1
|
Huang X, Tang C, Huang X, Yang Y, Li Q, Ma M, Zhao L, Yang L, Cui Y, Zhang Z, Zheng Y, Zhang J. Synthesis and anti-HIV activities of phorbol derivatives. Chin J Nat Med 2024; 22:146-160. [PMID: 38342567 DOI: 10.1016/s1875-5364(24)60587-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Indexed: 02/13/2024]
Abstract
In this study, 37 derivatives of phorbol esters were synthesized and their anti-HIV-1 activities evaluated, building upon our previous synthesis of 51 phorbol derivatives. 12-Para-electron-acceptor-trans-cinnamoyl-13-decanoyl phorbol derivatives stood out, demonstrating remarkable anti-HIV-1 activities and inhibitory effects on syncytia formation. These derivatives exhibited a higher safety index compared with the positive control drug. Among them, 12-(trans-4-fluorocinnamoyl)-13-decanoyl phorbol, designated as compound 3c, exhibited the most potent anti-HIV-1 activity (EC50 2.9 nmol·L-1, CC50/EC50 11 117.24) and significantly inhibited the formation of syncytium (EC50 7.0 nmol·L-1, CC50/EC50 4891.43). Moreover, compound 3c is hypothesized to act both as an HIV-1 entry inhibitor and as an HIV-1 reverse transcriptase inhibitor. Isothermal titration calorimetry and molecular docking studies indicated that compound 3c may also function as a natural activator of protein kinase C (PKC). Therefore, compound 3c emerges as a potential candidate for developing new anti-HIV drugs.
Collapse
Affiliation(s)
- Xiaolei Huang
- College of Pharmaceutical Science, Soochow University, Suzhou 215123, China
| | - Chengrun Tang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Xusheng Huang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Yun Yang
- College of Pharmaceutical Science, Soochow University, Suzhou 215123, China
| | - Qirun Li
- College of Pharmaceutical Science, Soochow University, Suzhou 215123, China
| | - Mengdi Ma
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Lei Zhao
- College of Pharmaceutical Science, Soochow University, Suzhou 215123, China
| | - Liumeng Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Yadong Cui
- College of Pharmaceutical Science, Soochow University, Suzhou 215123, China
| | - Zhenqing Zhang
- College of Pharmaceutical Science, Soochow University, Suzhou 215123, China.
| | - Yongtang Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China.
| | - Jian Zhang
- College of Pharmaceutical Science, Soochow University, Suzhou 215123, China.
| |
Collapse
|
2
|
Sester C, McCone JA, Sen A, Vorster I, Harvey JE, Hodgkiss JM. Unravelling the binding mode of a methamphetamine aptamer: a spectroscopic and calorimetric investigation. Biophys J 2022; 121:2193-2205. [PMID: 35474264 DOI: 10.1016/j.bpj.2022.04.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 03/10/2022] [Accepted: 04/22/2022] [Indexed: 11/25/2022] Open
Abstract
Nucleic acid aptamers are bio-molecular recognition agents that bind to their targets with high specificity and affinity, and hold promise in a range of biosensor and therapeutic applications. In the case of small molecule targets, their small size and limited number of functional groups constitute challenges for their detection by aptamer-based biosensors because bio-recognition events may both be weak and produce poorly transduced signals. The binding affinity is principally used to characterize aptamer-ligand interactions; however a structural understanding of bio-recognition is arguably more valuable in order to design a strong response in biosensor applications. Using a combination of nuclear magnetic resonance, circular dichroism, and isothermal titration calorimetry, we propose a binding model for a new methamphetamine aptamer and determine the main interactions driving complex formation. These measurements reveal only modest structural changes to the aptamer upon binding and are consistent with a conformational selection binding model. The aptamer-methamphetamine complex formation was observed to be entropically driven, apparently involving hydrophobic and electrostatic interactions. Taken together, our results exemplify a means of elucidating small molecule-aptamer binding interactions, which may be decisive in the development of aptasensors and therapeutics, and may contribute to a deeper understanding of interactions driving aptamer selection.
Collapse
Affiliation(s)
- Clement Sester
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington PO Box 600, Wellington 6040, New Zealand; School of Chemical and Physical Sciences, Victoria University of Wellington, PO Box 600, Wellington 6040, New Zealand
| | - Jordan Aj McCone
- Centre for Biodiscovery, School of Chemical and Physical Sciences, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand
| | - Anindita Sen
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington PO Box 600, Wellington 6040, New Zealand; School of Chemical and Physical Sciences, Victoria University of Wellington, PO Box 600, Wellington 6040, New Zealand
| | - Ian Vorster
- School of Chemical and Physical Sciences, Victoria University of Wellington, PO Box 600, Wellington 6040, New Zealand
| | - Joanne E Harvey
- Centre for Biodiscovery, School of Chemical and Physical Sciences, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand
| | - Justin M Hodgkiss
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington PO Box 600, Wellington 6040, New Zealand; School of Chemical and Physical Sciences, Victoria University of Wellington, PO Box 600, Wellington 6040, New Zealand.
| |
Collapse
|
3
|
Dalberto PF, de Souza EV, Abbadi BL, Neves CE, Rambo RS, Ramos AS, Macchi FS, Machado P, Bizarro CV, Basso LA. Handling the Hurdles on the Way to Anti-tuberculosis Drug Development. Front Chem 2020; 8:586294. [PMID: 33330374 PMCID: PMC7710551 DOI: 10.3389/fchem.2020.586294] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/25/2020] [Indexed: 12/17/2022] Open
Abstract
The global epidemic of tuberculosis (TB) imposes a sustained epidemiologic vigilance and investments in research by governments. Mycobacterium tuberculosis, the main causative agent of TB in human beings, is a very successful pathogen, being the main cause of death in the population among infectious agents. In 2018, ~10 million individuals were contaminated with this bacillus and became ill with TB, and about 1.2 million succumbed to the disease. Most of the success of the M. tuberculosis to linger in the population comes from its ability to persist in an asymptomatic latent state into the host and, in fact, the majority of the individuals are unaware of being contaminated. Even though TB is a treatable disease and is curable in most cases, the treatment is lengthy and laborious. In addition, the rise of resistance to first-line anti-TB drugs elicits a response from TB research groups to discover new chemical entities, preferably with novel mechanisms of action. The pathway to find a new TB drug, however, is arduous and has many barriers that are difficult to overcome. Fortunately, several approaches are available today to be pursued by scientists interested in anti-TB drug development, which goes from massively testing chemical compounds against mycobacteria, to discovering new molecular targets by genetic manipulation. This review presents some difficulties found along the TB drug development process and illustrates different approaches that might be used to try to identify new molecules or targets that are able to impair M. tuberculosis survival.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Luiz A. Basso
- Centro de Pesquisas em Biologia Molecular e Funcional (CPBMF) and Instituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| |
Collapse
|
4
|
Abbas S, Koch KW. Quantitative Determination of Ca 2+-binding to Ca 2+-sensor Proteins by Isothermal Titration Calorimetry. Bio Protoc 2020; 10:e3580. [PMID: 33659550 DOI: 10.21769/bioprotoc.3580] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/19/2020] [Accepted: 01/21/2020] [Indexed: 01/29/2023] Open
Abstract
Diverse and complex molecular recognitions are central elements of signal transduction cascades. The strength and nature of these interaction modes can be determined by different experimental approaches. Among those, Isothermal titration calorimetry (ITC) offers certain advantages by providing binding constants and thermodynamic parameters from titration series without a need to label or immobilize one or more interaction partners. Furthermore, second messenger homeostasis involving Ca2+-ions requires in particular knowledge about stoichiometries and affinities of Ca2+-binding to Ca2+-sensor proteins or Ca2+-dependent regulators, which can be obtained by employing ITC. We used ITC to measure these parameters for a set of neuronal Ca2+-sensor proteins operating in photoreceptor cells. Here, we present a step wise protocol to (a) measure Ca2+ interaction with the Ca2+-sensor guanylate cyclase-activating protein 1, (b) to design an ITC experiment and prepare samples, (c) to remove Ca2+ nearly completely from Ca2+ binding proteins without using a chelating agent like EGTA.
Collapse
Affiliation(s)
- Seher Abbas
- Department of Neuroscience, Division of Biochemistry, University of Oldenburg, Oldenburg D-26129, Germany
| | - Karl-Wilhelm Koch
- Department of Neuroscience, Division of Biochemistry, University of Oldenburg, Oldenburg D-26129, Germany
| |
Collapse
|
5
|
|
6
|
Tan J, Zaremska V, Lim S, Knoll W, Pelosi P. Probe-dependence of competitive fluorescent ligand binding assays to odorant-binding proteins. Anal Bioanal Chem 2019; 412:547-554. [PMID: 31853607 DOI: 10.1007/s00216-019-02309-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/21/2019] [Accepted: 11/27/2019] [Indexed: 01/15/2023]
Abstract
Ligand binding experiments between small chemicals and proteins and the evaluation of dissociation constants of their complexes in competitive binding assays often rely on displacement of reporter probes by the tested ligand. The most widely adopted protocol uses a fluorescent ligand which changes its emission spectrum when bound to a protein. A decrease of fluorescence, caused by the addition of a second ligand to the complex is generally interpreted as displacement of the fluorescent probe by the ligand, and therefore as a measure of the affinity of the ligand for the protein. Working with an odorant-binding protein (OBP), we found drastic differences in the calculated affinities when using 1-aminoanthracene or N-phenyl-1-naphthylamine as the fluorescent reporter. This fact was quite unexpected, as OBPs are small compact proteins with a single binding pocket without allosteric sites. Such observation raises doubts on the reliability of the fluorescent binding assay, perhaps the most widely used approach to evaluate affinities of small organic compounds to OBPs and other binding proteins. We recommend that the results of fluorescent binding experiments with OBPs should be confirmed by using two different probes or alternative methods. The reliability of current protocols for ligand binding assays is rather limited, while we still wait for a label-free approach that could be simple, fast and free from the use of radioactive tracers.
