1
|
Chen LY. Quantitative characterization of the path of glucose diffusion facilitated by human glucose transporter 1. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183975. [PMID: 35654150 DOI: 10.1016/j.bbamem.2022.183975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Glucose transporter GLUT1 is ubiquitously expressed in the human body from the red cells to the blood-brain barrier to the skeletal muscles. It is physiologically relevant to understand how GLUT1 facilitates diffusion of glucose across the cell membrane. It is also pathologically relevant because GLUT1 deficiency causes neurological disorders and anemia and because GLUT1 overexpression fuels the abnormal growth of cancer cells. This article presents a quantitative investigation of GLUT1 based on all-atom molecular-dynamics (MD) simulations of the transporter embedded in lipid bilayers of asymmetric inner-and-outer-leaflet lipid compositions, subject to asymmetric intra-and-extra-cellular environments. This is in contrast with the current literature of MD studies that have not considered both of the aforementioned asymmetries of the cell membrane. The equilibrium (unbiased) dynamics of GLUT1 shows that it can facilitate glucose diffusion across the cell membrane without undergoing large-scale conformational motions. The Gibbs free-energy profile, which is still lacking in the current literature of GLUT1, quantitatively characterizes the diffusion path of glucose from the periplasm, through an extracellular gate of GLUT1, on to the binding site, and off to the cytoplasm. This transport mechanism is validated by the experimental data that GLUT1 has low water-permeability, uptake-efflux symmetry, and 10 kcal/mol Arrhenius activation barrier around 37 °C.
Collapse
Affiliation(s)
- Liao Y Chen
- Department of Physics, The University of Texas at San Antonio, San Antonio, TX 78249, USA.
| |
Collapse
|
2
|
Chen LY, Phelix CF. Extracellular gating of glucose transport through GLUT 1. Biochem Biophys Res Commun 2019; 511:573-578. [PMID: 30824189 PMCID: PMC6452493 DOI: 10.1016/j.bbrc.2019.02.067] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 02/13/2019] [Indexed: 11/18/2022]
Abstract
The ubiquitous glucose transporter 1 (GLUT1) is physiologically and pathologically relevant in energy metabolism of the CNS, skeletal muscles, cancer cells etc. Extensive experiments on GLUT1 produced thorough understandings of its expressions, functions, and structures which were recently resolved to atomic accuracy. However, theoretical understandings are still controversial about how GLUT1 facilitates glucose diffusion across the cell membrane. Molecular dynamics (MD) simulations of the current literature have GLUT1 embedded in a symmetric bilayer of a single lipid type. They provide atomistic illustrations of the alternating access theory (AAT), but the simulation results are inconsistent with the undisputed experimental data of kinetics showing rapid transport of glucose at near-physiological temperatures, high Arrhenius activation barrier in zero-trans uptake, and large trans-acceleration at sub-physiological temperatures. In this research, we embedded GLUT1 in an asymmetric bilayer of multiple lipids to better mimic the erythrocyte membrane. We ran unbiased MD simulations at 37 °C and at 5 °C and found a new mechanism of glucose transport via GLUT1: The extracellular (EC) gate opened wide for EC glucopyranose at 37 °C and, only in the presence of intracellular (IC) glucose, at 5 °C. In the absence of IC glucose at 5 °C, the EC gate opened narrowly for acyclic glucose, gating out glucopyranose. This EC-gating mechanism is simpler than AAT and yet it well explains for the rapid glucose transport at near-physiological temperatures and large trans-acceleration at sub-physiological temperatures. It also explains why zero-trans uptake (involving the pyranose-to-aldehyde transformation) has an Arrhenius barrier ∼20 kcal/mol higher than the equilibrium exchange transport.
Collapse
Affiliation(s)
- Liao Y Chen
- Department of Physics, University of Texas at San Antonio, San Antonio, TX, 78249, USA.
| | - Clyde F Phelix
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, 78249, USA
| |
Collapse
|
3
|
Zhou YX, Zhou KM, Liu Q, Wang H, Wang W, Shi Y, Ma YQ. The effect of Glut1 and c-myc on prognosis in esophageal squamous cell carcinoma of Kazakh and Han patients. Future Oncol 2018; 14:1801-1815. [PMID: 29629851 DOI: 10.2217/fon-2017-0734] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
AIM Glucose transporter type 1 (Glut1) plays a crucial role in cancer-specific metabolism. We explored the expression of Glut1 and c-myc, the relationship between them and the effect of Glut1, c-myc on prognosis in esophageal squamous cell carcinoma. MATERIALS & METHODS Immunohistochemistry was used to examine the expression of Glut1 and c-myc. χ2 test analyzes the relationship between c-myc, Glut1 and pathological parameters. Spearman correlation analyzes the relationship between c-myc and Glut1. Survival analysis was used to investigate the effect of Glut1 and c-myc on prognosis. RESULTS Glut1 positivity was associated with tumor size (p < 0.01), depth of invasion (p = 0.021), Tumor, Node, Metastasis stage (IA+IB,II+IIB,IIIA+IIIB,IVA+IVB; p = 0.004), lymph node metastasis (p = 0.002) and nerve invasion (p = 0.050). C-myc positivity was associated with tumor location (p = 0.015), depth of invasion (p = 0.022) and lymph node metastasis (p = 0.035). There was a positive correlation between c-myc and Glut1 (r = 0.321). Patients with Glut1 c-myc co-expression had poorer prognosis. CONCLUSION Inhibiting Glut1 c-myc co-expression may improve the prognosis of esophageal squamous cell carcinoma.
Collapse
Affiliation(s)
- Ya-Xing Zhou
- Department of Pathology, First Affiliated Hospital, Xinjiang Medical University, Urumqi, Xinjiang, PR China
| | - Ke-Ming Zhou
- Hypertension Center of The People's Hospital of Xinjiang Uygur Autonomous Region, Hypertension Institute of Xinjiang Uygur Autonomous Region, Urumuqi, Xinjiang, PR China
| | - Qian Liu
- Department of Pathology, First Affiliated Hospital, Xinjiang Medical University, Urumqi, Xinjiang, PR China
| | - Hui Wang
- Department of Pathology, First Affiliated Hospital, Xinjiang Medical University, Urumqi, Xinjiang, PR China
| | - Wen Wang
- Department of Pathology, First Affiliated Hospital, Xinjiang Medical University, Urumqi, Xinjiang, PR China
| | - Yi Shi
- Department of Pathology, First Affiliated Hospital, Xinjiang Medical University, Urumqi, Xinjiang, PR China
| | - Yu-Qing Ma
- Department of Pathology, First Affiliated Hospital, Xinjiang Medical University, Urumqi, Xinjiang, PR China
| |
Collapse
|
4
|
Glucose Transporters at the Blood-Brain Barrier: Function, Regulation and Gateways for Drug Delivery. Mol Neurobiol 2016; 54:1046-1077. [PMID: 26801191 DOI: 10.1007/s12035-015-9672-6] [Citation(s) in RCA: 207] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 12/17/2015] [Indexed: 12/31/2022]
Abstract
Glucose transporters (GLUTs) at the blood-brain barrier maintain the continuous high glucose and energy demands of the brain. They also act as therapeutic targets and provide routes of entry for drug delivery to the brain and central nervous system for treatment of neurological and neurovascular conditions and brain tumours. This article first describes the distribution, function and regulation of glucose transporters at the blood-brain barrier, the major ones being the sodium-independent facilitative transporters GLUT1 and GLUT3. Other GLUTs and sodium-dependent transporters (SGLTs) have also been identified at lower levels and under various physiological conditions. It then considers the effects on glucose transporter expression and distribution of hypoglycemia and hyperglycemia associated with diabetes and oxygen/glucose deprivation associated with cerebral ischemia. A reduction in glucose transporters at the blood-brain barrier that occurs before the onset of the main pathophysiological changes and symptoms of Alzheimer's disease is a potential causative effect in the vascular hypothesis of the disease. Mutations in glucose transporters, notably those identified in GLUT1 deficiency syndrome, and some recreational drug compounds also alter the expression and/or activity of glucose transporters at the blood-brain barrier. Approaches for drug delivery across the blood-brain barrier include the pro-drug strategy whereby drug molecules are conjugated to glucose transporter substrates or encapsulated in nano-enabled delivery systems (e.g. liposomes, micelles, nanoparticles) that are functionalised to target glucose transporters. Finally, the continuous development of blood-brain barrier in vitro models is important for studying glucose transporter function, effects of disease conditions and interactions with drugs and xenobiotics.
Collapse
|
5
|
Hajiaghaalipour F, Khalilpourfarshbafi M, Arya A. Modulation of glucose transporter protein by dietary flavonoids in type 2 diabetes mellitus. Int J Biol Sci 2015; 11:508-24. [PMID: 25892959 PMCID: PMC4400383 DOI: 10.7150/ijbs.11241] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 02/08/2015] [Indexed: 12/23/2022] Open
Abstract
Diabetes mellitus (DM) is a metabolic diseases characterized by hyperglycemia due to insufficient or inefficient insulin secretory response. This chronic disease is a global problem and there is a need for greater emphasis on therapeutic strategies in the health system. Phytochemicals such as flavonoids have recently attracted attention as source materials for the development of new antidiabetic drugs or alternative therapy for the management of diabetes and its related complications. The antidiabetic potential of flavonoids are mainly through their modulatory effects on glucose transporter by enhancing GLUT-2 expression in pancreatic β cells and increasing expression and promoting translocation of GLUT-4 via PI3K/AKT, CAP/Cb1/TC10 and AMPK pathways. This review highlights the recent findings on beneficial effects of flavonoids in the management of diabetes with particular emphasis on the investigations that explore the role of these compounds in modulating glucose transporter proteins at cellular and molecular level.
