1
|
Thakur S, Mohanty P, Jadhav MS, Gaikwad AB, Jadhav HR. A perspective on the development of small molecular neprilysin inhibitors (NEPi) with emphasis on cardiorenal disease. Eur J Med Chem 2024; 280:116932. [PMID: 39378824 DOI: 10.1016/j.ejmech.2024.116932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/14/2024] [Accepted: 09/30/2024] [Indexed: 10/10/2024]
Abstract
Neprilysin is a cell surface metallo-endopeptidase, commonly identified as neutral endopeptidase (NEP), that plays a crucial role in the cleavage of peptides, for example, natriuretic peptides, angiotensin II, enkephalins, endothelin, bradykinin, substance P, glucagon-like peptide and amyloid beta. In the case of heart failure, a significant upsurge in NEP activity and expression enhances the degradation of natriuretic peptides. Therefore, NEP inhibitors have gained attention in the field of cardiology. NEP has been studied for over 40 years; however, it has recently gained attention with the US FDA approval of a fixed dose combination of sacubitril (NEP inhibitor) and valsartan (AT-1 inhibitor) for chronic heart failure treatment. The present review elucidates the role of neprilysin in cardiorenal disease, its pathophysiology, and how NEP inhibition benefits. It also summarizes the research advances in NEP inhibitors (NEPi) and their structure-activity relationships. Moreover, the review provides insight into NEPi effectiveness - alone or combined with other cardiorenal protective agents. It is expected to help medicinal chemists synthesize and develop novel NEPi.
Collapse
Affiliation(s)
- Shikha Thakur
- Department of Pharmacy, Birla Institute of Technology and Sciences Pilani, Pilani Campus, Vidya Vihar, Pilani, 333031, (RJ), India
| | - Priyanka Mohanty
- Department of Pharmacy, Birla Institute of Technology and Sciences Pilani, Pilani Campus, Vidya Vihar, Pilani, 333031, (RJ), India
| | - Madhav S Jadhav
- Department of Pharmacy, Birla Institute of Technology and Sciences Pilani, Pilani Campus, Vidya Vihar, Pilani, 333031, (RJ), India
| | - Anil Bhanudas Gaikwad
- Department of Pharmacy, Birla Institute of Technology and Sciences Pilani, Pilani Campus, Vidya Vihar, Pilani, 333031, (RJ), India
| | - Hemant R Jadhav
- Department of Pharmacy, Birla Institute of Technology and Sciences Pilani, Pilani Campus, Vidya Vihar, Pilani, 333031, (RJ), India.
| |
Collapse
|
2
|
Wick MJ, Loomis ZL, Harral JW, Le M, Wehling CA, Miller YE, Dempsey EC. Protection against vascular leak in neprilysin transgenic mice with complex overexpression pattern. Transgenic Res 2016; 25:773-784. [PMID: 27369050 DOI: 10.1007/s11248-016-9969-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 06/16/2016] [Indexed: 10/21/2022]
Abstract
Neprilysin (NEP) is a cell surface metallopeptidase found in many tissues. Based mostly on pharmacological manipulations, NEP has been thought to protect blood vessels from plasma extravasation. We have suggested that NEP may protect against pulmonary vascular injury. However, these prior studies did not utilize mice which overexpress NEP. The aims of the present investigation were to develop and characterize doubly transgenic (DT) mice that overexpress NEP universally and conditionally, and to investigate the protective effect that overexpressed NEP may have against plasma extravasation in the vasculature. The duodenum, which is often used to assess vascular permeability, and in which the NEP protein was overexpressed in our DT mice two-fold, was selected as our experimental preparation. We found that substance P-induced plasma extravasation was decreased substantially (3.5-fold) in the duodenums of our doxycycline-treated DT mice, giving independent evidence of NEP's protective effects against plasma extravasation. Transgenic lung NEP protein was not stably expressed in the DT mice, so we were not able to test the effect of NEP overexpression in the lung. Although initially overexpressed nearly nine-fold at that site, pulmonary NEP protein overexpression eventually dissipated. Surprisingly, at a time when there was no lung transgenic NEP protein overexpression, lung NEP mRNA expression was still increased 23-fold, indicating that the expression defect probably is not transcriptional. These studies help to characterize our complex transgenic model of NEP overexpression and further demonstrate NEP's protective effects against plasma extravasation.
Collapse
Affiliation(s)
- Marilee J Wick
- Cardiovascular Pulmonary Research Laboratory, University of Colorado Denver, RC-2, Box B-133, 12700 E. 19th Ave., Aurora, CO, 80045, USA. .,Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver, Aurora, CO, 80045, USA.
| | - Zoe L Loomis
- Cardiovascular Pulmonary Research Laboratory, University of Colorado Denver, RC-2, Box B-133, 12700 E. 19th Ave., Aurora, CO, 80045, USA.,Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver, Aurora, CO, 80045, USA
| | - Julie W Harral
- Cardiovascular Pulmonary Research Laboratory, University of Colorado Denver, RC-2, Box B-133, 12700 E. 19th Ave., Aurora, CO, 80045, USA.,Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver, Aurora, CO, 80045, USA
| | - Mysan Le
- Denver VA Medical Center, Denver, CO, 80220, USA
| | | | - York E Miller
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver, Aurora, CO, 80045, USA.,Denver VA Medical Center, Denver, CO, 80220, USA
| | - Edward C Dempsey
- Cardiovascular Pulmonary Research Laboratory, University of Colorado Denver, RC-2, Box B-133, 12700 E. 19th Ave., Aurora, CO, 80045, USA.,Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver, Aurora, CO, 80045, USA.,Denver VA Medical Center, Denver, CO, 80220, USA
| |
Collapse
|
3
|
Parthasarathy R, Chow KM, Derafshi Z, Fautsch MP, Hetling JR, Rodgers DW, Hersh LB, Pepperberg DR. Reduction of amyloid-beta levels in mouse eye tissues by intra-vitreally delivered neprilysin. Exp Eye Res 2015; 138:134-44. [PMID: 26142956 DOI: 10.1016/j.exer.2015.06.027] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 06/18/2015] [Accepted: 06/30/2015] [Indexed: 01/11/2023]
Abstract
Amyloid-beta (Aβ) is a group of aggregation-prone, 38- to 43-amino acid peptides generated in the eye and other organs. Numerous studies suggest that the excessive build-up of low-molecular-weight soluble oligomers of Aβ plays a role in the progression of Alzheimer's disease and other brain degenerative diseases. Recent studies raise the hypothesis that excessive Aβ levels may contribute also to certain retinal degenerative diseases. These findings, together with evidence that a major portion of Aβ is released as monomer into the extracellular space, raise the possibility that a technology enabling the enzymatic break-down of monomeric Aβ in the living eye under physiological conditions could prove useful for research on ocular Aβ physiology and, perhaps ultimately, for therapeutic applications. Neprilysin (NEP), an endopeptidase known to cleave Aβ monomer into inactive products, is a membrane-associated protein. However, sNEP, a recombinant form of the NEP catalytic domain, is soluble in aqueous medium. With the aim of determining the Aβ-cleaving activity of exogenous sNEP in the microenvironment of the intact eye, we analyzed the effect of intra-vitreally delivered sNEP on ocular Aβ levels in mice that exhibit readily measurable, aqueous buffer-extractable Aβ40 and Aβ42, two principal forms of Aβ. Anesthetized 10-month wild-type (C57BL/6J) and 2-3-month 5XFAD transgenic mice received intra-vitreal injections of sNEP (0.004-10 μg) in one eye and were sacrificed at defined post-treatment times (30 min - 12 weeks). Eye tissues (combined lens, vitreous, retina, RPE and choroid) were homogenized in phosphate-buffered saline, and analyzed for Aβ40 and Aβ42 (ELISA) and for total protein (Bradford assay). The fellow, untreated eye of each mouse served as control, and concentrations of Aβ (pmol/g protein) in the treated eye were normalized to that of the untreated control eye. In C57BL/6J mice, as measured at 2 h after sNEP treatment, increasing amounts of injected sNEP yielded progressively greater reductions of Aβ40, ranging from 12% ± 3% (mean ± SEM; n = 3) with 4 ng sNEP to 85% ± 13% (n = 5) with 10 μg sNEP. At 4 ng sNEP the average Aβ40 reduction reached >70% by 24 h following treatment and remained near this level for about 8 weeks. In 5XFAD mice, 10 μg sNEP produced an Aβ40 decrease of 99% ± 1% (n = 4) and a substantial although smaller decrease in Aβ42 (42% ± 36%; n = 4) within 24 h. Electroretinograms (ERGs) were recorded from eyes of C57BL/6J and 5XFAD mice at 9 days following treatment with 4 ng or 10 μg sNEP, conditions that on average led, respectively, to an 82% and 91% Aβ40 reduction in C57BL/6J eyes, an 87% and 92% Aβ40 reduction in 5XFAD eyes, and a 23% and 52% Aβ42 reduction in 5XFAD eyes. In all cases, sNEP-treated eyes exhibited robust ERG responses, consistent with a general tolerance of the posterior eye tissues to the investigated conditions of sNEP treatment. The sNEP-mediated decrease of ocular Aβ levels reported here represents a possible approach for determining effects of Aβ reduction in normally functioning eyes and in models of retinal degenerative disease.
