1
|
Vieira Silva A, Chu I, Feeley M, Bergman Å, Håkansson H, Öberg M. Dose-dependent toxicological effects in rats following a 90-day dietary exposure to PCB-156 include retinoid disruption. Reprod Toxicol 2022; 107:123-139. [PMID: 34560258 DOI: 10.1016/j.reprotox.2021.09.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 09/01/2021] [Accepted: 09/16/2021] [Indexed: 12/21/2022]
Abstract
The toxicity of PCB-156 (2,3,3',4,4',5-hexachlorobiphenyl) was investigated in rats following subchronic dietary exposure. Groups of 10 male and female Sprague-Dawley rats were administered PCB-156 in the diet at 0, 0.01, 0.1, 1 or 10 ppm for 90 days. Dose-dependent increases were detected for the liver, lung and kidney weights, as well as for the liver EROD, PROD and UDPGT enzyme activities and liver uroporphyrin concentration. Dose-dependent decreases were observed in final body weight, body weight gain, and thymus weight. Apolar retinoid concentrations were decreased in the liver and lungs and increased in the kidneys. Histopathological examination of the liver, thyroid, and thymus showed mild to moderate dose-related changes. A LOAEL of 0.01 ppm was established, based on reduced apolar liver retinoid concentration. Benchmark dose-modelling corroborated the sensitivity of liver retinoid endpoints. The lower confidence limits (BMDL) for a 5% decrease in apolar liver retinoid concentrations were 0.0009 and 0.0007 ppm, respectively, in males and females, corresponding to a daily dose of 0.06 μg PCB-156 per kg body weight. Organizing dose-response data for the individual hepatic endpoints along the PCB-156 dosing scale revealed a sequence of events compatible with a causal link between depletion of apolar retinoids and the other liver biochemistry and pathology findings. Taken together, data suggest that the retinoid endpoints should be further evaluated for a causal relationship to PCB-induced liver toxicity and that retinoid system endpoints are identified and characterized to support health risk assessment in the emerging research fields of endocrine disruption and mixture toxicology.
Collapse
Affiliation(s)
- A Vieira Silva
- Unit of Integrative Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| | - I Chu
- Health Canada Tunney's Pasture, Ottawa, Ontario, Canada
| | - M Feeley
- Health Canada Tunney's Pasture, Ottawa, Ontario, Canada
| | - Å Bergman
- Department of Environmental Science (ACES), Stockholm University, Stockholm, Sweden; MTM, Department of Science and Technology, Örebro University, Örebro, Sweden
| | - H Håkansson
- Unit of Cardiovascular and Nutrition Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - M Öberg
- Unit of Integrative Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
2
|
Shmarakov IO, Lee YJ, Jiang H, Blaner WS. Constitutive androstane receptor mediates PCB-induced disruption of retinoid homeostasis. Toxicol Appl Pharmacol 2019; 381:114731. [PMID: 31449830 DOI: 10.1016/j.taap.2019.114731] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/06/2019] [Accepted: 08/21/2019] [Indexed: 11/18/2022]
Abstract
Environmental exposure to polychlorinated biphenyls (PCBs) is associated with an increased risk of incidence of metabolic disease, however the molecular mechanisms underlying this phenomenon are not fully understood. Our study provides new insights into molecular interactions between PCBs and retinoids (vitamin A and its metabolites) by defining a role for constitutive androstane receptor (CAR) in the disruption of retinoid homeostasis by non-coplanar 2,2',4,4',5,5'-hexachlorobiphenyl (PCB153). Administration of four weekly 50 mg/kg doses of PCB153 to C57BL/6 male mice resulted in a significant decline in the tissue concentrations of retinyl esters, retinol and all-trans-retinoic acid (atRA), while no decline in hepatic and adipose tissue retinoid levels were detected in Car-null littermates. Our data imply that disrupted retinoid homeostasis occurs as a consequence of PCB153-induced activation of CAR, and raise the possibility that CAR signaling can affect atRA homeostasis in vivo. A strong correlation between the changes in retinoid metabolism and extensive upregulation of hepatic CAR-driven Cyp2b10 expression implicates this CYP isoform as contributing to retinoid homeostasis disruption via atRA oxidation during PCB153 exposure. In response to PCB153-induced CAR activation and disruption of retinoid homeostasis, expression of hepatic Pepck, Cd36 and adipose tissue Pparγ, Cd36, Adipoq, and Rbp4 were altered; however, this was reversed by administration of exogenous dietary retinoids (300 IU daily for 4 weeks). Our study establishes that PCB153 exposure enables a significant disruption of retinoid homeostasis in a CAR-dependent manner. We propose that this contributes to the obesogenic properties of PCB153 and may contribute to the predisposition to the metabolic disease.
