewha Institute of Neuroscience, College of Medicine, Ewha Womans University, Seoul, Korea.
| | | |
Collapse
|
30
|
Hahn WC, Dessain SK, Brooks MW, King JE, Elenbaas B, Sabatini DM, DeCaprio JA, Weinberg RA. Enumeration of the simian virus 40 early region elements necessary for human cell transformation. Mol Cell Biol 2002; 22:2111-23. [PMID: 11884599 PMCID: PMC133688 DOI: 10.1128/mcb.22.7.2111-2123.2002] [Citation(s) in RCA: 467] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2001] [Revised: 11/29/2001] [Accepted: 01/07/2002] [Indexed: 11/20/2022] Open
Abstract
While it is clear that cancer arises from the accumulation of genetic mutations that endow the malignant cell with the properties of uncontrolled growth and proliferation, the precise combinations of mutations that program human tumor cell growth remain unknown. The study of the transforming proteins derived from DNA tumor viruses in experimental models of transformation has provided fundamental insights into the process of cell transformation. We recently reported that coexpression of the simian virus 40 (SV40) early region (ER), the gene encoding the telomerase catalytic subunit (hTERT), and an oncogenic allele of the H-ras gene in normal human fibroblast, kidney epithelial, and mammary epithelial cells converted these cells to a tumorigenic state. Here we show that the SV40 ER contributes to tumorigenic transformation in the presence of hTERT and oncogenic H-ras by perturbing three intracellular pathways through the actions of the SV40 large T antigen (LT) and the SV40 small t antigen (ST). LT simultaneously disables the retinoblastoma (pRB) and p53 tumor suppressor pathways; however, complete transformation of human cells requires the additional perturbation of protein phosphatase 2A by ST. Expression of ST in this setting stimulates cell proliferation, permits anchorage-independent growth, and confers increased resistance to nutrient deprivation. Taken together, these observations define the elements of the SV40 ER required for the transformation of human cells and begin to delineate a set of intracellular pathways whose disruption, in aggregate, appears to be necessary to generate tumorigenic human cells.
Collapse
Affiliation(s)
- William C Hahn
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Li-Fraumeni syndrome (LFS) has been the most common terminology used for the syndrome. It is a rare familial dominantly inherited cancer syndrome characterized by a wide spectrum of neoplasms occurring in children and young adults. The canonical definition of LFS includes a proband diagnosed with sarcoma before 45 years of age, a first-degree relative with cancer before this same age and another first- or second-degree relative in the lineage with any cancer before this age or sarcoma at any age. Multiple studies have reported p53 germline mutations in LFS families in various parts of the world. As in sporadic tumors, loss of heterozygosity leading to the inactivation of the wild-type allele by deletion or mutation is observed in LFS tumors. Cancer-risk in mutation carriers has been estimated to be 73% in males and nearly 100% in females, the difference almost entirely explained by breast cancer. The identification of germline p53 mutations in rare cancer-prone families has given rise to the medical, counseling, psychological and ethical problems.
Collapse
Affiliation(s)
- Agnès Chompret
- Département de Médecine Institut Gustave-Roussy, Villejuif, France.
| |
Collapse
|
32
|
Kidney BA, Haines DM, Ellis JA, Burnham M, Jackson ML. Evaluation of formalin-fixed paraffin-embedded tissues from vaccine site-associated sarcomas of cats for polyomavirus DNA and antigen. Am J Vet Res 2001; 62:828-32. [PMID: 11400836 DOI: 10.2460/ajvr.2001.62.828] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To determine whether vaccine site-associated sarcomas (VSS) from cats contain polyomavirus antigen or DNA. SAMPLE POPULATION 50 formalin-fixed paraffin-embedded tissue blocks of VSS from cats. PROCEDURE Sections from each tissue block were evaluated for polyomavirus antigen by use of an avidin-biotin-complex immunohistochemical staining method, using rabbit anti-murine polyomavirus polyclonal antiserum as the primary antibody. The DNA was extracted from sections of each tissue block, and a polymerase chain reaction assay was performed, using primers designed to amplify regions of the bovine polyomavirus genome and consensus polyomavirus primers designed to detect unknown polyomaviruses. RESULTS Polyomavirus antigen and DNA were not detected in any of the VSS. CONCLUSIONS AND CLINICAL RELEVANCE Results suggest that polyomaviruses likely do not have any direct involvement in the pathogenesis of VSS in cats.