Collapse
Affiliation(s)
- Fatemeh Hajiaghaalipour
- 1. Department of Pharmacy, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Manizheh Khalilpourfarshbafi
- 2. Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), 42300 Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia
| | - Aditya Arya
- 1. Department of Pharmacy, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
6
|
Mueckler M, Thorens B. The SLC2 (GLUT) family of membrane transporters. Mol Aspects Med 2013. [PMID: 23506862 DOI: 10.1016/j.mam.2012.07.001,] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2022]
Abstract
GLUT proteins are encoded by the SLC2 genes and are members of the major facilitator superfamily of membrane transporters. Fourteen GLUT proteins are expressed in the human and they are categorized into three classes based on sequence similarity. All GLUTs appear to transport hexoses or polyols when expressed ectopically, but the primary physiological substrates for several of the GLUTs remain uncertain. GLUTs 1-5 are the most thoroughly studied and all have well established roles as glucose and/or fructose transporters in various tissues and cell types. The GLUT proteins are comprised of ∼500 amino acid residues, possess a single N-linked oligosaccharide, and have 12 membrane-spanning domains. In this review we briefly describe the major characteristics of the 14 GLUT family members.
Collapse
Affiliation(s)
- Mike Mueckler
- Department of Cell Biology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | | |
Collapse
|
7
|
Mueckler M, Thorens B. The SLC2 (GLUT) family of membrane transporters. Mol Aspects Med 2013; 34:121-38. [PMID: 23506862 DOI: 10.1016/j.mam.2012.07.001] [Citation(s) in RCA: 848] [Impact Index Per Article: 77.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 07/03/2012] [Indexed: 12/11/2022]
Abstract
GLUT proteins are encoded by the SLC2 genes and are members of the major facilitator superfamily of membrane transporters. Fourteen GLUT proteins are expressed in the human and they are categorized into three classes based on sequence similarity. All GLUTs appear to transport hexoses or polyols when expressed ectopically, but the primary physiological substrates for several of the GLUTs remain uncertain. GLUTs 1-5 are the most thoroughly studied and all have well established roles as glucose and/or fructose transporters in various tissues and cell types. The GLUT proteins are comprised of ∼500 amino acid residues, possess a single N-linked oligosaccharide, and have 12 membrane-spanning domains. In this review we briefly describe the major characteristics of the 14 GLUT family members.
Collapse
Affiliation(s)
- Mike Mueckler
- Department of Cell Biology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | | |
Collapse
|
8
|
The SLC2 (GLUT) family of membrane transporters. Mol Aspects Med 2013. [PMID: 23506862 DOI: 10.1016/j.mam.2012.07.001;] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
GLUT proteins are encoded by the SLC2 genes and are members of the major facilitator superfamily of membrane transporters. Fourteen GLUT proteins are expressed in the human and they are categorized into three classes based on sequence similarity. All GLUTs appear to transport hexoses or polyols when expressed ectopically, but the primary physiological substrates for several of the GLUTs remain uncertain. GLUTs 1-5 are the most thoroughly studied and all have well established roles as glucose and/or fructose transporters in various tissues and cell types. The GLUT proteins are comprised of ∼500 amino acid residues, possess a single N-linked oligosaccharide, and have 12 membrane-spanning domains. In this review we briefly describe the major characteristics of the 14 GLUT family members.
Collapse
|
9
|
TNFα and IL-17 cooperatively stimulate glucose metabolism and growth factor production in human colorectal cancer cells. Mol Cancer 2013; 12:78. [PMID: 23866118 PMCID: PMC3725176 DOI: 10.1186/1476-4598-12-78] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 07/08/2013] [Indexed: 12/18/2022] Open
Abstract
Background Inflammation is a well-known etiological factor for colorectal cancer, but mechanisms underlying the linkage between inflammation and cancer are incompletely understood. We hypothesized that two pro-inflammatory cytokines, TNFα and IL-17, might play a role in promoting colorectal carcinogenesis. Aerobic glycolysis is a metabolic adaptation that promotes the survival/proliferation of cancer cells. Paracrine signaling between tumor cells and cancer-associated fibroblasts also plays a role in carcinogenesis. Methods The effect of TNFα and IL-17 on aerobic glycolysis and growth factor production in cultured human colorectal cancer cells was investigated. Glucose utilization and lactate production were quantified by measuring the disappearance of glucose and appearance of lactate in the culture medium. Glucose transporter and glycolytic enzyme expression levels were measured by immunoblotting. Results TNFα and IL-17 cooperatively stimulated glycolysis in HT-29, T84, Caco-2 and HCT116 colorectal cancer cells. Treatment of HT-29 cells with TNFα plus IL-17 also increased the expression of HIF-1α and c-myc, two factors know to induce the transcription of genes encoding components of the glycolytic pathway. To further investigate mechanisms for cytokine-stimulated glycolysis, the effects of TNFα and IL-17 on expression of six members and one regulator of the glycolytic pathway were investigated. TNFα and IL-17 cooperatively increased the expression of the glucose transporter SLC2A1 and hexokinase-2 but did not regulate expression of glucose transporter SLC2A3, enolase-1, pyruvate kinase M2, lactate dehydrogenase A, or 6-phoshofructo-2-kinase/fructose-2,6-bisphosphatase-3 (PFKFB3). Experiments with inhibitors indicated that HIF-1α played a role in induction of SLC2A1 and that the transcription factor NF-κB played a role in induction of hexokinase-2 by TNFα and IL-17. TNFα and IL-17 also synergistically stimulated production by HT-29 cells of a growth factor that simulated proliferation/survival of NIL8 fibroblastic cells. The activity of this factor was not specifically inhibited by the EGFR inhibitor AG1478, indicating that it is not an EGFR ligand. Conclusions Chronic inflammation is known to promote colorectal tumorigenesis. The pro-inflammatory cytokines TNFα and IL-17 may contribute to this effect by stimulating glycolysis and growth factor production in colorectal cancer cells.
Collapse
|
10
|
Mueckler M, Thorens B. The SLC2 (GLUT) family of membrane transporters. Mol Aspects Med 2013. [DOI: 10.1016/j.mam.2012.07.001\] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
11
|
The SLC2 (GLUT) family of membrane transporters. Mol Aspects Med 2013. [DOI: 10.1016/j.mam.2012.07.001 or 1=1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
12
|
Cui W, Du B, Zhou W, Jia Y, Sun G, Sun J, Zhang D, Yuan H, Xu F, Lu X, Luo P, Miao L. Relationship between five GLUT1 gene single nucleotide polymorphisms and diabetic nephropathy: a systematic review and meta-analysis. Mol Biol Rep 2012; 39:8551-8. [PMID: 22707195 DOI: 10.1007/s11033-012-1711-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2012] [Accepted: 06/06/2012] [Indexed: 12/20/2022]
Abstract
So far, case-control studies on the association between glucose transporter 1 (GLUT1) gene single nucleotide polymorphisms (SNPs) and diabetic nephropathy (DN) have generated considerable controversy. To clarify the linkage of GLUT1 SNPs on the risk of DN, a systematic review and meta-analysis was performed. A comprehensive literature search of electronic databases was conducted to obtain relative studies. Nine case-control studies were included. Significant differences were found between XbaI SNP (rs841853) and increased risk of DN in all genetic models. Subgroup analyses for Caucasians population and DN from both type 1 and type 2 diabetes also revealed positive results. For Enh2-1 SNP (rs841847), Enh2-2 SNP (rs841848) and HaeIII SNP (rs1385129), obvious linkages were demonstrated in recessive model. However, analysis for the association between HpyCH4V SNP (rs710218) and the susceptibility of DN showed no significance. Likewise, negative outcome was also found in the assessment for the influence of XbaI or Enh2-2 SNP on the pathogenesis progress of DN. The evidence currently available shows that XbaI, Enh2 and HaeIII SNPs, but not HpyCH4V SNP, in GLUT1 gene may be genetic susceptibility to DN. However, data does not support the association between either XbaI or Enh2-2 SNP and the severity of DN.
Collapse
Affiliation(s)
- Wenpeng Cui
- Department of Nephrology, Second Hospital, Jilin University, 218 Ziqiang Street, Changchun 130041, Jilin, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Amann T, Hellerbrand C. GLUT1 as a therapeutic target in hepatocellular carcinoma. Expert Opin Ther Targets 2010; 13:1411-27. [PMID: 19874261 DOI: 10.1517/14728220903307509] [Citation(s) in RCA: 159] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Primary hepatocellular carcinoma (HCC) is one of the most fatal cancers in humans with rising incidence in many regions around the world. Currently, no satisfactory curative pharmacological treatment is available, and the outcome is mostly poor. Recently, we have shown that the glucose transporter GLUT1 is increased in a subset of patients with HCC and functionally affects tumorigenicity. GLUT1 is a rate-limiting transporter for glucose uptake, and its expression correlates with anaerobic glycolysis. This phenomenon is also known as the Warburg effect and recently became of great interest, since it affects not only glucose uptake and utilization but also has an influence on tumorigenic features like metastasis, chemoresistance and escape from immune surveillance. Consistent with this, RNA-interference-mediated inhibition of GLUT1 expression in HCC cells resulted in reduced tumorigenicity. Together, these findings indicate that GLUT1 is a novel and attractive therapeutic target for HCC. This review summarizes our current knowledge on the expression and function of GLUT1 in HCC, available drugs/strategies to inhibit GLUT1 expression or function, and potential side effects of such therapeutic strategies.