Collapse
Affiliation(s)
- Igor O Shmarakov
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY 10032, USA.
| | - Yun Jee Lee
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY 10032, USA
| | - Hongfeng Jiang
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY 10032, USA
| | - William S Blaner
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY 10032, USA
| |
Collapse
|
3
|
Endocrine Disrupting Chemicals and Endometrial Cancer: An Overview of Recent Laboratory Evidence and Epidemiological Studies. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14030334. [PMID: 28327540 PMCID: PMC5369169 DOI: 10.3390/ijerph14030334] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Revised: 02/13/2017] [Accepted: 02/22/2017] [Indexed: 01/10/2023]
Abstract
Background: Although exposure to endocrine disruptor compounds (EDCs) has been suggested as a contributing factor to a range of women's health disorders including infertility, polycystic ovaries and the early onset of puberty, considerable challenges remain in attributing cause and effect on gynaecological cancer. Until recently, there were relatively few epidemiological studies examining the relationship between EDCs and endometrial cancer, however, in the last years the number of these studies has increased. Methods: A systematic MEDLINE (PubMed) search was performed and relevant articles published in the last 23 years (from 1992 to 2016) were selected. Results: Human studies and animal experiments are confirming a carcinogenic effect due to the EDC exposure and its carcinogenesis process result to be complex, multifactorial and long standing, thus, it is extremely difficult to obtain the epidemiological proof of a carcinogenic effect of EDCs for the high number of confusing factors. Conclusions: The carcinogenic effects of endocrine disruptors are plausible, although additional studies are needed to clarify their mechanisms and responsible entities. Neverthless, to reduce endocrine disruptors (ED) exposure is mandatory to implement necessary measures to limit exposure, particularly during those periods of life most vulnerable to the impact of oncogenic environmental causes, such as embryonic period and puberty.
Collapse
|
4
|
Shmarakov IO. Retinoid-xenobiotic interactions: the Ying and the Yang. Hepatobiliary Surg Nutr 2015; 4:243-67. [PMID: 26311625 DOI: 10.3978/j.issn.2304-3881.2015.05.05] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 05/13/2015] [Indexed: 12/20/2022]
Abstract
The literature provides compelling evidence pointing to tight metabolic interactions between retinoids and xenobiotics. These are extensive and important for understanding xenobiotic actions in the body. Within the body, retinoids affect xenobiotic metabolism and actions and conversely, xenobiotics affect retinoid metabolism and actions. This article summarizes data that establish the importance of retinoid-dependent metabolic pathways for sustaining the body's responses to xenobiotic exposure, including the roles of all-trans- and 9-cis-retinoic acid for protecting mammals from harmful xenobiotic effects and for ensuring xenobiotic elimination from the body. This review will also consider molecular mechanisms underlying xenobiotic toxicity focusing on how this may contribute to retinoid deficiency and disruption of normal retinoid homeostasis. Special attention is paid to xenobiotic molecular targets (nuclear receptors, regulatory proteins, enzymes, and transporters) which affect retinoid metabolism and signaling.