Collapse
Affiliation(s)
- B A Kidney
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| | | | | | | | | |
Collapse
|
33
|
Ho GH, Calvano JE, Bisogna M, Abouezzi Z, Borgen PI, Cordón-Cardó C, van Zee KJ. Genetic alterations of the p14ARF -hdm2-p53 regulatory pathway in breast carcinoma. Breast Cancer Res Treat 2001; 65:225-32. [PMID: 11336244 DOI: 10.1023/a:1010686518990] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
TP53 is the most commonly mutated tumor suppressor gene in human cancers. The amplification and overexpression of HDM2 plays a role in tumorigenesis via inactivation of p53-dependent cell cycle arrest. p14ARF, an alternate transcript of the INK4A tumor suppressor locus, prevents hdm2-induced transcriptional silencing of p53 by binding hdm2. The role of this p14ARF-hdm2-p53 regulatory pathway in breast carcinoma is unknown. We hypothesized that p14ARF mutations and HDM2 gene amplification may be alternative mechanisms of p53 inactivation in breast cancer. Mutational analysis of TP53 (exons 5-9) and exon 1beta of pl4ARF was performed by PCR-SSCP and putative mutations were confirmed by sequencing. p14ARF mRNA expression was evaluated by RT-PCR and the presence of HDM2 gene amplification by differential PCR. Among the cell lines, 7/14 (50%) harbored TP53 mutations and 2/14 (14%) had a deletion ofp14ARF exon 1beta with no detectable p14ARF mRNA. None demonstrated HDM2 gene amplification. TP53 mutations were identified in 7/36 (19%) breast tumors and HDM2 amplification in 2/30 (7%) tumors. All the tumors contained an intact p14ARF exon 1beta with corresponding expression of the mRNA. Alterations in the various components of this regulatory pathway were identified in nine (64%) cell lines and 25% of the 36 breast cancers with TP53 mutation being the predominant aberration. Although p14ARF mutations and HDM2 gene amplification appear to be uncommon events in breast carcinoma, deregulation of this pathway may occur via alternative mechanisms in breast carcinogenesis.
Collapse
Affiliation(s)
- G H Ho
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Lanson NA, Egeland DB, Royals BA, Claycomb WC. The MRE11-NBS1-RAD50 pathway is perturbed in SV40 large T antigen-immortalized AT-1, AT-2 and HL-1 cardiomyocytes. Nucleic Acids Res 2000; 28:2882-92. [PMID: 10908350 PMCID: PMC102680 DOI: 10.1093/nar/28.15.2882] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2000] [Revised: 06/14/2000] [Accepted: 06/14/2000] [Indexed: 01/19/2023] Open
Abstract
To investigate molecular controls of cardiomyocyte proliferation, we utilized cardiomyocytes induced to proliferate indefinitely by SV40 large T antigen (T-ag). In the T-ag-immortalized AT-1, AT-2 and HL-1 cardiomyocytes, normal cellular proteins associating with T-ag and p53 were identified, isolated and micro-sequenced. Peptide sequencing revealed that proteins of 90, 100 and 160 kDa were homologs of MRE11, NBS1 and RAD50, respectively. These three proteins play critical roles in the detection and repair of DNA double-strand breaks, activation of cell cycle checkpoints and telomere maintenance. In this report, we describe the cDNA cloning and double-strand sequencing of the rat homologs of MRE11, NBS1 and RAD50. We also determined the mRNA and protein levels of MRE11, NBS1 and RAD50 at different stages of heart development and in different tissues. MRE11 mRNA was only detected in the immortalized cardiomyocytes and in the testes. Although the 90 kDa MRE11 protein was seen in most samples examined, it was only detected at extremely low levels in proliferating cardiomyocytes (normal and immortalized). The 6.0 kb MRE11-related mRNA transcript (MRT) was seen in all samples examined. Levels of both NBS1 and RAD50 mRNA transcripts peaked in the heart at postnatal day 10. NBS1 mRNA levels were at very low levels in the T-ag-immortalized AT-1, AT-2 and HL-1 cells but NBS1 protein was observed at extremely high levels. We propose that SV40 large T antigen's interaction with the MRE11-NBS1-RAD50 pathway and with p53 ablates critical cell cycle checkpoints and that this is one of the major factors involved in the ability of this oncoprotein to immortalize cardiomyocytes.