Collapse
Affiliation(s)
- Jiajun Tan
- Biosensor Technologies, Austrian Institute of Technology GmbH, Konrad-Lorenz Straße, 24, 3430, Tulln, Austria.,School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Valeriia Zaremska
- Biosensor Technologies, Austrian Institute of Technology GmbH, Konrad-Lorenz Straße, 24, 3430, Tulln, Austria
| | - Sierin Lim
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Wolfgang Knoll
- Biosensor Technologies, Austrian Institute of Technology GmbH, Konrad-Lorenz Straße, 24, 3430, Tulln, Austria
| | - Paolo Pelosi
- Biosensor Technologies, Austrian Institute of Technology GmbH, Konrad-Lorenz Straße, 24, 3430, Tulln, Austria.
| |
Collapse
|
7
|
Rovere M. Circular Dichroism and Isothermal Titration Calorimetry to Study the Interaction of α-Synuclein with Membranes. Methods Mol Biol 2019; 1948:123-143. [PMID: 30771175 DOI: 10.1007/978-1-4939-9124-2_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
α-Synuclein's physiology and pathology have been linked by numerous reports to its ability to bind and remodel membranes, especially at synaptic terminals. It is therefore critical for researchers investigating the determinants of these interactions to rely on methods capable of providing an accurate and complete physicochemical snapshot of the binding events. Circular dichroism (CD) and isothermal titration calorimetry (ITC) are established techniques for the study of binding equilibria in biological systems and, especially when used in combination, allow a thorough characterization of the protein-lipid interplay.Here we provide general guidelines and describe some common pitfalls of these experiments. This protocol describes the preparation of small unilamellar vesicles (SUVs), mimicking the curved bilayers α-synuclein normally interacts with, the CD-monitored titration of α-synuclein with SUVs, the ITC (lipid-into-protein) experiment, and the subsequent data analysis using an n independent binding site model.
Collapse
Affiliation(s)
- Matteo Rovere
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
8
|
Parikh V, Gupta P. Thermodynamic analysis of r-hGH-polymer surface Interaction using isothermal titration calorimetry. Growth Horm IGF Res 2018; 42-43:86-93. [PMID: 30368133 DOI: 10.1016/j.ghir.2018.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 10/15/2018] [Accepted: 10/15/2018] [Indexed: 11/25/2022]
Abstract
Delivery of protein drugs would be an effective approach if mechanistic understanding of protein adsorption at solid/liquid surface is obtained and nonspecific adsorption can be controlled. This study involves evaluation of the thermodynamic parameters for interaction between recombinant human growth hormone (r-hGH) and nanoparticles of poly (lactic- co- glycolic) acid polymer of different molecular weight. Energy changes related to protein-nanoparticle interactions are usually very small and isothermal titration calorimetry (ITC) is the only technique that determines the binding constant (Ka), enthalpy, (ΔH) and stoichiometry, (n) in a single experiment. Therefore, we used ITC to study the energetics of the binding of r-hGH with PLGA nanoparticles. The largely negative ∆H and ∆S suggested that binding was driven by non-classical hydrophobic effect for interaction with PLGA 50501A and PLGA 8515E nanoparticles at pH 7.2 where higher surface coverage was noted for the latter. Endothermic, entropically driven reaction was observed upon interaction of r-hGH with PLGA 5050 5E nanoparticles at pH 7.2, PLGA 5050 1A nanoparticles at pH 5.3 and pH 4.0. Moreover, negative value of ΔCp for PLGA 50501A NPs at pH 7.2 indicated cooperative disorder of hydrogen-bonding networks and no evidence of hydrophobic elements. ITC proved to be very efficient method in studying the thermodynamics of the protein polymer interaction. In agreement with results from previous studies using fluorescence spectroscopy, circular dichroism and dynamic light scattering in our laboratory, this study demonstrated that adsorption can be controlled by selecting the polymer of low to moderate hydrophobicity depending on the pH of media.
Collapse
Affiliation(s)
- Vaishnavi Parikh
- Department of pharmaceutics, University of the Sciences, Philadelphia, PA, USA.
| | - Pardeep Gupta
- Department of pharmaceutics, University of the Sciences, Philadelphia, PA, USA
| |
Collapse
|
9
|
Abstract
Anesthetics can interact with a wide variety of proteins in the body, including ion channels and alter their activity, but little is known about the molecular mechanisms of the interactions responsible for the functional activity. Characterization of the nature of anesthetic-protein interactions therefore is important and requires the complete analysis of the binding energetics. Isothermal titration calorimetry (ITC) is the only technique that allows quantitative determination of all thermodynamic parameters, including the equilibrium binding constant (KB), the standard Gibbs free energy change (ΔG), the enthalpy change (ΔH), the entropy change (ΔS), heat capacity change (ΔCp), and stoichiometry (n) of the reaction. ITC does not require any labeling or modification of the interacting partners analyzed and can be performed in solution with small amounts of reagents. In this chapter we describe the general properties of the ITC method, highlighting some critical aspects of experimental planning and data analysis, with practical application to anesthetic-protein interactions.
Collapse
|
10
|
Endoh T, Annoni C, Hnedzko D, Rozners E, Sugimoto N. Triplex-forming PNA modified with unnatural nucleobases: the role of protonation entropy in RNA binding. Phys Chem Chem Phys 2018; 18:32002-32006. [PMID: 27869270 DOI: 10.1039/c6cp05013a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Peptide nucleic acid (PNA) modified with unnatural nucleobases enables the formation of a highly stable triplex with a double-stranded RNA at physiological pH. In this communication, we evaluated kinetics and thermodynamics of PNA/RNA triplex formation as a function of both pH and temperature. Protonation entropy was found to be the major factor responsible for the destabilization of the triplex and for the progressive decrease in the association rate at more basic pHs.
Collapse
Affiliation(s)
- Tamaki Endoh
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan.
| | - Chiara Annoni
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan.
| | - Dziyana Hnedzko
- Department of Chemistry, Binghamton University, State University of New York, Binghamton, New York 13902, USA
| | - Eriks Rozners
- Department of Chemistry, Binghamton University, State University of New York, Binghamton, New York 13902, USA
| | - Naoki Sugimoto
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan. and Graduate School of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| |
Collapse
|
11
|
|
12
|
Kumar S, Newby Spano M, Arya DP. Shape readout of AT-rich DNA by carbohydrates. Biopolymers 2016; 101:720-32. [PMID: 24281844 DOI: 10.1002/bip.22448] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 11/10/2013] [Accepted: 11/23/2013] [Indexed: 12/16/2022]
Abstract
Gene expression can be altered by small molecules that target DNA; sequence as well as shape selectivities are both extremely important for DNA recognition by intercalating and groove-binding ligands. We have characterized a carbohydrate scaffold (1) exhibiting DNA "shape readout" properties. Thermodynamic studies with 1 and model duplex DNAs demonstrate the molecule's high affinity and selectivity towards B* form (continuous AT-rich) DNA. Isothermal titration calorimetry (ITC), circular dichroism (CD) titration, ultraviolet (UV) thermal denaturation, and Differential Scanning Calorimetry were used to characterize the binding of 1 with a B* form AT-rich DNA duplex d[5'-G2 A6 T6 C2 -3']. The binding constant was determined using ITC at various temperatures, salt concentrations, and pH. ITC titrations were fit using a two-binding site model. The first binding event was shown to have a 1:1 binding stoichiometry and was predominantly entropy-driven with a binding constant of approximately 10(8) M(-1) . ITC-derived binding enthalpies were used to obtain the binding-induced change in heat capacity (ΔCp ) of -225 ± 19 cal/mol·K. The ionic strength dependence of the binding constant indicated a significant electrolytic contribution in ligand:DNA binding, with approximately four to five ion pairs involved in binding. Ligand 1 displayed a significantly higher affinity towards AT-tract DNA over sequences containing GC inserts, and binding experiments revealed the order of binding affinity for 1 with DNA duplexes: contiguous B* form AT-rich DNA (d[5'-G2 A6 T6 C2 -3']) >B form alternate AT-rich DNA (d[5'-G2 (AT)6 C2- 3']) > A form GC-rich DNA (d[5'-A2 G6 C6 T2 -3']), demonstrating the preference of ligand 1 for B* form DNA.