Collapse
Affiliation(s)
- Igor O Shmarakov
- Department of Biochemistry and Biotechnology, Chernivtsi National University, Chernivtsi, Ukraine
| |
Collapse
|
5
|
Vanden Berghe M, Weijs L, Habran S, Das K, Bugli C, Pillet S, Rees JF, Pomeroy P, Covaci A, Debier C. Effects of polychlorobiphenyls, polybromodiphenylethers, organochlorine pesticides and their metabolites on vitamin A status in lactating grey seals. ENVIRONMENTAL RESEARCH 2013; 120:18-26. [PMID: 23051620 DOI: 10.1016/j.envres.2012.09.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 09/07/2012] [Accepted: 09/13/2012] [Indexed: 06/01/2023]
Abstract
Polychlorobiphenyls (PCBs), polybromodiphenylethers (PBDEs) and organochlorine pesticides (OCPs), such as dichlorodiphenyltrichloroethane (DDT) and hexachlorobenzene (HCB), are considered as endocrine disruptors in laboratory and wild animals. This study investigated whether these compounds and their hydroxylated metabolites (HO-PCBs and HO-PBDEs) may affect the homoeostasis of vitamin A, a dietary hormone, in the blubber and serum of twenty lactating grey seals sampled at early and late lactation on the Isle of May, Scotland. The effect of naturally produced compounds such as the methoxylated (MeO)-PBDEs was also examined. Vitamin A levels in inner blubber (37±9 μg/g wet weight (ww) and 92±32 μg/g ww at early and late lactation, respectively) and serum (408±143 and 390±98 ng/ml at early and late lactation, respectively) appeared to be positively related to ΣPCBs, ΣPBDEs and several individual PCB and PBDE congeners in inner blubber and serum. These findings may suggest enhanced mobilisation of hepatic retinoid stores and redistribution in the blubber, a storage site for vitamin A in marine mammals. We have also reported that serum concentrations of ΣHO-PCBs and 4-OH-CB107 tended to increase with circulating vitamin A levels. Although the direction of the relationships may sometimes differ from those reported in the literature, our results are in agreement with previous findings highlighting a disruption of vitamin A homoeostasis in the blubber and bloodstream following exposure to environmental pollutants. The fact that vitamin A and PCBs appeared to share common mechanisms of mobilisation and transfer during lactation in grey seals (Debier et al., 2004; Vanden Berghe et al., 2010) may also play a role in the different relationships observed between vitamin A and lipophilic pollutants.
Collapse
Affiliation(s)
- Marie Vanden Berghe
- Institut des Sciences de la Vie, Université catholique de Louvain, Croix du Sud 2/L7.05.08, Louvain-la-Neuve B-1348, Belgium.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Kirkegaard M, Sonne C, Jakobsen J, Jenssen BM, Letcher RJ, Dietz R. Organohalogens in a whale-blubber-supplemented diet affects hepatic retinol and renal tocopherol concentrations in greenland sled dogs (Canis familiaris). JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2010; 73:773-786. [PMID: 20391120 DOI: 10.1080/15287391003689192] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The aim of this study was to examine the plasma, liver, and kidney status of vitamin A (retinol) and vitamin E (alpha-tocopherol) in two groups of Greenland sled dogs (Canis familiaris), with a total number of 16 bitches and 8 pups. The dogs were fed either minke whale (Balaenoptera acuterostrata) blubber (exposed dogs) or uncontaminated (control group) porcine fat for up to 12 to 21 mo of age. The daily intake of 50-200 g whale blubber (mean: 112 g) constituted between 10.4 and 11.7 microg/kg body weight summation operatororganohalogen contaminants (OHC) (or between 4.6 and 6.1 microg/kg body weight summation operatorpolychlorinated biphenyls [PCB]). Retinol was approximately 18% and alpha-tocopherol 22% higher in the diet of the exposed dogs compared to controls. In adipose tissue, mean of SigmaOHC was 92 ng/g lipid weight (lw) and 5005 ng/g lw for all control (n = 12) and exposed dogs (n = 10), respectively. Hepatic retinol correlated negatively with Sigma-dichlorodiphenyldichloroethane (SigmaDDT) and and Sigma-polybrominated diphenyl ethers (SigmaPBDE) for all exposed animals. A negative correlation between kidney alpha-tocopherol and SigmaPCB concentrations was observed, whereas two positive significant correlations were observed between kidney retinol and Sigma-chlordane-related compounds (SigmaCHL) and dieldrin concentrations. Hepatic alpha-tocopherol concentrations were significantly lower in exposed compared to controls, most likely due to a combination by OHC exposure and high dietary intake of unsaturated fatty acids. These results suggest that dietary exposure from OHC may, even at low concentrations, possibly affect retinol and alpha-tocopherol status in Arctic top predators.