Collapse
Affiliation(s)
- N A Lanson
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | | | | | | |
Collapse
|
35
|
Abendstein B, Marth C, Müller-Holzner E, Widschwendter M, Daxenbichler G, Zeimet AG. Clinical significance of serum and ascitic p53 autoantibodies in epithelial ovarian carcinoma. Cancer 2000; 88:1432-7. [PMID: 10717627 DOI: 10.1002/(sici)1097-0142(20000315)88:6<1432::aid-cncr22>3.0.co;2-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Accumulation of mutated p53 in malignant cells can lead to the generation of anti-p53 autoantibodies in the serum and other body fluids of cancer patients. This retrospective study was performed to evaluate the prognostic significance of preoperative serum and ascitic anti-p53 antibodies in advanced ovarian carcinoma. METHODS In 113 ovarian carcinoma patients who presented with significant amounts of ascites, anti-p53 autoantibodies were determined by a highly specific enzyme-linked immunosorbent assay of blood and ascites. Disease free and overall survival of study patients was estimated by the product limit method of Kaplan and Meier. Differences in survival were examined according to criteria of Mantel and Breslow. A multiple regression analysis based on the Cox proportional hazards model was used to determine the independence of prognostic variables. RESULTS Serum and ascitic anti-p53 antibodies were found in 28 (25%) and 21 (19%) of the study patients, respectively. In univariate analysis, detection of anti-p53 antibodies in ascites but not in serum was found to be a sign of unfavorable disease free survival (P<0.003) and overall survival (P < 0.01). Multivariate analysis revealed that anti-p53 positivity in ascites retained independent significance only in the prediction of adverse progression free survival (P<0.01). CONCLUSIONS The generation of a humoral immune response against p53 protein in the close tumor environment, as demonstrated by the occurrence of p53 autoantibodies in the ascitic fluid of ovarian carcinoma patients, is associated with poor disease free survival.
Collapse
Affiliation(s)
- B Abendstein
- Department of Obstetrics and Gynecology, Innsbruck University Hospital, Innsbruck, Austria
| | | | | | | | | | | |
Collapse
|
36
|
Ganly I, Soutar DS, Brown R, Kaye SB. p53 alterations in recurrent squamous cell cancer of the head and neck refractory to radiotherapy. Br J Cancer 2000; 82:392-8. [PMID: 10646894 PMCID: PMC2363290 DOI: 10.1054/bjoc.1999.0932] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The aim of the study was to determine the incidence of p53 alterations by mutation, deletion or inactivation by mdm2 or human papillomavirus (HPV) infection in recurrent squamous cell cancer of the head and neck (SCCHN) refractory to radiotherapy. Twenty-two tumours were studied. The p53 status of each tumour was analysed by sequencing of exons 4-9 and by immunohistochemistry. Mdm2 expression was assessed by immunohistochemistry and HPV infection was assessed by polymerase chain reaction of tumour DNA for HPV 16, 18 and 33. Fifteen (68%) of the 22 tumours studied had p53 mutations, while seven had wild-type p53 sequence. p53 immunohistochemistry correlated with the type of mutation. HPV DNA was detected in 8 (36%) tumours and all were of serotype HPV 16. Of these, five were in tumours with mutant p53 and three were in tumours with wild-type p53. Mdm2 overexpression was detected in 11 (50%) tumours. Of these, seven were in tumours with mutant p53 and four were in tumours with wild-type p53. Overall, 21 of the 22 tumours had p53 alterations either by mutation, deletion or inactivation by mdm2 or HPV. In this study, the overall incidence of p53 inactivation in recurrent head and neck cancer was very high at 95%. The main mechanism of inactivation was gene mutation or deletion which occurred in 15 of the 22 tumours studied. In addition, six of the seven tumours with wild-type p53 sequence had either HPV 16 DNA, overexpression of mdm2 or both which suggested that these tumours had p53 inactivation by these mechanisms. This high incidence of p53 dysfunction is one factor which could account for the poor response of these tumours to radiotherapy and chemotherapy. Therefore, new therapies for recurrent SCCHN which either act in a p53 independent pathway, or which restore p53 function may be beneficial in this disease.