Collapse
Affiliation(s)
- Thomas Amann
- University Hospital Regensburg, Department of Internal Medicine I, D-93042 Regensburg, Germany
| | | |
Collapse
|
14
|
Identification of a key residue determining substrate affinity in the human glucose transporter GLUT1. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:1051-5. [PMID: 19366592 DOI: 10.1016/j.bbamem.2009.01.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Revised: 01/27/2009] [Accepted: 01/27/2009] [Indexed: 11/21/2022]
Abstract
Asn(331) in transmembrane segment 7 of the yeast Saccharomyces cerevisiae transporter Hxt2 has been identified as a single key residue for high-affinity glucose transport by comprehensive chimera approach. The glucose transporter GLUT1 of mammals belongs to the same major facilitator superfamily as Hxt2 and may therefore show a similar mechanism of substrate recognition. The functional role of Ile(287) in human GLUT1, which corresponds to Asn(331) in Hxt2, was studied by its replacement with each of the other 19 amino acids. The mutant transporters were individually expressed in a recently developed yeast expression system for GLUT1. Replacement of Ile(287) generated transporters with various affinities for glucose that correlated well with those of the corresponding mutants of the yeast transporter. Residues exhibiting high affinity for glucose were medium-sized, non-aromatic, uncharged and irrelevant to hydrogen-bond capability, suggesting an important role of van der Waals interaction. Sensitivity to phloretin, a specific inhibitor for the presumed exofacial glucose binding site, was decreased in two mutants, whereas that to cytochalasin B, a specific inhibitor for the presumed endofacial glucose binding site, was unchanged in the mutants. These results suggest that Ile(287) is a key residue for maintaining high glucose affinity in GLUT1 as revealed in Hxt2 and is located at or near the exofacial glucose binding site.
Collapse
|
15
|
Zambonin L, Prata C, Cabrini L, Maraldi T, Fiorentini D, Vieceli Dalla Sega F, Hakim G, Landi L. Effect of radical stress and ageing on the occurrence of trans fatty acids in rats fed a trans-free diet. Free Radic Biol Med 2008; 44:594-601. [PMID: 18021747 DOI: 10.1016/j.freeradbiomed.2007.10.034] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Revised: 09/11/2007] [Accepted: 10/16/2007] [Indexed: 11/16/2022]
Abstract
In a previous paper, we demonstrated that tissue trans fatty acids can not only derive from the diet but also be endogenously formed. The central focus of this study was to prove that the in vivo isomerization occurs via a radical process. Two different models of radical insult were used: CCl(4) and AAPH injection to rats fed a diet completely free of trans isomers. Following this acute radical stress, a significant increase in unnatural trans fatty acid content of erythrocyte, kidney, and heart, but not liver, was observed. These results can be mainly explained by the high content, particularly in the liver, of antioxidant vitamins A and E that exhibit also an "anti-isomerizing" effect. Since during ageing cellular components are exposed to increasing radical insults, the observation of a significant trans fatty acid accumulation in 30-month-old rats could confirm that the in vivo formation of unnatural isomers is due to a radical process. Trans fatty acids can influence the physical characteristics of bilayer microdomains, affecting membrane properties and functions; thus, knowledge of biological radical species responsible for cis/trans isomerization and their possible sources can provide protective systems for preserving lipid geometry.
Collapse
Affiliation(s)
- Laura Zambonin
- Dipartimento di Biochimica, Alma Mater Studiorum Università di Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Mueckler M, Makepeace C. Transmembrane segment 6 of the Glut1 glucose transporter is an outer helix and contains amino acid side chains essential for transport activity. J Biol Chem 2008; 283:11550-5. [PMID: 18245775 DOI: 10.1074/jbc.m708896200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Experimental data and homology modeling suggest a structure for the exofacial configuration of the Glut1 glucose transporter in which 8 transmembrane helices form an aqueous cavity in the bilayer that is stabilized by four outer helices. The role of transmembrane segment 6, predicted to be an outer helix in this model, was examined by cysteine-scanning mutagenesis and the substituted cysteine accessibility method using the membrane-impermeant, sulfhydryl-specific reagent, p-chloromercuribenzene-sulfonate (pCMBS). A fully functional Glut1 molecule lacking all 6 native cysteine residues was used as a template to produce a series of 21 Glut1 point mutants in which each residue along helix 6 was individually changed to cysteine. These mutants were expressed in Xenopus oocytes, and their expression levels, functional activities, and sensitivities to inhibition by pCMBS were determined. Cysteine substitutions at Leu(204) and Pro(205) abolished transport activity, whereas substitutions at Ile(192), Pro(196), Gln(200), and Gly(201) resulted in inhibition of activity that ranged from approximately 35 to approximately 80%. Cysteine substitutions at Leu(188), Ser(191), and Leu(199) moderately augmented specific transport activity relative to the control. These results were dramatically different from those previously reported for helix 12, the structural cognate of helix 6 in the pseudo-symmetrical structural model, for which none of the 21 single-cysteine mutants exhibited reduced activity. Only the substitution at Leu(188) conferred inhibition by pCMBS, suggesting that most of helix 6 is not exposed to the external solvent, consistent with its proposed role as an outer helix. These data suggest that helix 6 contains amino acid side chains that are critical for transport activity and that structurally analogous outer helices may play distinct roles in the function of membrane transporters.
Collapse
Affiliation(s)
- Mike Mueckler
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, 63110, USA.
| | | |
Collapse
|
17
|
Mueckler M, Makepeace C. Transmembrane Segment 12 of the Glut1 Glucose Transporter Is an Outer Helix and Is Not Directly Involved in the Transport Mechanism. J Biol Chem 2006; 281:36993-8. [PMID: 17020877 DOI: 10.1074/jbc.m608158200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A model has been proposed for the exofacial configuration of the Glut1 glucose transporter in which eight transmembrane domains form an inner helical bundle stabilized by four outer helices. The role of transmembrane segment 12, predicted to be an outer helix in this hypothetical model, was examined by cysteine-scanning mutagenesis and the substituted cysteine accessibility method using the membrane-impermeant, sulfhydryl-specific reagent, p-chloromercuribenzenesulfonate (pCMBS). A previously characterized functional cysteine-less Glut1 molecule was used to produce 21 Glut1 point mutants by changing each residue along helix 12 to a cysteine residue. These mutants were then expressed in Xenopus oocytes, and their protein levels, functional activities, and sensitivities to pCMBS were determined. Strikingly, in contrast to all nine other predicted Glut1 transmembrane helices that have been previously examined by this method, none of the 21 helix 12 single-cysteine mutants exhibited significant inhibition of specific transport activity. Also unlike most other Glut1 transmembrane domains in which solvent-accessible residues lie along a single face of the helix, mutations in five consecutive residues predicted to lie close to the exofacial face of the membrane resulted in sensitivity to pCMBS-induced transport inhibition. These results suggest that helix 12 plays a passive stabilizing role in the structure of Glut1 and is not directly involved in the transport mechanism. Additionally, the pCMBS data indicate that the predicted exoplasmic end of helix 12 is completely exposed to the external solvent when the transporter is in its exofacial configuration.
Collapse
Affiliation(s)
- Mike Mueckler
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | |
Collapse
|
18
|
Zambonin L, Ferreri C, Cabrini L, Prata C, Chatgilialoglu C, Landi L. Occurrence of trans fatty acids in rats fed a trans-free diet: a free radical-mediated formation? Free Radic Biol Med 2006; 40:1549-56. [PMID: 16632115 DOI: 10.1016/j.freeradbiomed.2005.12.021] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2005] [Revised: 11/17/2005] [Accepted: 12/21/2005] [Indexed: 11/22/2022]
Abstract
Trans isomers of unsaturated fatty acids are absorbed from the diet, due to their presence in diary fat and hydrogenated vegetable oils, and health concern has risen due to their effects on lipid risk factors in cardiovascular diseases. On the basis of the efficiency of the thiyl-radical-catalyzed cis/trans isomerization in vitro and the presence of many sulfur-containing compounds in the cell, the aim of this study was to demonstrate that trans geometry of lipid double bonds can be endogenously generated within membrane phospholipids. The study reports trans fatty acids occurrence in tissue and erythrocyte phospholipids of young adult rats fed a diet completely free of trans isomers. Results show that tissues are differently prone to the endogenous isomerization and that, following a free radical attack, trans fatty acids can reach very high amounts. The effectiveness of this process is considerably inhibited in the presence of all-trans retinol, confirming previous data in model membranes. Our results suggest that geometrical isomerization of unsaturated fatty acids, which causes a structural modification of membrane lipids and may influence basic membrane properties and vital biochemical functions, can occur under radical stress conditions and could be efficiently prevented by vitamin A.