Collapse
Affiliation(s)
- Sunil Kumar
- Laboratory of Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, SC, 29634
| | | | | |
Collapse
|
13
|
Lin J, Lucius AL. Examination of ClpB Quaternary Structure and Linkage to Nucleotide Binding. Biochemistry 2016; 55:1758-71. [PMID: 26891079 DOI: 10.1021/acs.biochem.6b00122] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Escherichia coli caseinolytic peptidase B (ClpB) is a molecular chaperone with the unique ability to catalyze protein disaggregation in collaboration with the KJE system of chaperones. Like many AAA+ molecular motors, ClpB assembles into hexameric rings, and this reaction is thermodynamically linked to nucleotide binding. Here we show that ClpB exists in a dynamic equilibrium of monomers, dimers, tetramers, and hexamers in the presence of both limiting and excess ATPγS. We find that ClpB monomer is only able to bind one nucleotide, whereas all 12 sites in the hexameric ring are bound by nucleotide at saturating concentrations. Interestingly, dimers and tetramers exhibit stoichiometries of ∼3 and 7, respectively, which is one fewer than the maximum number of binding sites in the formed oligomer. This observation suggests an open conformation for the intermediates based on the need for an adjacent monomer to fully form the binding pocket. We also report the protein-protein interaction constants for dimers, tetramers, and hexamers and their dependencies on nucleotide. These interaction constants make it possible to predict the concentration of hexamers present and able to bind to cochaperones and polypeptide substrates. Such information is essential for the interpretation of many in vitro studies. Finally, the strategies presented here are broadly applicable to a large number of AAA+ molecular motors that assemble upon nucleotide binding and interact with partner proteins.
Collapse
Affiliation(s)
- JiaBei Lin
- Department of Chemistry, The University of Alabama at Birmingham , 1530 Third Avenue S, Birmingham, Alabama 35294-1240, United States
| | - Aaron L Lucius
- Department of Chemistry, The University of Alabama at Birmingham , 1530 Third Avenue S, Birmingham, Alabama 35294-1240, United States
| |
Collapse
|
14
|
Du X, Li Y, Xia YL, Ai SM, Liang J, Sang P, Ji XL, Liu SQ. Insights into Protein-Ligand Interactions: Mechanisms, Models, and Methods. Int J Mol Sci 2016; 17:ijms17020144. [PMID: 26821017 PMCID: PMC4783878 DOI: 10.3390/ijms17020144] [Citation(s) in RCA: 742] [Impact Index Per Article: 92.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 01/13/2016] [Accepted: 01/18/2016] [Indexed: 01/16/2023] Open
Abstract
Molecular recognition, which is the process of biological macromolecules interacting with each other or various small molecules with a high specificity and affinity to form a specific complex, constitutes the basis of all processes in living organisms. Proteins, an important class of biological macromolecules, realize their functions through binding to themselves or other molecules. A detailed understanding of the protein–ligand interactions is therefore central to understanding biology at the molecular level. Moreover, knowledge of the mechanisms responsible for the protein-ligand recognition and binding will also facilitate the discovery, design, and development of drugs. In the present review, first, the physicochemical mechanisms underlying protein–ligand binding, including the binding kinetics, thermodynamic concepts and relationships, and binding driving forces, are introduced and rationalized. Next, three currently existing protein-ligand binding models—the “lock-and-key”, “induced fit”, and “conformational selection”—are described and their underlying thermodynamic mechanisms are discussed. Finally, the methods available for investigating protein–ligand binding affinity, including experimental and theoretical/computational approaches, are introduced, and their advantages, disadvantages, and challenges are discussed.
Collapse
Affiliation(s)
- Xing Du
- Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming 650091, China.
| | - Yi Li
- Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming 650091, China.
| | - Yuan-Ling Xia
- Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming 650091, China.
| | - Shi-Meng Ai
- Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming 650091, China.
- Department of Applied Mathematics, Yunnan Agricultural University, Kunming 650201, China.
| | - Jing Liang
- Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming 650091, China.
| | - Peng Sang
- Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming 650091, China.
- Laboratory of Molecular Cardiology, Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China.
| | - Xing-Lai Ji
- Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming 650091, China.
- Key Laboratory for Tumor molecular biology of High Education in Yunnan Province, School of Life Sciences, Yunnan University, Kunming 650091, China.
| | - Shu-Qun Liu
- Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming 650091, China.
- Key Laboratory for Tumor molecular biology of High Education in Yunnan Province, School of Life Sciences, Yunnan University, Kunming 650091, China.
| |
Collapse
|
15
|
Khirich G, Loria JP. Complexity of protein energy landscapes studied by solution NMR relaxation dispersion experiments. J Phys Chem B 2015; 119:3743-54. [PMID: 25680027 DOI: 10.1021/acs.jpcb.5b00212] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The millisecond time scale motions in ribonuclease A (RNase A) were studied by solution NMR CPMG and off-resonance R1ρ relaxation dispersion experiments over a wide pH and temperature range. These experiments identify three separate protein regions termed Cluster 1, Cluster 2, and R33, whose motions are governed by distinct thermodynamic parameters. Moreover, each of these regions has motions with different pH dependencies. Cluster 1 shows an increase in activation enthalpy and activation entropy as the pH is lowered, whereas Cluster 2 exhibits the opposite behavior. In contrast, the activation enthalpy and entropy of R33 show no pH dependence. Compounding the differences, Δω values for Cluster 2 are characteristic of two-site conformational exchange, yet similar analysis for Cluster 1 indicates that this region of the enzyme exhibits conformational fluctuations between a major conformer and a pH-dependent average of protonated and deprotonated minor conformers.
Collapse
Affiliation(s)
- Gennady Khirich
- Department of Chemistry, Yale University , 225 Prospect Street, New Haven, Connecticut 06520, United States
| | | |
Collapse
|
16
|
Keeler C, Poon G, Kuo IY, Ehrlich BE, Hodsdon ME. An explicit formulation approach for the analysis of calcium binding to EF-hand proteins using isothermal titration calorimetry. Biophys J 2014; 105:2843-53. [PMID: 24359756 DOI: 10.1016/j.bpj.2013.11.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 11/08/2013] [Accepted: 11/12/2013] [Indexed: 11/28/2022] Open
Abstract
We present an improved and extended version of a recently proposed mathematical approach for modeling isotherms of ligand-to-macromolecule binding from isothermal titration calorimetry. Our approach uses ordinary differential equations, solved implicitly and numerically as initial value problems, to provide a quantitative description of the fraction bound of each competing member of a complex mixture of macromolecules from the basis of general binding polynomials. This approach greatly simplifies the formulation of complex binding models. In addition to our generalized, model-free approach, we have introduced a mathematical treatment for the case where ligand is present before the onset of the titration, essential for data analysis when complete removal of the binding partner may disrupt the structural and functional characteristics of the macromolecule. Demonstration programs playable on a freely available software platform are provided. Our method is experimentally validated with classic calcium (Ca(2+)) ion-selective potentiometry and isotherms of Ca(2+) binding to a mixture of chelators with and without residual ligand present in the reaction vessel. Finally, we simulate and compare experimental data fits for the binding isotherms of Ca(2+) binding to its canonical binding site (EF-hand domain) of polycystin 2, a Ca(2+)-dependent channel with relevance to polycystic kidney disease.
Collapse
Affiliation(s)
- Camille Keeler
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Gregory Poon
- Department of Pharmaceutical Sciences, Washington State University, Pullman, Washington
| | - Ivana Y Kuo
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut
| | - Barbara E Ehrlich
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut
| | - Michael E Hodsdon
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Connecticut.
| |
Collapse
|
17
|
Thanassoulas A, Barthélémy P, Navailles L, Sigaud G. From nucleobases to nucleolipids: an ITC approach on the thermodynamics of their interactions in aqueous solutions. J Phys Chem B 2014; 118:6570-85. [PMID: 24911942 DOI: 10.1021/jp411459w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Hybrid constructions based on nucleosides and lipophilic components, known as nucleolipids, have become an extremely interesting class of molecules, especially for their potential biomedical applications. In this matter, it seemed important to define the nature and estimate the strength of their interaction with polynucleotides by different ways. We report in this work a systematic investigation through isothermal titration calorimetry of the thermodynamics of the association and dissociation of adenine and thymine derivatives, not previously performed. Then we use the results obtained on these simple systems as a basis for comparison with the binding of phospholipids functionalized with adenosine and thymidine to polyadenylic or polyuridylic acids applying the same experimental technique.
Collapse
|
18
|
del Carmen Fernández-Alonso M, Díaz D, Berbis MÁ, Marcelo F, Cañada J, Jiménez-Barbero J. Protein-carbohydrate interactions studied by NMR: from molecular recognition to drug design. Curr Protein Pept Sci 2013; 13:816-30. [PMID: 23305367 PMCID: PMC3706953 DOI: 10.2174/138920312804871175] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 07/12/2012] [Accepted: 07/25/2012] [Indexed: 02/04/2023]
Abstract
Diseases that result from infection are, in general, a consequence of specific interactions between a pathogenic organism and the cells. The study of host-pathogen interactions has provided insights for the design of drugs with therapeutic properties. One area that has proved to be promising for such studies is the constituted by carbohydrates which participate in biological processes of paramount importance. On the one hand, carbohydrates have shown to be information carriers with similar, if not higher, importance than traditionally considered carriers as amino acids and nucleic acids. On the other hand, the knowledge on molecular recognition of sugars by lectins and other carbohydrate-binding proteins has been employed for the development of new biomedical strategies. Biophysical techniques such as X-Ray crystallography and NMR spectroscopy lead currently the investigation on this field. In this review, a description of traditional and novel NMR methodologies employed in the study of sugar-protein interactions is briefly presented in combination with a palette of NMR-based studies related to biologically and/or pharmaceutically relevant applications.