Collapse
Affiliation(s)
- I Ganly
- Dept of Head and Neck Plastic and Reconstructive Surgery, Canniesburn Hospital, Bearsden, Glasgow, UK
| | | | | | | |
Collapse
|
37
|
Oka K, Tomonaga Y, Nakazawa T, Ge HY, Bengtsson U, Stanbridge EJ, Yoshioka N, Li Q, Hakura A, Yutsudo M. Malignant transformation of human diploid fibroblasts and suppression of their anchorage independence by introduction of chromosome 13. Genes Chromosomes Cancer 1999; 26:47-53. [PMID: 10441005 DOI: 10.1002/(sici)1098-2264(199909)26:1<47::aid-gcc7>3.0.co;2-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Isolation of cell lines that display various degrees of transformed phenotypes may be very useful to clarify multistep mechanisms of oncogenesis, but malignant transformation of human diploid fibroblasts in culture is a very rare event. We attempted to isolate variously transformed cell lines from human diploid fibroblasts (RB) of a patient with hereditary retinoblastoma. The RB cells exhibited normal karyotypes with the exception of one copy of chromosome 13, which contained a large deletion at the q14-22 region, where the RB1 gene is located. By transfection with SV40 early genes and repeated passage, we succeeded in obtaining SV40-transfected mortal, immortalized, anchorage-independent, and tumorigenic RB cell lines. DNA fingerprinting showed that these cell lines were not contaminants, but derivatives of the original RB cells. The remaining RB1 allele may be wild-type even in the malignant cell lines, because the expression and the LT-binding ability were normal. Furthermore, we did not find any homozygous loss in 16 polymorphic markers located in the 13q14-22 region in the transformed cell lines. However, introduction of a copy of a normal chromosome 13 into the anchorage-independent cell line suppressed its anchorage-independent growth ability. All these data, together with the fact that the RB cells containing the deletion progressed to a tumorigenic state spontaneously, but normal fibroblasts did not, raise the possibility that a new tumor suppressor gene, located at 13q14-22, may play a critical role in neoplastic transformation. We conclude that these RB cell lines provide an excellent system for identification of genes involved in malignant transformation of human cells. Genes Chromosomes Cancer 26:47-53, 1999.
Collapse
Affiliation(s)
- K Oka
- Department of Tumor Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Calzolari A, Papucci A, Baroni G, Ficarra G, Porfirio B, Chiarelli I, Di Lollo S. Epstein-Barr virus infection and P53 expression in HIV-related oral large B cell lymphoma. Head Neck 1999; 21:454-60. [PMID: 10402527 DOI: 10.1002/(sici)1097-0347(199908)21:5<454::aid-hed12>3.0.co;2-o] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Head and neck non-Hodgkin's lymphomas in HIV positive patients are highly related with Epstein-Barr virus (EBV) infection. In general, viral agents can alter p53 protein levels by enhancing degradation of cellular p53 or by increasing its half-life by viral protein-p53 interaction. Moreover, it has been reported that modifications of p53 gene can modulate tumor cells' response to radio- and chemotherapy. METHODS To assess a possible role of EBV infection, p53 protein deregulation, and p53 gene alterations in exons 5 to 8, we have studied six cases of HIV-related primary oral large B-cell lymphoma. We used in situ hybridization (ISH) for EBV-DNA and EBV-encoded nuclear RNA-1 (EBER-1), immunohistochemistry (IHC) for EBV latent membrane protein -1 (LMP-1) and p53 proteins expression, and single strand conformational polymorphism (SSCP) analysis to screen p53 gene mutations in exons 5 to 8. RESULTS The EBV-DNA was present in all specimens, according to conventional DNA-ISH. No evidence for EBER-1 was found by ISH. The presence of EBV-DNA was correlated with the LMP-1 expression in all but one case. Moreover, p53 protein expression was negative in three cases and strongly positive in the others. However, mutational analysis of p53 gene in exons 5-8 showed no alteration. CONCLUSIONS Our data may suggest that both EBV infection and LMP-1 expression may cause p53 loss of function even in the absence of p53 gene mutations, as assessed by SSCP. We speculate that the presence of EBV-infection and p53 protein deregulation may be responsible for radio- and chemotherapy resistance, by influencing apoptosis of cancer cells.
Collapse
Affiliation(s)
- A Calzolari
- Institute of Anatomic Pathology, University of Florence, Viale Morgagni 85, 50134 Florence, Italy
| | | | | | | | | | | | | |
Collapse
|
39
|
Swenson JJ, Mauser AE, Kaufmann WK, Kenney SC. The Epstein-Barr virus protein BRLF1 activates S phase entry through E2F1 induction. J Virol 1999; 73:6540-50. [PMID: 10400750 PMCID: PMC112737 DOI: 10.1128/jvi.73.8.6540-6550.1999] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The Epstein-Barr Virus (EBV) immediate-early protein BRLF1 is one of two transactivators which mediate the switch from latent to lytic replication in EBV-infected cells. DNA viruses often modulate the function of critical cell cycle proteins to maximize the efficiency of virus replication. Here we have examined the effect of BRLF1 on cell cycle progression. A replication-deficient adenovirus expressing BRLF1 (AdBRLF1) was used to infect normal human fibroblasts and various epithelial cell lines. BRLF1 expression induced S phase entry in contact-inhibited fibroblasts and in the human osteosarcoma cell line U-2 OS. AdBRLF1 infection produced a dramatic increase in the level of E2F1 but not E2F4. In contrast, the levels of Rb, p107, and p130 were decreased in AdBRLF1-infected cells. Electrophoretic mobility shift assays confirmed an increased level of free E2F1 in the AdBRLF1-infected human fibroblasts. Consistent with the previously described effect of E2F1, AdBRLF1-infected fibroblasts had increased levels of p53 and p21 and died by apoptosis. BRLF1-induced activation of E2F1 may be required for efficient EBV lytic replication, since at least one critical viral replication gene (the viral DNA polymerase) is activated by E2F (C. Liu, N. D. Sista, and J. S. Pagano, J. Virol. 70:2545-2555, 1996).