Collapse
Affiliation(s)
- Rajni Parthasarathy
- Lions of Illinois Eye Research Institute, Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA; Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - K Martin Chow
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| | - Zahra Derafshi
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | | | - John R Hetling
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - David W Rodgers
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| | - Louis B Hersh
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| | - David R Pepperberg
- Lions of Illinois Eye Research Institute, Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA; Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
4
|
Chin-Chan M, Segovia J, Quintanar L, Arcos-López T, Hersh LB, Chow KM, Rodgers DW, Quintanilla-Vega B. Mercury Reduces the Enzymatic Activity of Neprilysin in Differentiated SH-SY5Y Cells. Toxicol Sci 2015; 145:128-37. [PMID: 25673500 DOI: 10.1093/toxsci/kfv037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Levels of amyloid beta (Aβ) in the central nervous system are regulated by the balance between its synthesis and degradation. Neprilysin (NEP) is associated with Alzheimer's disease (AD) by its ability to degrade Aβ. Some studies have involved the exposure to mercury (Hg) in AD pathogenesis; therefore, our aim was to investigate the effects on the anabolism and catabolism of Aβ in differentiated SH-SY5Y cells incubated with 1-20 μM of Hg. Exposure to 20 µM of Hg induced an increase in Aβ-42 secretion, but did not increase the expression of the amyloid precursor protein (APP). Hg incubation (10 and 20 µM) increased NEP protein levels; however, it did not change NEP mRNA levels nor the levels of the amyloid intracellular domain peptide, a protein fragment with transcriptional activity. Interestingly, Hg reduced NEP activity at 10 and 20 µM, and circular dichroism analysis using human recombinant NEP showed conformational changes after incubation with molar equivalents of Hg. This suggests that the Hg-induced inhibition of NEP activity may be mediated by a conformational change resulting in reduced Aβ-42 degradation. Finally, the comparative effects of lead (Pb, 50 μM) were evaluated. We found a significant increase in Aβ-42 levels and a dramatic increase in APP protein levels; however, no alteration in NEP levels was observed nor in the enzymatic activity of this metalloprotease, despite the fact that Pb slightly modified the rhNEP conformation. Overall, our data suggest that Hg and Pb increase Aβ levels by different mechanisms.
Collapse
Affiliation(s)
- Miguel Chin-Chan
- *Department of Toxicology, Ave. IPN 2508, Colonia Zacatenco, Mexico City 07360, Department of Physiology, Biophysics and Neuroscience, Department of Chemistry, CINVESTAV, Mexico City 07360 and Department of Molecular and Cellular Biochemistry and Center for Structural Biology, University of Kentucky, Biomedical Biological Sciences Research Building, 741 South Limestone St., Lexington, Kentucky 40536-0509
| | - José Segovia
- *Department of Toxicology, Ave. IPN 2508, Colonia Zacatenco, Mexico City 07360, Department of Physiology, Biophysics and Neuroscience, Department of Chemistry, CINVESTAV, Mexico City 07360 and Department of Molecular and Cellular Biochemistry and Center for Structural Biology, University of Kentucky, Biomedical Biological Sciences Research Building, 741 South Limestone St., Lexington, Kentucky 40536-0509
| | - Liliana Quintanar
- *Department of Toxicology, Ave. IPN 2508, Colonia Zacatenco, Mexico City 07360, Department of Physiology, Biophysics and Neuroscience, Department of Chemistry, CINVESTAV, Mexico City 07360 and Department of Molecular and Cellular Biochemistry and Center for Structural Biology, University of Kentucky, Biomedical Biological Sciences Research Building, 741 South Limestone St., Lexington, Kentucky 40536-0509
| | - Trinidad Arcos-López
- *Department of Toxicology, Ave. IPN 2508, Colonia Zacatenco, Mexico City 07360, Department of Physiology, Biophysics and Neuroscience, Department of Chemistry, CINVESTAV, Mexico City 07360 and Department of Molecular and Cellular Biochemistry and Center for Structural Biology, University of Kentucky, Biomedical Biological Sciences Research Building, 741 South Limestone St., Lexington, Kentucky 40536-0509
| | - Louis B Hersh
- *Department of Toxicology, Ave. IPN 2508, Colonia Zacatenco, Mexico City 07360, Department of Physiology, Biophysics and Neuroscience, Department of Chemistry, CINVESTAV, Mexico City 07360 and Department of Molecular and Cellular Biochemistry and Center for Structural Biology, University of Kentucky, Biomedical Biological Sciences Research Building, 741 South Limestone St., Lexington, Kentucky 40536-0509
| | - K Martin Chow
- *Department of Toxicology, Ave. IPN 2508, Colonia Zacatenco, Mexico City 07360, Department of Physiology, Biophysics and Neuroscience, Department of Chemistry, CINVESTAV, Mexico City 07360 and Department of Molecular and Cellular Biochemistry and Center for Structural Biology, University of Kentucky, Biomedical Biological Sciences Research Building, 741 South Limestone St., Lexington, Kentucky 40536-0509
| | - David W Rodgers
- *Department of Toxicology, Ave. IPN 2508, Colonia Zacatenco, Mexico City 07360, Department of Physiology, Biophysics and Neuroscience, Department of Chemistry, CINVESTAV, Mexico City 07360 and Department of Molecular and Cellular Biochemistry and Center for Structural Biology, University of Kentucky, Biomedical Biological Sciences Research Building, 741 South Limestone St., Lexington, Kentucky 40536-0509
| | - Betzabet Quintanilla-Vega
- *Department of Toxicology, Ave. IPN 2508, Colonia Zacatenco, Mexico City 07360, Department of Physiology, Biophysics and Neuroscience, Department of Chemistry, CINVESTAV, Mexico City 07360 and Department of Molecular and Cellular Biochemistry and Center for Structural Biology, University of Kentucky, Biomedical Biological Sciences Research Building, 741 South Limestone St., Lexington, Kentucky 40536-0509
| |
Collapse
|
5
|
Klein C, Mathis C, Leva G, Patte-Mensah C, Cassel JC, Maitre M, Mensah-Nyagan AG. γ-Hydroxybutyrate (Xyrem) ameliorates clinical symptoms and neuropathology in a mouse model of Alzheimer's disease. Neurobiol Aging 2015; 36:832-44. [DOI: 10.1016/j.neurobiolaging.2014.10.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 10/02/2014] [Accepted: 10/07/2014] [Indexed: 10/24/2022]