Collapse
|
19
|
Sindhuwinata N, Grimm LL, Weißbach S, Zinn S, Munoz E, Palcic MM, Peters T. Thermodynamic Signature of Substrates and Substrate Analogs Binding to Human Blood Group B Galactosyltransferase from Isothermal Titration Calorimetry Experiments. Biopolymers 2013; 99:784-95. [DOI: 10.1002/bip.22297] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 05/26/2013] [Accepted: 05/28/2013] [Indexed: 01/05/2023]
Affiliation(s)
- Nora Sindhuwinata
- Center of Structural and Cell Biology in Medicine, Institute of Chemistry, University of Luebeck; Ratzeburger Allee 160; 23562; Luebeck; Germany
| | - Lena L. Grimm
- Center of Structural and Cell Biology in Medicine, Institute of Chemistry, University of Luebeck; Ratzeburger Allee 160; 23562; Luebeck; Germany
| | - Sophie Weißbach
- Center of Structural and Cell Biology in Medicine, Institute of Chemistry, University of Luebeck; Ratzeburger Allee 160; 23562; Luebeck; Germany
| | - Sabrina Zinn
- Center of Structural and Cell Biology in Medicine, Institute of Chemistry, University of Luebeck; Ratzeburger Allee 160; 23562; Luebeck; Germany
| | - Eva Munoz
- Department of Organic Chemistry; University of Santiago de Compostela, Avenida de las Ciencias; S.N. 15782; Santiago de Compostela; Spain
| | - Monica M. Palcic
- Carlsberg Laboratory; Gamle Carlsberg Vej10; DK-1799; Copenhagen V.; Denmark
| | - Thomas Peters
- Center of Structural and Cell Biology in Medicine, Institute of Chemistry, University of Luebeck; Ratzeburger Allee 160; 23562; Luebeck; Germany
| |
Collapse
|
20
|
Coussens NP, Schuck P, Zhao H. Strategies for assessing proton linkage to bimolecular interactions by global analysis of isothermal titration calorimetry data. THE JOURNAL OF CHEMICAL THERMODYNAMICS 2012; 52:95-107. [PMID: 22773848 PMCID: PMC3388511 DOI: 10.1016/j.jct.2012.02.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Isothermal titration calorimetry (ITC) is a traditional and powerful method for studying the linkage of ligand binding to proton uptake or release. The theoretical framework has been developed for more than two decades and numerous applications have appeared. In the current work, we explored strategic aspects of experimental design. To this end, we simulated families of ITC data sets that embed different strategies with regard to the number of experiments, range of experimental pH, buffer ionization enthalpy, and temperature. We then re-analyzed the families of data sets in the context of global analysis, employing a proton linkage binding model implemented in the global data analysis platform SEDPHAT, and examined the information content of all data sets by a detailed statistical error analysis of the parameter estimates. In particular, we studied the impact of different assumptions about the knowledge of the exact concentrations of the components, which in practice presents an experimental limitation for many systems. For example, the uncertainty in concentration may reflect imperfectly known extinction coefficients and stock concentrations or may account for different extents of partial inactivation when working with proteins at different pH values. Our results show that the global analysis can yield reliable estimates of the thermodynamic parameters for intrinsic binding and protonation, and that in the context of the global analysis the exact molecular component concentrations may not be required. Additionally, a comparison of data from different experimental strategies illustrates the benefit of conducting experiments at a range of temperatures.
Collapse
Affiliation(s)
- Nathan P. Coussens
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, U.S.A
| | - Peter Schuck
- Dynamics of Macromolecular Assembly, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, U.S.A
| | - Huaying Zhao
- Dynamics of Macromolecular Assembly, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, U.S.A
| |
Collapse
|
21
|
Abstract
Using isothermal calorimetry (ITC), we have found one case where a well-characterized allosteric activator showed no sign of allostery in its ΔG° of binding to successive sites on multiple subunits and another case where successive binding showed no ΔG° binding allostery but did show large entropy-compensated flip-flopping enthalpy changes. This behavior, which we have termed "isoergonic cooperativity" and others have referred to as "silent coupling" is quite simply explained by basic linkage theory when reactions are considered beyond the ΔG° level. Thus, direct calorimetric determination of all thermodynamic parameters including ΔH°, ΔS°, ΔG°, ΔC (p)°, and d(ΔC (p)°/dt) provides a more informative depiction of a ligand binding event and its consequences than does the mere measurement of ΔG° alone. We further discuss the benefits and limitations of methods that have previously been used to study silent coupling. In particular, ITC is free of the numerous pitfalls inherent in the application of van't Hoff and Årrhenius plots to allosteric phenomena. Aside from having a 30-fold advantage in precision, ITC is capable of measuring changes in enthalpy directly at five more levels of mathematical differentiation than are available to van't Hoff type approaches.
Collapse
Affiliation(s)
- Harvey F Fisher
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
22
|
Jiang W, Nowosinski K, Löw NL, Dzyuba EV, Klautzsch F, Schäfer A, Huuskonen J, Rissanen K, Schalley CA. Chelate Cooperativity and Spacer Length Effects on the Assembly Thermodynamics and Kinetics of Divalent Pseudorotaxanes. J Am Chem Soc 2012; 134:1860-8. [DOI: 10.1021/ja2107096] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wei Jiang
- Institut für Chemie und
Biochemie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Karol Nowosinski
- Institut für Chemie und
Biochemie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Nora L. Löw
- Institut für Chemie und
Biochemie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Egor V. Dzyuba
- Institut für Chemie und
Biochemie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Fabian Klautzsch
- Institut für Chemie und
Biochemie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Andreas Schäfer
- Institut für Chemie und
Biochemie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Juhani Huuskonen
- Department of Chemistry, Nanoscience
Center, University of Jyväskylä, P.O. Box 35, 40014 Jyväskylä, Finland
| | - Kari Rissanen
- Department of Chemistry, Nanoscience
Center, University of Jyväskylä, P.O. Box 35, 40014 Jyväskylä, Finland
| | - Christoph A. Schalley
- Institut für Chemie und
Biochemie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| |
Collapse
|
23
|
Poon GMK. Explicit formulation of titration models for isothermal titration calorimetry. Anal Biochem 2010; 400:229-36. [PMID: 20100451 DOI: 10.1016/j.ab.2010.01.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Revised: 12/23/2009] [Accepted: 01/20/2010] [Indexed: 11/17/2022]
Abstract
Isothermal titration calorimetry (ITC) produces a differential heat signal with respect to the total titrant concentration. This feature gives ITC excellent sensitivity for studying the thermodynamics of complex biomolecular interactions in solution. Currently, numerical methods for data fitting are based primarily on indirect approaches rooted in the usual practice of formulating biochemical models in terms of integrated variables. Here, a direct approach is presented wherein ITC models are formulated and solved as numerical initial value problems for data fitting and simulation purposes. To do so, the ITC signal is cast explicitly as a first-order ordinary differential equation (ODE) with total titrant concentration as independent variable and the concentration of a bound or free ligand species as dependent variable. This approach was applied to four ligand-receptor binding and homotropic dissociation models. Qualitative analysis of the explicit ODEs offers insights into the behavior of the models that would be inaccessible to indirect methods of analysis. Numerical ODEs are also highly compatible with regression analysis. Since solutions to numerical initial value problems are straightforward to implement on common computing platforms in the biochemical laboratory, this method is expected to facilitate the development of ITC models tailored to any experimental system of interest.
Collapse
Affiliation(s)
- Gregory M K Poon
- Department of Pharmaceutical Sciences, Washington State University, P.O. Box 646534, Pullman, WA 99164-6534, USA.
| |
Collapse
|
24
|
Piepenbrink KH, Gloor BE, Armstrong KM, Baker BM. Methods for quantifying T cell receptor binding affinities and thermodynamics. Methods Enzymol 2009; 466:359-81. [PMID: 21609868 DOI: 10.1016/s0076-6879(09)66015-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
αβ T cell receptors (TCRs) recognize peptide antigens bound and presented by class I or class II major histocompatibility complex (MHC) proteins. Recognition of a peptide/MHC complex is required for initiation and propagation of a cellular immune response, as well as the development and maintenance of the T cell repertoire. Here, we discuss methods to quantify the affinities and thermodynamics of interactions between soluble ectodomains of TCRs and their peptide/MHC ligands, focusing on titration calorimetry, surface plasmon resonance, and fluorescence anisotropy. As TCRs typically bind ligand with weak-to-moderate affinities, we focus the discussion on means to enhance the accuracy and precision of low-affinity measurements. In addition to further elucidating the biology of the T cell mediated immune response, more reliable low-affinity measurements will aid with more probing studies with mutants or altered peptides that can help illuminate the physical underpinnings of how TCRs achieve their remarkable recognition properties.