Collapse
Affiliation(s)
- J J Swenson
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | |
Collapse
|
40
|
Zhai W, Comai L. A kinase activity associated with simian virus 40 large T antigen phosphorylates upstream binding factor (UBF) and promotes formation of a stable initiation complex between UBF and SL1. Mol Cell Biol 1999; 19:2791-802. [PMID: 10082545 PMCID: PMC84072 DOI: 10.1128/mcb.19.4.2791] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Simian virus 40 large T antigen is a multifunctional protein which has been shown to modulate the expression of genes transcribed by RNA polymerase I (Pol I), II, and III. In all three transcription systems, a key step in the activation process is the recruitment of large T antigen to the promoter by direct protein-protein interaction with the TATA binding protein (TBP)-TAF complexes, namely, SL1, TFIID, and TFIIIB. However, our previous studies on large T antigen stimulation of Pol I transcription also revealed that the binding to the TBP-TAFI complex SL1 is not sufficient to activate transcription. To further define the molecular mechanism involved in large T antigen-mediated Pol I activation, we examined whether the high-mobility group box-containing upstream binding factor (UBF) plays any role in this process. Here, using cell labeling experiments, we showed that large T antigen expression induces an increase in UBF phosphorylation. Further biochemical analysis demonstrated that UBF is phosphorylated by a kinase activity that is strongly associated with large T antigen, and that the carboxy-terminal activation domain of UBF is required for the phosphorylation to occur. Using in vitro reconstituted transcription assays, we demonstrated that the inability of alkaline phosphatase treated UBF to efficiently activate transcription can be rescued by large T antigen. Moreover, we showed that large T antigen-induced UBF phosphorylation promotes the formation of a stable UBF-SL1 complex. Together, these results provide strong evidence for an important role for the large T antigen-associated kinase in mediating the stimulation of RNA Pol I transcription.
Collapse
Affiliation(s)
- W Zhai
- Department of Molecular Microbiology and Immunology and Norris Comprehensive Cancer Center, University of Southern California School of Medicine, Los Angeles, California 90033, USA
| | | |
Collapse
|
41
|
Wang CH, Chen YL, Tsao YP, Chen SL. Simian virus 40 T antigen induces p53-independent apoptosis but does not suppress erbB2/neu gene expression in immortalized human epithelial cells. Cancer Lett 1999; 137:107-15. [PMID: 10376800 DOI: 10.1016/s0304-3835(98)00360-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Previously, we have shown that simian virus 40 (SV40) T antigen can directly cause apoptosis in immortalized human epithelial cells under normal growth conditions. In this study, we further characterized the mechanism of T-antigen-mediated apoptosis involving p53 and whether T antigen can suppress erbB2/neu gene expression. Our results show the differential regulation of erbB2/neu gene expression in different cell clones in response to T antigen transgene, indicating that the regression of erbB2/neu gene by SV40 T is cell-type dependent. Our previous study reported T-antigen-induced apoptosis in p53 mutant cells; however, in this study we find increased levels of p53 protein in T-antigen-containing cells. Therefore, we examined the transactivation function of p53 in these cells. Our data show the failure to transactivate p53, suggesting that increased p53 protein in T antigen expressing cells is functionless at least for transcriptional activation.