Collapse
Affiliation(s)
- Laura Zambonin
- Dipartimento di Biochimica, Università di Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | | | | | | | | | | |
Collapse
|
19
|
Ferreri C, Angelini F, Chatgilialoglu C, Dellonte S, Moschese V, Rossi P, Chini L. Trans fatty acids and atopic eczema/dermatitis syndrome: the relationship with a free radical cis-trans isomerization of membrane lipids. Lipids 2006; 40:661-7. [PMID: 16196416 DOI: 10.1007/s11745-005-1428-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The formation of trans FA residues in membrane phospholipids may be due to a free radical-catalyzed isomerization process occurring to the cis unsaturated FA moieties. Radical stress is well documented in inflammatory processes of atopic diseases, but no data are yet available about a possible association with trans FA detected in these patients. We investigated the presence of trans lipid isomers in the erythrocyte and T-lymphocyte membranes of 26 children affected by atopic eczema/dermatitis syndrome (AEDS). Trans lipid isomers were found in both cell membranes, up to a total content of 2.7 and 4.9% of the FA composition, respectively. By using the geometrical trans lipid library derived from in vitro models of thiyl radical-catalyzed isomerization, oleic and arachidonic acid isomers were detected. The statistical significance was evaluated by comparison with an age-matched control group. These results suggest the role of an endogenous free radical isomerization path occurring to membrane unsaturated lipids, complementary to the dietary contribution, which can be involved in the lipid impairment in AEDS. This study contributes to lipidomic research regarding the double bond structure and the influence of a geometrical change of membrane lipids in physiology and diseases.
Collapse
Affiliation(s)
- Carla Ferreri
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, 40129 Bologna, Italy.
| | | | | | | | | | | | | |
Collapse
|
20
|
Koumanov F, Jin B, Yang J, Holman GD. Insulin signaling meets vesicle traffic of GLUT4 at a plasma-membrane-activated fusion step. Cell Metab 2005; 2:179-89. [PMID: 16154100 DOI: 10.1016/j.cmet.2005.08.007] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2005] [Revised: 06/14/2005] [Accepted: 08/16/2005] [Indexed: 11/21/2022]
Abstract
A hypothesis that accounts for most of the available literature on insulin-stimulated GLUT4 translocation is that insulin action controls the access of GLUT4 vesicles to a constitutively active plasma-membrane fusion process. However, using an in vitro fusion assay, we show here that fusion is not constitutively active. Instead, the rate of fusion activity is stimulated 8-fold by insulin. Both the magnitude and time course of stimulated in vitro fusion recapitulate the cellular insulin response. Fusion is cell cytoplasm and SNARE dependent but does not require cell cytoskeleton. Furthermore, insulin activation of the plasma-membrane fraction of the fusion reaction is the essential step in regulation. Akt from the cytoplasm fraction is required for fusion. However, the participation of Akt in the stimulation of in vitro fusion is dependent on its in vitro recruitment onto the insulin-activated plasma membrane.
Collapse
|
21
|
Choeiri C, Staines W, Miki T, Seino S, Messier C. Glucose transporter plasticity during memory processing. Neuroscience 2005; 130:591-600. [PMID: 15590143 DOI: 10.1016/j.neuroscience.2004.09.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2004] [Indexed: 10/26/2022]
Abstract
Various types of learning, including operant conditioning, induce an increase in cellular activation concomitant with an increase in local cerebral glucose utilization (LCGU). This increase is mediated by increased cerebral blood flow or changes in brain capillary density and diameter. Because glucose transporters are ultimately responsible for glucose uptake, we examined their plastic expression in response to cellular activation. In vitro and in vivo studies have demonstrated that cerebral glucose transporter 1 (GLUT1) expression consistently parallels changes in LCGU. The present study is the first to investigate the effect of memory processing on glucose transporters expression. Changes in GLUT expression produced by training in an operant conditioning task were measured in the brain of CD1 mice. Using semi-quantitative immunohistochemistry, Western blot and real time RT-PCR the cerebral GLUT1 and GLUT3 expression was quantified immediately, 220 min and 24 h following training. Relative to sham-trained and naive controls, operant conditioning training induced an immediate increase in GLUT1 immunoreactivity level in the hippocampus CA1 pyramidal cells as well as in the sensorimotor cortex. At longer post-learning delays, GLUT1 immunoreactivity decreased in the sensorimotor cortex and putamen. Parallel to the changes in protein levels, hippocampus GLUT1 mRNA level also increased immediately following learning. No effect of learning was found on hippocampal GLUT3 protein or mRNA expression. Measures of changes in glucose transporters expression present a link between cellular activation and glucose metabolism. The learning-induced localized increases in GLUT1 protein as well as mRNA levels observed in the present study confirm the previous findings that GLUT1 expression is plastic and respond to changes in cellular metabolic demands.
Collapse
Affiliation(s)
- C Choeiri
- School of Psychology, University of Ottawa, 11 Marie Curie, Room 215, Ottawa, Ontario, Canada K1N 6N5
| | | | | | | | | |
Collapse
|
22
|
Uldry M, Thorens B. The SLC2 family of facilitated hexose and polyol transporters. Pflugers Arch 2004; 447:480-9. [PMID: 12750891 DOI: 10.1007/s00424-003-1085-0] [Citation(s) in RCA: 336] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2003] [Accepted: 04/04/2003] [Indexed: 12/18/2022]
Abstract
The SLC2 family of glucose and polyol transporters comprises 13 members, the glucose transporters (GLUT) 1-12 and the H(+)- myo-inositol cotransporter (HMIT). These proteins all contain 12 transmembrane domains with both the amino and carboxy-terminal ends located on the cytoplasmic side of the plasma membrane and a N-linked oligosaccharide side-chain located either on the first or fifth extracellular loop. Based on sequence comparison, the GLUT isoforms can be grouped into three classes: class I comprises GLUT1-4; class II, GLUT6, 8, 10, and 12 and class III, GLUT5, 7, 9, 11 and HMIT. Despite their sequence similarity and the presence of class-specific signature sequences, these transporters carry various hexoses and HMIT is a H(+)/ myo-inositol co-transporter. Furthermore, the substrate transported by some isoforms has not yet been identified. Tissue- and cell-specific expression of the well-characterized GLUT isoforms underlies their specific role in the control of whole-body glucose homeostasis. Numerous studies with transgenic or knockout mice indeed support an important role for these transporters in the control of glucose utilization, glucose storage and glucose sensing. Much remains to be learned about the transport functions of the recently discovered isoforms (GLUT6-13 and HMIT) and their physiological role in the metabolism of glucose, myo-inositol and perhaps other substrates.
Collapse
Affiliation(s)
- Marc Uldry
- Institute of Pharmacology and Toxicology, University of Lausanne, 27, Rue du Bugnon, 1005, Lausanne, Switzerland
| | | |
Collapse
|
23
|
Zuo S, Hellman U, Lundahl P. On the oligomeric state of the red blood cell glucose transporter GLUT1. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2004; 1618:8-16. [PMID: 14643928 DOI: 10.1016/j.bbamem.2003.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We stripped human red blood cell membranes of cytoskeleton proteins at pH 12 without reductant, partially solubilized the obtained vesicles by use of octaethylene glycol n-dodecyl ether and purified the glucose transporter GLUT1 by anion-exchange chromatography followed by sulfhydryl-affinity chromatography, which removed most of the nucleoside transporter (NT) and the lipids. Eighty percent of the sulfhydryl-bound GLUT1 could be eluted with sodium dodecyl sulfate (SDS) indicating that the bound protein was multimeric. Matrix-assisted laser desorption ionization-time of flight-mass spectrometry (MALDI-ToF-MS) of the trypsinized major SDS-PAGE zone of the purified material identified GLUT1 but no other membrane protein. Transmembrane helices 1 and 8 were among the detected fragments. The reconstituted purified GLUT1 showed glucose transport activity, although only approximately 0.05 high-affinity cytochalasin B (CB) binding sites were present per GLUT1 monomer. The vesicles used as starting material for the purification showed 0.4 CB sites per GLUT1 monomer, similar to vesicles prepared in the presence of dithioerythritol. The data are consistent with the coexistence of monomeric GLUT1 with high-affinity CB-binding activity and preferentially solubilized multimeric GLUT1 with no CB-binding activity in the red blood cell membrane vesicles prepared without reductant.
Collapse
Affiliation(s)
- Shusheng Zuo
- Department of Biochemistry, Biomedical Center, Uppsala University, Box 576, S-751 23 Uppsala, Sweden.
| | | | | |
Collapse
|
24
|
Montgomery JM, Augostini P, Stewart GL. Glucose uptake and metabolism in the Trichinella spiralis nurse cell. Int J Parasitol 2003; 33:401-12. [PMID: 12705933 DOI: 10.1016/s0020-7519(03)00013-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Isolated Trichinella spiralis nurse cells transport a significantly greater amount of glucose/mg of protein than the normal skeletal muscle cell line (L6). V(max) and K(m) estimations revealed that nurse cells have a much higher saturation point than L6 cells for glucose. The effects of numerous physiological conditions (Na(+) concentration, pH, and temperature) on nurse cell glucose uptake were investigated. It was determined that sodium concentration had no effect on glucose uptake. Low (<6.5) and high (>7.3) pH and low (5 degrees C) temperatures significantly effected glucose uptake. The two hormones, insulin and epinephrine, appeared to have little, if any, influence on the rate of glucose uptake by nurse cells. Glucose uptake was inhibited in the presence of 6-carbon carbohydrates. The H(+)/glucose symport inhibitors, dicyclohexylcarbodiimide (DCCD) and Carbonyl cyanide 4-trifluoromethoxyphenlhydrazone (FCCP), and the facilitated diffusion inhibitor phloretin also inhibited glucose uptake. Oubain, a Na(+)/glucose symport inhibitor, did not inhibit glucose uptake. These data, in conjunction with Western blot analyses, revealed that the transport of glucose occurs via H(+)/glucose symport and facilitated diffusion, perhaps through the glucose transport proteins GLUT 1 and/or 4. It was also demonstrated that nurse cells are capable of synthesising glycogen. It appears that glycogen is in a constant state of flux and physiological conditions, such as glucose concentration, significantly influence the synthesis of this macromolecule. We conclude that these results are consistent with the hypothesis that nurse cells, at least maintained in vitro, are metabolically highly active but show significant divergence from normal muscle cells in several fundamental aspects of sugar metabolism.