Collapse
Affiliation(s)
- Kurt H Piepenbrink
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | | | | | | |
Collapse
|
25
|
Perozzo R, Folkers G, Scapozza L. Thermodynamics of Protein–Ligand Interactions: History, Presence, and Future Aspects. J Recept Signal Transduct Res 2009; 24:1-52. [PMID: 15344878 DOI: 10.1081/rrs-120037896] [Citation(s) in RCA: 266] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The understanding of molecular recognition processes of small ligands and biological macromolecules requires a complete characterization of the binding energetics and correlation of thermodynamic data with interacting structures involved. A quantitative description of the forces that govern molecular associations requires determination of changes of all thermodynamic parameters, including free energy of binding (deltaG), enthalpy (deltaH), and entropy (deltaS) of binding and the heat capacity change (deltaCp). A close insight into the binding process is of significant and practical interest, since it provides the fundamental know-how for development of structure-based molecular design-strategies. The only direct method to measure the heat change during complex formation at constant temperature is provided by isothermal titration calorimetry (ITC). With this method one binding partner is titrated into a solution containing the interaction partner, thereby generating or absorbing heat. This heat is the direct observable that can be quantified by the calorimeter. The use of ITC has been limited due to the lack of sensitivity, but recent developments in instrument design permit to measure heat effects generated by nanomol (typically 10-100) amounts of reactants. ITC has emerged as the primary tool for characterizing interactions in terms of thermodynamic parameters. Because heat changes occur in almost all chemical and biochemical processes, ITC can be used for numerous applications, e.g., binding studies of antibody-antigen, protein-peptide, protein-protein, enzyme-inhibitor or enzyme-substrate, carbohydrate-protein, DNA-protein (and many more) interactions as well as enzyme kinetics. Under appropriate conditions data analysis from a single experiment yields deltaH, K(B), the stoichiometry (n), deltaG and deltaS of binding. Moreover, ITC experiments performed at different temperatures yield the heat capacity change (deltaCp). The informational content of thermodynamic data is large, and it has been shown that it plays an important role in the elucidation of binding mechanisms and, through the link to structural data, also in rational drug design. In this review we will present a comprehensive overview to ITC by giving some historical background to calorimetry, outline some critical experimental and data analysis aspects, discuss the latest developments, and give three recent examples of studies published with respect to macromolecule-ligand interactions that have utilized ITC technology.
Collapse
Affiliation(s)
- Remo Perozzo
- Department of Chemistry and Applied BioSciences, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland.
| | | | | |
Collapse
|
26
|
Charlier L, Nespoulous C, Fiorucci S, Antonczak S, Golebiowski J. Binding free energy prediction in strongly hydrophobic biomolecular systems. Phys Chem Chem Phys 2009; 9:5761-71. [PMID: 19462571 DOI: 10.1039/b710186d] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present a comparison of various computational approaches aiming at predicting the binding free energy in ligand-protein systems where the ligand is located within a highly hydrophobic cavity. The relative binding free energy between similar ligands is obtained by means of the thermodynamic integration (TI) method and compared to experimental data obtained through isothermal titration calorimetry measurements. The absolute free energy of binding prediction was obtained on a similar system (a pyrazine derivative bound to a lipocalin) by TI, potential of mean force (PMF) and also by means of the MMPBSA protocols. Although the TI protocol performs poorly either with an explicit or an implicit solvation scheme, the PMF calculation using an implicit solvation scheme leads to encouraging results, with a prediction of the binding affinity being 2 kcal mol(-1) lower than the experimental value. The use of an implicit solvation scheme appears to be well suited for the study of such hydrophobic systems, due to the lack of water molecules within the binding site.
Collapse
Affiliation(s)
- Landry Charlier
- LCMBA, Faculté des sciences de Nice-Sophia Antipolis, Centre National de la Recherche Scientifique, UMR 6001, Universitè de Nice-Sophia-Antipolis, UFR Sciences, Parc Valrose, 28, avenue Valrose, 06108 Nice Cedex 2, France
| | | | | | | | | |
Collapse
|
27
|
Berg AK, Srivastava DK. Delineation of alternative conformational states in Escherichia coli peptide deformylase via thermodynamic studies for the binding of actinonin. Biochemistry 2009; 48:1584-94. [PMID: 19191548 DOI: 10.1021/bi8019542] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We investigated the binding of a naturally occurring antibiotic, actinonin, to the Ni(2+)-reconstituted recombinant form of Escherichia coli peptide deformylase (PDF(Ec)) via isothermal titration microcalorimetry. The binding data conformed to both exothermic and endothermic phases with magnitudes of DeltaG degrees , DeltaH degrees , and TDeltaS degrees being equal to -12, -2.7, and 9.3 kcal/mol and -8.7, 3.9, and 12.6 kcal/mol, respectively. Evidently, although both phases are dominated by favorable entropic changes, the exothermic phase has about 6.7 kcal/mol enthalpic advantage over the endothermic phase. We observed that the removal of bound Ni(2+) from PDF(Ec) abolished the exothermic phase without affecting the endothermic phase, but it was regained upon addition of Zn(2+). In conjunction with metal analysis data, we propose that the recombinant form of PDF(Ec) is expressed in two stable conformational states that yield markedly distinct ITC profiles (i.e., exothermic versus endothermic) upon interaction with actinonin. The existence of two conformational states of PDF(Ec) is further supported by the observation of two distinct and independent transitions during the thermal unfolding of the enzyme. In addition, the thermodynamic data reveal that the formation of the PDF(Ec)-actinonin complex results in the transfer of one H(+) from the enzyme phase to the bulk solvent at pH 6.3. Both exothermic and endothermic phases produce highly negative DeltaC(p) degrees values, but there is no apparent enthalpy-entropy compensation effect upon formation of the PDF(Ec)-actinonin complex. In view of the known structural features of the enzyme, arguments are presented that the alternative conformational states of PDF(Ec) are modulated by the metal ligation at the enzyme site.
Collapse
Affiliation(s)
- Alexander K Berg
- Department of Chemistry, Biochemistry, and Molecular Biology, North Dakota State University, Fargo, North Dakota 58105, USA
| | | |
Collapse
|
28
|
Hill PA, Wei Q, Troxler T, Dmochowski IJ. Substituent effects on xenon binding affinity and solution behavior of water-soluble cryptophanes. J Am Chem Soc 2009; 131:3069-77. [PMID: 19239271 PMCID: PMC2676117 DOI: 10.1021/ja8100566] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A water-soluble triacetic acid cryptophane-A derivative (TAAC) was synthesized and determined by isothermal titration calorimetry and fluorescence quenching assay to have a xenon association constant of 33,000 M(-1) at 293 K, which is the largest value measured for any host molecule to date. Fluorescence lifetime measurements of TAAC in the presence of varying amounts of xenon indicated static quenching by the encapsulated xenon and the presence of a second non-xenon-binding conformer in solution. Acid-base titrations and aqueous NMR spectroscopy of TAAC and a previously synthesized tris(triazole propionic acid) cryptophane-A derivative (TTPC) showed how solvation of the carboxylate anions can affect the aqueous behavior of the large, nonpolar cryptophane. Specifically, whereas only the crown-crown conformer of TTPC was observed, a crown-saddle conformer of TAAC was also assigned in aqueous solution.
Collapse
Affiliation(s)
- P. Aru Hill
- Contribution from the Department of Chemistry and Regional Laser and Biotechnology Laboratories, University of Pennsylvania, Philadelphia, PA 19104
| | - Qian Wei
- Contribution from the Department of Chemistry and Regional Laser and Biotechnology Laboratories, University of Pennsylvania, Philadelphia, PA 19104
| | - Thomas Troxler
- Contribution from the Department of Chemistry and Regional Laser and Biotechnology Laboratories, University of Pennsylvania, Philadelphia, PA 19104
| | - Ivan J. Dmochowski
- Contribution from the Department of Chemistry and Regional Laser and Biotechnology Laboratories, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
29
|
Chambers JM, Hill PA, Aaron JA, Han Z, Christianson DW, Kuzma NN, Dmochowski IJ. Cryptophane xenon-129 nuclear magnetic resonance biosensors targeting human carbonic anhydrase. J Am Chem Soc 2009; 131:563-9. [PMID: 19140795 PMCID: PMC2629400 DOI: 10.1021/ja806092w] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
(129)Xe NMR biosensors are promising agents for early disease detection, especially when their interactions with target biomolecules can perturb (129)Xe chemical shifts well beyond the typical field inhomogeneity of clinical MRI. We introduce human carbonic anhydrase (CA) as a single-binding-site enzyme for studying xenon biosensor-protein interactions. A xenon-binding cryptophane was substituted with linkers of varying lengths to p-benzenesulfonamide to yield nondiastereomeric biosensors with a single (129)Xe NMR resonance. X-ray crystallography confirmed binding of the eight-bond-linked biosensor containing a single xenon atom in the CAII active site. Biosensor dissociation constants (K(d) = 20-110 nM) were determined by isothermal titration calorimetry (ITC) for isozymes CA I and II. The biosensor-CA complexes yielded "bound" hyperpolarized (129)Xe NMR resonances of narrow line width that were shifted by 3.0-7.5 ppm downfield, signifying much larger shifts than seen previously. Moreover, isozyme-specific chemical shifts clearly differentiated CA I and II, despite their similar structures. Thus, xenon biosensors may provide a powerful strategy for diagnosing human diseases characterized by the upregulation of specific CA isozymes and other protein biomarkers.
