1
|
Ranaivoson FM, Crozet V, Benoit MPMH, Abdalla Mohammed Khalid A, Kikuti C, Sirkia H, El Marjou A, Miserey-Lenkei S, Asenjo AB, Sosa H, Schmidt CF, Rosenfeld SS, Houdusse A. Nucleotide-free structures of KIF20A illuminate atypical mechanochemistry in this kinesin-6. Open Biol 2023; 13:230122. [PMID: 37726093 PMCID: PMC10508983 DOI: 10.1098/rsob.230122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/18/2023] [Indexed: 09/21/2023] Open
Abstract
KIF20A is a critical kinesin for cell division and a promising anti-cancer drug target. The mechanisms underlying its cellular roles remain elusive. Interestingly, unusual coupling between the nucleotide- and microtubule-binding sites of this kinesin-6 has been reported, but little is known about how its divergent sequence leads to atypical motility properties. We present here the first high-resolution structure of its motor domain that delineates the highly unusual structural features of this motor, including a long L6 insertion that integrates into the core of the motor domain and that drastically affects allostery and ATPase activity. Together with the high-resolution cryo-electron microscopy microtubule-bound KIF20A structure that reveals the microtubule-binding interface, we dissect the peculiarities of the KIF20A sequence that influence its mechanochemistry, leading to low motility compared to other kinesins. Structural and functional insights from the KIF20A pre-power stroke conformation highlight the role of extended insertions in shaping the motor's mechanochemical cycle. Essential for force production and processivity is the length of the neck linker in kinesins. We highlight here the role of the sequence preceding the neck linker in controlling its backward docking and show that a neck linker four times longer than that in kinesin-1 is required for the activity of this motor.
Collapse
Affiliation(s)
- Fanomezana Moutse Ranaivoson
- Structural Motility, CNRS UMR144, Institut Curie, Université Paris Sciences et Lettres, Sorbonne Université, 75248 Paris, France
| | - Vincent Crozet
- Structural Motility, CNRS UMR144, Institut Curie, Université Paris Sciences et Lettres, Sorbonne Université, 75248 Paris, France
| | | | | | - Carlos Kikuti
- Structural Motility, CNRS UMR144, Institut Curie, Université Paris Sciences et Lettres, Sorbonne Université, 75248 Paris, France
| | - Helena Sirkia
- Structural Motility, CNRS UMR144, Institut Curie, Université Paris Sciences et Lettres, Sorbonne Université, 75248 Paris, France
| | - Ahmed El Marjou
- Structural Motility, CNRS UMR144, Institut Curie, Université Paris Sciences et Lettres, Sorbonne Université, 75248 Paris, France
| | - Stéphanie Miserey-Lenkei
- Structural Motility, CNRS UMR144, Institut Curie, Université Paris Sciences et Lettres, Sorbonne Université, 75248 Paris, France
| | - Ana B. Asenjo
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Hernando Sosa
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Christoph F. Schmidt
- Third Institute of Physics-Biophysics, Georg August University Göttingen, 37077 Göttingen, Germany
- Department of Physics and Soft Matter Center, Duke University, Durham, NC 27708, USA
| | | | - Anne Houdusse
- Structural Motility, CNRS UMR144, Institut Curie, Université Paris Sciences et Lettres, Sorbonne Université, 75248 Paris, France
| |
Collapse
|
2
|
Kikuchi K, Sakamoto Y, Uezu A, Yamamoto H, Ishiguro KI, Shimamura K, Saito T, Hisanaga SI, Nakanishi H. Map7D2 and Map7D1 facilitate microtubule stabilization through distinct mechanisms in neuronal cells. Life Sci Alliance 2022; 5:5/8/e202201390. [PMID: 35470240 PMCID: PMC9039348 DOI: 10.26508/lsa.202201390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/01/2022] [Accepted: 04/01/2022] [Indexed: 12/05/2022] Open
Abstract
The microtubule-associated proteins Map7D2 and Map7D1, which belong to the MAP7 family, stabilize microtubules through distinct mechanisms for the control of cell motility and neurite outgrowth. Microtubule (MT) dynamics are modulated through the coordinated action of various MT-associated proteins (MAPs). However, the regulatory mechanisms underlying MT dynamics remain unclear. We show that the MAP7 family protein Map7D2 stabilizes MTs to control cell motility and neurite outgrowth. Map7D2 directly bound to MTs through its N-terminal half and stabilized MTs in vitro. Map7D2 localized prominently to the centrosome and partially on MTs in mouse N1-E115 neuronal cells, which expresses two of the four MAP7 family members, Map7D2 and Map7D1. Map7D2 loss decreased the resistance to the MT-destabilizing agent nocodazole without affecting acetylated/detyrosinated stable MTs, suggesting that Map7D2 stabilizes MTs via direct binding. In addition, Map7D2 loss increased the rate of random cell migration and neurite outgrowth, presumably by disturbing the balance between MT stabilization and destabilization. Map7D1 exhibited similar subcellular localization and gene knockdown phenotypes to Map7D2. However, in contrast to Map7D2, Map7D1 was required for the maintenance of acetylated stable MTs. Taken together, our data suggest that Map7D2 and Map7D1 facilitate MT stabilization through distinct mechanisms in cell motility and neurite outgrowth.
Collapse
Affiliation(s)
- Koji Kikuchi
- Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yasuhisa Sakamoto
- Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Akiyoshi Uezu
- Department of Cell Biology, Duke University Medical School, Durham, NC, USA
| | - Hideyuki Yamamoto
- Department of Biochemistry, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Kei-Ichiro Ishiguro
- Department of Chromosome Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Kenji Shimamura
- Department of Brain Morphogenesis, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Taro Saito
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Japan
| | - Shin-Ichi Hisanaga
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Japan
| | - Hiroyuki Nakanishi
- Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
3
|
Ganser C, Uchihashi T. Microtubule Preparation for Investigation with High-Speed Atomic Force Microscopy. Methods Mol Biol 2022; 2430:337-347. [PMID: 35476343 DOI: 10.1007/978-1-0716-1983-4_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
High-speed atomic force microscopy (AFM) is a versatile method that can visualize proteins and protein systems on the nanometer scale and at a temporal resolution of 100 ms. The application to microtubules can not only reveal structural information with single-tubulin resolution but can also extract mechanical information and allows to study single motor proteins walking on microtubules, among others. This chapter provides a step-by-step guide from microtubule polymerization to successful observation with high-speed AFM.
Collapse
Affiliation(s)
- Christian Ganser
- Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Aichi, Japan.
| | | |
Collapse
|
4
|
Zhou H, Kaneko T, Isozaki N, Yokokawa R. Design of Mechanical and Electrical Properties for Multidirectional Control of Microtubules. Methods Mol Biol 2022; 2430:105-119. [PMID: 35476328 DOI: 10.1007/978-1-0716-1983-4_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Microtubule (MT)-motor systems show promise as nanoscale actuator platforms for performing molecular manipulations in nanobiotechnology and micro total analysis systems. These systems have been demonstrated to exert a variety of functions, including the concentration, transportation, and detection of molecular cargos. Although gliding direction control of MTs is necessary for these applications, most direction control methods are currently conducted using micro/nanofabricated guiding structures and/or flow, magnetic, and electric field forces. These control methods force all MTs to exhibit identical gliding behaviors and destinations. In this chapter, we describe an active multidirectional control method for MT without guiding tracks. The bottom-up molecular design allowed MTs to be guided in designated directions under an electric field in a microfluidic device. By designing the stiffness and surface charge density of MTs, three types of MT (Stiff-MT, Soft-MT, and Charged soft-MT) with different mechanical and electrical properties are prepared. The gliding directions within an electric field are predicted according to the measured stiffness and electrophoretic mobility. Finally, the Stiff-MTs are separated from Soft-MTs and Charged soft-MTs with a microfluidic sorter.
Collapse
Affiliation(s)
- Hang Zhou
- Department of Micro Engineering, Kyoto University, Kyoto, Japan
| | | | - Naoto Isozaki
- Department of Micro Engineering, Kyoto University, Kyoto, Japan
| | - Ryuji Yokokawa
- Department of Micro Engineering, Kyoto University, Kyoto, Japan.
| |
Collapse
|
5
|
Patinote C, Deleuze-Masquéfa C, Kaddour KH, Vincent LA, Larive R, Zghaib Z, Guichou JF, Assaf MD, Cuq P, Bonnet PA. Imidazo[1,2-a]quinoxalines for melanoma treatment with original mechanism of action. Eur J Med Chem 2020; 212:113031. [PMID: 33309473 DOI: 10.1016/j.ejmech.2020.113031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/05/2020] [Accepted: 11/14/2020] [Indexed: 10/22/2022]
Abstract
The malignant transformation of melanocytes causes several thousand deaths each year, making melanoma an important public health concern. Melanoma is the most aggressive skin cancer, which incidence has regularly increased over the past decades. We described here the preparation of new compounds based on the 1-(3,4-dihydroxyphenyl)imidazo[1,2-a]quinoxaline structure. Different positions of the quinoxaline moiety were screened to introduce novel substituents in order to study their influence on the biological activity. Several alkylamino or alkyloxy groups were also considered to replace the methylamine of our first generation of Imiqualines. Imidazo[1,2-a]pyrazine derivatives were also designed as potential minimal structure. The investigation on A375 melanoma cells displayed interesting in vitro low nanomolar cytotoxic activity. Among them, 9d (EAPB02303) is particularly remarkable since it is 20 times more potent than vemurafenib, the reference clinical therapy used on BRAF mutant melanoma. Contrary to the first generation, EAPB02303 does not inhibit tubulin polymerization, as confirmed by an in vitro assay and a molecular modelisation study. The mechanism of action for EAPB02303 highlighted by a transcriptomic analysis is clearly different from a panel of 12 well-known anticancer drugs. In vivoEAPB02303 treatment reduced tumor size and weight of the A375 human melanoma xenografts in a dose-dependent manner, correlated with a low mitotic index but not with necrosis.
Collapse
Affiliation(s)
- Cindy Patinote
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, Faculté de Pharmacie, 15 avenue Charles Flahault, BP 14491, 34093, Montpellier Cedex 5, France; Société d'Accélération du Transfert de Technologies (SATT AxLR), CSU, 950 rue Saint Priest, 34090, Montpellier, France
| | - Carine Deleuze-Masquéfa
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, Faculté de Pharmacie, 15 avenue Charles Flahault, BP 14491, 34093, Montpellier Cedex 5, France.
| | - Kamel Hadj Kaddour
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, Faculté de Pharmacie, 15 avenue Charles Flahault, BP 14491, 34093, Montpellier Cedex 5, France
| | - Laure-Anaïs Vincent
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, Faculté de Pharmacie, 15 avenue Charles Flahault, BP 14491, 34093, Montpellier Cedex 5, France
| | - Romain Larive
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, Faculté de Pharmacie, 15 avenue Charles Flahault, BP 14491, 34093, Montpellier Cedex 5, France
| | - Zahraa Zghaib
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, Faculté de Pharmacie, 15 avenue Charles Flahault, BP 14491, 34093, Montpellier Cedex 5, France; Tumorigenèse et Pharmacologie Antitumorale, Lebanese University, EDST, BP 90656, Fanar Jdeideh, Lebanon
| | - Jean-François Guichou
- CNRS, UMR 5048, INSERM, U105, Université de Montpellier, Centre de Biochimie Structurale, 34090, Montpellier, France
| | - Mona Diab Assaf
- Tumorigenèse et Pharmacologie Antitumorale, Lebanese University, EDST, BP 90656, Fanar Jdeideh, Lebanon
| | - Pierre Cuq
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, Faculté de Pharmacie, 15 avenue Charles Flahault, BP 14491, 34093, Montpellier Cedex 5, France
| | - Pierre-Antoine Bonnet
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, Faculté de Pharmacie, 15 avenue Charles Flahault, BP 14491, 34093, Montpellier Cedex 5, France
| |
Collapse
|
6
|
Olson MT, Yergey AL, Mukherjee K, Pergande MR, Bane SL, Cologna SM, Sackett DL. Taurine Is Covalently Incorporated into Alpha-Tubulin. J Proteome Res 2020; 19:3184-3190. [PMID: 32400163 DOI: 10.1021/acs.jproteome.0c00147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Taurine is the most abundant free amino acid in the human body. It is found in relatively high concentrations (1-10 mM) in many animal tissues but not in plants. It has been studied since the early 1800s but has not been found to be covalently incorporated into proteins in any animal tissue. Taurine has been found in only one macromolecular complex as a post-transcriptional modification to mitochondrial tRNA. Tubulin is the subunit of microtubules found in all eukaryotic species and almost all eukaryotic cells and subject to numerous post-translational modifications (PTMs). An important PTM on α-tubulin is the removal and re-ligation of the final carboxyl residue, tyrosine. We here demonstrate that taurine can be covalently incorporated at the C-terminal end of alpha-tubulin in avian erythrocytes in a reaction that requires the de-tyrosination PTM and prevents the re-tyrosination PTM. Further, this is, to our knowledge, the first instance of taurine incorporation into a large protein.
