1
|
Altarifi AA, Sawali K, Alzoubi KH, Saleh T, Abu Al-Rub M, Khabour O. Effect of vitamin E on doxorubicin and paclitaxel-induced memory impairments in male rats. Cancer Chemother Pharmacol 2024; 93:215-224. [PMID: 37926754 DOI: 10.1007/s00280-023-04602-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 10/11/2023] [Indexed: 11/07/2023]
Abstract
PURPOSE In addition to peripheral neuronal dysfunction, conventional chemotherapy can be associated with other neurological treatment-limiting adverse effects, including cognitive dysfunction, memory impairment, and anxiety, which are referred to as "chemobrain". This study aimed to investigate the effects of doxorubicin (DOX) and paclitaxel (PAC) on learning and memory in rats using radial arm water maze (RAWM) and investigated a potential beneficial effect of vitamin E (Vit. E). METHODS Adult male rats were injected with four doses of 2 mg/kg/week DOX, or 2 mg/kg PAC every other day intraperitoneally. Vit. E was co-administered with these drugs in other groups to study its antioxidative effects. Using the RAWM, each rat was assessed for learning and memory performance through two sets of six trials separated by a 5-min rest period evaluating both short- and long-term effects on memory. RESULTS There was no deficit in learning or long-term memory in both drug groups compared to control. However, rats in both drug groups made significantly more errors in all short-term memory trials. This effect was mitigated when Vit. E was co-administered with either drug. Moreover, PAC (but not DOX) induced hippocampal lipid peroxidation by increasing the levels of standard biomarker thiobarbituric acid reactive substances (TBARS). Interestingly, Vit. E prevented PAC-induced hippocampal oxidative stress. Furthermore, both DOX and PAC were correlated with reduction in Brain-Derived Neurotrophic Factor (BDNF) expression levels in the hippocampus, which was overcome by the co-administration of Vit. E. CONCLUSION There is a potential role of Vit. E in alleviating short-term memory impairment in rats exposed to chemotherapy, possibly by reducing hippocampal oxidative stress and neurodegeneration.
Collapse
Affiliation(s)
- Ahmad A Altarifi
- Department of Pharmacology, Faculty of Medicine, Jordan University of Science and Technology, P.O. Box 3030, Irbid, 22110, Jordan.
| | - Kareem Sawali
- Department of Pharmacology, Faculty of Medicine, Jordan University of Science and Technology, P.O. Box 3030, Irbid, 22110, Jordan
| | - Karem H Alzoubi
- Department of Pharmacy Practice and Pharmacotherapeutics, University of Sharjah, Sharjah, United Arab Emirates
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Tareq Saleh
- Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa, Jordan
| | - Malik Abu Al-Rub
- Department of Pharmacology, Faculty of Medicine, Jordan University of Science and Technology, P.O. Box 3030, Irbid, 22110, Jordan
| | - Omar Khabour
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
2
|
Kopsick JD, Hartzell K, Lazaro H, Nambiar P, Hasselmo ME, Dannenberg H. Temporal dynamics of cholinergic activity in the septo-hippocampal system. Front Neural Circuits 2022; 16:957441. [PMID: 36092276 PMCID: PMC9452968 DOI: 10.3389/fncir.2022.957441] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Cholinergic projection neurons in the medial septum and diagonal band of Broca are the major source of cholinergic modulation of hippocampal circuit functions that support neural coding of location and running speed. Changes in cholinergic modulation are known to correlate with changes in brain states, cognitive functions, and behavior. However, whether cholinergic modulation can change fast enough to serve as a potential speed signal in hippocampal and parahippocampal cortices and whether the temporal dynamics in such a signal depend on the presence of visual cues remain unknown. In this study, we use a fiber-photometric approach to quantify the temporal dynamics of cholinergic activity in freely moving mice as a function of the animal's movement speed and visual cues. We show that the population activity of cholinergic neurons in the medial septum and diagonal band of Broca changes fast enough to be aligned well with changes in the animal's running speed and is strongly and linearly correlated to the logarithm of the animal's running speed. Intriguingly, the cholinergic modulation remains strongly and linearly correlated to the speed of the animal's neck movements during periods of stationary activity. Furthermore, we show that cholinergic modulation is unaltered during darkness. Lastly, we identify rearing, a stereotypic behavior where the mouse stands on its hindlimbs to scan the environment from an elevated perspective, is associated with higher cholinergic activity than expected from neck movements on the horizontal plane alone. Taken together, these data show that temporal dynamics in the cholinergic modulation of hippocampal circuits are fast enough to provide a potential running speed signal in real-time. Moreover, the data show that cholinergic modulation is primarily a function of the logarithm of the animal's movement speed, both during locomotion and during stationary activity, with no significant interaction with visual inputs. These data advance our understanding of temporal dynamics in cholinergic modulation of hippocampal circuits and their functions in the context of neural coding of location and running speed.