Collapse
Affiliation(s)
- Jennifer M. Chambers
- Contribution from the Department of Chemistry, University of Pennsylvania, Department of Biomedical Engineering, University of Rochester
| | - P. Aru Hill
- Contribution from the Department of Chemistry, University of Pennsylvania, Department of Biomedical Engineering, University of Rochester
| | - Julie A. Aaron
- Contribution from the Department of Chemistry, University of Pennsylvania, Department of Biomedical Engineering, University of Rochester
| | - Zhaohui Han
- Contribution from the Department of Chemistry, University of Pennsylvania, Department of Biomedical Engineering, University of Rochester
| | - David W. Christianson
- Contribution from the Department of Chemistry, University of Pennsylvania, Department of Biomedical Engineering, University of Rochester
| | - Nicholas N. Kuzma
- Contribution from the Department of Chemistry, University of Pennsylvania, Department of Biomedical Engineering, University of Rochester
| | - Ivan J. Dmochowski
- Contribution from the Department of Chemistry, University of Pennsylvania, Department of Biomedical Engineering, University of Rochester
| |
Collapse
|
30
|
Sankaran NB, Sato Y, Sato F, Rajendar B, Morita K, Seino T, Nishizawa S, Teramae N. Small-Molecule Binding at an Abasic Site of DNA: Strong Binding of Lumiflavin for Improved Recognition of Thymine-Related Single Nucleotide Polymorphisms. J Phys Chem B 2009; 113:1522-9. [DOI: 10.1021/jp808576t] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- N. B. Sankaran
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan, and CREST, Japan Science and Technology Agency (JST), Sendai 980-8578, Japan
| | - Yusuke Sato
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan, and CREST, Japan Science and Technology Agency (JST), Sendai 980-8578, Japan
| | - Fuyuki Sato
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan, and CREST, Japan Science and Technology Agency (JST), Sendai 980-8578, Japan
| | - Burki Rajendar
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan, and CREST, Japan Science and Technology Agency (JST), Sendai 980-8578, Japan
| | - Kotaro Morita
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan, and CREST, Japan Science and Technology Agency (JST), Sendai 980-8578, Japan
| | - Takehiro Seino
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan, and CREST, Japan Science and Technology Agency (JST), Sendai 980-8578, Japan
| | - Seiichi Nishizawa
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan, and CREST, Japan Science and Technology Agency (JST), Sendai 980-8578, Japan
| | - Norio Teramae
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan, and CREST, Japan Science and Technology Agency (JST), Sendai 980-8578, Japan
| |
Collapse
|
31
|
Nolan T, Singh N, McCurdy CR. Ligand macromolecule interactions: theoretical principles of molecular recognition. Methods Mol Biol 2009; 572:13-29. [PMID: 20694683 DOI: 10.1007/978-1-60761-244-5_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Molecular recognition is mediated by three main factors: surface complementarity, thermodynamics, and associated physicochemical properties. These principles are responsible for ligand-target binding and therefore serve as the foundation for the design of new biologically relevant chemical entities. As these principles are involved in nearly all biological processes, a firm understanding of the details involved in binding is necessary for drug design. The consideration of these factors individually has proven useful; however, the combined effect of these governing principles is most important. And despite extensive studies, there are still many gaps in our understanding of this recognition process. The aim of this chapter is to introduce the basic concepts of ligand binding to set the stage for the following chapters, while briefly discussing fundamental techniques of drug design, including the indispensable tools of molecular modeling.
Collapse
Affiliation(s)
- Tammy Nolan
- Department of Medicinal Chemistry, University of Mississippi, Jackson, MS, USA
| | | | | |
Collapse
|
32
|
Zhou X, Sun Q, Kini RM, Sivaraman J. A universal method for fishing target proteins from mixtures of biomolecules using isothermal titration calorimetry. Protein Sci 2008; 17:1798-804. [PMID: 18621915 DOI: 10.1110/ps.036194.108] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The most challenging tasks in biology include the identification of (1) the orphan receptor for a ligand, (2) the ligand for an orphan receptor protein, and (3) the target protein(s) for a given drug or a lead compound that are critical for the pharmacological or side effects. At present, several approaches are available, including cell- or animal-based assays, affinity labeling, solid-phase binding assays, surface plasmon resonance, and nuclear magnetic resonance. Most of these techniques are not easy to apply when the target protein is unknown and the compound is not amenable to labeling, chemical modification, or immobilization. Here we demonstrate a new universal method for fishing orphan target proteins from a complex mixture of biomolecules using isothermal titration calorimetry (ITC) as a tracking tool. We took snake venom, a crude mixture of several hundred proteins/peptides, as a model to demonstrate our proposed ITC method in tracking the isolation and purification of two distinct target proteins, a major component and a minor component. Identities of fished out target proteins were confirmed by amino acid sequencing and inhibition assays. This method has the potential to make a significant advancement in the area of identifying orphan target proteins and inhibitor screening in drug discovery and characterization.
Collapse
Affiliation(s)
- Xingding Zhou
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543
| | | | | | | |
Collapse
|
33
|
Abstract
Isothermal titration calorimetry (ITC) is perhaps the most rigorous commercially available method for characterizing protein-ligand interactions. In this method, interactions are detected by the intrinsic heat (binding enthalpy) change of the reaction. The technique is applicable to native, unmodified proteins in solution. This is important for proteins that lose or change their functional behavior when chemically modified or attached to a surface. ITC is also useful for evaluating qualitative questions such whether a proposed binding interaction occurs at all, or for quantitatively measuring the concentration of functionally active protein. Finally, if executed with proper control experiments, ITC can be a rich source of thermodynamic information about the molecular binding mechanism.
Collapse
Affiliation(s)
- M L Doyle
- SmithKline Beecham Pharmaceuticals, King of Prussia, Pennsylvania, USA
| |
Collapse
|
34
|
Abstract
The biological function of many proteins involves reversible interactions with other proteins, nucleic acids, or other non-protein ligands. Such interactions play many different roles in a wide range of cellular processes. A few examples are: (1) storing or transporting key metabolites (e.g., O(2) storage by myoglobin); (2) forming and maintaining the quaternary structure of multi-subunit enzymes; (3) specific binding and recognition events (antigen-antibody, hormone-receptor, transcription factor-promoter); and (4) self-assembly of large structures (microtubules, chromatin). Thus, the quantitative characterization of such interactions represents an important part of understanding the function of such proteins and their role in these cellular events. This unit sets the tone for the rest of the chapter, and gives important information necessary to understand some of the topics that will be covered in future supplements, such as sedimentation equilibrium (analytical and micro-preparative), surface plasmon resonance (SPR), size-exclusion chromatography (SEC) with on-line light scattering, and chemical cross-linking.
Collapse
Affiliation(s)
- J S Philo
- Alliance Protein Laboratories, Thousand Oaks, California, USA
| |
Collapse
|
35
|
Affiliation(s)
- Jonathan B. Chaires
- James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky 40202;
| |
Collapse
|
36
|
Structural changes of cellobiohydrolase I (1,4-β-D-glucan-cellobiohydrolase I, CBHI) and PNPC (p-nitrophenyl-β-D-cellobioside) during the binding process. ACTA ACUST UNITED AC 2008; 51:459-69. [DOI: 10.1007/s11427-008-0064-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
37
|
Pilch DS, Barbieri CM, Rzuczek SG, Lavoie EJ, Rice JE. Targeting human telomeric G-quadruplex DNA with oxazole-containing macrocyclic compounds. Biochimie 2008; 90:1233-49. [PMID: 18439430 DOI: 10.1016/j.biochi.2008.03.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2008] [Accepted: 03/27/2008] [Indexed: 10/22/2022]
Abstract
Oxazole-containing macrocycles, which include the natural product telomestatin, represent a promising class of anticancer agents that target G-quadruplex DNA. Two synthetic hexaoxazole-containing macrocyclic compounds (HXDV and HXLV-AC) have been characterized with regard to their cytotoxic activities versus human cancer cells, as well as the mode, thermodynamics, and specificity with which they bind to the intramolecular (3+1) G-quadruplex structural motif formed in the presence of K+ ions by human telomeric DNA. Both compounds exhibit cytotoxic activities versus human lymphoblast (RPMI 8402) and oral carcinoma (KB3-1) cells, with associated IC50 values ranging from 0.4 to 0.9microM. The compounds bind solely to the quadruplex nucleic acid form, but not to the duplex or triplex form. Binding to the quadruplex is associated with a stoichiometry of two ligand molecules per DNA molecule, with one ligand molecule binding to each end of the host quadruplex via a nonintercalative "terminal capping" mode of interaction. For both compounds, quadruplex binding is primarily entropy driven, while also being associated with a negative change in heat capacity. These thermodynamic properties reflect contributions from favorable ligand-induced alterations in the loop configurational entropies of the quadruplex, but not from changes in net hydration. The stoichiometry and mode of binding revealed by our studies have profound implications with regard to the number of ligand molecules that can potentially bind the 3-overhang region of human telomeric DNA.