Collapse
Affiliation(s)
- Matthew T Olson
- Biomedical Mass Spectrometry Facility, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-0001, United States
| | - Alfred L Yergey
- Biomedical Mass Spectrometry Facility, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-0001, United States
| | - Kamalika Mukherjee
- Department of Chemistry, Binghamton University, State University of New York, Binghamton, New York 13902, United States
| | - Melissa R Pergande
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Susan L Bane
- Department of Chemistry, Binghamton University, State University of New York, Binghamton, New York 13902, United States
| | - Stephanie M Cologna
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Dan L Sackett
- Division of Basic and Translational Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
7
|
Rajaei S, Karima S, Sepasi Tehrani H, Shateri S, Mahmoodi Baram S, Mahdavi M, Mokhtari F, Alimohammadi A, Tafakhori A, Amiri A, Aghamollaii V, Fatemi H, Rajabibazl M, Kobarfard F, Gorji A. Conformational change and GTPase activity of human tubulin: A comparative study on Alzheimer's disease and healthy brain. J Neurochem 2020; 155:207-224. [PMID: 32196663 DOI: 10.1111/jnc.15009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 03/13/2020] [Accepted: 03/14/2020] [Indexed: 11/26/2022]
Abstract
In Alzheimer's disease (AD), the most common form of dementia, microtubules (MTs) play a pivotal role through their highly dynamic structure and instability. They mediate axonal transport that is crucial to synaptic viability. MT assembly, dynamic instability and stabilization are modulated by tau proteins, whose detachment initiates MT disintegration. Albeit extensive research, the role of GTPase activity in molecular mechanism of stability remains controversial. We hypothesized that GTPase activity is altered in AD leading to microtubule dynamic dysfunction and ultimately to neuronal death. In this paper, fresh tubulin was purified by chromatography from normal young adult, normal aged, and Alzheimer's brain tissues. Polymerization pattern, assembly kinetics and dynamics, critical concentration, GTPase activity, interaction with tau, intermolecular geometry, and conformational changes were explored via Förster Resonance Energy Transfer (FRET) and various spectroscopy methods. Results showed slower MT assembly process in samples from the brains of people with AD compared with normal young and aged brains. This observation was characterized by prolonged lag phase and increased critical and inactive concentration of tubulin. In addition, the GTPase activity in samples from AD brains was significantly higher than in both normal young and normal aged samples, concurrent with profound conformational changes and contracted intermolecular MT-tau distances as revealed by FRET. These alterations were partially restored in the presence of a microtubule stabilizer, paclitaxel. We proposed that alterations of both tubulin function and GTPase activity may be involved in the molecular neuropathogenesis of AD, thus providing new avenues for therapeutic approaches.
Collapse
Affiliation(s)
- Shima Rajaei
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| | - Saeed Karima
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| | | | - Somayeh Shateri
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| | - Somayeh Mahmoodi Baram
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran.,HealthWeX Clinical Research Co., Ltd., Toronto, ON, Canada
| | - Meisam Mahdavi
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| | - Farzad Mokhtari
- HealthWeX Clinical Research Co., Ltd., Toronto, ON, Canada.,Department of Biochemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Alimohammad Alimohammadi
- Research Center of Tehran Forensic Medicine Organization, Forensic Medicine, Legal Medicine Organization Research Center, Tehran, Iran
| | - Abbas Tafakhori
- Iranian Center of Neurological research, Tehran University of Medical Sciences, Tehran, Iran
| | - Abolfazl Amiri
- Research Center of Tehran Forensic Medicine Organization, Forensic Medicine, Legal Medicine Organization Research Center, Tehran, Iran
| | - Vajiheh Aghamollaii
- Neurology Department, Roozbeh Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Fatemi
- HealthWeX Clinical Research Co., Ltd., Toronto, ON, Canada
| | - Masoumeh Rajabibazl
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| | - Farzad Kobarfard
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| | - Ali Gorji
- Department of Neurology and Department of Neurosurgery, Westfälische Wilhelms-Universität Münster, Münster, Germany
| |
Collapse
|
8
|
Pejman S, Riazi G, Pooyan S, Lanjanian H. Peptide LIQ Promotes Cell Protection against Zinc-Induced Cytotoxicity through Microtubule Stabilization. ACS Chem Neurosci 2020; 11:515-534. [PMID: 31972082 DOI: 10.1021/acschemneuro.9b00552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Stability of the microtubule protein (MTP) network required for its physiological functions is disrupted in the course of neurodegenerative disorders. Thus, the design of novel therapeutic approaches for microtubule stabilization is a focus of intensive study. Dynamin-related protein-1 (Drp1) is a guanosine triphosphatase (GTPase), which plays a prevailing role in mitochondrial fission. Several isoforms of Drp1 have been identified, of which one of these isoforms (Drp1-x01) has been previously described with MTP stabilizing activity. Here, we synthesized peptide LIQ, an 11-amino-acid peptide derived from the Drp1-x01 isoform, and reported that LIQ could induce tubulin assembly in vitro. Using a Stern-Volmer plot and continuous variation method, we proposed one binding site on tubulin for this peptide. Interestingly, FRET experiment and docking studies showed that LIQ binds the taxol-binding site on β-tubulin. Furthermore, circular dichroism (CD) spectroscopy and 8-anilino-1-naphthalenesulfonic acid (ANS) assay provided data on tubulin structural changes upon LIQ binding that result in formation of more stable tubulin dimers. Flow cytometry analysis and fluorescence microscopy displayed that cellular internalization of 5-FAM-labeled LIQ is attributed to a mechanism that mostly involves endocytosis. In addition, LIQ promoted polymerization of tubulin and stabilized MTP in primary astroglia cells and also protected these cells against zinc toxicity. This excellent feature of cellular neuroprotection by LIQ provides a promising therapeutic approach for neurodegenerative diseases.
Collapse
Affiliation(s)
- Sina Pejman
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Gholamhossein Riazi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Shahriar Pooyan
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
- Rooyan Darou Pharmaceutical Company, Tehran, Iran
| | - Hossein Lanjanian
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| |
Collapse
|
9
|
Ansari M, Shokrzadeh M, Karima S, Rajaei S, Fallah M, Ghassemi-Barghi N, Ghasemian M, Emami S. New thiazole-2(3H)-thiones containing 4-(3,4,5-trimethoxyphenyl) moiety as anticancer agents. Eur J Med Chem 2020; 185:111784. [DOI: 10.1016/j.ejmech.2019.111784] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 10/10/2019] [Accepted: 10/10/2019] [Indexed: 02/06/2023]
|
10
|
Kaneko T, Furuta K, Oiwa K, Shintaku H, Kotera H, Yokokawa R. Different motilities of microtubules driven by kinesin-1 and kinesin-14 motors patterned on nanopillars. SCIENCE ADVANCES 2020; 6:eaax7413. [PMID: 32010782 PMCID: PMC6976292 DOI: 10.1126/sciadv.aax7413] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 11/20/2019] [Indexed: 06/10/2023]
Abstract
Kinesin is a motor protein that plays important roles in a variety of cellular functions. In vivo, multiple kinesin molecules are bound to cargo and work as a team to produce larger forces or higher speeds than a single kinesin. However, the coordination of kinesins remains poorly understood because of the experimental difficulty in controlling the number and arrangement of kinesins, which are considered to affect their coordination. Here, we report that both the number and spacing significantly influence the velocity of microtubules driven by nonprocessive kinesin-14 (Ncd), whereas neither the number nor the spacing changes the velocity in the case of highly processive kinesin-1. This result was realized by the optimum nanopatterning method of kinesins that enables immobilization of a single kinesin on a nanopillar. Our proposed method enables us to study the individual effects of the number and spacing of motors on the collective dynamics of multiple motors.
Collapse
Affiliation(s)
- Taikopaul Kaneko
- Department of Micro Engineering, Kyoto University, Kyoto Daigaku-Katsura, Nishikyo-ku, Kyoto 615-8540, Japan
| | - Ken’ya Furuta
- Advanced ICT Research Institute, National Institute of Information and Communications Technology, 588-2, Iwaoka, Nishi-ku, Kobe, Hyogo 651-2492, Japan
| | - Kazuhiro Oiwa
- Advanced ICT Research Institute, National Institute of Information and Communications Technology, 588-2, Iwaoka, Nishi-ku, Kobe, Hyogo 651-2492, Japan
| | - Hirofumi Shintaku
- Department of Micro Engineering, Kyoto University, Kyoto Daigaku-Katsura, Nishikyo-ku, Kyoto 615-8540, Japan
- Cluster for Pioneering Research, RIKEN, 2-1, Hirosawa, Wako, Saitama 351-0198, Japan
| | - Hidetoshi Kotera
- Department of Micro Engineering, Kyoto University, Kyoto Daigaku-Katsura, Nishikyo-ku, Kyoto 615-8540, Japan
- RIKEN, 2-1, Hirosawa, Wako, Saitama 351-0198, Japan
| | - Ryuji Yokokawa
- Department of Micro Engineering, Kyoto University, Kyoto Daigaku-Katsura, Nishikyo-ku, Kyoto 615-8540, Japan
| |
Collapse
|
11
|
Purification of Mammalian Tubulins and Tubulin-Associated Proteins Using a P2A-Based Expression System. Methods Mol Biol 2020; 2101:1-17. [PMID: 31879894 DOI: 10.1007/978-1-0716-0219-5_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The microtubule cytoskeleton plays a crucial role in a myriad of cellular events, including mitosis, cell differentiation, migration, and the maintenance of cell shape. Microtubules are assembled from α- and β-tubulin heterodimers, whose biosynthesis is a complex process requiring the balanced production of α- and β-tubulin subunits. This chapter focuses on a method for the combined expression of tagged α- and β-tubulin dimers, their purification, and the isolation of co-purifying tubulin-associated proteins (TAPs) in mammalian cells. This approach is currently used in our laboratory to study tubulin function and to identify and characterize TAPs.