Collapse
Affiliation(s)
- C H Wang
- Department of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| | | | | | | |
Collapse
|
42
|
Arriola EL, Lopez AR, Chresta CM. Differential regulation of p21waf-1/cip-1 and Mdm2 by etoposide: etoposide inhibits the p53-Mdm2 autoregulatory feedback loop. Oncogene 1999; 18:1081-91. [PMID: 10023685 DOI: 10.1038/sj.onc.1202391] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The Mdm2 protein is frequently overexpressed in human non-seminomatous germ cell tumours and transitional carcinoma of the bladder where it may contribute to tolerance of wtp53. Mdm2 forms an autoregulatory feedback loop with p53; the Mdm2 gene is responsive to transactivation by p53 and once synthesized the Mdm2 protein terminates the p53 response. We show here that the topoisomerase poison etoposide, like ultra violet irradiation, inhibits Mdm2 synthesis. Cytotoxic concentrations of etoposide (IC90 for > 3 h) result in inhibition of Mdm2 induction at both the RNA and protein level. Rapid apoptosis ensues. Global transcription is not inhibited: p21waf-1/cip1 and GADD45 expression increase in a dose dependent manner. Inhibition of Mdm2 synthesis depends on the continuous presence of etoposide, suggesting the DNA damage may prevent transcription. Downregulation of Mdm2 transcript occurs in cells expressing HPV16-E6 suggesting that inhibition of Mdm2 transcription is p53-independent. When cells are -treated with a pulse (1 h) of etoposide and reincubated in drug free medium, Mdm2 synthesis commences immediately after damage is repaired (3 h) and the p53 response is attenuated. Induction of apoptosis and loss of clonogenicity are 3-5-fold lower under pulse treatment conditions. This is the first observation of inhibition of Mdm2 transcription following treatment with topoisomerase (topo II) poisons, a feature that may be useful in tumour types where p53 is tolerated by overexpression of Mdm2.
Collapse
Affiliation(s)
- E L Arriola
- CRC Molecular and Cellular Pharmacology Research Group, School of Biological Sciences, The University of Manchester, UK
| | | | | |
Collapse
|
43
|
Butel JS, Lednicky JA. Cell and molecular biology of simian virus 40: implications for human infections and disease. J Natl Cancer Inst 1999; 91:119-34. [PMID: 9923853 DOI: 10.1093/jnci/91.2.119] [Citation(s) in RCA: 232] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Simian virus 40 (SV40), a polyomavirus of rhesus macaque origin, was discovered in 1960 as a contaminant of polio vaccines that were distributed to millions of people from 1955 through early 1963. SV40 is a potent DNA tumor virus that induces tumors in rodents and transforms many types of cells in culture, including those of human origin. This virus has been a favored laboratory model for mechanistic studies of molecular processes in eukaryotic cells and of cellular transformation. The viral replication protein, named large T antigen (T-ag), is also the viral oncoprotein. There is a single serotype of SV40, but multiple strains of virus exist that are distinguishable by nucleotide differences in the regulatory region of the viral genome and in the part of the T-ag gene that encodes the protein's carboxyl terminus. Natural infections in monkeys by SV40 are usually benign but may become pathogenic in immunocompromised animals, and multiple tissues can be infected. SV40 can replicate in certain types of simian and human cells. SV40-neutralizing antibodies have been detected in individuals not exposed to contaminated polio vaccines. SV40 DNA has been identified in some normal human tissues, and there are accumulating reports of detection of SV40 DNA and/or T-ag in a variety of human tumors. This review presents aspects of replication and cell transformation by SV40 and considers their implications for human infections and disease pathogenesis by the virus. Critical assessment of virologic and epidemiologic data suggests a probable causative role for SV40 in certain human cancers, but additional studies are necessary to prove etiology.
Collapse
Affiliation(s)
- J S Butel
- Division of Molecular Virology, Baylor College of Medicine, Houston, TX 77030-3498, USA.
| | | |
Collapse
|
44
|
Koh JY, Cho NP, Kong G, Lee JD, Yoon K. p53 mutations and human papillomavirus DNA in oral squamous cell carcinoma: correlation with apoptosis. Br J Cancer 1998; 78:354-9. [PMID: 9703282 PMCID: PMC2063042 DOI: 10.1038/bjc.1998.498] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Forty-two oral squamous cell carcinomas (SCCs) were analysed for p53 mutations and human papillomavirus (HPV) infection to examine the prevalency of these factors and correlation with apoptotic index (AI; number of apoptotic cells per 100 tumour cells) of the tumour tissue. In polymerase chain reaction (PCR)-Southern blot analysis, HPV DNAs were detected from 22 out of 42 SCCs (52%) with predominance of HPV-16 (68%). p53 mutations in exons 5-8, screened by nested PCR-single-strand conformation polymorphism (PCR-SSCP) analysis, were observed in 16 of 42 tumours (38%). The state of the p53 gene did not show any correlation with HPV infection. The terminal deoxynucleotidyl transferase (TdT)-mediated dUTP-biotin nick end labelling (TUNEL) method was used for detection of apoptotic cells. The mean AI was 2.35, ranging from 0.31 to 6.63. SCCs associated with p53 mutation had significantly lower AI than those without p53 mutation (P < 0.01), whereas no difference in AI was found between SCCs with and without HPV infection. The results of this study confirmed that HPV infection and/or p53 mutations are implicated, but are not mutually exclusive events, in carcinogenesis of oral SCC and also showed that decrease in apoptosis is more closely related to p53 mutation than HPV infection.