|
6
|
Lim CS, Alkon DL. PKCε promotes HuD-mediated neprilysin mRNA stability and enhances neprilysin-induced Aβ degradation in brain neurons. PLoS One 2014; 9:e97756. [PMID: 24848988 PMCID: PMC4029802 DOI: 10.1371/journal.pone.0097756] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 04/23/2014] [Indexed: 01/12/2023] Open
Abstract
Amyloid-beta (Aβ) peptide accumulation in the brain is a pathological hallmark of all forms of Alzheimer’s disease. An imbalance between Aβ production and clearance from the brain may contribute to accumulation of neurotoxic Aβ and subsequent synaptic loss, which is the strongest correlate of the extent of memory loss in AD. The activity of neprilysin (NEP), a potent Aβ-degrading enzyme, is decreased in the AD brain. Expression of HuD, an mRNA-binding protein important for synaptogenesis and neuronal plasticity, is also decreased in the AD brain. HuD is regulated by protein kinase Cε (PKCε), and we previously demonstrated that PKCε activation decreases Aβ levels. We hypothesized that PKCε acts through HuD to stabilize NEP mRNA, modulate its localization, and support NEP activity. Conversely, loss of PKCε-activated HuD in AD leads to decreased NEP activity and accumulation of Aβ. Here we show that HuD is associated with NEP mRNA in cultures of human SK-N-SH cells. Treatment with bryostatin, a PKCε-selective activator, enhanced NEP association with HuD and increased NEP mRNA stability. Activation of PKCε also increased NEP protein levels, increased NEP phosphorylation, and induced cell surface expression. In addition, specific PKCε activation directly stimulated NEP activity, leading to degradation of a monomeric form of Aβ peptide and decreased Aβ neuronal toxicity, as measured by cell viability. Bryostatin treatment also rescued Aβ-mediated inhibition of HuD-NEP mRNA binding, NEP protein expression, and NEP cell membrane translocation. These results suggest that PKCε activation reduces Aβ by up-regulating, via the mRNA-binding protein HuD, Aβ-degrading enzymes such as NEP. Thus, PKCε activation may have therapeutic efficacy for AD by reducing neurotoxic Aβ accumulation as well as having direct anti-apoptotic and synaptogenic effects.
Collapse
Affiliation(s)
- Chol Seung Lim
- Blanchette Rockefeller Neurosciences Institute at West Virginia University, Morgantown, West Virginia, United States of America
| | - Daniel L Alkon
- Blanchette Rockefeller Neurosciences Institute at West Virginia University, Morgantown, West Virginia, United States of America
| |
Collapse
|
7
|
Recombinant soluble neprilysin reduces amyloid-beta accumulation and improves memory impairment in Alzheimer's disease mice. Brain Res 2013; 1529:113-24. [PMID: 23831521 DOI: 10.1016/j.brainres.2013.05.045] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 05/27/2013] [Accepted: 05/28/2013] [Indexed: 01/05/2023]
Abstract
Accumulation of amyloid-β (Aβ) is thought to be a central pathology in the brain of patients with Alzheimer's disease (AD). Neprilysin (NEP), a plasma membrane glycoprotein of the neutral zinc metalloendopeptidase family, is known as a major Aβ-degrading enzyme in the brain. The level of NEP is reduced in the brains of patients with AD; therefore, NEP is under intense investigation as a potential therapeutic source for degradation of deposited Aβ in AD. Previous studies have utilized viral vectors expressing NEP for reduction of Aβ deposition in the brain. However, viral vectors have disadvantages regarding difficulty in control of insert size, expression desired (short- or long-term), and target cell type. Here, in order to overcome these disadvantages, we produced recombinant soluble NEP from insect cells using an NEP expression vector, which was administered by intracerebral injection into AD mice, resulting in significantly reduced accumulation of Aβ. In addition, AD mice treated with NEP showed improved behavioral performance on the water maze test. These data support a role of recombinant soluble NEP in improving memory impairment by regulation of Aβ deposition and suggest the possibility that approaches using protein therapy might have potential for development of alternative therapies for treatment of AD.
Collapse
|
8
|
Klein C, Patte-Mensah C, Taleb O, Bourguignon JJ, Schmitt M, Bihel F, Maitre M, Mensah-Nyagan AG. The neuroprotector kynurenic acid increases neuronal cell survival through neprilysin induction. Neuropharmacology 2013; 70:254-60. [PMID: 23422298 DOI: 10.1016/j.neuropharm.2013.02.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 01/07/2013] [Accepted: 02/06/2013] [Indexed: 11/25/2022]
Abstract
Kynurenic acid (KYNA), one of the main product of the kynurenine pathway originating from tryptophan, is considered to be neuroprotective. Dysregulation of KYNA activity is thought to be involved in neurodegenerative diseases, the physiopathology of which evokes excitotoxicity, oxidative stress and/or protein aggregation. The neuroprotective effect of KYNA is generally attributed to its antagonistic action on NMDA receptors. However, this single target action appears insufficient to support KYNA beneficial effects against complex neurodegenerative processes including neuroinflammation, β-amyloid peptide (Aβ) toxicity and apoptosis. Novel insights are therefore required to elucidate KYNA neuroprotective mechanisms. Here, we combined cellular, biochemical, molecular and pharmacological approaches to demonstrate that low micromolar concentrations of KYNA strongly induce neprilysin (NEP) gene expression, protein level and enzymatic activity increase in human neuroblastoma SH-SY5Y cells. Furthermore, our studies revealed that KYNA exerts a protective effect on SH-SY5Y cells by increasing their viability through a mechanism independent from NMDA receptors. Interestingly, KYNA also induced NEP activity and neuroprotection in mouse cortical neuron cultures the viability of which was more promoted than SH-SY5Y cell survival under KYNA treatment. KYNA-evoked neuroprotection disappeared in the presence of thiorphan, an inhibitor of NEP activity. NEP is a well characterized metallopeptidase whose deregulation leads to cerebral Aβ accumulation and neuronal death in Alzheimer's disease. Therefore, our results suggest that a part of the neuroprotective role of KYNA may depend on its ability to induce the expression and/or activity of the amyloid-degrading enzyme NEP in nerve cells.