Collapse
|
12
|
Farhana TI, Nakagawa T, Ohara S, Shintaku H, Kotera H, Yokokawa R. Spatial Patterning of Kinesin-1 and Dynein Motor Proteins in an In Vitro Assay using Aqueous Two-Phase Systems (ATPS). LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:13003-13010. [PMID: 31510745 DOI: 10.1021/acs.langmuir.9b01411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Cooperativity of motor proteins is essential for intracellular transport. Although their motion is unidirectional, they often cause bidirectional movement by different types of motors as seen in organelles. However, in vitro assessments of such cellular functions are still inadequate owing to the experimental limitations in precisely patterning multiple motors. Here, we present an approach to immobilize two motor proteins, kinesin-1 and dynein, using the aqueous two-phase system (ATPS) made of poly(ethylene glycol) and dextran polymers. The negligible influence of polymer solutions on the attachment and velocity of motor proteins ensures the compatibility of using ATPS as the patterning technique. The selective fixation of kinesin and dynein was assessed using polarity-marked microtubules (PMMTs). Our experimental results show that on a patterned kinesin surface, 72% of PMMTs display minus-end leading motility, while on a dynein surface, 79% of PMMTs display plus-end leading motility. This work offers a universal and biocompatible method to pattern motor proteins of different classes at the nanoscale, providing a new route to study different cellular functions performed by molecular motors such as the formation of mitotic spindles.
Collapse
Affiliation(s)
- Tamanna Ishrat Farhana
- Department of Micro Engineering , Kyoto University , Kyoto Daigaku-Katsura , Nishikyo-ku, Kyoto 615-8540 , Japan
| | - Tomohiro Nakagawa
- Department of Micro Engineering , Kyoto University , Kyoto Daigaku-Katsura , Nishikyo-ku, Kyoto 615-8540 , Japan
| | - Shumpei Ohara
- Department of Micro Engineering , Kyoto University , Kyoto Daigaku-Katsura , Nishikyo-ku, Kyoto 615-8540 , Japan
| | - Hirofumi Shintaku
- Cluster for Pioneering Research, RIKEN , 2-1, Hirosawa , Wako , Saitama 351-0198 , Japan
| | | | - Ryuji Yokokawa
- Department of Micro Engineering , Kyoto University , Kyoto Daigaku-Katsura , Nishikyo-ku, Kyoto 615-8540 , Japan
| |
Collapse
|
13
|
Ansari M, Shokrzadeh M, Karima S, Rajaei S, Hashemi SM, Mirzaei H, Fallah M, Emami S. Design, synthesis and biological evaluation of flexible and rigid analogs of 4H-1,2,4-triazoles bearing 3,4,5-trimethoxyphenyl moiety as new antiproliferative agents. Bioorg Chem 2019; 93:103300. [PMID: 31586708 DOI: 10.1016/j.bioorg.2019.103300] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/15/2019] [Accepted: 09/16/2019] [Indexed: 02/06/2023]
Abstract
Several flexible and rigid analogs of 4H-1,2,4-triazoles (compounds 8a-g and 9a-g) bearing trimethoxyphenyl pharmacophoric unit, were designed and synthesized as potential anticancer agents. The in vitro cytotoxic assay indicated that both flexible and rigid analogs (8 and 9, respectively) can potentially inhibit the growth of cancerous cells (A549, MCF7, and SKOV3), with IC50 values less than 5.0 µM. Furthermore, compounds 10a-l as regional isomers of compounds 9 exhibited remarkable cytotoxic activity with IC50 values ranging from 0.30 to 5.0 µM. The rigid analogs 9a, 10h and 10k were significantly more potent than etoposide against MCF7, SKOV3 and A549 cells, respectively. These compounds showed high selectivity towards cancer cells over normal cells, as they had no significant cytotoxicity against L929 cells. In addition, the representative compounds 9a and 10h could inhibit the tubulin polymerization at micro-molar levels. By determining changes in the colchicine-tubulin fluorescence, it was suggested that compound 10h could bind to the tubulin at the colchicine pocket. The molecular docking study further confirmed the inhibitory activity of promising compounds 9a, 10h and 10k on tubulin polymerization through binding to the colchicine-binding site.
Collapse
Affiliation(s)
- Mahsa Ansari
- Pharmaceutical Sciences Research Center, Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Shokrzadeh
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Saeed Karima
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| | - Shima Rajaei
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| | - Seyedeh Mahdieh Hashemi
- Department of Medicinal Chemistry and Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hassan Mirzaei
- Pharmaceutical Sciences Research Center, Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Marjan Fallah
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Saeed Emami
- Department of Medicinal Chemistry and Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
14
|
Kaneko T, Ando S, Furuta K, Oiwa K, Shintaku H, Kotera H, Yokokawa R. Transport of microtubules according to the number and spacing of kinesin motors on gold nano-pillars. NANOSCALE 2019; 11:9879-9887. [PMID: 30888373 DOI: 10.1039/c9nr01324e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Motor proteins function in in vivo ensembles to achieve cargo transport, flagellum motion, and mitotic cell division. Although the cooperativity of multiple motors is indispensable for physiological function, reconstituting the arrangement of motors in vitro is challenging, so detailed analysis of the functions of motor ensembles has not yet been achieved. Here, we developed an assay platform to study the motility of microtubules driven by a defined number of kinesin motors spaced in a definite manner. Gold (Au) nano-pillar arrays were fabricated on a silicon/silicon dioxide (Si/SiO2) substrate with spacings of 100 nm to 500 nm. The thiol-polyethylene glycol (PEG)-biotin self-assembled monolayer (SAM) and silane-PEG-CH3 SAM were then selectively formed on the pillars and SiO2 surface, respectively. This allowed for both immobilization of kinesin molecules on Au nano-pillars in a precise manner and repulsion of kinesins from the SiO2 surface. Using arrayed kinesin motors, we report that motor number and spacing do not influence the motility of microtubules driven by kinesin-1 motors. This assay platform is applicable to all kinds of biotinylated motors, allows the study of the effects of motor number and spacing, and is expected to reveal novel behaviors of motor proteins.
Collapse
Affiliation(s)
- Taikopaul Kaneko
- Department of Micro Engineering, Kyoto University, Kyoto Daigaku-Katsura, Nishikyo-ku, Kyoto 615-8540, Japan.
| | - Suguru Ando
- Department of Micro Engineering, Kyoto University, Kyoto Daigaku-Katsura, Nishikyo-ku, Kyoto 615-8540, Japan.
| | - Ken'ya Furuta
- Advanced ICT Research Institute, National Institute of Information and Communications Technology, 588-2, Iwaoka, Nishi-ku, Kobe, Hyogo, 651-2492, Japan
| | - Kazuhiro Oiwa
- Advanced ICT Research Institute, National Institute of Information and Communications Technology, 588-2, Iwaoka, Nishi-ku, Kobe, Hyogo, 651-2492, Japan
| | - Hirofumi Shintaku
- Department of Micro Engineering, Kyoto University, Kyoto Daigaku-Katsura, Nishikyo-ku, Kyoto 615-8540, Japan.
| | - Hidetoshi Kotera
- Department of Micro Engineering, Kyoto University, Kyoto Daigaku-Katsura, Nishikyo-ku, Kyoto 615-8540, Japan.
| | - Ryuji Yokokawa
- Department of Micro Engineering, Kyoto University, Kyoto Daigaku-Katsura, Nishikyo-ku, Kyoto 615-8540, Japan.
| |
Collapse
|
15
|
Fujimoto K, Morita Y, Iino R, Tomishige M, Shintaku H, Kotera H, Yokokawa R. Simultaneous Observation of Kinesin-Driven Microtubule Motility and Binding of Adenosine Triphosphate Using Linear Zero-Mode Waveguides. ACS NANO 2018; 12:11975-11985. [PMID: 30418736 DOI: 10.1021/acsnano.8b03803] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Single-molecule fluorescence observation of adenosine triphosphate (ATP) is a powerful tool to elucidate the chemomechanical coupling of ATP with a motor protein. However, in total internal reflection fluorescence microscopy (TIRFM), available ATP concentration is much lower than that in the in vivo environment. To achieve single-molecule observation with a high signal-to-noise ratio, zero-mode waveguides (ZMWs) are utilized even at high fluorescent molecule concentrations in the micromolar range. Despite the advantages of ZMWs, the use of cytoskeletal filaments for single-molecule observation has not been reported because of difficulties in immobilization of cytoskeletal filaments in the cylindrical aperture of ZMWs. Here, we propose linear ZMWs (LZMWs) to visualize enzymatic reactions on cytoskeletal filaments, specifically kinesin-driven microtubule motility accompanied by ATP binding/unbinding. Finite element method simulation revealed excitation light confinement in a 100 nm wide slit of LZMWs. Single-molecule observation was then demonstrated with up to 1 μM labeled ATP, which was 10-fold higher than that available in TIRFM. Direct observation of binding/unbinding of ATP to kinesins that propel microtubules enabled us to find that a significant fraction of ATP molecules bound to kinesins were dissociated without hydrolysis. This highlights the advantages of LZMWs for single-molecule observation of proteins that interact with cytoskeletal filaments such as microtubules, actin filaments, or intermediate filaments.
Collapse
Affiliation(s)
- Kazuya Fujimoto
- Department of Micro Engineering , Kyoto University , Kyoto 615-8540 , Japan
| | - Yuki Morita
- Department of Micro Engineering , Kyoto University , Kyoto 615-8540 , Japan
| | - Ryota Iino
- Institute for Molecular Science , National Institutes of Natural Sciences , Okazaki , Aichi 444-8787 , Japan
| | - Michio Tomishige
- College of Science and Engineering , Aoyama Gakuin University , Kanagawa 252-5258 , Japan
| | - Hirofumi Shintaku
- Department of Micro Engineering , Kyoto University , Kyoto 615-8540 , Japan
| | - Hidetoshi Kotera
- Department of Micro Engineering , Kyoto University , Kyoto 615-8540 , Japan
| | - Ryuji Yokokawa
- Department of Micro Engineering , Kyoto University , Kyoto 615-8540 , Japan
| |
Collapse
|
16
|
Onelli E, Scali M, Caccianiga M, Stroppa N, Morandini P, Pavesi G, Moscatelli A. Microtubules play a role in trafficking prevacuolar compartments to vacuoles in tobacco pollen tubes. Open Biol 2018; 8:180078. [PMID: 30381363 PMCID: PMC6223213 DOI: 10.1098/rsob.180078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 10/04/2018] [Indexed: 12/23/2022] Open
Abstract
Fine regulation of exocytosis and endocytosis plays a basic role in pollen tube growth. Excess plasma membrane secreted during pollen tube elongation is known to be retrieved by endocytosis and partially reused in secretory pathways through the Golgi apparatus. Dissection of endocytosis has enabled distinct degradation pathways to be identified in tobacco pollen tubes and has shown that microtubules influence the transport of plasma membrane internalized in the tip region to vacuoles. Here, we used different drugs affecting the polymerization state of microtubules together with SYP21, a marker of prevacuolar compartments, to characterize trafficking of prevacuolar compartments in Nicotiana tabacum pollen tubes. Ultrastructural and biochemical analysis showed that microtubules bind SYP21-positive microsomes. Transient transformation of pollen tubes with LAT52-YFP-SYP21 revealed that microtubules play a key role in the delivery of prevacuolar compartments to tubular vacuoles.