Collapse
Affiliation(s)
- Maja Kirkegaard
- Research Unit of Environmental Medicine, University of Southern Denmark, Odense, Denmark.
| | | | | | | | | | | |
Collapse
|
7
|
Yoshizawa K, Brix AE, Sells DM, Jokinen MP, Wyde M, Orzech DP, Kissling GE, Walker NJ, Nyska A. Reproductive Lesions in Female Harlan Sprague-Dawley Rats Following Two-Year Oral Treatment with Dioxin and Dioxin-like Compounds. Toxicol Pathol 2009; 37:921-37. [DOI: 10.1177/0192623309351721] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Results from previously published animal studies suggest that prenatal and postnatal exposure to dioxin and dioxin-like compounds (DLCs) may profoundly affect the reproductive system of both sexes via endocrine disruption. In the present work, we evaluate the toxicity and carcinogenicity of various DLCs, with an emphasis on their effect on the reproductive organs, induced by chronic exposure of female adult Harlan Sprague-Dawley rats. This investigation represents part of an initiative of the National Toxicology Program to determine the relative potency of chronic toxicity and carcinogenicity of polychlorinated dioxins, furans, and biphenyls. For fourteen, thirty-one, or fifty-three weeks or for two years, animals were administered by gavage 2,3,7,8-tetrachlorodibenzo- p-dioxin (TCDD); 3,3′,4,4′,5-pentachlorobiphenyl (PCB126); 2,3,4,7,8-pentachlorodibenzofuran (PeCDF); 2,2′,4,4′,5,5′-hexachlorobiphenyl (PCB153); 2,3′,4,4′,5-pentachlorobiphenyl (PCB118); a tertiary mixture of TCDD, PCB126, and PeCDF; a binary mixture of PCB126 and 153; or a binary mixture of PCB126 and PCB118. The ranges of treatment-related changes in the reproductive system included chronic active inflammation in the ovary that occurred in the 1,000 and 3,000 μg/kg core groups (two-year exposure) of PCB153 and in the 300 ng/3,000 μg/kg core group of binary mixture of PCB126 and PCB153. Increases in the incidence of acute and/or chronic active inflammation of the uterus were observed in all dosed groups, including the stop-exposure group (withdrawal after thirty-week exposure) of PeCDF and the 1,000 μg/kg and/or higher group dosed with PCB153. The incidence of cystic endometrial hyperplasia was marginally increased in the 92 PeCDF ng/kg group at two years. The incidence of squamous metaplasia was significantly increased in the 44 ng/kg and higher dose group, including the stop-exposure group. The incidence of uterine squamous cell carcinoma was significantly or marginally increased in the 6 ng/kg core and 100 ng/kg stop-exposure groups of TCDD and in the 300 ng/300 μg/kg core group that received the binary mixture of PCB126 and 153. The incidence of uterine carcinoma was marginally increased in the 92 ng/kg PeCDF group at two years and clearly increased in the 1,000 and 4,600 μg/kg PCB118 core group and the 4,600 μg/kg stop group. In the studies of PCB 126, the tertiary mixture, and the binary mixture of PCB126 and PCB118, no increased incidence of any change occurred in the reproductive systems. The range of changes seen with the different compounds suggests that more than one mechanism may have been involved in promoting the female reproductive pathology.
Collapse
Affiliation(s)
| | - Amy E. Brix
- Experimental Pathology Laboratories (EPL), Inc., Research Triangle Park, North Carolina, USA
| | | | - Micheal P. Jokinen
- Pathology Associates, Inc., A Charles River Company, Durham, North Carolina, USA
| | - Michael Wyde
- National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Denis P. Orzech
- National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Grace E. Kissling
- Biostatistics Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Nigel J. Walker
- National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Abraham Nyska
- National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
- Toxicologic Pathologist, Haharuv, Timrat, Israel
| |
Collapse
|
8
|
Arukwe A, Nordbø B. Hepatic biotransformation responses in Atlantic salmon exposed to retinoic acids and 3,3',4,4'-tetrachlorobiphenyl (PCB congener 77). Comp Biochem Physiol C Toxicol Pharmacol 2008; 147:470-82. [PMID: 18373956 DOI: 10.1016/j.cbpc.2008.02.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2007] [Revised: 02/07/2008] [Accepted: 02/09/2008] [Indexed: 01/15/2023]