Collapse
Affiliation(s)
- Jeffrey D. Kopsick
- Department of Bioengineering, George Mason University, Fairfax, VA, United States
- Interdisciplinary Program for Neuroscience, George Mason University, Fairfax, VA, United States
| | - Kyle Hartzell
- Department of Bioengineering, George Mason University, Fairfax, VA, United States
| | - Hallie Lazaro
- Center for Systems Neuroscience, Boston University, Boston, MA, United States
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, United States
| | - Pranav Nambiar
- Center for Systems Neuroscience, Boston University, Boston, MA, United States
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, United States
| | - Michael E. Hasselmo
- Center for Systems Neuroscience, Boston University, Boston, MA, United States
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, United States
| | - Holger Dannenberg
- Department of Bioengineering, George Mason University, Fairfax, VA, United States
- Interdisciplinary Program for Neuroscience, George Mason University, Fairfax, VA, United States
| |
Collapse
|
3
|
Upright NA, Baxter MG. Effects of nicotinic antagonists on working memory performance in young rhesus monkeys. Neurobiol Learn Mem 2021; 184:107505. [PMID: 34425219 DOI: 10.1016/j.nlm.2021.107505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/09/2021] [Accepted: 08/17/2021] [Indexed: 10/20/2022]
Abstract
Acetylcholine plays a pivotal neuromodulatory role in the brain, influencing neuronal activity and cognitive function. Nicotinic receptors, particularly α7 and α4β2 receptors, modulate firing of dorsolateral prefrontal (dlPFC) excitatory networks that underlie successful working memory function. Minimal work however has been done examining working memory following systemic blockade of nicotinic receptor systems in nonhuman primates, limiting the ability to explore interactions of other neuromodulatory influences with working memory impairment caused by nicotinic antagonism. In this study, we investigated working memory performance after administering three nicotinic antagonists, mecamylamine, methyllycaconitine, and dihydro-β-erythroidine, in rhesus macaques tested in a spatial delayed response task. Surprisingly, we found that no nicotinic antagonist significantly impaired delayed response performance compared to vehicle. In contrast, the muscarinic antagonist scopolamine reliably impaired delayed response performance in all monkeys tested. These findings suggest there are some limitations on using systemic nicotinic antagonists to probe the involvement of nicotinic receptors in aspects of dlPFC-dependent working memory function, necessitating alternative strategies to understand the role of this system in cognitive deficits seen in aging and neurodegenerative disease.
Collapse
Affiliation(s)
- Nicholas A Upright
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| | - Mark G Baxter
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
4
|
Progress in nicotinic receptor structural biology. Neuropharmacology 2020; 171:108086. [PMID: 32272141 DOI: 10.1016/j.neuropharm.2020.108086] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 03/31/2020] [Indexed: 02/07/2023]
Abstract
Here we begin by briefly reviewing landmark structural studies on the nicotinic acetylcholine receptor. We highlight challenges that had to be overcome to push through resolution barriers, then focus on what has been gleaned in the past few years from crystallographic and single particle cryo-EM studies of different nicotinic receptor subunit assemblies and ligand complexes. We discuss insights into ligand recognition, ion permeation, and allosteric gating. We then highlight some foundational aspects of nicotinic receptor structural biology that remain unresolved and are areas ripe for future exploration. This article is part of the special issue on 'Contemporary Advances in Nicotine Neuropharmacology'.