Collapse
Affiliation(s)
- Elisabetta Onelli
- Department of Biosciences, Milan University, Via Celoria 26, 20133 Milan, Italy
| | - Monica Scali
- Department of Life Science, Siena University, Via A. Moro 2, 53100 Siena, Italy
| | - Marco Caccianiga
- Department of Biosciences, Milan University, Via Celoria 26, 20133 Milan, Italy
| | - Nadia Stroppa
- Department of Biosciences, Milan University, Via Celoria 26, 20133 Milan, Italy
| | - Piero Morandini
- Department of Biosciences, Milan University, Via Celoria 26, 20133 Milan, Italy
| | - Giulio Pavesi
- Department of Biosciences, Milan University, Via Celoria 26, 20133 Milan, Italy
| | | |
Collapse
|
17
|
Agarwal S, Smith KP, Zhou Y, Suzuki A, McKenney RJ, Varma D. Cdt1 stabilizes kinetochore-microtubule attachments via an Aurora B kinase-dependent mechanism. J Cell Biol 2018; 217:3446-3463. [PMID: 30154187 PMCID: PMC6168275 DOI: 10.1083/jcb.201705127] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 02/06/2018] [Accepted: 07/17/2018] [Indexed: 12/03/2022] Open
Abstract
Robust kinetochore-microtubule (kMT) attachment is critical for accurate chromosome segregation. G2/M-specific depletion of human Cdt1 that localizes to kinetochores in an Ndc80 complex-dependent manner leads to abnormal kMT attachments and mitotic arrest. This indicates an independent mitotic role for Cdt1 in addition to its prototypic function in DNA replication origin licensing. Here, we show that Cdt1 directly binds to microtubules (MTs). Endogenous or transiently expressed Cdt1 localizes to both mitotic spindle MTs and kinetochores. Deletion mapping of Cdt1 revealed that the regions comprising the middle and C-terminal winged-helix domains but lacking the N-terminal unstructured region were required for efficient MT binding. Mitotic kinase Aurora B interacts with and phosphorylates Cdt1. Aurora B-phosphomimetic Cdt1 exhibited attenuated MT binding, and its cellular expression induced defective kMT attachments with a concomitant delay in mitotic progression. Thus we provide mechanistic insight into how Cdt1 affects overall kMT stability in an Aurora B kinase phosphorylation-dependent manner; which is envisioned to augment the MT-binding of the Ndc80 complex.
Collapse
Affiliation(s)
- Shivangi Agarwal
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Kyle Paul Smith
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Yizhuo Zhou
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Aussie Suzuki
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Richard J McKenney
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA
| | - Dileep Varma
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| |
Collapse
|
18
|
Abstract
Transglutaminase (TGase:E.C. 2.3.2.13) catalyzes the acyl-transfer reaction between one or two primary amino groups of polyamines and protein-bound Gln residues giving rise to post-translational modifications. One increasing the positive charge on a proteins surface and the other results in the covalent crosslinking of proteins. Pioneering studies on TGase in plants started in the middle of the 1980's but the methodology designed for use with animal extracts was not directly applicable to plant extracts. Here we describe radioactive and colorimetric methods adapted to study plant TGase, as well as protocols to analyze the involvement of TGase and polyamines in the functionality of cytoskeletal proteins.
Collapse
|
19
|
Isozaki N, Shintaku H, Kotera H, Hawkins TL, Ross JL, Yokokawa R. Control of molecular shuttles by designing electrical and mechanical properties of microtubules. Sci Robot 2017; 2:2/10/eaan4882. [PMID: 33157889 DOI: 10.1126/scirobotics.aan4882] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 09/06/2017] [Indexed: 12/23/2022]
Abstract
Kinesin-driven microtubules have been focused on to serve as molecular transporters, called "molecular shuttles," to replace micro/nanoscale molecular manipulations necessitated in micro total analysis systems. Although transport, concentration, and detection of target molecules have been demonstrated, controllability of the transport directions is still a major challenge. Toward broad applications of molecular shuttles by defining multiple moving directions for selective molecular transport, we integrated a bottom-up molecular design of microtubules and a top-down design of a microfluidic device. The surface charge density and stiffness of microtubules were controlled, allowing us to create three different types of microtubules, each with different gliding directions corresponding to their electrical and mechanical properties. The measured curvature of the gliding microtubules enabled us to optimize the size and design of the device for molecular sorting in a top-down approach. The integrated bottom-up and top-down design achieved separation of stiff microtubules from negatively charged, soft microtubules under an electric field. Our method guides multiple microtubules by integrating molecular control and microfluidic device design; it is not only limited to molecular sorters but is also applicable to various molecular shuttles with the high controllability in their movement directions.
Collapse
Affiliation(s)
- Naoto Isozaki
- Department of Micro Engineering, Kyoto University, Kyoto-Daigaku Katsura, Nishikyo-ku, Kyoto 615-8540, Japan
| | - Hirofumi Shintaku
- Department of Micro Engineering, Kyoto University, Kyoto-Daigaku Katsura, Nishikyo-ku, Kyoto 615-8540, Japan
| | - Hidetoshi Kotera
- Department of Micro Engineering, Kyoto University, Kyoto-Daigaku Katsura, Nishikyo-ku, Kyoto 615-8540, Japan
| | - Taviare L Hawkins
- Department of Physics, University of Wisconsin-La Crosse, 1725 State Street, La Crosse, WI 54601, USA
| | - Jennifer L Ross
- Department of Physics, University of Massachusetts Amherst, 666 North Pleasant Street, Amherst, MA 01003, USA
| | - Ryuji Yokokawa
- Department of Micro Engineering, Kyoto University, Kyoto-Daigaku Katsura, Nishikyo-ku, Kyoto 615-8540, Japan.
| |
Collapse
|
20
|
Courbet A, Bec N, Constant C, Larroque C, Pugniere M, El Messaoudi S, Zghaib Z, Khier S, Deleuze-Masquefa C, Gattacceca F. Imidazoquinoxaline anticancer derivatives and imiquimod interact with tubulin: Characterization of molecular microtubule inhibiting mechanisms in correlation with cytotoxicity. PLoS One 2017; 12:e0182022. [PMID: 28797090 PMCID: PMC5552358 DOI: 10.1371/journal.pone.0182022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 07/11/2017] [Indexed: 11/19/2022] Open
Abstract
Displaying a strong antiproliferative activity on a wide variety of cancer cells, EAPB0203 and EAPB0503 belong to the imidazo[1,2-a]quinoxalines family of imiquimod structural analogues. EAPB0503 has been shown to inhibit tubulin polymerization. The aim of the present study is to characterize the interaction of EAPB0203 and EAPB0503 with tubulin. We combine experimental approaches at the cellular and the molecular level both in vitro and in silico in order to evaluate the interaction of EAPB0203 and EAPB0503 with tubulin. We examine the influence of EAPB0203 and EAPB0503 on the cell cycle and fate, explore the binding interaction with purified tubulin, and use a computational molecular docking model to determine the binding modes to the microtubule. We then use a drug combination study with other anti-microtubule agents to compare the binding site of EAPB0203 and EAPB0503 to known potent tubulin inhibitors. We demonstrate that EAPB0203 and EAPB0503 are capable of blocking human melanoma cells in G2 and M phases and inducing cell death and apoptosis. Second, we show that EAPB0203 and EAPB0503, but also unexpectedly imiquimod, bind directly to purified tubulin and inhibit tubulin polymerization. As suggested by molecular docking and binding competition studies, we identify the colchicine binding site on β-tubulin as the interaction pocket. Furthermore, we find that EAPB0203, EAPB0503 and imiquimod display antagonistic cytotoxic effect when combined with colchicine, and disrupt tubulin network in human melanoma cells. We conclude that EAPB0203, EAPB0503, as well as imiquimod, interact with tubulin through the colchicine binding site, and that the cytotoxic activity of EAPB0203, EAPB0503 and imiquimod is correlated to their tubulin inhibiting effect. These compounds appear as interesting anticancer drug candidates as suggested by their activity and mechanism of action, and deserve further investigation for their use in the clinic.
Collapse
Affiliation(s)
- Alexis Courbet
- University of Montpellier, Montpellier, France
- Department of Biochemistry & Institute for Protein Design, University of Washington, Seattle, WA, United States of America
| | - Nicole Bec
- University of Montpellier, Montpellier, France
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, France
- IRCM, Institut de Recherche en Cancérologie de Montpellier INSERM U1194, Montpellier, France
- Institut Régional du Cancer de Montpellier, Montpellier, France
| | - Caroline Constant
- IRCM, Institut de Recherche en Cancérologie de Montpellier INSERM U1194, Montpellier, France
| | - Christian Larroque
- University of Montpellier, Montpellier, France
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, France
- IRCM, Institut de Recherche en Cancérologie de Montpellier INSERM U1194, Montpellier, France
- Institut Régional du Cancer de Montpellier, Montpellier, France
| | - Martine Pugniere
- University of Montpellier, Montpellier, France
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, France
- IRCM, Institut de Recherche en Cancérologie de Montpellier INSERM U1194, Montpellier, France
- Institut Régional du Cancer de Montpellier, Montpellier, France
| | - Safia El Messaoudi
- University of Montpellier, Montpellier, France
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, France
- IRCM, Institut de Recherche en Cancérologie de Montpellier INSERM U1194, Montpellier, France
- Institut Régional du Cancer de Montpellier, Montpellier, France
| | - Zahraa Zghaib
- IBMM, Institut des Biomolécules Max Mousseron, UMR 5247, Université de Montpellier, Montpellier, France
| | - Sonia Khier
- University of Montpellier, Montpellier, France
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, France
- IRCM, Institut de Recherche en Cancérologie de Montpellier INSERM U1194, Montpellier, France
- Institut Régional du Cancer de Montpellier, Montpellier, France
| | - Carine Deleuze-Masquefa
- IBMM, Institut des Biomolécules Max Mousseron, UMR 5247, Université de Montpellier, Montpellier, France
| | - Florence Gattacceca
- University of Montpellier, Montpellier, France
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, France
- IRCM, Institut de Recherche en Cancérologie de Montpellier INSERM U1194, Montpellier, France
- Institut Régional du Cancer de Montpellier, Montpellier, France
| |
Collapse
|
21
|
Tarhan MC, Yokokawa R, Jalabert L, Collard D, Fujita H. Pick-and-Place Assembly of Single Microtubules. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1701136. [PMID: 28692749 DOI: 10.1002/smll.201701136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Indexed: 06/07/2023]
Abstract
Intracellular transport is affected by the filament network in the densely packed cytoplasm. Biophysical studies focusing on intracellular transport based on microtubule-kinesin system frequently use in vitro motility assays, which are performed either on individual microtubules or on random (or simple) microtubule networks. Assembling intricate networks with high flexibility requires the manipulation of 25 nm diameter microtubules individually, which can be achieved through the use of pick-and-place assembly. Although widely used to assemble tiny objects, pick-and-place is not a common practice for the manipulation of biological materials. Using the high-level handling capabilities of microelectromechanical systems (MEMS) technology, tweezers are designed and fabricated to pick and place single microtubule filaments. Repeated picking and placing cycles provide a multilayered and multidirectional microtubule network even for different surface topographies. On-demand assembly of microtubules forms crossings at desired angles for biophysical studies as well as complex networks that can be used as nanotransport systems.
Collapse
Affiliation(s)
- Mehmet Cagatay Tarhan
- LIMMS/CNRS-IIS (UMI2820), The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
- CIRMM, IIS, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
- Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520-IEMN, 41 Blvd. Vauban, Lille, 59046, France
| | - Ryuji Yokokawa
- Department of Micro Engineering, Kyoto University, C3-c2S18, Kyoto daigaku-Katsura, Nishikyo-ku, Kyoto, 615-8540, Japan
| | - Laurent Jalabert
- LIMMS/CNRS-IIS (UMI2820), The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| | - Dominique Collard
- LIMMS/CNRS-IIS (UMI2820), The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| | - Hiroyuki Fujita
- CIRMM, IIS, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| |
Collapse
|
22
|
Abstract
In this chapter, we describe methods for the purification of both untagged and polyhistidine-tagged tau protein. These protocols utilize a bacterial expression system to produce the tau isoform of interest, followed by heat treatment and column chromatography to separate tau from impurities. These techniques yield a biochemically pure protein with which to pursue any number of questions regarding the mechanisms of tau action.