Collapse
Affiliation(s)
- Daniel S Pilch
- Department of Pharmacology, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854-5635, USA.
| | | | | | | | | |
Collapse
|
38
|
Recommendations on measurement and analysis of results obtained on biological substances using isothermal titration calorimetry (IUPAC Technical Report). PURE APPL CHEM 2008. [DOI: 10.1351/pac200880092025] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Isothermal titration calorimetry (ITC) is widely used to determine the thermodynamics of biological interactions including protein-protein, small molecule-protein, protein-DNA, small molecule-DNA, and antigen-antibody interactions. An ITC measurement consists of monitoring the transfer of heat between an analyte solution in a sample vessel and a reference solution in a reference vessel upon injection of a small aliquot of titrant solution into the sample vessel at a fixed ITC operating temperature. A binding isotherm is generated from the heat-transferred-per-injection data and values for the binding constants, the apparent binding enthalpies, and the apparent ratio of the amount of titrant to analyte for the binding reaction are then determined from fits of a binding model, whether it is a single site, identical multi-site, or an interacting multi-site binding model, to the binding isotherm. Prior to the fitting procedure, corrections should be made for contributions from extraneous heat of mixing determined separately from injections of the titrant into just the dialysate/buffer solution. Ultra-high binding constants, which cannot be directly determined from an ITC measurement, can be determined by a displacement ITC method where injections of the tight-binding titrant into a solution of a weaker-binding titrant-analyte complex displaces the weaker-binding titrant from the complex. The Michaelis and catalytic constants can be determined for an enzyme reaction from injections of a substrate or enzyme titrant into an enzyme or substrate analyte solution. Several binding reactions are suggested to check the operating performance of the ITC. The reporting of ITC results must be specific with regard to the composition of the titrant and the analyte solutions, the temperature, and the model used in the analysis.
Collapse
|
39
|
Isothermal Titration Calorimetry: Experimental Design, Data Analysis, and Probing Macromolecule/Ligand Binding and Kinetic Interactions. Methods Cell Biol 2008; 84:79-113. [DOI: 10.1016/s0091-679x(07)84004-0] [Citation(s) in RCA: 339] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
40
|
Armstrong KM, Baker BM. A comprehensive calorimetric investigation of an entropically driven T cell receptor-peptide/major histocompatibility complex interaction. Biophys J 2007; 93:597-609. [PMID: 17449678 PMCID: PMC1896243 DOI: 10.1529/biophysj.107.104570] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The alphabeta T cell receptor (TCR) is responsible for recognizing peptides bound and "presented" by major histocompatibility complex (MHC) molecules. We recently reported that at 25 degrees C the A6 TCR, which recognizes the Tax peptide presented by the class I MHC human leukocyte antigen-A*0201 (HLA-A2), binds with a weak DeltaH degrees , a favorable DeltaS degrees , and a moderately negative DeltaC(p). These observations were of interest given the unfavorable binding entropies and large heat capacity changes measured for many other TCR-ligand interactions, suggested to result from TCR conformational changes occurring upon binding. Here, we further investigated the A6-Tax/HLA-A2 interaction using titration calorimetry. We found that binding results in a pK(a) shift, complicating interpretation of measured binding thermodynamics. To better characterize the interaction, we measured binding as a function of pH, temperature, and buffer ionization enthalpy. A global analysis of the resulting data allowed determination of both the intrinsic binding thermodynamics separated from the influence of protonation as well as the thermodynamics associated with the pK(a) shift. Our results indicate that intrinsically, A6 binds Tax/HLA-A2 with a very weak DeltaH degrees , an even more favorable DeltaS degrees than previously thought, and a relatively large negative DeltaC(p). Comparison of these energetics with the makeup of the protein-protein interface suggests that conformational adjustments are required for binding, but these are more likely to be structural shifts, rather than disorder-to-order transitions. The thermodynamics of the pK(a) shift suggest protonation may be linked to an additional process such as ion binding.
Collapse
Affiliation(s)
- Kathryn M Armstrong
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | | |
Collapse
|
41
|
Shin H, Gennadios HA, Whittington DA, Christianson DW. Amphipathic benzoic acid derivatives: synthesis and binding in the hydrophobic tunnel of the zinc deacetylase LpxC. Bioorg Med Chem 2007; 15:2617-23. [PMID: 17296300 DOI: 10.1016/j.bmc.2007.01.044] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2006] [Revised: 01/15/2007] [Accepted: 01/26/2007] [Indexed: 11/18/2022]
Abstract
The first committed step in lipid A biosynthesis is catalyzed by uridine diphosphate-(3-O-(R-3-hydroxymyristoyl))-N-acetylglucosamine deacetylase (LpxC), a zinc-dependent deacetylase, and inhibitors of LpxC may be useful in the development of antibacterial agents targeting a broad spectrum of Gram-negative bacteria. Here, we report the design of amphipathic benzoic acid derivatives that bind in the hydrophobic tunnel in the active site of LpxC. The hydrophobic tunnel accounts for the specificity of LpxC toward substrates and substrate analogues bearing a 3-O-myristoyl substituent. Simple benzoic acid derivatives bearing an aliphatic 'tail' bind in the hydrophobic tunnel with micromolar affinity despite the lack of a glucosamine ring like that of the substrate. However, although these benzoic acid derivatives each contain a negatively charged carboxylate 'warhead' intended to coordinate to the active site zinc ion, the 2.25A resolution X-ray crystal structure of LpxC complexed with 3-(heptyloxy)benzoate reveals 'backward' binding in the hydrophobic tunnel, such that the benzoate moiety does not coordinate to zinc. Instead, it binds at the outer end of the hydrophobic tunnel. Interestingly, these ligands bind with affinities comparable to those measured for more complicated substrate analogue inhibitors containing glucosamine ring analogues and hydroxamate 'warheads' that coordinate to the active site zinc ion. We conclude that the intermolecular interactions in the hydrophobic tunnel dominate enzyme affinity in this series of benzoic acid derivatives.
Collapse
Affiliation(s)
- Hyunshun Shin
- Department of Chemistry, University of San Francisco, 2130 Fulton Street, San Francisco, CA 94117-1080, USA
| | | | | | | |
Collapse
|
42
|
Takahashi M, Maraboeuf F, Morimatsu K, Selmane T, Fleury F, Norden B. Calorimetric analysis of binding of two consecutive DNA strands to RecA protein illuminates mechanism for recognition of homology. J Mol Biol 2006; 365:603-11. [PMID: 17097680 DOI: 10.1016/j.jmb.2006.10.042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2006] [Revised: 10/09/2006] [Accepted: 10/11/2006] [Indexed: 10/24/2022]
Abstract
RecA protein recognises two complementary DNA strands for homologous recombination. To gain insight into the molecular mechanism, the thermodynamic parameters of the DNA binding have been characterised by isothermal calorimetry. Specifically, conformational changes of protein and DNA were searched for by measuring variations in enthalpy change (DeltaH) with temperature (heat capacity change, DeltaC(p)). In the presence of the ATP analogue ATPgammaS, the DeltaH for the binding of the first DNA strand depends upon temperature (large DeltaC(p)) and the type of buffer, in a way that is consistent with the organisation of disordered parts and the protonation of RecA upon complex formation. In contrast, the binding of the second DNA strand occurs without any pronounced DeltaC(p), indicating the absence of further reorganisation of the RecA-DNA filament. In agreement with these findings, a significant change in the CD spectrum of RecA was observed only upon the binding of the first DNA strand. In the absence of nucleotide cofactor, the DeltaH of DNA binding is almost independent of temperature, indicating a requirement for ATP in the reorganisation of RecA. When the second DNA strand is complementary to the first, the DeltaH is larger than that for non-complementary DNA strand, but less than the DeltaH of the annealing of the complementary DNA without RecA. This small DeltaH could reflect a weak binding that may facilitate the dissociation of only partly complementary DNA and thus speed the search for complementary DNA. The DeltaH of binding DNA sequences displaying strong base-base stacking is small for both the first and second binding DNA strand, suggesting that the second is also stretched upon interaction with RecA. These results support the proposal that the RecA protein restructures DNA, preparing it for the recognition of a complementary second DNA strand, and that the recognition is due mainly to direct base-base contacts between DNA strands.
Collapse
Affiliation(s)
- Masayuki Takahashi
- UMR 216, Centre National de la Recherche Scientifique and Institut Curie, F-91405 Orsay, France.
| | | | | | | | | | | |
Collapse
|
43
|
Kozlov AG, Lohman TM. Effects of monovalent anions on a temperature-dependent heat capacity change for Escherichia coli SSB tetramer binding to single-stranded DNA. Biochemistry 2006; 45:5190-205. [PMID: 16618108 PMCID: PMC2516749 DOI: 10.1021/bi052543x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have previously shown that the linkage of temperature-dependent protonation and DNA base unstacking equilibria contribute significantly to both the negative enthalpy change (DeltaH(obs)) and the negative heat capacity change (DeltaC(p,obs)) for Escherichia coli SSB homotetramer binding to single-stranded (ss) DNA. Using isothermal titration calorimetry we have now examined DeltaH(obs) over a much wider temperature range (5-60 degrees C) and as a function of monovalent salt concentration and type for SSB binding to (dT)(70) under solution conditions that favor the fully wrapped (SSB)(65) complex (monovalent salt concentration >or=0.20 M). Over this wider temperature range we observe a strongly temperature-dependent DeltaC(p,obs). The DeltaH(obs) decreases as temperature increases from 5 to 35 degrees C (DeltaC(p,obs) <0) but then increases at higher temperatures up to 60 degrees C (DeltaC(p,obs) >0). Both salt concentration and anion type have large effects on DeltaH(obs) and DeltaC(p,obs). These observations can be explained by a model in which SSB protein can undergo a temperature- and salt-dependent conformational transition (below 35 degrees C), the midpoint of which shifts to higher temperature (above 35 degrees C) for SSB bound to ssDNA. Anions bind weakly to free SSB, with the preference Br(-) > Cl(-) > F(-), and these anions are then released upon binding ssDNA, affecting both DeltaH(obs) and DeltaC(p,obs). We conclude that the experimentally measured values of DeltaC(p,obs) for SSB binding to ssDNA cannot be explained solely on the basis of changes in accessible surface area (ASA) upon complex formation but rather result from a series of temperature-dependent equilibria (ion binding, protonation, and protein conformational changes) that are coupled to the SSB-ssDNA binding equilibrium. This is also likely true for many other protein-nucleic acid interactions.