Collapse
|
5
|
Dannenberg H, Young K, Hasselmo M. Modulation of Hippocampal Circuits by Muscarinic and Nicotinic Receptors. Front Neural Circuits 2017; 11:102. [PMID: 29321728 PMCID: PMC5733553 DOI: 10.3389/fncir.2017.00102] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 11/27/2017] [Indexed: 01/02/2023] Open
Abstract
This article provides a review of the effects of activation of muscarinic and nicotinic receptors on the physiological properties of circuits in the hippocampal formation. Previous articles have described detailed computational hypotheses about the role of cholinergic neuromodulation in enhancing the dynamics for encoding in cortical structures and the role of reduced cholinergic modulation in allowing consolidation of previously encoded information. This article will focus on addressing the broad scope of different modulatory effects observed within hippocampal circuits, highlighting the heterogeneity of cholinergic modulation in terms of the physiological effects of activation of muscarinic and nicotinic receptors and the heterogeneity of effects on different subclasses of neurons.
Collapse
Affiliation(s)
- Holger Dannenberg
- Center for Systems Neuroscience, Department of Psychological and Brain Sciences, Boston University, Boston, MA, United States
| | - Kimberly Young
- Center for Systems Neuroscience, Department of Psychological and Brain Sciences, Boston University, Boston, MA, United States
| | - Michael Hasselmo
- Center for Systems Neuroscience, Department of Psychological and Brain Sciences, Boston University, Boston, MA, United States
| |
Collapse
|
6
|
Kawahata I, Suzuki T, Rico EG, Kusano S, Tamura H, Mimaki Y, Yamakuni T. Fermented Citrus reticulata (ponkan) fruit squeezed draff that contains a large amount of 4'-demethylnobiletin prevents MK801-induced memory impairment. J Nat Med 2017; 71:617-631. [PMID: 28488113 DOI: 10.1007/s11418-017-1091-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 04/25/2017] [Indexed: 12/30/2022]
Abstract
A previous study reported biotransformation of a citrus peel polymethoxyflavone, nobiletin, by Aspergillus enabling production of 4'-demethylnobiletin, and the product's antimutagenic activity. However, the effects of fermented citrus peel on the basal forebrain-hippocampal system remain unidentified. Citrus reticulata (ponkan) fruit squeezed draffs are generated as mass waste in beverage factories. In this study using PC12D cells and cultured central nervous system neurons, we therefore examined whether Aspergillus kawachii-fermented citrus fruit squeezed draff could affect cAMP response element (CRE)- and choline acetyltransferase gene (ChAT) promoter region-mediated transcriptional activities relevant to memory formation and cholinergic function. Our current fermentation yielded approximately 80% nobiletin bioconversion, and a sample of hot-water extract of the fermented fruit squeezed draff was stronger than that of the unfermented one in facilitating CRE-mediated transcription in cultured hippocampal neurons as well as in PC12D cells. A sample of 0-80% ethanol-eluted fraction of Diaion HP-20 column-adsorbed components of the preparation obtained by the fermentation concentration-dependently and more strongly facilitated CRE-mediated transcription than did the fraction of the unfermented one in both cell culture systems. In a separate study, this polymethoxyflavone-rich fraction of the fermented fruit squeezed draff showed a potent ability to facilitate CRE-mediated and ChAT transcription in a co-culture of hippocampal neurons and basal forebrain neurons. Repeated oral gavage of mice with the fermented fraction sample prevented MK801-impaired memory formation in mice. These findings suggest that the 4'-demethylnobiletin-rich fraction prepared from the Aspergillus-fermented ponkan squeezed draff has a potential anti-dementia effect.
Collapse
Affiliation(s)
- Ichiro Kawahata
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| | - Tatsuya Suzuki
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| | - Evelyn Gutiérrez Rico
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| | - Shuichi Kusano
- Fuji Sangyo Co., Ltd. Research and Development Center, 1301 Tamura-cho, Marugame, 763-0071, Japan
| | - Hiroshi Tamura
- Fuji Sangyo Co., Ltd. Research and Development Center, 1301 Tamura-cho, Marugame, 763-0071, Japan
| | - Yoshihiro Mimaki
- Laboratory of Medicinal Plant Science, School of Pharmacy, Tokyo University of Pharmacy and Life Science, Hachioji, Tokyo, 192-0392, Japan
| | - Tohru Yamakuni
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan.