Collapse
|
23
|
Liu QS, Deng R, Yan QF, Cheng L, Luo Y, Li K, Yin X, Qin X. Novel Beta-Tubulin-Immobilized Nanoparticles Affinity Material for Screening β-Tubulin Inhibitors from a Complex Mixture. ACS APPLIED MATERIALS & INTERFACES 2017; 9:5725-5732. [PMID: 28112513 DOI: 10.1021/acsami.6b13477] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In order to efficiently screen and isolate β-tubulin inhibitors, β-tubulin was immobilized on core-shell PMMA/CS (poly(methyl methacrylate)/Chitosan) nanoparticles to produce a new type of immobilized affinity material named β-tubulin-immobilized nanoparticles (β-TIN). The selectivity and adsorption performance of β-TIN were characterized using various control drugs. The β-TIN, the paclitaxel molecularly imprinted ploymers (MIP), and the C18 adsorbing material were compared for selectivity and enrichment ratio. Microtubule-targeting antitumor compounds were screened and isolated from a typical Chinese medicine, Chloranthus multistachys, by β-TIN. Three active compounds (curcolnol, zedoarofuran, and codonolactone) in Chloranthus multistachys extract were captured successfully. Microscale thermophoresis demonstrated that these three compounds strongly bind to β-tubulin, and the dissociation constants (Kd) between the three active compounds and β-tubulin were 1820 ± 0.68 nM, 1640 ± 0.52 nM, and 284 ± 1.00 nM, respectively. Moreover, the binding affinity between codonolactone and β-tubulin was greater than that between paclitaxel and β-tubulin. The antitumor activities of the three compounds were confirmed by the microtubule inhibition model, and the results showed a similar antitumor mechanism as paclitaxel. Molecular dynamics simulations were performed to preliminarily investigate the potential binding sites and the structure-activity relationship between the three active molecules and β-tubulin. Our study is the first to report the use of this novel material which is highly efficient in capturing low-content β-tubulin inhibitors from a complex mixture. The three screened compounds exhibited potential antineoplastic activity, and these lead compounds utilize a new mechanism of action with promising development prospects. Because β-TIN is easily prepared, displays excellent adsorption and selectivity for targets, and can effectively maintain the steric conformation and activities of target proteins, it will be very useful in the screening of lead compounds for different drug target proteins.
Collapse
Affiliation(s)
- Qing-Shan Liu
- Key Lab of Ministry of Education, National Center on Minority Medicine and Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China , Beijing 100081, China
| | - Ran Deng
- Key Lab of Ministry of Education, National Center on Minority Medicine and Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China , Beijing 100081, China
| | - Qing-Fang Yan
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine , Nanchang 330004, China
| | - Lin Cheng
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine , Nanchang 330004, China
| | - Yongming Luo
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine , Nanchang 330004, China
| | - Keqin Li
- Key Lab of Ministry of Education, National Center on Minority Medicine and Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China , Beijing 100081, China
| | - Xiaoying Yin
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science , Shanghai 201620, China
| | - Xiaoyan Qin
- Key Lab of Ministry of Education, National Center on Minority Medicine and Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China , Beijing 100081, China
| |
Collapse
|
24
|
Zghaib Z, Guichou JF, Vappiani J, Bec N, Hadj-Kaddour K, Vincent LA, Paniagua-Gayraud S, Larroque C, Moarbess G, Cuq P, Kassab I, Deleuze-Masquéfa C, Diab-Assaf M, Bonnet PA. New imidazoquinoxaline derivatives: Synthesis, biological evaluation on melanoma, effect on tubulin polymerization and structure-activity relationships. Bioorg Med Chem 2016; 24:2433-2440. [PMID: 27094151 DOI: 10.1016/j.bmc.2016.04.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 03/25/2016] [Accepted: 04/01/2016] [Indexed: 12/14/2022]
Abstract
Microtubules are considered as important targets of anticancer therapy. EAPB0503 and its structural imidazo[1,2-a]quinoxaline derivatives are major microtubule-interfering agents with potent anticancer activity. In this study, the synthesis of several new derivatives of EAPB0503 is described, and the anticancer efficacy of 13 novel derivatives on A375 human melanoma cell line is reported. All new compounds show significant antiproliferative activity with IC50 in the range of 0.077-122μM against human melanoma cell line (A375). Direct inhibition of tubulin polymerization assay in vitro is also assessed. Results show that compounds 6b, 6e, 6g, and EAPB0503 highly inhibit tubulin polymerization with percentages of inhibition of 99%, 98%, 90%, and 84% respectively. Structure-activity relationship studies within the series are also discussed in line with molecular docking studies into the colchicine-binding site of tubulin.
Collapse
Affiliation(s)
- Zahraa Zghaib
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM, Faculté de Pharmacie, 15, avenue Charles Flahault, BP14491, 34093 Montpellier cedex 5, France; Tumorigenèse et Pharmacologie Antitumorale, Lebanese University, BP 90656, Fanar Jdeideh, Lebanon
| | - Jean-François Guichou
- CNRS, UMR5048 - Université de Montpellier, Centre de Biochimie Structurale, F-34090 Montpellier, France; INSERM, U1054, F-34090 Montpellier, France
| | - Johanna Vappiani
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM, Faculté de Pharmacie, 15, avenue Charles Flahault, BP14491, 34093 Montpellier cedex 5, France
| | - Nicole Bec
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U896, 34298 Montpellier, France
| | - Kamel Hadj-Kaddour
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM, Faculté de Pharmacie, 15, avenue Charles Flahault, BP14491, 34093 Montpellier cedex 5, France
| | - Laure-Anaïs Vincent
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM, Faculté de Pharmacie, 15, avenue Charles Flahault, BP14491, 34093 Montpellier cedex 5, France
| | - Stéphanie Paniagua-Gayraud
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM, Faculté de Pharmacie, 15, avenue Charles Flahault, BP14491, 34093 Montpellier cedex 5, France
| | - Christian Larroque
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U896, 34298 Montpellier, France
| | - Georges Moarbess
- Tumorigenèse et Pharmacologie Antitumorale, Lebanese University, BP 90656, Fanar Jdeideh, Lebanon
| | - Pierre Cuq
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM, Faculté de Pharmacie, 15, avenue Charles Flahault, BP14491, 34093 Montpellier cedex 5, France
| | - Issam Kassab
- Tumorigenèse et Pharmacologie Antitumorale, Lebanese University, BP 90656, Fanar Jdeideh, Lebanon
| | - Carine Deleuze-Masquéfa
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM, Faculté de Pharmacie, 15, avenue Charles Flahault, BP14491, 34093 Montpellier cedex 5, France.
| | - Mona Diab-Assaf
- Tumorigenèse et Pharmacologie Antitumorale, Lebanese University, BP 90656, Fanar Jdeideh, Lebanon
| | - Pierre-Antoine Bonnet
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM, Faculté de Pharmacie, 15, avenue Charles Flahault, BP14491, 34093 Montpellier cedex 5, France
| |
Collapse
|
25
|
Martel-Frachet V, Keramidas M, Nurisso A, DeBonis S, Rome C, Coll JL, Boumendjel A, Skoufias DA, Ronot X. IPP51, a chalcone acting as a microtubule inhibitor with in vivo antitumor activity against bladder carcinoma. Oncotarget 2016; 6:14669-86. [PMID: 26036640 PMCID: PMC4546496 DOI: 10.18632/oncotarget.4144] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 04/08/2015] [Indexed: 12/18/2022] Open
Abstract
We previously identified 1-(2,4-dimethoxyphenyl)-3-(1-methylindolyl) propenone (IPP51), a new chalcone derivative that is capable of inducing prometaphase arrest and subsequent apoptosis of bladder cancer cells. Here, we demonstrate that IPP51 selectively inhibits proliferation of tumor-derived cells versus normal non-tumor cells. IPP51 interfered with spindle formation and mitotic chromosome alignment. Accumulation of cyclin B1 and mitotic checkpoint proteins Bub1 and BubR1 on chromosomes in IPP51 treated cells indicated the activation of spindle-assembly checkpoint, which is consistent with the mitotic arrest. The antimitotic actions of other chalcones are often associated with microtubule disruption. Indeed, IPP51 inhibited tubulin polymerization in an in vitro assay with purified tubulin. In cells, IPP51 induced an increase in soluble tubulin. Furthermore, IPP51 inhibited in vitro capillary-like tube formation by endothelial cells, indicating that it has anti-angiogenic activity. Molecular docking showed that the indol group of IPP51 can be accommodated in the colchicine binding site of tubulin. This characteristic was confirmed by an in vitro competition assay demonstrating that IPP51 can compete for colchicine binding to soluble tubulin. Finally, in a human bladder xenograft mouse model, IPP51 inhibited tumor growth without signs of toxicity. Altogether, these findings suggest that IPP51 is an attractive new microtubule-targeting agent with potential chemotherapeutic value.
Collapse
Affiliation(s)
- Véronique Martel-Frachet
- Université Joseph Fourier, AGIM CNRS FRE, EPHE, GRENOBLE Cedex 9. Université Joseph Fourier, Grenoble, France
| | - Michelle Keramidas
- Unité INSERM/UJF U823, Centre de recherche Albert Bonniot, Grenoble, France
| | - Alessandra Nurisso
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Quai Ernest-Ansermet, Geneva, Switzerland
| | | | - Claire Rome
- Unité Inserm, Grenoble Institute of Neuroscience, Site Santé, Grenoble, France
| | - Jean-Luc Coll
- Unité INSERM/UJF U823, Centre de recherche Albert Bonniot, Grenoble, France
| | - Ahcène Boumendjel
- Université de Grenoble/CNRS, UMR, Département de Pharmacochimie Moléculaire, Grenoble Cedex, France
| | | | - Xavier Ronot
- Université Joseph Fourier, AGIM CNRS FRE, EPHE, GRENOBLE Cedex 9. Université Joseph Fourier, Grenoble, France
| |
Collapse
|
26
|
Subramaniyan Parimalam S, Tarhan MC, Karsten SL, Fujita H, Shintaku H, Kotera H, Yokokawa R. On-chip microtubule gliding assay for parallel measurement of tau protein species. LAB ON A CHIP 2016; 16:1691-7. [PMID: 27056640 PMCID: PMC11377082 DOI: 10.1039/c5lc01486g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Tau protein is a well-established biomarker for a group of neurodegenerative diseases collectively called tauopathies. So far, clinically relevant detection of tau species in cerebrospinal fluid (CSF) cannot be achieved without immunological methods. Recently, it was shown that different tau isoforms including the ones carrying various types of mutations affect microtubule (MT)-kinesin binding and velocity in an isoform specific manner. Here, based on these observations, we developed a microfluidic device to analyze tau mutations, isoforms and their ratios. The assay device consists of three regions: a MT reservoir which captures MTs from a solution to a kinesin-coated surface, a microchannel which guides gliding MTs, and an arrowhead-shaped collector which concentrates MTs. Tau-bound fluorescently labeled MTs (tau-MTs) were assayed, and the increase in fluorescence intensity (FI) corresponding to the total number of MTs accumulated was measured at the collector. We show that our device is capable of differentiating 3R and 4R tau isoform ratios and effects of point mutations within 5 minutes. Furthermore, radially oriented collector regions enable simultaneous FI measurements for six independent assays. Performing parallel assays in the proposed device with minimal image processing provides a cost-efficient, easy-to-use and fast tau detection platform.