Collapse
Affiliation(s)
- Joel M Montgomery
- Department of Biology, University of Texas at Arlington, 76019, USA.
| | | | | |
Collapse
|
25
|
Lagerquist Hägglund C, Lundahl P. Centrifugal and chromatographic analyses of tryptophan and tyrosine uptake by red blood cells and GLUT1 proteoliposomes with permeability estimates and observations on dihydrocytochalasin B. JOURNAL OF BIOCHEMICAL AND BIOPHYSICAL METHODS 2003; 55:127-40. [PMID: 12628696 DOI: 10.1016/s0165-022x(02)00175-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We analyzed transport into liposomes and proteoliposomes, separated the free and internalized radioactively labeled substrates by size-exclusion chromatography (SEC) and observed a net influx owing to nonfacilitated diffusion across the lipid bilayers during the separation. The permeabilities (10(-9) cm/s) of glucose transporter (GLUT1) proteoliposomes were estimated to be 4.6, 1.0, 1.4 and 2.1 for D-glucose, L-glucose, L-Tyr and L-Trp, respectively; 15, 3.3, 5.1 and 2.1 times higher than the corresponding permeabilities of liposomes. These values indicated that GLUT1 did not transport Tyr or Trp, or transported Tyr, and only Tyr, slowly. This interpretation was supported by further analyses. Dihydrocytochalasin B inhibited the transport of Tyr and, partially, Trp into human red blood cells (centrifugal analyses). It did not inhibit Tyr and Trp influx into GLUT1 proteoliposomes, but partitioned strongly into the bilayers and seemed to make them fragile. The GLUT1 inhibitor cytochalasin B and the GLUT1 substrate 2-deoxy-D-glucose did not inhibit Tyr transport into the cells. Upon immobilized biomembrane affinity chromatography, Trp decreased the cytochalasin B retardation by GLUT1 only at levels far above the physiological Trp concentration. Ethanol (commonly added to aqueous solutions for enhancing a compound's solubility) halved the retardation at 4% (v/v) concentration. Drastic modification of the SEC method is required to allow permeability measurements with nonlabeled and highly permeable substrates.
Collapse
|
26
|
Ferreri C, Faraone Mennella MR, Formisano C, Landi L, Chatgilialoglu C. Arachidonate geometrical isomers generated by thiyl radicals: the relationship with trans lipids detected in biological samples. Free Radic Biol Med 2002; 33:1516-26. [PMID: 12446209 DOI: 10.1016/s0891-5849(02)01083-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The presence of trans fatty acids in mammalians is attributed to exogenous sources; nevertheless, trans isomers could be easily formed by free radical-catalyzed isomerization processes in vivo. The isomerization of methyl arachidonate (all-cis isomer) catalyzed by thiyl radical is proposed as a methodology applicable in biochemical laboratories, which produces mono- and di-trans isomers. Carbon-13 nuclear magnetic resonance spectroscopy shows that the carbon atom in position 15 is characteristic for each mono- and di-trans isomer. Antioxidants, such as alpha-tocopherol and all-trans-retinol acetate, inhibited the isomerization process. Trans phospholipids are formed in erythrocyte membranes by exposing blood to gamma-irradiation in the presence of thiols, which is in contradiction with the known role of these compounds as radioprotectors. Trans isomers are also analyzed in tissues harvested from breast cancer patients and compared to the adipose breast tissue taken a few centimeters from the edge of the tumor from the same patient. This work is generally aimed at contributing to the debate on trans fatty acids and stimulating a reconsideration of the current view on the exclusive presence of cis double bonds in cell membranes by studying radical processes that could affect or protect this natural configuration.
Collapse
Affiliation(s)
- Carla Ferreri
- ISOF, Consiglio Nazionale delle Ricerche, Bologna, Italy.
| | | | | | | | | |
Collapse
|
27
|
Choeiri C, Staines W, Messier C. Immunohistochemical localization and quantification of glucose transporters in the mouse brain. Neuroscience 2002; 111:19-34. [PMID: 11955709 DOI: 10.1016/s0306-4522(01)00619-4] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A family of seven facilitative glucose transporters (Glut1-5, 7 and 8) mediates the cellular uptake of glucose. In the brain, Glut2, Glut5 and Glut8 are found at relatively low levels whereas Glut1, Glut3 and Glut4 were reported in abundance in several brain regions. Using immunofluorescence, this study investigated, compared and quantified the localization of the brain major glucose transporters, Glut1, Glut3 and Glut4, in the different cerebral areas of CD1 mice. Most of the staining of Glut1, Glut3 and Glut4 in the mouse brain coincides with observations made in rats. The results confirm the cortical neuropil distribution of Glut3, the prominence of this transporter in the mossy fiber field of the hippocampus and the Glut3 and Glut4 immunostaining of the hippocampal pyramidal cell layer. The present study also reports novel localizations of the transporters such as the presence of Glut3 in neuronal perikarya, Glut4-labeled neurons in the CA3 of the hippocampus and the subiculum. In the cerebellum, Glut3 shows subcellular localization to the base of the Purkinje cell bodies near the axon hillock. Furthermore, an important population of Golgi cells was found to be strongly immunostained for Glut4 in the granular cell layer of the cerebellum. The quantification results suggest that the relative abundance of Glut1 in the frontal and motor cortices coincides well with the high-energy demands of these brain regions. However, the Glut4-selective abundance in cerebral motor areas supports its suggested role in providing the energy needed for the control of the motor activity. The reported neuropil distribution of Glut3 seems to uphold its suggested role in synaptic energy provision and neurotransmitter synthesis. We conclude that the cellular and regional distributions of the glucose transporters in the rodent brain seem to be relevant to their corresponding functions.
Collapse
Affiliation(s)
- C Choeiri
- School of Psychology, University of Ottawa, Vanier Building, Room 202, Ottawa, ON, Canada K1N 6N5
| | | | | |
Collapse
|
28
|
Gottschalk I, Lagerquist C, Zuo SS, Lundqvist A, Lundahl P. Immobilized-biomembrane affinity chromatography for binding studies of membrane proteins. J Chromatogr B Analyt Technol Biomed Life Sci 2002; 768:31-40. [PMID: 11939556 DOI: 10.1016/s0378-4347(01)00483-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Analyses of specific interactions between solutes and a membrane protein can serve to characterize the protein. Frontal affinity chromatography of an interactant on a column containing the membrane protein immobilized in a lipid environment is a simple and robust approach for series of experiments with particular protein molecules. Regression analysis of the retention volumes at a series of interactant concentrations shows the affinity of the protein for the interactant and the amount of active binding sites. The higher the affinity, the fewer sites are required to give sufficient retention. Competition experiments provide the affinities of even weakly binding solutes and the non-specific retention of the primary interactant. Hummel and Dreyer size-exclusion chromatography allows complementary analyses of non-immobilized membrane materials. Analyses of the human facilitative glucose transporter GLUT1 by use of the inhibitor cytochalasin B (radioactively labeled) and the competitive substrate D-glucose (non-labeled) showed that GLUT1 interconverted between two states, exhibiting one or two cytochalasin B-binding sites per two GLUTI monomers, dependent on the membrane composition and environment. Similar analyses of a nucleoside transporter, a photosynthetic reaction center, nicotinic acetylcholine receptors and a P-glycoprotein, alternative techniques, and immobilized-liposome chromatographic approaches are presented briefly.
Collapse
Affiliation(s)
- Ingo Gottschalk
- Department of Biochemistry, Biomedical Center, Uppsala University, Sweden
| | | | | | | | | |
Collapse
|
29
|
Klip A, Marette A. Regulation of Glucose Transporters by Insulin and Exercise: Cellular Effects and Implications for Diabetes. Compr Physiol 2001. [DOI: 10.1002/cphy.cp070214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
30
|
Boulter JM, Wang DN. Purification and characterization of human erythrocyte glucose transporter in decylmaltoside detergent solution. Protein Expr Purif 2001; 22:337-48. [PMID: 11437611 DOI: 10.1006/prep.2001.1440] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The facilitative glucose transporter from human erythrocyte membrane, Glut1, was purified by a novel method. The nonionic detergent decylmaltoside was selected for solubilization on the basis of its efficiency to extract Glut1 from the erythrocyte membrane and its ability to maintain the protein in a monodisperse state. A positive, anion-exchange chromatography protocol produced a Glut1 preparation of 95% purity with little copurified lipid. This protein preparation exhibited cytochalasin B binding in detergent solution, as measured by tryptophan fluorescence quenching. The transporter existed as a monomer in decylmaltoside, with a Stokes radius of 50 A and a molecular mass of 147 kDa for the protein-detergent complex. We screened detergent, pH, additive, and lipid and have found conditions to maintain Glut1 monodispersity for 8 days at 25 degrees C or over 5 weeks at 4 degrees C. This Glut1 preparation represents the best available material for two- and three-dimensional crystallization trials of the human glucose transporter protein.