| |
Collapse
|
7
|
Comparison of spatial learning in the partially baited radial-arm maze task between commonly used rat strains: Wistar, Spargue-Dawley, Long-Evans, and outcrossed Wistar/Sprague-Dawley. Learn Behav 2016; 43:83-94. [PMID: 25537841 DOI: 10.3758/s13420-014-0163-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Strain-related differences in animals' cognitive ability affect the outcomes of experiments and may be responsible for discrepant results obtained by different research groups. Therefore, behavioral phenotyping of laboratory animals belonging to different strains is important. The aim of the present study was to compare the variation in allothetic visuospatial learning in most commonly used laboratory rat strains: inbred Wistar (W) and Sprague-Dawley (SD), outcrossed Wistar/Sprague-Dawley (W/SD), and outbred Long Evans (LE) rats. All rats were trained to the arbitrary performance criterion of 83 % correct responses in the partially baited 12-arm radial maze allowing for simultaneous evaluation of both working and reference memory. In the present study, testing albino versus pigmented and inbred versus outcrossed rats revealed significant strain-dependent differences with the inbred SD rats manifesting lower performance on all learning measures compared to other strains. On the other hand, the outcrossed W/SD rats showed a lower frequency of reference memory errors and faster rate of task acquisition compared to both LE and W rats, with W rats showing a lower frequency of working memory errors compared to other strains. In conclusion, albinism apparently did not reduce the animals' performance in the allothetic visuospatial learning task, while outcrossing improved the spatial learning. A differential effect of strain on the contribution of each error type to the animals' overall performance was observed. The strain-dependent differences were more pronounced between subpopulations of learning-deficient individuals ("poor" learners), and generally the reference memory errors contributed more to the final behavioral output than did the working memory errors.
Collapse
|
8
|
Meyer HC, Putney RB, Bucci DJ. Inhibitory learning is modulated by nicotinic acetylcholine receptors. Neuropharmacology 2015; 89:360-7. [PMID: 25445487 DOI: 10.1016/j.neuropharm.2014.10.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 10/24/2014] [Accepted: 10/27/2014] [Indexed: 10/24/2022]
Abstract
Prior research has established that stimulating nicotinic acetylcholine receptors can facilitate learning and memory. However, most studies have focused on learning to emit a particular behavior, while little is known about the effects of nicotine on learning to withhold a behavioral response. The present study consisted of a dose response analysis of the effects of nicotine on negative occasion setting, a form of learned inhibition. In this paradigm, rats received one type of training trial in which presentation of a tone by itself was followed immediately by food reward. During the other type of trials, the tone was preceded by presentation of a light and no food was delivered after the tone. Rats gradually learned to approach the cup in anticipation of receiving food reward during presentations of the tone alone, but withheld that behavior when the tone was preceded by the light. Nicotine (0.35 mg/kg) facilitated negative occasion setting by reducing the number of sessions needed to learn the discrimination between trial types and by reducing the rate of responding on non-reinforced trials. Nicotine also increased the orienting response to the light, suggesting that nicotine may have affected the ability to withhold food cup behavior on non-reinforced trials by increasing attention to the light. In contrast to the effects of nicotine, rats treated with mecamylamine (0.125, 0.5, or 2 mg/kg) needed more training sessions to discriminate between reinforced and non-reinforced trials compared to saline-treated rats. The findings indicate that nicotinic acetylcholine receptors may be active during negative occasion setting and that nicotine can potentiate learned inhibition.