Collapse
Affiliation(s)
| | - Mehmet C Tarhan
- Laboratory for Integrated Micro Mechatronic Systems (LIMMS), Institute of Industrial Science (IIS), The University of Tokyo, Tokyo, Japan and Center for International Research on Micronano Mechatronics (CIRMM), Institute of Industrial Science (IIS), The University of Tokyo, Japan
| | - Stanislav L Karsten
- Center for International Research on Micronano Mechatronics (CIRMM), Institute of Industrial Science (IIS), The University of Tokyo, Japan and NeuroInDx Inc., Signal Hill, CA, USA
| | - Hiroyuki Fujita
- Center for International Research on Micronano Mechatronics (CIRMM), Institute of Industrial Science (IIS), The University of Tokyo, Japan
| | | | - Hidetoshi Kotera
- Department of Micro Engineering, Kyoto University, Kyoto, Japan.
| | - Ryuji Yokokawa
- Department of Micro Engineering, Kyoto University, Kyoto, Japan.
| |
Collapse
|
27
|
DeBonis S, Neumann E, Skoufias DA. Self protein-protein interactions are involved in TPPP/p25 mediated microtubule bundling. Sci Rep 2015; 5:13242. [PMID: 26289831 PMCID: PMC4542545 DOI: 10.1038/srep13242] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 07/15/2015] [Indexed: 12/26/2022] Open
Abstract
TPPP/p25 is a microtubule-associated protein, detected in protein inclusions associated with various neurodegenerative diseases. Deletion analysis data show that TPPP/p25 has two microtubule binding sites, both located in intrinsically disordered domains, one at the N-terminal and the other in the C-terminal domain. In copolymerization assays the full-length protein exhibits microtubule stimulation and bundling activity. In contrast, at the same ratio relative to tubulin, truncated forms of TPPP/p25 exhibit either lower or no microtubule stimulation and no bundling activity, suggesting a cooperative phenomenon which is enhanced by the presence of the two binding sites. The binding characteristics of the N- and C-terminally truncated proteins to taxol-stabilized microtubules are similar to the full-length protein. However, the C-terminally truncated TPPP/p25 shows a lower Bmax for microtubule binding, suggesting that it may bind to a site of tubulin that is masked in microtubules. Bimolecular fluorescent complementation assays in cells expressing combinations of various TPPP/p25 fragments, but not that of the central folded domain, resulted in the generation of a fluorescence signal colocalized with perinuclear microtubule bundles insensitive to microtubule inhibitors. The data suggest that the central folded domain of TPPP/p25 following binding to microtubules can drive s homotypic protein-protein interactions leading to bundled microtubules.
Collapse
Affiliation(s)
- Salvatore DeBonis
- Université de Grenoble Alpes, F-38044 Grenoble, France.,CNRS, F-38044 Grenoble, France.,CEA, IBS, F-38044 Grenoble, France
| | - Emmanuelle Neumann
- Université de Grenoble Alpes, F-38044 Grenoble, France.,CNRS, F-38044 Grenoble, France.,CEA, IBS, F-38044 Grenoble, France
| | - Dimitrios A Skoufias
- Université de Grenoble Alpes, F-38044 Grenoble, France.,CNRS, F-38044 Grenoble, France.,CEA, IBS, F-38044 Grenoble, France
| |
Collapse
|
28
|
Fujimoto K, Nagai M, Shintaku H, Kotera H, Yokokawa R. Dynamic formation of a microchannel array enabling kinesin-driven microtubule transport between separate compartments on a chip. LAB ON A CHIP 2015; 15:2055-2063. [PMID: 25805147 DOI: 10.1039/c5lc00148j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Microtubules driven by kinesin motors have been utilised as "molecular shuttles" in microfluidic environments with potential applications in autonomous nanoscale manipulations such as capturing, separating, and/or concentrating biomolecules. However, the conventional flow cell-based assay has difficulty in separating bound target molecules from free ones even with buffer flushing because molecular manipulations by molecular shuttles take place on a glass surface and molecular binding occurs stochastically; this makes it difficult to determine whether molecules are carried by molecular shuttles or by diffusion. To address this issue, we developed a microtubule-based transport system between two compartments connected by a single-micrometre-scale channel array that forms dynamically via pneumatic actuation of a polydimethylsiloxane membrane. The device comprises three layers-a control channel layer (top), a microfluidic channel layer (middle), and a channel array layer (bottom)-that enable selective injection of assay solutions into a target compartment and dynamic formation of the microchannel array. The pneumatic channel also serves as a nitrogen supply path to the assay area, which reduces photobleaching of fluorescently labelled microtubules and deactivation of kinesin by oxygen radicals. The channel array suppresses cross-contamination of molecules caused by diffusion or pressure-driven flow between compartments, facilitating unidirectional transport of molecular shuttles from one compartment to another. The method demonstrates, for the first time, efficient and unidirectional microtubule transport by eliminating diffusion of target molecules on a chip and thus may constitute one of the key aspects of motor-driven nanosystems.
Collapse
Affiliation(s)
- Kazuya Fujimoto
- Department of Micro Engineering, Kyoto University, Kyoto-daigaku Katsura, Nishikyo-ku, Kyoto, 615-8540, Japan.
| | | | | | | | | |
Collapse
|
29
|
Landino LM, Hagedorn TD, Kennett KL. Evidence for thiol/disulfide exchange reactions between tubulin and glyceraldehyde-3-phosphate dehydrogenase. Cytoskeleton (Hoboken) 2015; 71:707-18. [PMID: 25545749 DOI: 10.1002/cm.21204] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Revised: 11/29/2014] [Accepted: 12/16/2014] [Indexed: 11/11/2022]
Abstract
While thiol redox reactions are a common mechanism to regulate protein structure and function, protein disulfide bond formation is a marker of oxidative stress that has been linked to neurodegeneration. Both tubulin and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) contain multiple cysteines that have been identified as targets for oxidation to disulfides, S-nitrosation and S-glutathionylation. We show that GAPDH is one of three prominent brain microtubule-associated proteins (MAPs), in addition to MAP-2 and tau, with reactive cysteines. We detected a threefold to fourfold increase in tubulin cysteine oxidation by hydrogen peroxide in the presence of rabbit muscle GAPDH by 5-iodoacetamidofluorescein labeling and by Western blot detection of higher molecular weight inter-chain tubulin disulfides. In thiol/disulfide exchange experiments, tubulin restored ∼50% of oxidized GAPDH cysteines and the equilibrium favored reduced GAPDH. Further, we report that oxidized GAPDH is repaired by the thioredoxin reductase system (TRS). Restoration of GAPDH activity after reduction by both tubulin and the TRS was time-dependent suggesting conformational changes near the active site cysteine149. The addition of brain MAPs to oxidized tubulin reduced tubulin disulfides and labeling of MAP-2 and of GAPDH decreased. Because the extent of tubulin repair of oxidized GAPDH was dependent on buffer strength, we conclude that electrostatics influence thiol/disulfide exchange between the two proteins. The novel interactions presented herein may protect GAPDH from inhibition under oxidative stress conditions.
Collapse
Affiliation(s)
- Lisa M Landino
- Department of Chemistry, The College of William and Mary, Williamsburg, Virginia
| | | | | |
Collapse
|
30
|
Control of microtubule trajectory within an electric field by altering surface charge density. Sci Rep 2015; 5:7669. [PMID: 25567007 PMCID: PMC4286733 DOI: 10.1038/srep07669] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 12/04/2014] [Indexed: 11/08/2022] Open
Abstract
One of challenges for using microtubules (MTs) driven by kinesin motors in microfluidic environments is to control their direction of movement. Although applying physical biases to rectify MTs is prevalent, it has not been established as a design methodology in conjunction with microfluidic devices. In the future, the methodology is expected to achieve functional motor-driven nanosystems. Here, we propose a method to guide kinesin-propelled MTs in multiple directions under an electric field by designing a charged surface of MT minus ends labeled with dsDNA via a streptavidin-biotin interaction. MTs labeled with 20-bp or 50-bp dsDNA molecules showed significantly different trajectories according to the DNA length, which were in good agreement with values predicted from electrophoretic mobilities measured for their minus ends. Since the effective charge of labeled DNA molecules was equal to that of freely dispersed DNA molecules in a buffer solution, MT trajectory could be estimated by selecting labeling molecules with known charges. Moreover, the estimated trajectory enables to define geometrical sizes of a microfluidic device. This rational molecular design and prediction methodology allows MTs to be guided in multiple directions, demonstrating the feasibility of using molecular sorters driven by motor proteins.
Collapse
|
31
|
Structure of the Microtubule-Binding Domain of Flagellar Dynein. Structure 2014; 22:1628-38. [DOI: 10.1016/j.str.2014.08.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Revised: 08/27/2014] [Accepted: 08/27/2014] [Indexed: 01/06/2023]
|
32
|
Tug-of-war of microtubule filaments at the boundary of a kinesin- and dynein-patterned surface. Sci Rep 2014; 4:5281. [PMID: 24923426 PMCID: PMC4055898 DOI: 10.1038/srep05281] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 05/20/2014] [Indexed: 01/09/2023] Open
Abstract
Intracellular cargo is transported by multiple motor proteins. Because of the force balance of motors with mixed polarities, cargo moves bidirectionally to achieve biological functions. Here, we propose a microtubule gliding assay for a tug-of-war study of kinesin and dynein. A boundary of the two motor groups is created by photolithographically patterning gold to selectively attach kinesin to the glass and dynein to the gold surface using a self-assembled monolayer. The relationship between the ratio of two antagonistic motor numbers and the velocity is derived from a force-velocity relationship for each motor to calculate the detachment force and motor backward velocity. Although the tug-of-war involves >100 motors, values are calculated for a single molecule and reflect the collective dynein and non-collective kinesin functions when they work as a team. This assay would be useful for detailed in vitro analysis of intracellular motility, e.g., mitosis, where a large number of motors with mixed polarities are involved.
Collapse
|
33
|
Wu KCW, Yang CY, Cheng CM. Using cell structures to develop functional nanomaterials and nanostructures – case studies of actin filaments and microtubules. Chem Commun (Camb) 2014; 50:4148-57. [DOI: 10.1039/c4cc00005f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Actin filaments and microtubules are utilized as building blocks to create functional nanomaterials and nanostructures for nature-inspired small-scale devices and systems.
Collapse
Affiliation(s)
- Kevin Chia-Wen Wu
- Department of Chemical Engineering
- National Taiwan University
- Taipei 10617, Taiwan
| | - Chung-Yao Yang
- Institute of Nanoengineering and Microsystems
- National Tsing Hua University
- Hsinchu 30013, Taiwan
| | - Chao-Min Cheng
- Institute of Nanoengineering and Microsystems
- National Tsing Hua University
- Hsinchu 30013, Taiwan
| |
Collapse
|
34
|
Wang S, Romano FB, Field CM, Mitchison TJ, Rapoport TA. Multiple mechanisms determine ER network morphology during the cell cycle in Xenopus egg extracts. ACTA ACUST UNITED AC 2013; 203:801-14. [PMID: 24297752 PMCID: PMC3857478 DOI: 10.1083/jcb.201308001] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Fusion of ER membranes by atlastin and interaction of ER with growing microtubule ends and dynein cooperate to generate distinct ER morphologies during the cell cycle. In metazoans the endoplasmic reticulum (ER) changes during the cell cycle, with the nuclear envelope (NE) disassembling and reassembling during mitosis and the peripheral ER undergoing extensive remodeling. Here we address how ER morphology is generated during the cell cycle using crude and fractionated Xenopus laevis egg extracts. We show that in interphase the ER is concentrated at the microtubule (MT)-organizing center by dynein and is spread by outward extension of ER tubules through their association with plus ends of growing MTs. Fusion of membranes into an ER network is dependent on the guanosine triphosphatase atlastin (ATL). NE assembly requires fusion by both ATL and ER-soluble N-ethyl-maleimide–sensitive factor adaptor protein receptors. In mitotic extracts, the ER converts into a network of sheets connected by ER tubules and loses most of its interactions with MTs. Together, these results indicate that fusion of ER membranes by ATL and interaction of ER with growing MT ends and dynein cooperate to generate distinct ER morphologies during the cell cycle.