Abstract
Active derivatives of vitamin A are essential in physiological processes such as cell growth, differentiation, morphogenesis and development. The biological functions of vitamin A are mediated through the retinoid acid receptors (RARs) and retinoid X receptors (RXRs). Aryl hydrocarbon receptor (AhR) agonists such as planar halogenated compounds are known to interfere with vitamin A homeostasis in both field and laboratory studies. In this study, we have investigated the molecular interactions between vitamin A and AhR signalling pathways using juvenile Atlantic salmon and agonists for both receptor pathways. Groups of juvenile salmon were treated with all-trans- and 9-cis-retinoic acid mixture (7:3 ratio) dissolved in DMSO (dimethyl sulfoxide) at 0.1, 1 and 10 mg/kg fish weight. The mixture was force fed singly or in combination with 0.1 mg 3,3',4,4'-tetrachlorobiphenyl (co-planar congener 77)/kg fish weight dissolved in DMSO. Liver samples were collected 3 days after PCB-77 exposure. A separate group exposed to combined retinoic acid (1 mg/kg for 5 days) and PCB-77, was sampled at 3, 7 and 14 days after PCB-77 exposure. Liver samples collected from all exposure groups were analyzed for gene (RARalpha, AhR2alpha, AhR2beta, CYP1A1, UGT1 and GSTpi) expression using real-time PCR and activity (7-ethoxyresorufin O-deethylase (EROD), UGT and GST) using biochemical methods with specific substrates. Our data showed that exposure to RA alone did not produce a significant increase of RARalpha mRNA levels, and the presence of PCB-77 attenuated the expression of RARalpha in RA dose- and time-specific manner. In addition, RA produced a dose-dependent increase of CYP1A1 mRNA and activity (EROD) levels without concomitant increase in AhR2 isoforms. When administered alone, PCB-77 produced increased CYP1A1, UGT1 and GSTpi mRNA and enzyme levels. The PCB-77-induced CYP1A1, UGT1 and GSTpi (mRNA and activity) levels were modulated by RA, in a parameter and dose-specific manner. In general, our data show an interaction between vitamin A and AhR signalling that may affect retinoid homeostasis in fish.
Collapse
Affiliation(s)
- Augustine Arukwe
- Department of Biology, Norwegian University of Science and Technology (NTNU), Høyskoleringen 5, 7491 Trondheim, Norway.
| | | |
Collapse
|
9
|
Walker NJ, Yoshizawa K, Miller RA, Brix AE, Sells DM, Jokinen MP, Wyde ME, Easterling M, Nyska A. Pulmonary lesions in female Harlan Sprague-Dawley rats following two-year oral treatment with dioxin-like compounds. Toxicol Pathol 2007; 35:880-9. [PMID: 18098034 PMCID: PMC2633090 DOI: 10.1080/01926230701748396] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Dioxin and dioxin-related compounds have been associated with high incidences of pulmonary dysfunctions and/or cancers in humans. To evaluate the relative potencies of effects of these compounds, the National Toxicology Program completed a series of two-year bioassays which were conducted using female Harlan Sprague-Dawley rats. The rats were treated orally for up to 2 years with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), 3,3',4,4',5-pentachlorobiphenyl (PCB126), 2,3,4,7,8-pentachlorodibenzofuran (PeCDF), and a ternary mixture of TCDD, PCB126 and PeCDF. In addition to treatment-related effects reported in other organs, a variety of pulmonary lesions were observed that were related to exposure. Pulmonary CYP1A1-associated 7-ethoxyresorufin-O-deethylase (EROD) activity was increased in all dosed groups. The most common non-neoplastic lesions, which occurred in all studies, were bronchiolar metaplasia and squamous metaplasia of the alveolar epithelium. Cystic keratinizing epithelioma was the most commonly observed neoplasm which occurred in all studies. A low incidence of squamous cell carcinoma was associated only with PCB126 treatment. Potential mechanisms leading to altered differentiation and/or proliferation of bronchiolar and alveolar epithelia may be through CYP1A1 induction or disruption of retinoid metabolism.