Collapse
Affiliation(s)
- Christian Klein
- Biopathologie de Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119, Université de Strasbourg, Faculté de Médecine, 11 rue Humann, 67000 Strasbourg, France
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Li R, He P, Cui J, Staufenbiel M, Harada N, Shen Y. Brain endogenous estrogen levels determine responses to estrogen replacement therapy via regulation of BACE1 and NEP in female Alzheimer's transgenic mice. Mol Neurobiol 2012. [PMID: 23180279 DOI: 10.1007/s12035-012-8377-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Estrogens have been found to improve memory and reduce risk of dementia, although conflicting results such as failure of estrogen replacement therapy for treatment of Alzheimer's disease (AD) also has been reported. Only recently, our published human brain studies showed a depletion of brain estrogen in women with AD, while other studies have demonstrated cognitive impairment believed to be caused by inhibition of endogenous estrogen synthesis in females. To investigate whether the shortage of brain estrogen alters the sensitivity of response to estrogen replacement therapy, we have used genetic and surgical animal models to examine the response of estrogen treatment in AD neuropathology. Our studies have shown that early treatment with 17β-estradiol (E2) or genistein could reduce brain amyloid levels by increasing Aβ clearance in both APP23 mice with genetic deficiency of aromatase (APP/Ar(+/-)), in which the brains contain nondetectable levels of estrogen, and in APP23 mice with an ovariectomy (APP/OVX), in which the brains still contain certain levels of estrogen. However, only APP/Ar(+/-) mice showed a great reduction in brain amyloid plaque formation after E2 or genistein treatment along with downregulation of β-secretase (BACE1) mRNA and protein expression. Our results suggest that early and long-term usage of E2 and/or genistein may prevent AD pathologies in a dependent manner on endogenous brain estrogen levels in aged females.
Collapse
Affiliation(s)
- Rena Li
- Center for Hormone Advanced Science and Education, Roskamp Institute, 2040 Whitfield Ave., Sarasota, FL 34243, USA.
| | | | | | | | | | | |
Collapse
|
10
|
Guan H, Chow KM, Shah R, Rhodes CJ, Hersh LB. Degradation of islet amyloid polypeptide by neprilysin. Diabetologia 2012; 55:2989-98. [PMID: 22898766 PMCID: PMC3660010 DOI: 10.1007/s00125-012-2678-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 07/16/2012] [Indexed: 01/09/2023]
Abstract
AIMS/HYPOTHESIS A progressive loss of pancreatic beta cell function, a decrease in beta cell mass and accumulation of islet amyloid is characteristic of type 2 diabetes mellitus. The main constituent of islet amyloid is islet amyloid polypeptide (IAPP). In this study, we examined the ability of the peptidase neprilysin to cleave IAPP and prevent human IAPP-induced pancreatic beta cell toxicity. METHODS Neprilysin and a catalytically compromised neprilysin mutant were tested for their ability to inhibit human IAPP fibrillisation and human IAPP-induced pancreatic beta cell cytotoxicity. Degradation of human IAPP by neprilysin was followed by HPLC, and the degradation products were identified by MS. RESULTS Neprilysin prevented IAPP fibrillisation by cleaving IAPP at Arg(11)-Leu(12), Leu(12)-Ala(13), Asn(14)-Phe(15), Phe(15)-Leu(16), Asn(22)-Phe(23) and Ala(25)-Ile(26). It also appears to prevent human IAPP fibrillisation through a non-catalytic interaction. Neprilysin protected against beta cell cytotoxicity induced by exogenously added or endogenously produced human IAPP. CONCLUSIONS/INTERPRETATION The data presented support a potential therapeutic role for neprilysin in preventing type 2 diabetes mellitus. This study supports the hypothesis that extracellular human IAPP contributes to human IAPP-induced beta cell cytotoxicity. Whether human IAPP exerts its cytotoxic effect through a totally extracellular mechanism or through a cellular reuptake mechanism is unclear at this time.
Collapse
Affiliation(s)
- H Guan
- Department of Molecular and Cellular Biochemistry, University of Kentucky, B236 Biomedical Biological Sciences Research Building, 741 South Limestone Street, Lexington, KY 40536-0509, USA.
| | | | | | | | | |
Collapse
|
11
|
Active site mutations change the cleavage specificity of neprilysin. PLoS One 2012; 7:e32343. [PMID: 22384224 PMCID: PMC3285688 DOI: 10.1371/journal.pone.0032343] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 01/26/2012] [Indexed: 12/02/2022] Open
Abstract
Neprilysin (NEP), a member of the M13 subgroup of the zinc-dependent endopeptidase family is a membrane bound peptidase capable of cleaving a variety of physiological peptides. We have generated a series of neprilysin variants containing mutations at either one of two active site residues, Phe563 and Ser546. Among the mutants studied in detail we observed changes in their activity towards leucine5-enkephalin, insulin B chain, and amyloid β1–40. For example, NEPF563I displayed an increase in preference towards cleaving leucine5-enkephalin relative to insulin B chain, while mutant NEPS546E was less discriminating than neprilysin. Mutants NEPF563L and NEPS546E exhibit different cleavage site preferences than neprilysin with insulin B chain and amyloid ß1–40 as substrates. These data indicate that it is possible to alter the cleavage site specificity of neprilysin opening the way for the development of substrate specific or substrate exclusive forms of the enzyme with enhanced therapeutic potential.
Collapse
|
12
|
Genetic targeting aromatase in male amyloid precursor protein transgenic mice down-regulates beta-secretase (BACE1) and prevents Alzheimer-like pathology and cognitive impairment. J Neurosci 2010; 30:7326-34. [PMID: 20505099 DOI: 10.1523/jneurosci.1180-10.2010] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
As brain testosterone plays both androgenic and estrogenic actions due to its conversion into estrogen via aromatase naturally, it is unclear that the age-related reduction of testosterone increased risk of Alzheimer's disease (AD) in men is mediated through androgen alone or both androgen and estrogen mechanisms. Our previous studies using a gene-based approach in mouse model to block the conversion of testosterone into estrogen (aromatase gene knock-out, ArKO), found a depletion of estrogen and increase in testosterone endogenously in males. Here, we use crossing the ArKO mice with APP23 transgenic mice, a mouse model of AD, to produce APP23/Ar(+/-) mice to study the estrogen-independent effect of testosterone on AD. We found a significant reduction in brain plaque formation, improved cognitive function and increase NEP activity in male APP23/Ar(+/-) mice compared with age-matched male APP23 controls. In addition, we found, for the first time, a reduction of beta-secretase (BACE1) enzyme activity, mRNA level and protein expression in the male APP23/Ar(+/-) mice, suggesting that endogenous testosterone, independent from estrogen, may protect against AD in males via two major mechanisms, downregulation of BACE1 activities at transcriptional level to reduce beta amyloid production and upregulation of NEP activities to enhance bate amyloid degradation.