Collapse
Affiliation(s)
- J M Boulter
- Department of Cell Biology, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, 540 First Avenue, New York, New York 10016, USA
| | | |
Collapse
|
31
|
Hashimoto M, Hatanaka Y, Yang J, Dhesi J, Holman GD. Synthesis of biotinylated bis(D-glucose) derivatives for glucose transporter photoaffinity labelling. Carbohydr Res 2001; 331:119-27. [PMID: 11322726 DOI: 10.1016/s0008-6215(01)00025-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
New diazirine based bis-glucose derivatives for tagging glucose transporters have been synthesised. These included two biotinylated compounds linked either by an aminocaproate or by a cleavable dithiol link. These compounds have been derivatised via a key skeleton compound that can be easily used for introduction of additional tags. Studies on the erythrocyte glucose transporter (GLUT1) and the insulin-stimulated adipose cell transporter (GLUT4) have revealed the biotinylated photoreactive bis-glucose compounds are effective labelling reagents.
Collapse
Affiliation(s)
- M Hashimoto
- Department of Biology and Biochemistry, University of Bath, Claverton Down, UK
| | | | | | | | | |
Collapse
|
32
|
Gottschalk I, Lundqvist A, Zeng CM, Hägglund CL, Zuo SS, Brekkan E, Eaker D, Lundahl P. Conversion between two cytochalasin B-binding states of the human GLUT1 glucose transporter. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:6875-82. [PMID: 11082199 DOI: 10.1046/j.1432-1033.2000.01788.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Two cytochalasin B-binding states of the human red blood cell facilitative glucose transporter GLUT1 were studied, one exhibiting one cytochalasin B-binding site on every second GLUT1 monomer (state 1) and the other showing one site per monomer (state 2). Quantitative affinity chromatography of cytochalasin B was performed on (a) biotinylated red blood cells, (b) cytoskeleton-depleted red blood cell membrane vesicles, and (c) GLUT1 proteoliposomes. The cells were adsorbed on streptavidin-derivatized gel beads, and the vesicles and proteoliposomes entrapped in dextran-grafted agarose gel beads. Cytochalasin B binding to free vesicles and proteoliposomes was analyzed by Hummel and Dreyer size-exclusion chromatography and ultracentrifugation. Analysis of the biotinylated cells indicated an equilibrium between the two GLUT1 states. GLUT1 in free membrane vesicles attained state 2, but was converted into state 1 on entrapment of the vesicles. Purification of GLUT1 in the presence of non-ionic detergent followed by reconstitution produced GLUT1 in state 1. This state was maintained after entrapment of the proteoliposomes. Finally, GLUT1 showed slightly higher affinity for cytochalasin B in state 1 than in state 2. In summary, the cytochalasin B-binding state of GLUT1 seemed to be affected by (a) biotinylation of the cell surface, (b) removal of the cytoskeleton at high pH and low ionic strength, (c) interaction between the dextran-grafted agarose gel matrix and the membrane vesicles, and (d) reconstitution to form proteoliposomes.
Collapse
Affiliation(s)
- I Gottschalk
- Department of Biochemistry, Biomedical Center, Uppsala University, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Seatter MJ, Gould GW. The mammalian facilitative glucose transporter (GLUT) family. PHARMACEUTICAL BIOTECHNOLOGY 2000; 12:201-28. [PMID: 10742976 DOI: 10.1007/0-306-46812-3_7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Affiliation(s)
- M J Seatter
- Division of Biochemistry and Molecular Biology, University of Glasgow, Scotland
| | | |
Collapse
|
34
|
Abstract
Drug interaction with lipid bilayers was quantified by immobilized biomembrane chromatography on a series of columns containing different small amounts of human red cell membrane vesicles to extend and characterize this technique, which shows a potential for drug screening and prediction of drug absorption in humans. The chromatographic retention volume for each drug was essentially proportional to the amount of immobilized lipid, and the slope equalled the capacity factor (Ks) previously determined on single columns. Gel beds containing 0.5-2 micromol of membrane phospholipid allowed analysis of drugs with log Ks values of 2.5-4.3 in time periods of 1 min to 1 h. Highly lipophilic drugs could thus be analyzed conveniently in aqueous buffer.
Collapse
Affiliation(s)
- F Beigi
- Department of Biochemistry, Biomedical Center, Uppsala University, Sweden
| | | |
Collapse
|
35
|
Lundqvist A, Lundahl P. Biomembrane-affinity centrifugal analyses of solute interactions with membrane proteins. J Chromatogr A 1999; 852:93-6. [PMID: 10480234 DOI: 10.1016/s0021-9673(99)00261-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
We have developed a rapid centrifugal method for analyzing solute interactions with membrane proteins in cytoskeleton-depleted membrane vesicles or proteoliposomes sterically immobilized in Superdex 200 gel beads. The size and density of the gel beads allow fast sedimentation in a bench-top centrifuge. Biospecific interactions of cytochalasin B and D-glucose with the human red cell glucose transporter, Glut1, were analyzed. The binding constants and the molar ratio of inhibitor sites per protein monomer agreed well with recent results obtained by frontal affinity chromatography.
Collapse
Affiliation(s)
- A Lundqvist
- Department of Biochemistry, Biomedical Center, Uppsala University, Sweden
| | | |
Collapse
|
36
|
Abstract
Neural tissue is entirely dependent on glucose for normal metabolic activity. Since glucose stores in the brain and retina are negligible compared to glucose demand, metabolism in these tissues is dependent upon adequate glucose delivery from the systemic circulation. In the brain, the critical interface for glucose transport is at the brain capillary endothelial cells which comprise the blood-brain barrier (BBB). In the retina, transport occurs across the retinal capillary endothelial cells of the inner blood-retinal barrier (BRB) and the retinal pigment epithelium of the outer BRB. Because glucose transport across these barriers is mediated exclusively by the sodium-independent glucose transporter GLUT1, changes in endothelial glucose transport and GLUT1 abundance in the barriers of the brain and retina may have profound consequences on glucose delivery to these tissues and major implications in the development of two major diabetic complications, namely insulin-induced hypoglycemia and diabetic retinopathy. This review discusses the regulation of brain and retinal glucose transport and glucose transporter expression and considers the role of changes in glucose transporter expression in the development of two of the most devastating complications of long-standing diabetes mellitus and its management.
Collapse
Affiliation(s)
- A K Kumagai
- Department of Internal Medicine, Michigan Diabetes Research and Training Center, University of Michigan Medical School, Ann Arbor, MI 48109-0678, USA.
| |
Collapse
|
37
|
Lundahl P, Zeng CM, Lagerquist Hägglund C, Gottschalk I, Greijer E. Chromatographic approaches to liposomes, proteoliposomes and biomembrane vesicles. JOURNAL OF CHROMATOGRAPHY. B, BIOMEDICAL SCIENCES AND APPLICATIONS 1999; 722:103-20. [PMID: 10068136 DOI: 10.1016/s0378-4347(98)00370-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Size-exclusion chromatography has been used for fractionation of liposomes, proteoliposomes and biomembrane vesicles of up to approximately 500 nm in size and for separation of these entities from smaller components. Liposome sizes, encapsulation stability, and solute affinities for membrane proteins have been determined. Counter-current distribution in aqueous two-phase systems has widened the range of applications to larger structures. Immobilized biomembrane vesicles and (proteo)liposomes provide stationary phases for chromatographic analysis of specific or nonspecific membrane-solute interactions.
Collapse
Affiliation(s)
- P Lundahl
- Department of Biochemistry, Biomedical Center, Uppsala University, Sweden
| | | | | | | | | |
Collapse
|
38
|
Haneskog L, Zeng CM, Lundqvist A, Lundahl P. Biomembrane affinity chromatographic analysis of inhibitor binding to the human red cell nucleoside transporter in immobilized cells, vesicles and proteoliposomes. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1371:1-4. [PMID: 9565649 DOI: 10.1016/s0005-2736(98)00008-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The affinity of the human red cell nucleoside transporter for the transport inhibitor nitrobenzylthioinosine decreases upon protein purification. The affinity was highest for the whole cells (Kd, 0.04 nM), lowered upon cytoskeleton depletion (Kd, 0.2 nM) and lowest after partial purification and reconstitution (Kd, 0.3 nM), as determined by frontal affinity chromatography.
Collapse
Affiliation(s)
- L Haneskog
- Department of Biochemistry, Biomedical Center, Uppsala University, Box 576, S-751 23 Uppsala, Sweden
| | | | | | | |
Collapse
|
39
|
Cornford EM, Hyman S, Cornford ME, Landaw EM, Delgado-Escueta AV. Interictal seizure resections show two configurations of endothelial Glut1 glucose transporter in the human blood-brain barrier. J Cereb Blood Flow Metab 1998; 18:26-42. [PMID: 9428303 DOI: 10.1097/00004647-199801000-00003] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Immunogold electron microscopy was used to analyze and quantify the Glut1 glucose transporter in brain tissue from five patients undergoing surgery for treatment of seizures. Samples were prepared from two different regions of each resection: (1) the most actively spiking epileptogenic site, and (2) the least actively spiking region, as indicated by intraoperative EEG monitoring. Two configurations of endothelial cell Glut1 were observed. About one half of the capillary profiles examined displayed abundant Glut1 immunoreactivity on both luminal and abluminal endothelial membranes. In the remainder of the profiles, reduced Glut1 labeling was seen, but adjacent erythrocyte membranes remained highly Glut1 immunoreactive, suggesting that reduced endothelial Glut1 reactivity was not attributable to method artifacts. Immunogold studies using antisera to human glial fibrillary acidic protein and human serum albumin demonstrated increased quantities of these two epitopes in the extravascular regions in which more EEG spiking activity had been demonstrated. These observations were consistent with the hypotheses that capillary integrity was more compromised, and gliosis was quantitatively increased, in the more actively spiking region of the resection. Altered glucose transporter activity in the blood-brain barrier was characterized by a bimodal Glut1 distribution in which the smaller (type B) endothelial cells displayed low Glut1 immunoreactivity, whereas adjacent (and even contiguous) larger (type A) endothelial cells showed 5- to 10-fold greater expression of membrane Glut1 transporter protein. Because this transporter facilitates glucose entry to the brain, small pericapillary volumes of brain tissue may have quite different concentrations of glucose. We hypothesize that in complex partial seizures and other forms of brain insult, an alteration of blood-brain barrier Glut1 glucose transporter activity is indicated by the appearance of these two subpopulations of endothelial cells. In comparison with previous studies of human brain capillaries in hemangioblastoma and brain injury, endothelial Glut1 density was apparently reduced (interictally) in affected temporal lobes of patients with complex partial seizures.