Collapse
Affiliation(s)
- J Y Koh
- Department of Oral Pathology and Institute of Dental Science, School of Dentistry, Chonbuk National University, Chonju, Korea
| | | | | | | | | |
Collapse
|
45
|
Lee H, Kim HT, Yun Y. Liver-specific enhancer II is the target for the p53-mediated inhibition of hepatitis B viral gene expression. J Biol Chem 1998; 273:19786-91. [PMID: 9677410 DOI: 10.1074/jbc.273.31.19786] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Here, we established the inhibitory mechanism of p53 on hepatitis B viral gene expression using HepG2 cells. Our results are as follows. First, p53 down-regulated the activities of all four promoters of hepatitis B virus (HBV), suggestive of the presence of a common element mediating the p53-dependent transcriptional repression. Second, employing the 5'-deletion constructs of the pregenomic/core promoter, the liver-specific enhancer II region was localized as a target for the p53-mediated transcriptional repression. Third, in a detailed analysis of the enhancer II region, the 5'-proximal 31-base pair region was defined as a p53-repressible element. Throughout the study, p53-mediated repression was rescued upon coexpression of the X-gene product, HBx. Finally, in an electrophoretic mobility shift assay, the defined p53-repressible element did not bind purified p53 directly, but shifted three bands in HepG2 nuclear extract, two of which was supershifted upon addition of p53 monoclonal antibody. These results display a novel mechanism of p53-dependent transcriptional repression in which p53 negatively regulates the viral-specific DNA enhancer through protein to protein interaction with an enhancer-binding protein. At the same time, the results indicate that p53 plays a defensive role against HBV by transcriptionally repressing the HBV core promoter through liver-specific enhancer II and HBx is required to counteract this inhibitory function of p53.
Collapse
Affiliation(s)
- H Lee
- Signal Transduction Laboratory, Mogam Biotechnology Research Institute, 341 Pojungri, Koosungmyon, Yongingoon, Kyunggido 449-910, Korea
| | | | | |
Collapse
|
46
|
Chen SL, Tsao YP, Chen YL, Huang SJ, Chang JL, Wu SF. The induction of apoptosis by SV40 T antigen correlates with c-jun overexpression. Virology 1998; 244:521-9. [PMID: 9601520 DOI: 10.1006/viro.1998.9109] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Simian virus (SV40) T antigen shares many characteristics with adenovirus E1A which is known to induce apoptosis. To verify the potential of SV40 T antigen-mediated apoptosis, we stably expressed T antigen in immortalized human epithelial cells (Z172 and HaCaT). We found that SV40 T antigen could directly cause apoptosis in 22-27% of these cells under normal growth condition as measured by chromatin condensation and nucleosomal fragmentation. The apoptosis of HaCaT cells which contain mutant p53 suggests the p53-independent nature of T antigen-mediated apoptosis. T antigen-induced apoptosis was associated with increased expression of c-Jun protein. Moreover, the overexpression of c-jun alone in these cells also induced apoptosis, indicating that c-jun might play an important role in T antigen-induced apoptosis.
Collapse
Affiliation(s)
- S L Chen
- Department of Microbiology and Immunology, Graduate Institute of Medical Science, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | | | | | | | | | | |
Collapse
|
47
|
Abstract
In eukaryotes, the regulation of tissue cell numbers is a critical homeostatic objective that is achieved through tight control of apoptosis, mitosis and differentiation. While much is known about the genetic regulation of cell growth and differentiation, the molecular basis of apoptosis is less well understood. Genes involved in both cell proliferation and apoptosis reflect the role of some stimuli in both of these processes, the cell response depending on the overall cellular milieu. Recent research has given fascinating insights into the complex genetic and molecular mechanisms regulating apoptosis. A picture is emerging of the initiation in certain cells, after an apoptotic trigger, of sequential gene expression and specific signal transduction cascades that guide cells along the cell death pathway. Changes in gene expression precede the better known biochemical and morphological changes of apoptosis. It seems possible that, as a result of increased understanding of the cellular events preceding cell death, apoptosis may become more amenable to manipulation by appropriate drug- and gene-based therapies.