Collapse
|
13
|
Barreto SA, Chaguri LCAG, Prezoto BC, Lebrun I. Effects of three vasoactive peptides isolated from the plasma of the snake Bothrops jararaca. Comp Biochem Physiol C Toxicol Pharmacol 2009; 149:552-8. [PMID: 19358335 DOI: 10.1016/j.cbpc.2008.12.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Incubation of plasma from the snake Bothrops jararaca (BJP) with trypsin generated two hypotensive peptides. The primary structure of the peptides was established for three sequences as: Asn-Pro-Phe-Val-Asp-Ala (fraction 13), Ser-Lys-Pro-Asn-Met-Ser-Asp-Glu-Ser-Leu-Ala-Val-Ala-Ile (fraction 14), Asn-Pro-Phe- Val-Asp-Ala (fraction 15). These peptides display homology with fragments of albumin from Trimeresurus flavoviridis. A bolus intra-arterial injection of the purified or the synthetic peptide produced a strong and sustained vasopressor response in the anaesthetized snake B. jararaca and Wistar rats; this hypotensive effect was also potentiated by captopril, an angiotensin-converting enzyme inhibitor (0.1 mg/kg). The natural concentrations of these peptides in plasma need to be determined and could play a physiological role in snake blood pressure regulation.
Collapse
Affiliation(s)
- S A Barreto
- Biochemistry and Biophysics Laboratory, Butantan Institute, São Paulo, SP, Brazil
| | | | | | | |
Collapse
|
14
|
Dempsey EC, Wick MJ, Karoor V, Barr EJ, Tallman DW, Wehling CA, Walchak SJ, Laudi S, Le M, Oka M, Majka S, Cool CD, Fagan KA, Klemm DJ, Hersh LB, Gerard NP, Gerard C, Miller YE. Neprilysin null mice develop exaggerated pulmonary vascular remodeling in response to chronic hypoxia. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 174:782-96. [PMID: 19234135 DOI: 10.2353/ajpath.2009.080345] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Neprilysin is a transmembrane metalloendopeptidase that degrades neuropeptides that are important for both growth and contraction. In addition to promoting carcinogenesis, decreased levels of neprilysin increases inflammation and neuroendocrine cell hyperplasia, which may predispose to vascular remodeling. Early pharmacological studies showed a decrease in chronic hypoxic pulmonary hypertension with neprilysin inhibition. We used a genetic approach to test the alternate hypothesis that neprilysin depletion increases chronic hypoxic pulmonary hypertension. Loss of neprilysin had no effect on baseline airway or alveolar wall architecture, vessel density, cardiac function, hematocrit, or other relevant peptidases. Only lung neuroendocrine cell hyperplasia and a subtle neuropeptide imbalance were found. After chronic hypoxia, neprilysin-null mice exhibited exaggerated pulmonary hypertension and striking increases in muscularization of distal vessels. Subtle thickening of proximal media/adventitia not typically seen in mice was also detected. In contrast, adaptive right ventricular hypertrophy was less than anticipated. Hypoxic wild-type pulmonary vessels displayed close temporal and spatial relationships between decreased neprilysin and increased cell growth. Smooth muscle cells from neprilysin-null pulmonary arteries had increased proliferation compared with controls, which was decreased by neprilysin replacement. These data suggest that neprilysin may be protective against chronic hypoxic pulmonary hypertension in the lung, at least in part by attenuating the growth of smooth muscle cells. Lung-targeted strategies to increase neprilysin levels could have therapeutic benefits in the treatment of this disorder.
Collapse
Affiliation(s)
- Edward C Dempsey
- Cardiovascular Pulmonary Research Laboratory; B-133, University of Colorado Denver, 12700 E. 19 Ave, Aurora, CO 80046, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Iijima-Ando K, Hearn SA, Granger L, Shenton C, Gatt A, Chiang HC, Hakker I, Zhong Y, Iijima K. Overexpression of neprilysin reduces alzheimer amyloid-beta42 (Abeta42)-induced neuron loss and intraneuronal Abeta42 deposits but causes a reduction in cAMP-responsive element-binding protein-mediated transcription, age-dependent axon pathology, and premature death in Drosophila. J Biol Chem 2008; 283:19066-76. [PMID: 18463098 PMCID: PMC2441542 DOI: 10.1074/jbc.m710509200] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2007] [Revised: 04/01/2008] [Indexed: 12/20/2022] Open
Abstract
The amyloid-beta42 (Abeta42) peptide has been suggested to play a causative role in Alzheimer disease (AD). Neprilysin (NEP) is one of the rate-limiting Abeta-degrading enzymes, and its enhancement ameliorates extracellular amyloid pathology, synaptic dysfunction, and memory defects in mouse models of Abeta amyloidosis. In addition to the extracellular Abeta, intraneuronal Abeta42 may contribute to AD pathogenesis. However, the protective effects of neuronal NEP expression on intraneuronal Abeta42 accumulation and neurodegeneration remain elusive. In contrast, sustained NEP activation may be detrimental because NEP can degrade many physiological peptides, but its consequences in the brain are not fully understood. Using transgenic Drosophila expressing human NEP and Abeta42, we demonstrated that NEP efficiently suppressed the formation of intraneuronal Abeta42 deposits and Abeta42-induced neuron loss. However, neuronal NEP overexpression reduced cAMP-responsive element-binding protein-mediated transcription, caused age-dependent axon degeneration, and shortened the life span of the flies. Interestingly, the mRNA levels of endogenous fly NEP genes and phosphoramidon-sensitive NEP activity declined during aging in fly brains, as observed in mammals. Taken together, these data suggest both the protective and detrimental effects of chronically high NEP activity in the brain. Down-regulation of NEP activity in aging brains may be an evolutionarily conserved phenomenon, which could predispose humans to developing late-onset AD.
Collapse
Affiliation(s)
- Kanae Iijima-Ando
- Laboratory of Neurogenetics and Pathobiology, Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Broccolini A, Gidaro T, De Cristofaro R, Morosetti R, Gliubizzi C, Ricci E, Tonali PA, Mirabella M. Hyposialylation of neprilysin possibly affects its expression and enzymatic activity in hereditary inclusion-body myopathy muscle. J Neurochem 2008; 105:971-81. [DOI: 10.1111/j.1471-4159.2007.05208.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
He P, Zhong Z, Lindholm K, Berning L, Lee W, Lemere C, Staufenbiel M, Li R, Shen Y. Deletion of tumor necrosis factor death receptor inhibits amyloid beta generation and prevents learning and memory deficits in Alzheimer's mice. ACTA ACUST UNITED AC 2007; 178:829-41. [PMID: 17724122 PMCID: PMC2064547 DOI: 10.1083/jcb.200705042] [Citation(s) in RCA: 279] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The tumor necrosis factor type 1 death receptor (TNFR1) contributes to apoptosis. TNFR1, a subgroup of the TNFR superfamily, contains a cytoplasmic death domain. We recently demonstrated that the TNFR1 cascade is required for amyloid beta protein (Abeta)-induced neuronal death. However, the function of TNFR1 in Abeta plaque pathology and amyloid precursor protein (APP) processing in Alzheimer's disease (AD) remains unclear. We report that the deletion of the TNFR1 gene in APP23 transgenic mice (APP23/TNFR1(-/-)) inhibits Abeta generation and diminishes Abeta plaque formation in the brain. Genetic deletion of TNFR1 leads to reduced beta-secretase 1 (BACE1) levels and activity. TNFR1 regulates BACE1 promoter activity via the nuclear factor-kappaB pathway, and the deletion of TNFR1 in APP23 transgenic mice prevents learning and memory deficits. These findings suggest that TNFR1 not only contributes to neurodegeneration but also that it is involved in APP processing and Abeta plaque formation. Thus, TNFR1 is a novel therapeutic target for AD.