Collapse
Affiliation(s)
- E M Cornford
- Department of Neurology, UCLA School of Medicine, USA
| | | | | | | | | |
Collapse
|
40
|
Neumann-Spallart C, Pittner F, Schalkhammer T. Immobilization of active facilitated glucose transporters (GLUT-1) in supported biological membranes. Appl Biochem Biotechnol 1997; 68:153-69. [PMID: 9429298 DOI: 10.1007/bf02785988] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Membrane fragments or membrane proteins within a lipid mixture were immobilized over metal electrodes. This procedure has been developed to study biological membranes without interference from cell machinery. To obtain a smooth hydrophilic biomembrane support and a mode of binding of the membrane, either a crosslinked gel or an aromatic polyamine-polymer doped with avidin was deposited at the metal electrode by electropolymerization. This layer (less than 10 nm thick) also served as a submembrane compartment. The facilitated glucose transporter (GLUT-1) purified from human erythrocytes was integrated into a lipid membrane containing artificial biotinylated lipids and reacted with the activated surface of the glucose sensitive electrode. It was demonstrated that the lipid layer was attached to the polymer-containing avidin and could only be removed by detergent extraction. The presence of an active membrane transporter was demonstrated by electrochemical detection of glucose in the submembrane compartment, and by inhibition of glucose transport with the specific inhibitor Cytochalasin-B.
Collapse
Affiliation(s)
- C Neumann-Spallart
- Department of Membrane Research and Biophysics, Weizmann Institute of Science, Rehovot, Israel
| | | | | |
Collapse
|
41
|
Li WM, McNeill JH. Quantitative methods for measuring the insulin-regulatable glucose transporter (Glut4). J Pharmacol Toxicol Methods 1997; 38:1-10. [PMID: 9339410 DOI: 10.1016/s1056-8719(97)00036-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
This review article describes various quantitation methods for the insulin-regulatable glucose transporter (Glut4). Several methods including reconstituted glucose transport, cytochalasin B binding assays, immunocytochemistry, immunoblots, ELISA, and the more recently developed exofacial labels are discussed. Since Glut4 translocates from an intracellular compartment to the plasma membrane in response to the action of insulin, it is of particular interest to measure Glut4 changes in the membrane fractions. Hence, the measurement of Glut4 commonly involves the isolation of cell membranes using subcellular fractionation in combination with one of the quantitation methods. The limitations of each quantitation method due to the use of subcellular fractionation are discussed in this article. As well, the advantages and disadvantages in terms of isoform specificity and technical difficulties of each method are presented.
Collapse
Affiliation(s)
- W M Li
- Division of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, Canada
| | | |
Collapse
|
42
|
Zeng CM, Zhang Y, Lu L, Brekkan E, Lundqvist A, Lundahl P. Immobilization of human red cells in gel particles for chromatographic activity studies of the glucose transporter Glut1. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1325:91-8. [PMID: 9106486 DOI: 10.1016/s0005-2736(96)00247-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Chromatography on a novel stationary phase, human red cells immobilized in a gel bed, was introduced for analysis of activities of the glucose transporter Glut1 in the cell membrane. A gel containing positively charged ligands was synthesized from derivatized acrylamide monomers. Red cells were immobilized in gel particles which were packed into a column tube for chromatographic analyses over periods of 10-15 days. D-Glucose was separated from L-glucose on a 1.1-ml bed with a retention volume difference of 0.23 ml, approximately equal to the total inner volume of immobilized intact cells and of ghosts probably formed from lysed cells during the immobilization. The separation was suppressed by the glucose-transport inhibitor cytochalasin B. The interactions between D-glucose, the transport inhibitor forskolin and Glut1 were analyzed by quantitative frontal affinity chromatography. The dissociation constants at room temperature were 6.8 mM for D-glucose binding and 1.8 microM for glucose-displaceable binding of forskolin, in good agreement with published values. The results suggest that chromatography on immobilized cells is a potentially useful tool for studies on cellular membrane functions.
Collapse
Affiliation(s)
- C M Zeng
- Department of Biochemistry, Uppsala University, Sweden
| | | | | | | | | | | |
Collapse
|
43
|
Lundqvist A, Brekkan E, Lagerquist C, Haneskog L, Lundahi P. Frontal affinity chromatographic analysis of membrane protein reconstitution. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 1997. [DOI: 10.1016/s0928-4931(97)80004-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
44
|
Fladeby C, Bjønness B, Serck-Hanssen G. GLUT1-mediated glucose transport and its regulation by IGF-I in cultured bovine chromaffin cells. J Cell Physiol 1996; 169:242-7. [PMID: 8908191 DOI: 10.1002/(sici)1097-4652(199611)169:2<242::aid-jcp3>3.0.co;2-o] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Regulation of glucose transport was studied in primary cultures of bovine chromaffin cells (BCC) using the glucose analogue 2-deoxyglucose (DOG) as a model substrate. The glucose transporter in freshly isolated and cultured BCC was identified as GLUT1 by Western immunoblots. The level of GLUT1 increased by time in culture and was followed by an enhancement in uptake of DOG. The DOG uptake was stimulated by insulin-like growth factor I (IGF-I) with an EC50 of 1 nM and a maximal response (approximately 2-fold) was obtained at 10-100 nM IGF-I. Insulin was at least 100-fold less potent than IGF-I. Exposure to 10(-8) M IGF-I also caused a redistribution of GLUT1 from an intracellular compartment to a plasma membrane-enriched fraction. Our results demonstrate a GLUT1-mediated glucose uptake in adrenomedullary cells. An enhanced glucose transport in response to IGF-I appears to be coupled to activation of IGF receptor type 1 and GLUT1 translocation.
Collapse
Affiliation(s)
- C Fladeby
- Department of Physiology, University of Bergen, Norway
| | | | | |
Collapse
|
45
|
Cornford EM, Hyman S, Cornford ME, Caron MJ. Glut1 glucose transporter activity in human brain injury. J Neurotrauma 1996; 13:523-36. [PMID: 8913969 DOI: 10.1089/neu.1996.13.523] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The principal glucose transporter at the blood-brain barrier (BBB) is the Glut1 isoform, and transporter density is believed to be an index of cerebral metabolic rate. In the present study, glucose transporter expression was studied in tissue resected 7-8 h after acute traumatic brain injuries in 2 patients. Light microscopic immunochemistry indicated a zone of complete loss of the Glut1 glucose transporter isoform in microvessel endothelial cells adjacent to sites of small vessel injury, concentrically surrounded by a narrow zone of variable Glut1, and distally surrounded by capillaries with typically immunoreactive endothelia in nondisrupted parenchyma. Variably reactive capillaries displayed alternating sectors of greatly reduced and highly reactive Glut1 density, suggesting a high density and low density of transporter activity in contiguous endothelial cells. Quantitative electron microscopic immunogold analyses demonstrated that the transporter was predominantly localized to the luminal and abluminal endothelial membranes, with lesser reactivity in cytoplasm; pericyte Glut1 was minimally above background levels. In endothelial sectors with reduced Glut1 transporter immunoreactivity, the luminal:abluminal ratio of Glut1 epitòpes was less than unity; while it is greater than unity in highly reactive endothelial cells. The number of Glut1-immunoreactive sites per micrometer of capillary membrane was not significantly different from previous reported Glut1 density in seizure resections, and about 2- to 3-fold higher than in human red cells. In the same tissue samples, qualitative immunogold electron microscopy of human serum albumin indicated leakage of this protein (MW 65,000) from the vascular space into pericapillary regions. Thus the high Glut1 density observed in capillaries from acutely injured brain occurs concomitantly with compromised barrier function.