Collapse
Affiliation(s)
- Nigel J Walker
- National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Li LA. Polychlorinated biphenyl exposure and CYP19 gene regulation in testicular and adrenocortical cell lines. Toxicol In Vitro 2007; 21:1087-94. [PMID: 17512696 DOI: 10.1016/j.tiv.2007.04.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2006] [Revised: 02/26/2007] [Accepted: 04/03/2007] [Indexed: 01/20/2023]
Abstract
Exposure to polychlorinated biphenyls (PCBs) disturbs many estrogen-mediated biochemical processes. PCBs may cause these abnormalities by altering expression of the aromatase gene CYP19. This study demonstrated that high concentrations of PCB126 increased basal CYP19 mRNA abundance in mouse testicular Leydig I-10 cells and human adrenocortical H295R cells. Stimulating the cells with chorionic gonadotropin or 8-Br-cAMP concealed the estrogenic effect of PCB126. PCB126 is a powerful ligand for nuclear receptor AhR. Antagonizing the AhR activity of H295R by an inhibitor abolished PCB126-elicited CYP19 induction. However, PCB126 elevated basal CYP19 expression and aromatase activity in a slow progressive manner contrary to the sharp induction of the classic AhR target gene CYP1A1. Exposure of H295R to PCBs with different AhR activation abilities also varied CYP19 and CYP1A1 expression in dissimilar patterns, although the CYP19 mRNA levels were in line with the AhR activation abilities of the congeners. In contrast to PCB126, PCB39, which could not activate AhR and lacked effect on CYP1A1, significantly reduced CYP19 mRNA expression. AhR apparently played an important role in CYP19 gene regulation, but it might regulate CYP19 differently from CYP1A1 in the adrenocortical cells. Regardless of the action mechanism, PCB exposure increases risk for CYP19 dysregulation.
Collapse
Affiliation(s)
- Lih-Ann Li
- Division of Environmental Health and Occupational Medicine, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan, ROC.
| |
Collapse
|
11
|
Murphy KA, Quadro L, White LA. The Intersection Between the Aryl Hydrocarbon Receptor (AhR)‐ and Retinoic Acid‐Signaling Pathways. VITAMIN A 2007; 75:33-67. [PMID: 17368311 DOI: 10.1016/s0083-6729(06)75002-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Data from a variety of animal and cell culture model systems have demonstrated an interaction between the aryl hydrocarbon receptor (AhR)- and retinoic acid (RA)-signaling pathways. The AhR(1) was originally identified as the receptor for the polycyclic aromatic hydrocarbon family of environmental contaminants; however, recent data indicate that the AhR binds to a variety of endogenous and exogenous compounds, including some synthetic retinoids. In addition, activation of the AhR pathway alters the function of nuclear hormone-signaling pathways, including the estrogen, thyroid, and RA pathways. Activation of the AhR pathway through exposure to environmental compounds results in significant changes in RA synthesis, catabolism, transport, and excretion. Some effects on retinoid homeostasis mediated by the AhR pathway may result from the interactions of these two pathways at the level of activating or repressing the expression of specific genes. This chapter will review these two pathways, the evidence demonstrating a link between them, and the data indicating the molecular basis of the interactions between these two pathways.
Collapse
Affiliation(s)
- Kyle A Murphy
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, USA
| | | | | |
Collapse
|
12
|
Van den Berg M, Birnbaum LS, Denison M, De Vito M, Farland W, Feeley M, Fiedler H, Hakansson H, Hanberg A, Haws L, Rose M, Safe S, Schrenk D, Tohyama C, Tritscher A, Tuomisto J, Tysklind M, Walker N, Peterson RE. The 2005 World Health Organization reevaluation of human and Mammalian toxic equivalency factors for dioxins and dioxin-like compounds. Toxicol Sci 2006; 93:223-41. [PMID: 16829543 PMCID: PMC2290740 DOI: 10.1093/toxsci/kfl055] [Citation(s) in RCA: 2489] [Impact Index Per Article: 131.