Collapse
Affiliation(s)
- Ping He
- Haldeman Laboratory of Molecular and Cellular Neurobiology, Sun Health Research Institute, Sun City, AZ 85351, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Liu Y, Guan H, Beckett TL, Juliano MA, Juliano L, Song ES, Chow KM, Murphy MP, Hersh LB. In vitro and in vivo degradation of Abeta peptide by peptidases coupled to erythrocytes. Peptides 2007; 28:2348-55. [PMID: 17988763 PMCID: PMC2149904 DOI: 10.1016/j.peptides.2007.09.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2007] [Revised: 09/20/2007] [Accepted: 09/21/2007] [Indexed: 12/20/2022]
Abstract
It is generally believed that amyloid beta peptides (Abeta) are the key mediators of Alzheimer's disease. Therapeutic interventions have been directed toward impairing the synthesis or accelerating the clearance of Abeta. An equilibrium between blood and brain Abeta exists mediated by carriers that transport Abeta across the blood-brain barrier. Passive immunotherapy has been shown to be effective in mouse models of AD, where the plasma borne antibody binds plasma Abeta causing an efflux of Abeta from the brain. As an alternative to passive immunotherapy we have considered the use of Abeta-degrading peptidases to lower plasma Abeta levels. Here we compare the ability of three Abeta-degrading peptidases to degrade Abeta. Biotinylated peptidases were coupled to the surface of biotinylated erythrocytes via streptavidin. These erythrocyte-bound peptidases degrade Abeta peptide in plasma. Thus, peptidases bound to or expressed on the surface of erythroid cells represent an alternative to passive immunotherapy.
Collapse
Affiliation(s)
- Yinxing Liu
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, Department of Molecular and Cellular Biochemistry, University of Kentucky
| | - Hanjun Guan
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, Department of Molecular and Cellular Biochemistry, University of Kentucky
| | - Tina L. Beckett
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, Department of Molecular and Cellular Biochemistry, University of Kentucky
| | | | - Luiz Juliano
- Department of Biophysics, Escola Paulista de Medicina, Sao Paulo, Brazil
| | - Eun Suk Song
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, Department of Molecular and Cellular Biochemistry, University of Kentucky
| | - K. Martin Chow
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, Department of Molecular and Cellular Biochemistry, University of Kentucky
| | - M. Paul Murphy
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, Department of Molecular and Cellular Biochemistry, University of Kentucky
| | - Louis B. Hersh
- * Correspondence to this author at: Department of Molecular and Cellular Biochemistry, University of Kentucky, College of Medicine, B283 Biomedical Biological Research Building, 741 South Limestone St., Lexington, KY 40536–0509, Email , 859–323–5549, Fax. 859–323–1727
| |
Collapse
|
19
|
El-Amouri SS, Zhu H, Yu J, Gage FH, Verma IM, Kindy MS. Neprilysin protects neurons against Abeta peptide toxicity. Brain Res 2007; 1152:191-200. [PMID: 17459354 PMCID: PMC2020816 DOI: 10.1016/j.brainres.2007.03.072] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2006] [Revised: 03/08/2007] [Accepted: 03/09/2007] [Indexed: 01/08/2023]
Abstract
In recent years, studies have suggested that accumulation of amyloid beta (Abeta) peptide in the brain plays a key role in the development of Alzheimer's disease (AD). The steady-state level of Abeta peptide in the brain is determined by the rate of production from amyloid precursor protein (APP) via beta- and gamma-secretases and degradation by the activity of several enzymes. Neprilysin (NEP) appears to be the most potent Abeta peptide-degrading enzyme in the brain. Decreasing the activity of NEP (due to genetic mutations, age or diseases that alter the expression or activity of NEP) may lead to accumulation of the neurotoxic Abeta peptide in the brain; in turn this leads to neuronal loss. We investigated the efficacy of lentivirus-mediated over-expression of NEP to protect neuronal cells from Abeta peptide in vitro. Incubation of hippocampal neuronal cells (HT22) over-expressing NEP with the monomeric from of Abeta peptide decreases the toxicity of Abeta peptide on the neuronal cells, as measured through cell viability. We conclude that over-expression of NEP by a gene therapy approach in areas vulnerable to Abeta peptide aggregation in AD brain may protect the neurons from the toxicity effects of Abeta peptide and this promises a great potential target for altering the development of AD.
Collapse
Affiliation(s)
- Salim S. El-Amouri
- Department of Molecular and Cellular Biochemistry, Medical University of South Carolina, Charleston, South Carolina 29425
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Hong Zhu
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Jin Yu
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Fred H. Gage
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California 92037
| | - Inder M. Verma
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California 92037
| | - Mark S. Kindy
- Department of Molecular and Cellular Biochemistry, Medical University of South Carolina, Charleston, South Carolina 29425
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina 29425
- The Ralph H. Johnson VA Medical Center, Charleston, South Carolina 29401
- Correspondence to Mark S. Kindy, Department of Neurosciences, Medical University of South Carolina, Basic Science Building, Room 403, 173 Ashley Avenue, Charleston, SC 29425.
| |
Collapse
|
20
|
König S, Luger TA, Scholzen TE. Monitoring neuropeptide-specific proteases: processing of the proopiomelanocortin peptides adrenocorticotropin and alpha-melanocyte-stimulating hormone in the skin. Exp Dermatol 2006; 15:751-61. [PMID: 16984256 DOI: 10.1111/j.1600-0625.2006.00472.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The neuroendocrine precursor protein proopiomelanocortin (POMC) and its derived neuropeptides are involved in a number of important regulatory processes in the central nervous system as well as in peripheral tissues. Despite its important role in controlling the local activation of melanocortin (MC) receptors, the extracellular proteolytic processing of POMC peptides has received little attention. The mechanisms relevant for controlling the bioavailability of adrenocorticotropin and melanocyte-stimulating hormones for the corresponding MC receptors in the skin by specific peptidases such as neprilysin (neutral endopeptidase; NEP) or angiotensin-converting enzyme (ACE) have been addressed in a number of recent investigations. This review summarizes the current body of knowledge concerning the qualitative and quantitative POMC peptide processing with respect to the action and specificity of NEP and ACE and discusses relevant recent analytical methodologies.