Collapse
Affiliation(s)
- K S Saini
- Department of Diabetes and Endocrinology, Princess Alexandra Hospital, Woolloongabba, Brisbane, Queensland, Australia
| | | |
Collapse
|
48
|
Abstract
PURPOSE Langerhans cell histiocytosis (LCH) is a disorder of unknown etiology involving the proliferation and accumulation of cells with the phenotype of a bone marrow-derived antigen-presenting cell of the skin, the Langerhans cell. We have studied p53 expression, an element in the control of cell proliferation, to determine whether it plays a role in the pathogenesis of LCH. PATIENTS AND METHODS LCH lesions from 10 patients with either localized (n = 5) or multisystem disease (n = 5) were studied. p53 protein expression was assessed by immunohistochemistry, and p53 gene mutation by the single strand conformation polymorphism (SSCP) technique. RESULTS p53 protein expression was detected in all 10 LCH biopsy specimens examined. It was restricted to Langerhans cells (LCH cells), absent from adjacent cells, and localized to the cell nuclei. No mutations of the p53 gene were detected, nor was there abnormal expression of the p53 binding protein, mdm2. CONCLUSIONS p53 is readily detectable in LCH cells but not in normal cells. This is either caused by an unusual mechanism (given the absence of mutations in the p53 gene and of mdm2 expression in LCH cells) or by overexpression or posttranslational changes of normal p53 in response to an as yet unidentified cellular stress. Stabilization and inactivation of p53 could lead to the uncontrolled proliferation of LCH cells, or the abnormality could lead to the induction of programmed cell death.
Collapse
Affiliation(s)
- M Weintraub
- Pediatric Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | | | |
Collapse
|
49
|
Watts AM, Shearer MH, Pass HI, Kennedy RC. Development of an experimental murine pulmonary metastasis model incorporating a viral encoded tumor specific antigen. J Virol Methods 1997; 69:93-102. [PMID: 9504755 DOI: 10.1016/s0166-0934(97)00147-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A SV40 murine tumor model was developed and characterized involving intravenous inoculation of BALB/c mice with syngeneic SV40-transformed kidney fibroblasts (mKSA cells). Following intravenous inoculation with mKSA cells, viable tumor cells were recovered from primary organ cell culture of the brain, spleen, lungs, and kidneys of tumor bearing mice. The presence of mKSA tumor cells in these tissues was confirmed by morphological identification and by immunofluorescence directed to SV40 large tumor antigen (T-ag). Additionally, a computer assisted method was used to enumerate and quantitate the size of tumor foci. Tumor foci were observed in the lungs and were quantifiable based on both size and number. The number and size of foci observed in the lungs of tumor bearing mice was dependent on the dose of mKSA cells and time post-inoculation. Ultimately, the tumor burden in inoculated mice was found to be lethal. Quantification of tumor foci in the lung, survival data, and detection of metastasis to organs at sites distal to tumor cell inoculation, provides specific reference points for use in examining the mechanism(s) of the immune response to tumors expressing viral antigen and in evaluating immunologic based therapies within this new SV40 murine tumor model. The methods described herein can be applied for the development of new animal models of metastasis that express viral encoded tumor-specific antigens.
Collapse
Affiliation(s)
- A M Watts
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City 73104, USA
| | | | | | | |
Collapse
|
50
|
Henning W, Rohaly G, Kolzau T, Knippschild U, Maacke H, Deppert W. MDM2 is a target of simian virus 40 in cellular transformation and during lytic infection. J Virol 1997; 71:7609-18. [PMID: 9311842 PMCID: PMC192109 DOI: 10.1128/jvi.71.10.7609-7618.1997] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Phosphopeptide analyses of the simian virus 40 (SV40) large tumor antigen (LT) in SV40-transformed rat cells, as well as in SV40 lytically infected monkey cells, showed that gel-purified LT that was not complexed to p53 (free LT) and p53-complexed LT differed substantially in their phosphorylation patterns. Most significantly, p53-complexed LT contained phosphopeptides not found in free LT. We show that these additional phosphopeptides were derived from MDM2, a cellular antagonist of p53, which coprecipitated with the p53-LT complexes, probably in a trimeric LT-p53-MDM2 complex. MDM2 also quantitatively bound the free p53 in SV40-transformed cells. Free LT, in contrast, was not found in complex with MDM2, indicating a specific targeting of the MDM2 protein by SV40. This specificity is underscored by significantly different phosphorylation patterns of the MDM2 proteins in normal and SV40-transformed cells. Furthermore, the MDM2 protein, like p53, becomes metabolically stabilized in SV40-transformed cells. This suggests the possibility that the specific targeting of MDM2 by SV40 is aimed at preventing MDM2-directed proteasomal degradation of p53 in SV40-infected and -transformed cells, thereby leading to metabolic stabilization of p53 in these cells.
Collapse
Affiliation(s)
- W Henning
- Heinrich-Pette-Institut für Experimentelle Virologie und Immunologie, Hamburg, Germany
| | | | | | | | | | | |
Collapse
|