Collapse
Affiliation(s)
- E M Cornford
- Department of Neurology, UCLA School of Medicine 90095, USA
| | | | | | | |
Collapse
|
46
|
Honkanen RA, McBath H, Kushmerick C, Callender GE, Scarlata SF, Fenstermacher JD, Haspel HC. Barbiturates inhibit hexose transport in cultured mammalian cells and human erythrocytes and interact directly with purified GLUT-1. Biochemistry 1995; 34:535-44. [PMID: 7819247 DOI: 10.1021/bi00002a019] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Barbiturates reduce cerebral blood flow, metabolism, and Glc transfer across the blood-brain barrier. The effect of barbiturates on hexose transport in cultured mammalian cell lines and human erythrocytes was studied. Pentobarbital inhibits [3H]-2-dGlc uptake in 3T3-C2 murine fibroblasts by approximately 95% and approximately 50% at 10 and 0.5 mM, respectively. Uptake of [3H]-2-dGlc is linear with time in the presence or absence of pentobarbital, and the percent inhibition is constant. This suggests that hexose transport, not phosphorylation, is inhibited by barbiturates. Inhibition by pentobarbital of hexose transport in 3T3-C2 cells is rapid (< 1 min), is not readily reversible, is not altered by the presence of albumin [1% (w/v)], and is independent of temperature (4-37 degrees C) and the level of cell surface GLUT-1. The IC50's for inhibition of hexose transport in 3T3-C2 cells by pentobarbital, thiobutabarbital, and barbital are 0.8, 1.0, and 4 mM, respectively. This is consistent with both the Meyer-Overton rule and the pharmacology of barbiturates. Neither halothane (< or = 10 mM) nor ethanol [< or = 0.4% (v/v)] significantly inhibits hexose transport. Inhibition by pentobarbital (0.5 mM) of [3H]-2-dGlc uptake by 3T3-C2 cells decreases the apparent Vmax (approximately 50%) but does not alter the apparent Km (approximately 0.5 mM). Inhibition of hexose transport by barbiturates, but not ethanol [< or = 0.4% (v/v)], is also observed in human erythrocytes and four other cultured mammalian cell lines. Pentobarbital quenches (Qmax approximately 75%) the intrinsic fluorescence of purified and reconstituted GLUT-1 (Kd approximately 3 mM). Quenching is independent of Glc occupancy, is unchanged by mild proteolytic inactivation, and does not appear to directly involve perturbations of the lipid bilayer. We propose that barbiturates can interact directly with GLUT-1 and inhibit the intrinsic activity of the carrier. Glc crosses the blood-brain barrier primarily via the GLUT-1 of the endothelial cells of cerebral capillaries. Partial inhibition of this process by barbiturates may be of significance to cerebral protection.
Collapse
Affiliation(s)
- R A Honkanen
- Department of Anesthesiology, Henry Ford Hospital, Detroit, Michigan 48202
| | | | | | | | | | | | | |
Collapse
|
47
|
Cornford EM, Hyman S, Landaw EM. Developmental modulation of blood-brain-barrier glucose transport in the rabbit. Brain Res 1994; 663:7-18. [PMID: 7850472 DOI: 10.1016/0006-8993(94)90457-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Blood-brain barrier (BBB) glucose transport rates were measured using the intracarotid injection method in newborn, 14-day-old suckling, 28-day-old weanling and adult rabbits, and compared with membrane transporter density. Light microscope immunochemistry confirmed the presence of the GLUT1 glucose transporter isoform in these rabbits. Quantitative electron microscopic immunogold analyses of GLUT1-immunoreactive sites per micrometer of capillary membrane indicated GLUT1 density increased with age, and correlated with in vivo measurements of Vmax. Maximal transport velocities (Vmax) of glucose transfer (an indicator of the activity and relative number of transporter proteins) increased significantly (P = 0.05) with age: in neonates Vmax = 0.61 mumol.min-1.g-1, in sucklings Vmax = 0.68 mumol.min-1.g-1, in weanlings Vmax = 0.88 mumol.min-1.g-1, and in adults Vmax = 1.01 mumol.min-1 g-1. Cerebral blood flow (CBF) rates, increased with age from 0.19 and 0.26 ml.min-1.g-1 in neonates and sucklings to 0.51 (weanlings) and 0.70 (adults) ml.min-1.g-1. Non-linear regression analyses indicated the half-saturation constant (Km) for glucose transport ranged from 13 mM in adult rabbits to 19 mM in 14-day-old sucklings: differences in Km were not significant. Age-related changes in the Permeability-Surface Area product (PS +/- S.E.) of both water and glucose were also seen. At all ages studied, the diffusion component (Kd) of glucose uptake was not distinguishable from zero. We conclude developmental up-regulation of the rabbit BBB glucose transporter is characterized by no changes in transporter affinity, and provide the first demonstration of increased membrane transporter proteins correlating with an age-related increase (65%) in glucose transporter maximal velocity.
Collapse
Affiliation(s)
- E M Cornford
- Department of Neurology, UCLA School of Medicine 90024
| | | | | |
Collapse
|
48
|
Kumagai AK, Dwyer KJ, Pardridge WM. Differential glycosylation of the GLUT1 glucose transporter in brain capillaries and choroid plexus. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1193:24-30. [PMID: 8038191 DOI: 10.1016/0005-2736(94)90328-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The sodium-independent GLUT1 glucose transporter is expressed in high density in human erythrocytes and in tissues which serve a barrier function. In the polarized endothelial cells of the brain capillaries, which comprise the blood-brain barrier (BBB), GLUT1 is expressed on both apical and basolateral membranes; however, in the epithelium of the choroid plexus, GLUT1 expression is restricted to the basolateral surface. The present study examined whether these differences in subcellular localization of GLUT1 at the BBB and choroid plexus could be correlated with differential N-linked or O-linked glycosylation of the protein. Western blot analysis of solubilized brain capillaries (BC) and choroid plexus (CP) revealed that while the BC GLUT1 had an average molecular mass identical to that of the purified human erythrocyte transporter (54 kDa), the CP GLUT1 was of lower molecular mass (47 kDa). Treatment of brain capillaries and choroid plexus with N-glycanase resulted in a shift in the mobility of the GLUT1 of both samples to a lower molecular mass of 42 kDa; however, in contrast, treatment with O-glycanase produced no change in the mobility patterns of GLUT1, but did result in O-linked deglycosylation of another BBB marker, gamma-glutamyl transpeptidase. In conclusion, BBB and choroid plexus GLUT1 are subject to differential N-linked glycosylation with the protein having an N-linked carbohydrate side chain of higher molecular mass at the BBB in comparison to the choroid plexus.
Collapse
Affiliation(s)
- A K Kumagai
- Department of Medicine, UCLA School of Medicine 90024
| | | | | |
Collapse
|
49
|
Cope DL, Holman GD, Baldwin SA, Wolstenholme AJ. Domain assembly of the GLUT1 glucose transporter. Biochem J 1994; 300 ( Pt 2):291-4. [PMID: 8002929 PMCID: PMC1138159 DOI: 10.1042/bj3000291] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A full-length construct of the glucose transporter isoform GLUT1 has been expressed in Sf9 (Spodoptera frugiperida Clone 9) insect cells, and a photolabelling approach has been used to show that the expressed protein binds the bismannose compound 2-N-4-(1-azi-2,2,2-trifluoroethyl)benzoyl-1,3-bis-(D-mannos- 4-yloxy)-2-propylamine (ATB-BMPA) and cytochalasin B at its exofacial and endofacial binding sites respectively. Constructs of GLUT1 which produce either the N-terminal (amino acids 1-272) or C-terminal (amino acids 254-492) halves are expressed at levels in the plasma membrane which are similar to that of the full-length GLUT1 (approximately 200 pmol/mg of membrane protein), but do not bind either ATB-BMPA or cytochalasin B. When Sf9 cells are doubly infected with virus constructs producing both the C- and N-terminal halves of GLUT1, then the ligand labelling is restored. Only the C-terminal half is labelled, and, therefore, the labelling of this domain is dependent on the presence of the N-terminal half of the protein. These results suggest that the two halves of GLUT1 can assemble to form a stable complex and support the concept of a bilobular structure for the intact glucose transporters in which separate C- and N-domain halves pack together to produce a ligand-binding conformation.
Collapse
Affiliation(s)
- D L Cope
- Department of Biochemistry, University of Bath, U.K
| | | | | | | |
Collapse
|
50
|
Cornford EM, Hyman S, Swartz BE. The human brain GLUT1 glucose transporter: ultrastructural localization to the blood-brain barrier endothelia. J Cereb Blood Flow Metab 1994; 14:106-12. [PMID: 8263045 DOI: 10.1038/jcbfm.1994.15] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Immunogold electron microscopy was used to examine human brain resections to localize the GLUT1 glucose transporter. The tissue examined was obtained from a patient undergoing surgery for treatment of seizures, and the capillary profiles examined had characteristics identical to those described previously for active, epileptogenic sites (confirmed by EEG analyses). A rabbit polyclonal antiserum to the full-length human erythrocyte glucose transporter (GLUT1) was labeled with 10-nm gold particle-secondary antibody conjugates and localized immunoreactive GLUT1 molecules in human brain capillary endothelia, with < 0.25% of the particles beyond the capillary profile. Erythrocyte membranes were also highly immunoreactive, whereas macrophage membranes were GLUT1-negative. The number of immunoreactive sites per capillary profile was observed to be 10-fold greater in humans than in previous studies of rat and rabbit brain capillaries. In addition, half of the total number of immunoreactive gold particles were localized to the luminal capillary membrane. We suggest that the blood-brain barrier GLUT1 glucose transporter is up-regulated in seizures, and this elevated transporter activity is characterized by increased GLUT1 transporters, particularly on the luminal capillary membranes. In addition, acute modulation of glucose transporter activity is presumed to involve translocation of GLUT1 from cytoplasmic to luminal membrane sites, demonstrable with quantitative immunogold electron microscopy.
Collapse
Affiliation(s)
- E M Cornford
- Department of Neurology, UCLA School of Medicine
| | | | | |
Collapse
|