Collapse
Affiliation(s)
- Simone König
- Integrated Functional Genomics, Interdisciplinary Center for Clinical Research, University of Münster, Von-Esmarch-Strasse 58, 48149 Münster, Germany
| | | | | |
Collapse
|
21
|
Abstract
Dementia associated with human immunodeficiency virus (HIV) infection occurs commonly in the aging population and amyloid depositions are noted in the brains of patients with HIV infection in younger age groups. This suggests a dysregulation of amyloid processing in the setting of HIV infection. The Tat protein of HIV has been implicated in the neuropathogenesis of HIV infection due to its neurotoxic and glial activation properties. However, Tat protein and Tat-derived peptides were recently also shown to inhibit neprilysin, the major amyloid beta peptide degrading enzyme in brain, in a cell aggregate system. This effect could contribute to the observed accumulation of amyloid in the brain of HIV-infected patients. The authors report here that peptides derived from the Tat protein, but not Tat protein itself, inhibit homogeneous recombinant neprilysin. This inhibition was found to be competitive and reversible and therefore does not involve covalent bond formation. Tat peptides and Tat protein were slowly hydrolyzed by neprilysin. Thus the accumulation of Tat-derived proteolytic fragments may serve to inhibit neprilysin and increase amyloid beta peptide levels.
Collapse
Affiliation(s)
- Abigail Daily
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky 40538-0509, USA
| | | | | |
Collapse
|
22
|
Lazarov O, Robinson J, Tang YP, Hairston IS, Korade-Mirnics Z, Lee VMY, Hersh LB, Sapolsky RM, Mirnics K, Sisodia SS. Environmental enrichment reduces Abeta levels and amyloid deposition in transgenic mice. Cell 2005; 120:701-13. [PMID: 15766532 DOI: 10.1016/j.cell.2005.01.015] [Citation(s) in RCA: 631] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2004] [Revised: 11/17/2004] [Accepted: 01/13/2005] [Indexed: 10/25/2022]
Abstract
Cerebral deposition of beta-amyloid (Abeta) peptides is an invariant pathological hallmark in brains of patients with Alzheimer's disease (AD) and transgenic mice coexpressing familial AD-linked APP and PS1 variants. We now report that exposure of transgenic mice to an "enriched environment" results in pronounced reductions in cerebral Abeta levels and amyloid deposits, compared to animals raised under "standard housing" conditions. The enzymatic activity of an Abeta-degrading endopeptidase, neprilysin, is elevated in the brains of "enriched" mice and inversely correlated with amyloid burden. Moreover, DNA microarray analysis revealed selective upregulation in levels of transcripts encoded by genes associated with learning and memory, vasculogenesis, neurogenesis, cell survival pathways, Abeta sequestration, and prostaglandin synthesis. These studies provide evidence that environmental enrichment leads to reductions in steady-state levels of cerebral Abeta peptides and amyloid deposition and selective upregulation in levels of specific transcripts in brains of transgenic mice.
Collapse
Affiliation(s)
- Orly Lazarov
- Department of Neurobiology, Pharmacology, and Physiology, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Finelli A, Kelkar A, Song HJ, Yang H, Konsolaki M. A model for studying Alzheimer's Abeta42-induced toxicity in Drosophila melanogaster. Mol Cell Neurosci 2004; 26:365-75. [PMID: 15234342 DOI: 10.1016/j.mcn.2004.03.001] [Citation(s) in RCA: 200] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2003] [Revised: 03/02/2004] [Accepted: 03/02/2004] [Indexed: 11/23/2022] Open
Abstract
Alzheimer's disease is a neurological disorder resulting in the degeneration and death of brain neurons controlling memory, cognition and behavior. Although overproduction of Abeta peptides is widely considered a causative event in the disease, the mechanisms by which Abeta peptides cause neurodegeneration and the processes of Abeta clearance and degradation remain unclear. To address these issues, we have expressed the Abeta peptides in Drosophila melanogaster. We show that overexpression of Abeta42 peptides in the nervous system results in phenotypes associated with neuronal degeneration in a dose- and age-dependent manner. We further show that a mutation in a Drosophila neprilysin gene suppresses the Abeta42 phenotypes by lowering the levels of the Abeta42 peptide, supporting the role of neprilysin in the catabolism of Abeta peptides in vivo. We propose that our Drosophila model is suitable for the study and elucidation of Abeta metabolism and toxicity at the genetic level.
Collapse
Affiliation(s)
- Alyce Finelli
- Department of Functional Genomics, Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA
| | | | | | | | | |
Collapse
|
24
|
Huang J, Guan H, Booze RM, Eckman CB, Hersh LB. Estrogen regulates neprilysin activity in rat brain. Neurosci Lett 2004; 367:85-7. [PMID: 15308303 DOI: 10.1016/j.neulet.2004.05.085] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2004] [Revised: 05/19/2004] [Accepted: 05/26/2004] [Indexed: 11/28/2022]
Abstract
Neprilysin is a zinc metalloendopeptidase that regulates the activity of a number of physiological peptides through hydrolytic inactivation. Most recently, evidence has accumulated that neprilysin is involved in the clearance of amyloid beta peptides in the brain. Previous studies have shown that the neprilysin gene responds to progesterone, androgen, and glucocorticoids. We now show that estrogen regulates neprilysin activity in rat brain. Ovariectomy leads to a 30% decrease in neprilysin activity at 45 or 85 days, but not 21 days, post surgery. Estrogen replacement restores neprilysin levels back to control values. These changes in neprilysin activity suggest that in women estrogen is required to maintain basal levels of neprilysin.
Collapse
Affiliation(s)
- Jian Huang
- College of Life Science, Wuhan University, Wuhan, PR China
| | | | | | | | | |
Collapse
|
25
|
Abstract
The degenerative process of Alzheimer's disease is linked to a shift in the balance between amyloid-beta (Abeta) production, clearance, and degradation. Neprilysin has recently been implicated as a major extracellular Abeta degrading enzyme in the brain. However, there has been no direct demonstration that neprilysin antagonizes the deposition of amyloid-beta in vivo. To address this issue, a lentiviral vector expressing human neprilysin (Lenti-Nep) was tested in transgenic mouse models of amyloidosis. We show that unilateral intracerebral injection of Lenti-Nep reduced amyloid-beta deposits by half relative to the untreated side. Furthermore, Lenti-Nep ameliorated neurodegenerative alterations in the frontal cortex and hippocampus of these transgenic mice. These data further support a role for neprilysin in regulating cerebral amyloid deposition and suggest that gene transfer approaches might have potential for the development of alternative therapies for Alzheimer's disease.
Collapse
|
26
|
Fricke B, Parchmann O, Kruse K, Rücknagel P, Schierhorn A, Menge S. Characterization and purification of an outer membrane metalloproteinase from Pseudomonas aeruginosa with fibrinogenolytic activity. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1454:236-50. [PMID: 10452958 DOI: 10.1016/s0925-4439(99)00040-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A membrane proteinase from Pseudomonas aeruginosa, called insulin-cleaving membrane proteinase (ICMP), was located in the outer membrane leaflet of the cell envelope. The enzyme is expressed early in the logarithmic phase parallel to the bacterial growth during growth on peptide rich media. It is located with its active center facing to the outermost side of the cell, because its whole activity could be measured in intact cells. The very labile membrane proteinase was solubilized by non-ionic detergents (Nonidet P-40, Triton X-100) and purified in its amphiphilic form to apparent homogeneity in SDS-PAGE by copper chelate chromatography and two subsequent chromatographic steps on Red-Sepharose CL-4B (yield 58.3%, purification factor 776.3). It consisted of a single polypeptide chain with a molecular mass of 44.6 kDa, determined by mass spectrometry. ICMP was characterized to be a metalloprotease with pH-optimum in the neutral range. The ICMP readily hydrolyzed Glu(13)-Ala(14) and Tyr(16)-Leu(17) bonds in the insulin B-chain. Phe(25)-Tyr(26) and His(10)-Leu(11) were secondary cleavage sites suggesting a primary specificity of the enzyme for hydrophobic or aromatic residues at P'(1)-position. The ICMP differed from elastase, alkaline protease and LasA in its cleavage specificity, inhibition behavior and was immunologically diverse from elastase. The amino acid sequence of internal peptides showed no homologies with the known proteinases. This outer membrane proteinase was capable of specific cleavage of alpha and beta fibrinogen chains. Among the p-nitroanilide substrates tested, substrates of plasminogen activator, complement convertase and kallikrein with arginine residues in the P(1)-subsite were the substrates best accepted, but they were only cleaved at a very low rate.