Collapse
Affiliation(s)
- Songyu Wang
- Department of Cell Biology and Howard Hughes Medical Institute and 2 Department of Systems Biology, Harvard Medical School, Boston, MA 02115
| | | | | | | | | |
Collapse
|
35
|
Wang J, Zhang Y, Wu J, Meng L, Ren H. AtFH16, [corrected] an Arabidopsis type II formin, binds and bundles both microfilaments and microtubules, and preferentially binds to microtubules. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2013; 55:1002-15. [PMID: 23802884 DOI: 10.1111/jipb.12089] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 06/13/2013] [Indexed: 05/03/2023]
Abstract
Formins are well-known regulators that participate in the organization of the actin cytoskeleton in organisms. The Arabidopsis thaliana L. genome encodes 21 formins, which can be divided into two distinct subfamilies. However, type II formins have to date been less well characterized. Here, we cloned a type II formin, AtFH16, and characterized its biochemical activities on actin and microtubule dynamics. The results show that the FH1FH2 structure of AtFH16 cannot nucleate actin polymerization efficiently, but can bind and bundle microfilaments. AtFH16 FH1FH2 is also able to bind and bundle microtubules, and preferentially binds microtubules over microfilaments in vitro. In addition, AtFH16 FH1FH2 co-localizes with microtubules in onion epidermal cells, indicating a higher binding affinity of AtFH16 FH1FH2 for microtubules rather than microfilaments in vivo. In conclusion, AtFH16 is able to interact with both microfilaments and microtubules, suggesting that AtFH16 probably functions as a bifunctional protein, and may thus participate in plant cellular processes.
Collapse
Affiliation(s)
- Jiaojiao Wang
- The Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Science, Beijing Normal University, Beijing 100875, China
| | | | | | | | | |
Collapse
|
36
|
Salehi M, Ostad SN, Riazi GH, Assadieskandar A, Cheraghi-Shavi T, Shafiee A, Amini M. Synthesis, cytotoxic evaluation, and molecular docking study of 4,5-diaryl-thiazole-2-thione analogs of combretastatin A-4 as microtubule-binding agents. Med Chem Res 2013. [DOI: 10.1007/s00044-013-0754-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
37
|
Site-specific fluorescent labeling of tubulin. Methods Cell Biol 2013. [PMID: 23973062 DOI: 10.1016/b978-0-12-407757-7.00001-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Fluorescent tubulin can be prepared in which a fluorophore is covalently bound to the protein at only the carboxy terminus of the α-subunit of the αβ-tubulin dimer. This two-step procedure consists of an enzymatic reaction followed by a bioorthogonal chemical reaction. In the first step of the process, the enzyme tubulin tyrosine ligase is used to attach a reactive tyrosine derivative, 3-formyltyrosine, to the protein. In the second step of the procedure, a fluorophore possessing a complementary reactive functional group, such as a hydrazine, hydrazide, or hydroxylamine, is allowed to react with the protein under conditions that are compatible with native tubulin. Polymerization-competent, fluorescently labeled tubulin can be prepared in just a few hours using this protocol. The method described here should be useful for attaching virtually any probe or material to tubulin at this site.
Collapse
|
38
|
Cassimeris L, Guglielmi L, Denis V, Larroque C, Martineau P. Specific in vivo labeling of tyrosinated α-tubulin and measurement of microtubule dynamics using a GFP tagged, cytoplasmically expressed recombinant antibody. PLoS One 2013; 8:e59812. [PMID: 23555790 PMCID: PMC3610906 DOI: 10.1371/journal.pone.0059812] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 02/19/2013] [Indexed: 01/05/2023] Open
Abstract
GFP-tagged proteins are used extensively as biosensors for protein localization and function, but the GFP moiety can interfere with protein properties. An alternative is to indirectly label proteins using intracellular recombinant antibodies (scFvs), but most antibody fragments are insoluble in the reducing environment of the cytosol. From a synthetic hyperstable human scFv library we isolated an anti-tubulin scFv, 2G4, which is soluble in mammalian cells when expressed as a GFP-fusion protein. Here we report the use of this GFP-tagged scFv to label microtubules in fixed and living cells. We found that 2G4-GFP localized uniformly along microtubules and did not disrupt binding of EB1, a protein that binds microtubule ends and serves as a platform for binding by a complex of proteins regulating MT polymerization. TOGp and CLIP-170 also bound microtubule ends in cells expressing 2G4-GFP. Microtubule dynamic instability, measured by tracking 2G4-GFP labeled microtubules, was nearly identical to that measured in cells expressing GFP-α-tubulin. Fluorescence recovery after photobleaching demonstrated that 2G4-GFP turns over rapidly on microtubules, similar to the turnover rates of fluorescently tagged microtubule-associated proteins. These data indicate that 2G4-GFP binds relatively weakly to microtubules, and this conclusion was confirmed in vitro. Purified 2G4 partially co-pelleted with microtubules, but a significant fraction remained in the soluble fraction, while a second anti-tubulin scFv, 2F12, was almost completely co-pelleted with microtubules. In cells, 2G4-GFP localized to most microtubules, but did not co-localize with those composed of detyrosinated α-tubulin, a post-translational modification associated with non-dynamic, more stable microtubules. Immunoblots probing bacterially expressed tubulins confirmed that 2G4 recognized α-tubulin and required tubulin’s C-terminal tyrosine residue for binding. Thus, a recombinant antibody with weak affinity for its substrate can be used as a specific intracellular biosensor that can differentiate between unmodified and post-translationally modified forms of a protein.
Collapse
Affiliation(s)
- Lynne Cassimeris
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, United States of America.
| | | | | | | | | |
Collapse
|
39
|
Tarhan MC, Yokokawa R, Morin FO, Fujita H. Specific Transport of Target Molecules by Motor Proteins in Microfluidic Channels. Chemphyschem 2013; 14:1618-25. [DOI: 10.1002/cphc.201300022] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Indexed: 11/06/2022]
|
40
|
Sharma S, Lagisetti C, Poliks B, Coates RM, Kingston DGI, Bane S. Dissecting paclitaxel-microtubule association: quantitative assessment of the 2'-OH group. Biochemistry 2013; 52:2328-36. [PMID: 23473345 DOI: 10.1021/bi400014t] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Paclitaxel (PTX) is a microtubule-stabilizing agent that is widely used in cancer chemotherapy. This structurally complex natural product acts by binding to β-tubulin in assembled microtubules. The 2'-hydroxyl group in the flexible side chain of PTX is an absolute requirement for activity, but its precise role in the drug-receptor interaction has not been specifically investigated. The contribution of the 2'-OH group to the affinity and tubulin-assembly efficacy of PTX has been evaluated through quantitative analysis of PTX derivatives possessing side chain deletions: 2'-deoxy-PTX, N-debenzoyl-2'-deoxy-PTX, and baccatin III. The affinity of 2'-deoxy-PTX for stabilized microtubules was more than 100-fold lower than that of PTX and only ~3-fold greater than the microtubule affinity of baccatin III. No microtubule binding activity was detected for the analogue N-debenzoyl-2'-deoxy-PTX. The tubulin-assembly efficacy of each ligand was consistent with the microtubule binding affinity, as was the trend in cytotoxicities. Molecular dynamics simulations revealed that the 2'-OH group of PTX can form a persistent hydrogen bond with D26 within the microtubule binding site. The absence of this interaction between 2'-deoxy-PTX and the receptor can account for the difference in binding free energy. Computational analyses also provide a possible explanation for why N-debenzoyl-2'-deoxy-PTX is inactive, in spite of the fact that it is essentially a substituted baccatin III. We propose that the hydrogen bonding interaction between the 2'-OH group and D26 is the most important stabilizing interaction that PTX forms with tubulin in the region of the C-13 side chain. We further hypothesize that the substituents at the 3'-position function to orient the 2'-OH group for a productive hydrogen bonding interaction with the protein.
Collapse
Affiliation(s)
- Shubhada Sharma
- Department of Chemistry, Binghamton University, State University of New York, Binghamton, NY 13902, USA
| | | | | | | | | | | |
Collapse
|
41
|
Dadras A, Riazi GH, Afrasiabi A, Naghshineh A, Ghalandari B, Mokhtari F. In vitro study on the alterations of brain tubulin structure and assembly affected by magnetite nanoparticles. J Biol Inorg Chem 2013; 18:357-69. [DOI: 10.1007/s00775-013-0980-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 01/18/2013] [Indexed: 11/28/2022]
|
42
|
Fujimoto K, Kitamura M, Yokokawa M, Kanno I, Kotera H, Yokokawa R. Colocalization of quantum dots by reactive molecules carried by motor proteins on polarized microtubule arrays. ACS NANO 2013; 7:447-455. [PMID: 23230973 DOI: 10.1021/nn3045038] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The field of microfluidics has drastically contributed to downscale the size of benchtop experiments to the dimensions of a chip without compromising results. However, further miniaturization and the ability to directly manipulate individual molecules require a platform that permits organized molecular transport. The motor proteins and microtubules that carry out orderly intracellular transport are ideal for driving in vitro nanotransport. Here, we demonstrate that a reconstruction of the cellular kinesin/dynein-microtubule system in nanotracks provides a molecular total analysis system (MTAS) to control massively parallel chemical reactions. The mobility of kinesin and a microtubule dissociation method enable orientation of a microtubule in an array for directed transport of reactive molecules carried by kinesin or dynein. The binding of glutathione S-transferase (GST) to glutathione (GSH) and the binding of streptavidin to biotin are visualized as colocalizations of quantum dots (Q-dots) when motor motilities bring them into contact. The organized nanotransport demonstrated here suggests the feasibility of using our platform to perform parallel biochemical reactions focused at the molecular level.
Collapse
Affiliation(s)
- Kazuya Fujimoto
- Department of Micro Engineering, Kyoto University, Yoshida-Honmachi, Sakyo, Kyoto 606-8501, Japan
| | | | | | | | | | | |
Collapse
|
43
|
Microtubule asters as templates for nanomaterials assembly. J Biol Eng 2012; 6:23. [PMID: 23270559 PMCID: PMC3626631 DOI: 10.1186/1754-1611-6-23] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 12/14/2012] [Indexed: 11/10/2022] Open
Abstract
Self organization of the kinesin-microtubule system was implemented as a novel template to create percolated nanofiber networks. Asters of microtubule seeds were immobilized on glass surfaces and their growth was recorded over time. The individual aster islands became interconnected as microtubules grew and overlapped, resulting in a highly percolated network. Cellulose nanowhiskers were used to demonstrate the application of this system to nanomaterials organization. The size distribution of the cellulose nanowhiskers was comparable to that of microtubules. To link cellulose nanowhiskers to microtubules, the nanowhiskers were functionalized by biotin using cellulose binding domains. Fluorescence studies confirmed biotinylation of cellulose nanowhiskers and binding of cellulose nanowhiskers to biotinylated microtubules.