Collapse
Affiliation(s)
- Alexander G Kozlov
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
44
|
Jude KM, Banerjee AL, Haldar MK, Manokaran S, Roy B, Mallik S, Srivastava DK, Christianson DW. Ultrahigh resolution crystal structures of human carbonic anhydrases I and II complexed with "two-prong" inhibitors reveal the molecular basis of high affinity. J Am Chem Soc 2006; 128:3011-8. [PMID: 16506782 PMCID: PMC2527509 DOI: 10.1021/ja057257n] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The atomic-resolution crystal structures of human carbonic anhydrases I and II complexed with "two-prong" inhibitors are reported. Each inhibitor contains a benzenesulfonamide prong and a cupric iminodiacetate (IDA-Cu(2+)) prong separated by linkers of different lengths and compositions. The ionized NH(-) group of each benzenesulfonamide coordinates to the active site Zn(2+) ion; the IDA-Cu(2+) prong of the tightest-binding inhibitor, BR30, binds to H64 of CAII and H200 of CAI. This work provides the first evidence verifying the structural basis of nanomolar affinity measured for two-prong inhibitors targeting the carbonic anhydrases.
Collapse
Affiliation(s)
- Kevin M. Jude
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Abir L. Banerjee
- Department of Chemistry, Biochemistry and Molecular Biology, North Dakota State University, Fargo, North Dakota 58105
| | - Manas K. Haldar
- Department of Chemistry, University of Central Florida, Orlando, Florida 32816
| | - Sumathra Manokaran
- Department of Chemistry, Biochemistry and Molecular Biology, North Dakota State University, Fargo, North Dakota 58105
| | - Bidhan Roy
- Department of Chemistry, University of Central Florida, Orlando, Florida 32816
| | - Sanku Mallik
- Department of Chemistry, University of Central Florida, Orlando, Florida 32816
| | - D. K. Srivastava
- Department of Chemistry, Biochemistry and Molecular Biology, North Dakota State University, Fargo, North Dakota 58105
| | - David W. Christianson
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
45
|
Censarek P, Beyermann M, Koch KW. Thermodynamics of apocalmodulin and nitric oxide synthase II peptide interaction. FEBS Lett 2005; 577:465-8. [PMID: 15556629 DOI: 10.1016/j.febslet.2004.10.048] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2004] [Revised: 10/08/2004] [Accepted: 10/20/2004] [Indexed: 10/26/2022]
Abstract
The Ca2+-free form of calmodulin (CaM), apocalmodulin (ApoCaM), regulates a variety of target proteins including nitric oxide synthase II (NOS-II). The CaM-binding site of NOS-II can bind ApoCaM with high affinity. Substitution of hydrophobic amino acids by charged amino acids at crucial positions 3, 9 and 13 within the CaM-binding motif did not abolish the ApoCaM interaction that occurred with significant affinity, though the affinity of the interaction was decreased remarkably. Isothermal titration calorimetry revealed that interaction of ApoCaM and synthetic NOS-II peptides was driven entropically.
Collapse
Affiliation(s)
- Petra Censarek
- Institut für Biologische Informationsverarbeitung 1, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | | | | |
Collapse
|
46
|
Abstract
Isothermal titration calorimetry is an ideal technique for measuring biological binding interactions. It does not rely on the presence of chromophores or fluorophores, nor does it require an enzymatic assay. Because the technique relies only on the detection of a heat effect upon binding, it can be used to measure the binding constant, K, the enthalpy of binding, DeltaH degrees and the stoichiometry, or number of binding sites, n. This chapter describes instrumentation, experimental design, and the theoretical underpinnings necessary to run and analyze a calorimetric binding experiment.
Collapse
Affiliation(s)
- Edwin A Lewis
- Dept. of Chemistry and Biochemistry, Northern Arizona University, Flagstaff, AZ, USA
| | | |
Collapse
|
47
|
Peters WB, Edmondson SP, Shriver JW. Thermodynamics of DNA binding and distortion by the hyperthermophile chromatin protein Sac7d. J Mol Biol 2004; 343:339-60. [PMID: 15451665 DOI: 10.1016/j.jmb.2004.08.042] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2004] [Revised: 08/10/2004] [Accepted: 08/12/2004] [Indexed: 11/28/2022]
Abstract
Sac7d is a hyperthermophile chromatin protein which binds non-specifically to the minor groove of duplex DNA and induces a sharp kink of 66 degrees with intercalation of valine and methionine side-chains. We have utilized the thermal stability of Sac7d and the lack of sequence specificity to define the thermodynamics of DNA binding over a wide temperature range. The binding affinity for poly(dGdC) was moderate at 25 degrees C (Ka = 3.5(+/-1.6) x 10(6) M(-1)) and increased by nearly an order of magnitude from 10 degrees C to 80 degrees C. The enthalpy of binding was unfavorable at 25 degrees C, and decreased linearly from 5 degrees C to 60 degrees C. A positive binding heat at 25 degrees C is attributed in part to the energy of distorting DNA, and ensures that the temperature of maximal binding affinity (75.1+/-5.6 degrees C) is near the growth temperature of Sulfolobus acidocaldarius. Truncation of the two intercalating residues to alanine led to a decreased ability to bend and unwind DNA at 25 degrees C with a small decrease in binding affinity. The energy gained from intercalation is slightly greater than the free energy penalty of bending duplex DNA. Surprisingly, reduced distortion from the double alanine substitution did not lead to a significant decrease in the heat of binding at 25 degrees C. In addition, an anomalous positive DeltaCp of binding was observed for the double alanine mutant protein which could not be explained by the change in polar and apolar accessible surface areas. Both the larger than expected binding enthalpy and the positive heat capacity can be explained by a temperature dependent structural transition in the protein-DNA complex with a Tm of 15-20 degrees C and a DeltaH of 15 kcal/mol. Data are discussed which indicate that the endothermic transition in the complex is consistent with DNA distortion.
Collapse
Affiliation(s)
- William B Peters
- Laboratory for Structural Biology, Graduate Program in Biotechnology Science and Engineering, Department of Chemistry, Materials Science Building, John Wright Drive University of Alabama in Huntsville, 35899, USA
| | | | | |
Collapse
|
48
|
Váradi B, Kolev K, Tenekedjiev K, Mészáros G, Kovalszky I, Longstaff C, Machovich R. Phospholipid barrier to fibrinolysis: role for the anionic polar head charge and the gel phase crystalline structure. J Biol Chem 2004; 279:39863-71. [PMID: 15254044 DOI: 10.1074/jbc.m405172200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The massive presence of phospholipids is demonstrated in frozen sections of human arterial thrombi. Purified platelet phospholipids and synthetic phospholipids retard in vitro tissue-type plasminogen activator (tPA)-induced fibrinolysis through effects on plasminogen activation and plasmin function. The inhibition of plasminogen activation on the surface of fibrin correlates with the fraction of anionic phospholipid. The phospholipids decrease the amount of tPA penetrating into the clot by 75% and the depth of the reactive surface layer occupied by the activator by up to 30%, whereas for plasmin both of these parameters decrease by approximately 50%. The phospholipids are not only a diffusion barrier, they also bind the components of the fibrinolytic system. Isothermal titration calorimetry shows binding characterized with dissociation constants in the range 0.35-7.64 microm for plasmin and tPA (lower values with more negative phospholipids). The interactions are endothermic and thermodynamically driven by an increase in entropy, probably caused by the rearrangements in the ordered gel structure of the phospholipids (in line with the stronger inhibition at gel phase temperatures compared with liquid crystalline phase temperatures). These findings show a phospholipid barrier, which should be overcome during lysis of arterial thrombi.
Collapse
Affiliation(s)
- Balázs Váradi
- Department of Medical Biochemistry, Semmelweis University, 1088 Budapest, Hungary
| | | | | | | | | | | | | |
Collapse
|
49
|
Naylor S, Kumar R. Emerging role of mass spectrometry in structural and functional proteomics. ADVANCES IN PROTEIN CHEMISTRY 2004; 65:217-48. [PMID: 12964371 DOI: 10.1016/s0065-3233(03)01021-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Stephen Naylor
- Beyond Genomics, Inc., Waltham, Massachusetts 02451, USA
| | | |
Collapse
|
50
|
Affiliation(s)
- James L Cole
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269, USA
| |
Collapse
|