Collapse
Affiliation(s)
- B Fricke
- Institute of Physiological Chemistry, Medical Faculty, Martin Luther University, 06097, Halle (Saale), Germany.
| | | | | | | | | | | |
Collapse
|
27
|
Johnson GD, Stevenson T, Ahn K. Hydrolysis of peptide hormones by endothelin-converting enzyme-1. A comparison with neprilysin. J Biol Chem 1999; 274:4053-8. [PMID: 9933597 DOI: 10.1074/jbc.274.7.4053] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Endothelins are peptide hormones with a potent vasoconstrictor activity that are also known to function as intercellular signaling molecules. The final step in the biosynthesis of endothelins is the proteolytic processing of precursor peptides by endothelin-converting enzymes (ECEs). ECE-1 is a zinc metalloendopeptidase related in amino acid sequence to neprilysin, a mammalian cell-surface peptidase involved in the metabolism of numerous biologically active peptides. Despite apparent structural similarities, ECE-1 and neprilysin have been considered to differ significantly in substrate specificity. In this study we have examined the activity of recombinant ECE-1 against a collection of biologically active peptides. ECE-1, unlike neprilysin, was found to have minimal activity against substrates smaller than hexapeptides, such as Leu-enkephalin. Larger peptides such as neurotensin, substance P, bradykinin, and the oxidized insulin B chain were hydrolyzed by ECE-1 as efficiently as big endothelin-1, a known in vivo substrate. Identification of the products of hydrolysis of six peptides indicates that ECE-1 has a substrate specificity similar to that of neprilysin, preferring to cleave substrates at the amino side of hydrophobic residues. The data indicate that ECE-1 possesses a surprisingly broad substrate specificity and is potentially involved in the metabolism of biologically active peptides distinct from the endothelins.
Collapse
Affiliation(s)
- G D Johnson
- Department of Biochemistry, Parke-Davis Pharmaceutical Research, Division of Warner-Lambert Company, Ann Arbor, Michigan 48105, USA
| | | | | |
Collapse
|
28
|
Khatri IA, Forstner GG, Forstner JF. Susceptibility of the cysteine-rich N-terminal and C-terminal ends of rat intestinal mucin muc 2 to proteolytic cleavage. Biochem J 1998; 331 ( Pt 1):323-30. [PMID: 9512496 PMCID: PMC1219355 DOI: 10.1042/bj3310323] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The present study reveals that partial proteolytic degradation of rat Muc 2 mucin can occur rapidly even in the presence of a battery of proteinase inhibitors. During the initial steps of purification from homogenates of intestinal scrapings, degradation was rapid, causing release of the entire 118 kDa C-terminal glycopeptide and, as shown by N-terminal sequencing, a large (200 kDa) N-terminal glycopeptide fragment. Degradation could be prevented by adding 6 M guanidinium chloride provided that its presence was maintained throughout every step of purification. Even after purification, however, the mucin was still vulnerable to partial proteolysis unless it was stored in guanidinium chloride at -20 degrees C. These findings imply that a potent proteinase contaminant remains tightly bound to the mucin through every step of purification, or else that the mucin has autocatalytic properties. Because the C- and N-terminal regions of secretory mucins are required for their assembly into linear mucin polymers that form functional gels, our findings emphasize that extreme care is required to purify structurally intact mucin molecules. They also imply that the specific degradation steps described here are likely to occur rapidly after mucins are secreted into the intestinal lumen and come into contact with the products of sloughed cells.
Collapse
Affiliation(s)
- I A Khatri
- Research Institute, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | | | | |
Collapse
|
29
|
Bond JS, Jiang W. Membrane metalloendopeptidases in immune function and disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1997; 421:1-6. [PMID: 9330673 DOI: 10.1007/978-1-4757-9613-1_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- J S Bond
- Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey 17033-0850, USA
| | | |
Collapse
|
30
|
Zini S, Fournie-Zaluski MC, Chauvel E, Roques BP, Corvol P, Llorens-Cortes C. Identification of metabolic pathways of brain angiotensin II and III using specific aminopeptidase inhibitors: predominant role of angiotensin III in the control of vasopressin release. Proc Natl Acad Sci U S A 1996; 93:11968-73. [PMID: 8876246 PMCID: PMC38167 DOI: 10.1073/pnas.93.21.11968] [Citation(s) in RCA: 236] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Angiotensin (Ang) II and Ang III are two peptide effectors of the brain renin-angiotensin system that participate in the control of blood pressure and increase water consumption and vasopressin release. In an attempt to delineate the respective roles of these peptides in the regulation of vasopressin secretion, their metabolic pathways and their effects on vasopressin release were identified in vivo. For this purpose, we used recently developed selective inhibitors of aminopeptidase A (APA) and aminopeptidase N (APN), two enzymes that are believed to be responsible for the N-terminal cleavage of Ang II and Ang III, respectively. Mice received [3H]Ang II intracerebroventricularly (i.c.v.) in the presence or absence of the APN inhibitor, EC33 (3-amino-4-thio-butyl sulfonate) of the APN inhibitor, EC27 (2-amino-pentan-1,5-dithiol). [3H]Ang II and [3H]Ang III levels were evaluated from hypothalamus homogenates by HPLC. EC33 increased the half-life of [3H]Ang II 2.6-fold and completely blocked the formation of [3H]Ang III, whereas EC27 increased the half-life of [3H]Ang III 2.3-fold. In addition, the effects of EC33 and EC27 on Ang-induced vasopressin release were studied in mice. Ang II was injected i.c.v. in the presence or absence of EC33, and plasma vasopressin levels were estimated by RIA. While vasopressin levels were increased 2-fold by Ang II (5 ng), EC33 inhibited Ang II-induced vasopressin release in a dose-dependent manner. In contrast, EC27 injected alone increased in a dose-dependent manner vasopressin levels. The EC27-induced vasopressin release was completely blocked by the coadministration of the Ang receptor antagonist (Sar1-Ala8) Ang II. These results demonstrate for the first time that (i) APA and APN are involved in vivo in the metabolism of brain Ang II and Ang III, respectively, and that (ii) the action of Ang II on vasopressin release depends upon the prior conversion of Ang II to Ang III. This shows that Ang III behaves as one of the main effector peptides of the brain renin-angiotensin system in the control of vasopressin release.
Collapse
Affiliation(s)
- S Zini
- Institut National de la Santé et de la Recherche Médicale, Unité 36, Collège de France, Paris
| | | | | | | | | | | |
Collapse
|