Collapse
|
44
|
Cosentino L, Redondo-Horcajo M, Zhao Y, Santos AR, Chowdury KF, Vinader V, Abdallah QMA, Abdel-Rahman H, Fournier-Dit-Chabert J, Shnyder SD, Loadman PM, Fang WS, Díaz JF, Barasoain I, Burns PA, Pors K. Synthesis and Biological Evaluation of Colchicine B-Ring Analogues Tethered with Halogenated Benzyl Moieties. J Med Chem 2012; 55:11062-6. [PMID: 23176628 DOI: 10.1021/jm301151t] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Laura Cosentino
- Institute of Cancer Therapeutics, University of Bradford, Bradford, West Yorkshire, BD7
1DP, U.K
| | | | - Ying Zhao
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking
Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, P.
R. China
| | - Ana Rita Santos
- Institute of Cancer Therapeutics, University of Bradford, Bradford, West Yorkshire, BD7
1DP, U.K
| | - Kaniz F. Chowdury
- Institute of Cancer Therapeutics, University of Bradford, Bradford, West Yorkshire, BD7
1DP, U.K
| | - Victoria Vinader
- Institute of Cancer Therapeutics, University of Bradford, Bradford, West Yorkshire, BD7
1DP, U.K
| | - Qasem M. A. Abdallah
- Institute of Cancer Therapeutics, University of Bradford, Bradford, West Yorkshire, BD7
1DP, U.K
| | - Hamdy Abdel-Rahman
- Institute of Cancer Therapeutics, University of Bradford, Bradford, West Yorkshire, BD7
1DP, U.K
| | | | - Steven D. Shnyder
- Institute of Cancer Therapeutics, University of Bradford, Bradford, West Yorkshire, BD7
1DP, U.K
| | - Paul M. Loadman
- Institute of Cancer Therapeutics, University of Bradford, Bradford, West Yorkshire, BD7
1DP, U.K
| | - Wei-shuo Fang
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking
Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, P.
R. China
| | | | - Isabel Barasoain
- Centro de Investigaciones Biológicas, CSIC, 28040, Madrid, Spain
| | - Philip A. Burns
- Section of Pathology
and Tumor
Biology, Leeds Institute of Molecular Medicine, St. James’s University Hospital, Leeds, LS9 7TF, U.K
| | - Klaus Pors
- Institute of Cancer Therapeutics, University of Bradford, Bradford, West Yorkshire, BD7
1DP, U.K
| |
Collapse
|
45
|
An in vitro study of the role of β-boswellic acid in the microtubule assembly dynamics. FEBS Lett 2012; 586:4132-8. [DOI: 10.1016/j.febslet.2012.10.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 09/15/2012] [Accepted: 10/05/2012] [Indexed: 11/24/2022]
|
46
|
Zhan W, Jiang Y, Banerjee A, Brodie PJ, Bane S, Kingston DGI, Liotta DC, Snyder JP. C6-C8 bridged epothilones: consequences of installing a conformational lock at the edge of the macrocycle. Chemistry 2011; 17:14792-804. [PMID: 22127984 PMCID: PMC3248799 DOI: 10.1002/chem.201102630] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Indexed: 11/08/2022]
Abstract
A series of conformationally restrained epothilone analogues with a short bridge between the methyl groups at C6 and C8 was designed to mimic the binding pose assigned to our recently reported EpoA-microtubule binding model. A versatile synthetic route to these bridged epothilone analogues has been successfully devised and implemented. Biological evaluation of the compounds against A2780 human ovarian cancer and PC3 prostate cancer cell lines suggested that the introduction of a bridge between C6-C8 reduced potency by 25-1000 fold in comparison with natural epothilone D. Tubulin assembly measurements indicate these bridged epothilone analogues to be mildly active, but without significant microtubule stabilization capacity. Molecular mechanics and DFT energy evaluations suggest the mild activity of the bridged epo-analogues may be due to internal conformational strain.
Collapse
Affiliation(s)
- Weiqiang Zhan
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta GA 30322 (USA), Fax: (+1) 404-712-8670
| | - Yi Jiang
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta GA 30322 (USA), Fax: (+1) 404-712-8670
| | - Abhijit Banerjee
- Department of Chemistry, State University of New York, Binghamton, NY 13902-6016 (USA)
| | - Peggy J. Brodie
- Department of Chemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061 (USA)
| | - Susan Bane
- Department of Chemistry, State University of New York, Binghamton, NY 13902-6016 (USA)
| | - David G. I. Kingston
- Department of Chemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061 (USA)
| | - Dennis C. Liotta
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta GA 30322 (USA), Fax: (+1) 404-712-8670
| | - James P. Snyder
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta GA 30322 (USA), Fax: (+1) 404-712-8670
| |
Collapse
|
47
|
Jiang C, Yang L, Wu WT, Guo QL, You QD. CPUYJ039, a newly synthesized benzimidazole-based compound, is proved to be a novel inducer of apoptosis in HCT116 cells with potent KSP inhibitory activity. J Pharm Pharmacol 2011; 63:1462-9. [DOI: 10.1111/j.2042-7158.2011.01350.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Abstract
Objectives
This study investigated the antiproliferative and apoptotic activities of CPUYJ039, a newly synthesized benzimidazole-based kinesin spindle protein (KSP) inhibitor, on HCT116 cell lines.
Methods
KSP-inhibitory activity was tested using the malachite-green method. The in-vitro cell proliferation inhibitory activity of the sample was measured using WST reagent. Flow-cytometric evaluation of cellular DNA content was performed. Apoptotic cells were quantified by annexin V-FITC-PI double staining. To confirm that the cytotoxic activity was a consequence of KSP inhibition, microtubule morphology and DNA segregation were observed by double staining of microtubules and DNA. The expression of Bcl-2 and Bax in CPUYJ039-treated HCT116 cells was detected by Western blotting.
Key findings
CPUYJ039 was evaluated and proved to have potent inhibitory activities in the KSP ATPase and HCT116 cell proliferation assays. CPUYJ039 inhibited the proliferation of HCT116 cells in a dose- and time-dependent manner and markedly induced G2/M phase cell-cycle arrest with characteristic monoastral spindles and subsequent cell death in HCT116 cells, which was associated with an increase of the Bax/Bcl-2 ratio.
Conclusions
These results suggest that CPUYJ039 may be a novel inducer of apoptosis in HCT116 cells with potent KSP inhibitory activity.
Collapse
Affiliation(s)
- Cheng Jiang
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, Nanjing, China
- Department of Medicinal Chemistry, Nanjing, China
| | - Lei Yang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Wu-Tong Wu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Qing-Long Guo
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, Nanjing, China
| | - Qi-Dong You
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, Nanjing, China
- Department of Medicinal Chemistry, Nanjing, China
| |
Collapse
|
48
|
Blanden AR, Mukherjee K, Dilek O, Loew M, Bane SL. 4-aminophenylalanine as a biocompatible nucleophilic catalyst for hydrazone ligations at low temperature and neutral pH. Bioconjug Chem 2011; 22:1954-61. [PMID: 21932849 DOI: 10.1021/bc2001566] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hydrazone formation and similar reactions are highly versatile and specific, but their application to biological systems has been limited by their characteristically slow reaction kinetics at neutral pH. Catalysis of these reactions through imine formation with aromatic amines such as aniline has broadened the applicability of these reactions to biomolecular labeling. High concentrations of the catalyst are necessary, which may be incompatible with the native structure of certain proteins. In this study, we investigated the utility of 4-aminophenylalanine (4a-Phe) as a catalyst for these reactions. We find that 4a-Phe is nearly as effective as aniline in catalyzing hydrazone formation between the reactive amino acid 3-formyltyrosine (3f-Tyr) and hydrazine-containing fluorophores, both free in solution and incorporated into the protein tubulin. The catalyst 4a-Phe maintains ∼70% of the catalytic efficacy of aniline and is less detrimental to the native structure of tubulin. Examination of the temperature dependence of imine formation between 3f-Tyr and 4a-Phe shows an increase in imine concentration accompanying a decrease in temperature, confirming the exothermic nature of the equilibrium reaction. Interestingly, decreasing the temperature of the 4a-Phe-catalyzed hydrazone reaction between 3f-Tyr and the fluorophore 7-hydrazinyl-4-methylcoumarin increases the overall rate of the reaction. This result indicates that the temperature dependence of the catalyst-aldehyde equilibrium is greater than the temperature dependence of the rate constant for hydrazone formation from this intermediate, and that the rate of hydrazone formation a direct function of the concentration of the intermediate imine. These results provide a platform for conducting nucleophilic catalysis under conditions that are more compatible with biomolecular targets than previously demonstrated, thereby expanding the utility of hydrazone ligations in biological systems.
Collapse
Affiliation(s)
- Adam R Blanden
- Department of Chemistry, Binghamton University, Binghamton, New York 13902, United States
| | | | | | | | | |
Collapse
|
49
|
Qi J, Blanden AR, Bane S, Kingston DGI. Design, synthesis and biological evaluation of a simplified fluorescently labeled discodermolide as a molecular probe to study the binding of discodermolide to tubulin. Bioorg Med Chem 2011; 19:5247-54. [PMID: 21802957 DOI: 10.1016/j.bmc.2011.06.082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 06/24/2011] [Accepted: 06/28/2011] [Indexed: 10/18/2022]
Abstract
The design, synthesis, and biological evaluation of a simplified fluorescently labeled discodermolide analogue possessing a dimethylaminobenzoyl fluorophore has been achieved. Stereoselective Suzuki coupling and Horner-Wadsworth-Emmons reaction comprised the key tactics for its construction. The analogue exhibited qualitatively similar activity to paclitaxel in a tubulin assembly assay, and it can thus be used as a fluorescent molecular probe to explore the local environment of the discodermolide binding site on tubulin. The results of fluorescence measurements on the tubulin-bound analogue are reported.
Collapse
Affiliation(s)
- Jun Qi
- Department of Chemistry, Virginia Tech, Blacksburg, VA 24061, USA
| | | | | | | |
Collapse
|
50
|
Landino LM, Hagedorn TD, Kim SB, Hogan KM. Inhibition of tubulin polymerization by hypochlorous acid and chloramines. Free Radic Biol Med 2011; 50:1000-8. [PMID: 21256958 PMCID: PMC3051002 DOI: 10.1016/j.freeradbiomed.2011.01.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 01/11/2011] [Accepted: 01/13/2011] [Indexed: 02/05/2023]
Abstract
Protein thiol oxidation and modification by nitric oxide and glutathione are emerging as common mechanisms to regulate protein function and to modify protein structure. Also, thiol oxidation is a probable outcome of cellular oxidative stress and is linked to degenerative disease progression. We assessed the effect of the oxidants hypochlorous acid and chloramines on the cytoskeletal protein tubulin. Total cysteine oxidation by the oxidants was monitored by labeling tubulin with the thiol-selective reagent 5-iodoacetamidofluorescein; by reaction with Ellman's reagent, 5,5'-dithiobis(2-nitrobenzoic acid); and by detecting interchain tubulin disulfides by Western blot under nonreducing conditions. Whereas HOCl induced both cysteine and methionine oxidation of tubulin, chloramines were predominantly cysteine oxidants. Cysteine oxidation of tubulin, rather than methionine oxidation, was associated with loss of microtubule polymerization activity, and treatment of oxidized tubulin with disulfide reducing agents restored a considerable portion of the polymerization activity that was lost after oxidation. By comparing the reactivity of hypochlorous acid and chloramines with the previously characterized oxidants, peroxynitrite and the nitroxyl donor Angeli's salt, we have identified tubulin thiol oxidation, not methionine oxidation or tyrosine nitration, as a common outcome responsible for decreased polymerization activity.
Collapse
Affiliation(s)
- Lisa M Landino
- Department of Chemistry, The College of William and Mary, Williamsburg, VA 23187–8795, USA.
| | | | | | | |
Collapse
|