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In June 2005, a World Health Organization (WHO)-International Programme on Chemical Safety expert meeting was held in Geneva during which the toxic equivalency factors (TEFs) for dioxin-like compounds, including some polychlorinated biphenyls (PCBs), were reevaluated. For this reevaluation process, the refined TEF database recently published by Haws et al. (2006, Toxicol. Sci. 89, 4-30) was used as a starting point. Decisions about a TEF value were made based on a combination of unweighted relative effect potency (REP) distributions from this database, expert judgment, and point estimates. Previous TEFs were assigned in increments of 0.01, 0.05, 0.1, etc., but for this reevaluation, it was decided to use half order of magnitude increments on a logarithmic scale of 0.03, 0.1, 0.3, etc. Changes were decided by the expert panel for 2,3,4,7,8-pentachlorodibenzofuran (PeCDF) (TEF = 0.3), 1,2,3,7,8-pentachlorodibenzofuran (PeCDF) (TEF = 0.03), octachlorodibenzo-p-dioxin and octachlorodibenzofuran (TEFs = 0.0003), 3,4,4',5-tetrachlorbiphenyl (PCB 81) (TEF = 0.0003), 3,3',4,4',5,5'-hexachlorobiphenyl (PCB 169) (TEF = 0.03), and a single TEF value (0.00003) for all relevant mono-ortho-substituted PCBs. Additivity, an important prerequisite of the TEF concept was again confirmed by results from recent in vivo mixture studies. Some experimental evidence shows that non-dioxin-like aryl hydrocarbon receptor agonists/antagonists are able to impact the overall toxic potency of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and related compounds, and this needs to be investigated further. Certain individual and groups of compounds were identified for possible future inclusion in the TEF concept, including 3,4,4'-TCB (PCB 37), polybrominated dibenzo-p-dioxins and dibenzofurans, mixed polyhalogenated dibenzo-p-dioxins and dibenzofurans, polyhalogenated naphthalenes, and polybrominated biphenyls. Concern was expressed about direct application of the TEF/total toxic equivalency (TEQ) approach to abiotic matrices, such as soil, sediment, etc., for direct application in human risk assessment. This is problematic as the present TEF scheme and TEQ methodology are primarily intended for estimating exposure and risks via oral ingestion (e.g., by dietary intake). A number of future approaches to determine alternative or additional TEFs were also identified. These included the use of a probabilistic methodology to determine TEFs that better describe the associated levels of uncertainty and "systemic" TEFs for blood and adipose tissue and TEQ for body burden.
Collapse
Affiliation(s)
- Martin Van den Berg
- World Health Organization Collaborating Centre for Research on Environmental Health Risk Assessment and Institute for Risk Assessment Sciences, Science and University Medical Center, Universiteit Utrecht, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Martin PA, Mayne GJ, Bursian S, Palace V, Kannan K. Changes in thyroid and vitamin A status in mink fed polyhalogenated-aromatic-hydrocarbon-contaminated carp from the Saginaw River, Michigan, USA. ENVIRONMENTAL RESEARCH 2006; 101:53-67. [PMID: 16499904 DOI: 10.1016/j.envres.2005.06.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2004] [Revised: 06/02/2005] [Accepted: 06/22/2005] [Indexed: 05/06/2023]
Abstract
A study was conducted to determine whether changes in thyroid and vitamin A dynamics were induced in ranch mink exposed to environmentally relevant concentrations of polyhalogenated aromatic hydrocarbons. Adult female mink were fed diets that contained 0% (control), 10%, 20%, or 30% wild carp (Cyprinus carpio) collected from the Saginaw River, Michigan, USA. Total polychlorinated biphenyls concentrations were 0.03, 0.83, 1.05, and 1.69 mg/kg feed, respectively; the 2,3,7,8-tetrachlorodibenzo-p-diozin toxic equivalents were 3.4, 27.9, 47.6, and 73.2 ng/kg, respectively. Diets were fed 3 weeks prior to breeding and throughout gestation and lactation. When the kits were weaned at 6 weeks of age, they were continued on their respective diets until 27 weeks of age. Plasma thyroid hormone concentrations, thyroid gland activity and structure, and vitamin A dynamics were assessed in young mink at 6 and 27 weeks of age. Plasma total T4 and free T4 in 6-week-old female and male kits fed the 10% carp diet were significantly higher than those of controls, while kits fed the 20% and 30% carp diet had nonsignificant decreases relative to the control mink. Plasma total T3 concentrations in 27-week-old juvenile males fed the 30% carp diet were significantly lower than those in individuals fed the 10% carp diet. No overt thyroid toxicity was apparent as thyroid weight, activity, and structure in kits and juveniles of both sexes were similar among diet groups. Plasma retinol and total ester concentrations in both kits and juveniles were reduced in mink fed the 30% carp diet relative to controls. The ratio of retinol to retinyl palmitate in livers of juveniles fed the 30% carp diet was two times higher than that in control mink. Significant reductions in kidney retinol and fatty acyl retinyl esters were observed in kits and juveniles fed the 30% carp diet relative to control values.
Collapse
Affiliation(s)
- Pamela A Martin
- Canadian Wildlife Service, Environment Canada, Box 5050, Lakeshore Road, Burlington, Ont., Canada L7R 4A6.
| | | | | | | | | |
Collapse
|
14
|
Abstract
This review summarizes the available data on the effects of dioxins on retinoid levels, retinoid-related enzyme activities, and toxicological endpoints that have been correlated to retinoid effects. Similarities between dioxin toxicity and retinoid deficiency as well as retinoid excess are pointed out. Several possible levels of interaction between the dioxin and the retinoid signaling pathways are discussed, including the involvement of the Ah receptor, altered retinoic acid homeostasis, and an altered set point for retinoid storage. A hypothesis for the effect of dioxins on retinoids is suggested. In this hypothesis, comprising two cascades of effects on the molecular level, the effect of dioxins on retinoic acid levels is central.
Collapse
Affiliation(s)
- Charlotte B Nilsson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
15
|
Miller MG, Kapron CM, Metcalfe CD, Lee LE. Down-regulation of fibronectin in rainbow trout gonadal cells exposed to retinoic acid. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2000; 48:119-125. [PMID: 10686319 DOI: 10.1016/s0166-445x(99)00052-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Exposure of fish to some environmental contaminants results in alterations to the levels of retinoid (Vitamin A) stores, which could result in an increase in cellular concentrations of biologically active metabolites such as retinoic acid (RA). However, a link has not been established between changes in retinoid metabolism and impacts on the health of biota. In vitro studies with mammalian cells have demonstrated a relationship between exposure to RA and expression of the extracellular matrix protein, fibronectin (FN); a protein critical for cell migration, adhesion, and transformation. In this study, in vitro exposures of rainbow trout gonadal cells (RTG-2) to RA reduced levels of FN in culture medium; as measured using SDS-PAGE and immunoblot analysis with antisera prepared against RTG-2 cellular fibronectin. This apparent down-regulation of FN secretion occurred in a dose-dependent manner over a range of RA concentrations (10(-10)-10(-6) M). FN down-regulation was not accompanied by changes in the morphology of RTG-2. Future studies should be directed at determining the relationships between retinoid metabolism and FN expression and the potential effects of contaminant-induced changes to vitamin A metabolism on the health of fish.
Collapse
Affiliation(s)
- MG Miller
- Department of Biology, Trent University, Peterborough, Canada
| | | | | | | |
Collapse
|
16
|
Riebniger D, Schrenk D. Nonresponsiveness to 2,3,7,8-tetrachlorodibenzo-p-dioxin of transforming growth factor beta1 and CYP 1A1 gene expression in rat liver fat-storing cells. Toxicol Appl Pharmacol 1998; 152:251-60. [PMID: 9772220 DOI: 10.1006/taap.1998.8460] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Exposure to the potent tumor promoter 2,3,7, 8-tetrachlorodibenzo-p-dioxin (TCDD) or related agonists of the aryl hydrocarbon receptor (AhR) can result in hepatocarcinogenesis in rodents. Changes in the expression and/or the level of growth factors may be a critical event in TCDD-mediated hepatocarcinogenesis. In this study, the influence of TCDD, the most potent AhR agonist, on the expression of transforming growth factor beta1 (TGF beta1), an inhibitor of hepatocellular proliferation synthesized in fat-storing cells (FSC) of the liver, was investigated in Wistar rats of both sexes in vitro and ex vivo. FSC were isolated from rat liver, cultured, and treated with 10(-10) and 10(-8) M TCDD, respectively, and TGF beta1 gene expression was determined at the levels of mRNA and protein. Furthermore, adult rats were treated with TCDD (10 micrograms/kg body wt, given by a single ip injection), FSC were isolated, and TGF beta1 gene expression was analyzed at different time points. Exposure to TCDD had no effect on the expression of TGF beta1 either at the RNA or at the protein level. Surprisingly, expression of CYP1A1, an AhR-regulated gene, was also not detectable either in untreated FSC or after TCDD treatment in vitro or ex vivo. Western blot analysis revealed that the lack of TCDD responsiveness of CYP1A1 is due to the absence of detectable amounts of the AhR in FSC. Based on these results we conclude that FCS may be the only liver cell type that lacks AhR-dependent inducibility of drug metabolism.
Collapse
Affiliation(s)
- D Riebniger
- Institut of Toxicology, University of Tübingen, Wilhelmstasse 56, Tübingen, D-72074, Germany
| | | |
Collapse
|