Collapse
Affiliation(s)
- Heidi C Meyer
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH 03755, USA
| | | | | |
Collapse
|
9
|
Bang SR, Ambavade SD, Jagdale PG, Adkar PP, Waghmare AB, Ambavade PD. Lacosamide reduces HDAC levels in the brain and improves memory: Potential for treatment of Alzheimer's disease. Pharmacol Biochem Behav 2015; 134:65-9. [PMID: 25931268 DOI: 10.1016/j.pbb.2015.04.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 04/10/2015] [Accepted: 04/15/2015] [Indexed: 11/28/2022]
Abstract
Lacosamide, a histone deacetylase (HDAC) inhibitor, has been approved for the treatment of epilepsy. Some HDAC inhibitors have been proven effective for the treatment of memory disorders. The present investigation was designed to evaluate the effect of lacosamide on memory and brain HDAC levels. The effect on memory was evaluated in animals with scopolamine-induced amnesia using the elevated plus maze, object recognition test, and radial arm maze. The levels of acetylcholinesterase and HDAC in the cerebral cortex were evaluated. Lacosamide at doses of 10 and 30mg/kg significantly reduced the transfer latency in the elevated plus maze. Lacosamide at a dose of 30mg/kg significantly increased the time spent with a familiar object in the object recognition test at the 24h interval and decreased the time spent in the baited arm. Moreover, at this dose, the number of errors in the radial arm maze at 3 and 24h intervals was minimized and a reduction in the level of HDAC1, but not acetylcholinesterase, was observed in the cerebral cortex. These effects of lacosamide are equivalent to those of piracetam at a dose of 300mg/kg. These results suggest that lacosamide at a 30mg/kg dose improves disrupted memory, possibly by inhibiting HDAC, and could be used to treat amnesic symptoms of Alzheimer's disease.
Collapse
Affiliation(s)
- Shraddha R Bang
- Department of Pharmacology, JSPM's Jayawantrao Sawant College of Pharmacy and Research(1), Handewadi Road, Hadapsar, Pune 411028, India
| | - Shirishkumar D Ambavade
- Department of Pharmacology, JSPM's Jayawantrao Sawant College of Pharmacy and Research(1), Handewadi Road, Hadapsar, Pune 411028, India.
| | - Priti G Jagdale
- Department of Pharmacology, JSPM's Jayawantrao Sawant College of Pharmacy and Research(1), Handewadi Road, Hadapsar, Pune 411028, India
| | - Prafulla P Adkar
- Department of Pharmacology, JSPM's Jayawantrao Sawant College of Pharmacy and Research(1), Handewadi Road, Hadapsar, Pune 411028, India
| | - Arun B Waghmare
- Haffkine Biopharmaceutical Corporation Ltd., Pimpri, Pune 18, India
| | | |
Collapse
|
10
|
Giovannini MG, Lana D, Pepeu G. The integrated role of ACh, ERK and mTOR in the mechanisms of hippocampal inhibitory avoidance memory. Neurobiol Learn Mem 2015; 119:18-33. [PMID: 25595880 DOI: 10.1016/j.nlm.2014.12.014] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 12/29/2014] [Accepted: 12/30/2014] [Indexed: 11/28/2022]
Abstract
The purpose of this review is to summarize the present knowledge on the interplay among the cholinergic system, Extracellular signal-Regulated Kinase (ERK) and Mammalian Target of Rapamycin (mTOR) pathways in the development of short and long term memories during the acquisition and recall of the step-down inhibitory avoidance in the hippocampus. The step-down inhibitory avoidance is a form of associative learning that is acquired in a relatively simple one-trial test through several sensorial inputs. Inhibitory avoidance depends on the integrated activity of hippocampal CA1 and other brain areas. Recall can be performed at different times after acquisition, thus allowing for the study of both short and long term memory. Among the many neurotransmitter systems involved, the cholinergic neurons that originate in the basal forebrain and project to the hippocampus are of crucial importance in inhibitory avoidance processes. Acetylcholine released from cholinergic fibers during acquisition and/or recall of behavioural tasks activates muscarinic and nicotinic acetylcholine receptors and brings about a long-lasting potentiation of the postsynaptic membrane followed by downstream activation of intracellular pathway (ERK, among others) that create conditions favourable for neuronal plasticity. ERK appears to be salient not only in long term memory, but also in the molecular mechanisms underlying short term memory formation in the hippocampus. Since ERK can function as a biochemical coincidence detector in response to extracellular signals in neurons, the activation of ERK-dependent downstream effectors is determined, in part, by the duration of ERK phosphorylation itself. Long term memories require protein synthesis, that in the synapto-dendritic compartment represents a direct mechanism that can produce rapid changes in protein content in response to synaptic activity. mTOR in the brain regulates protein translation in response to neuronal activity, thereby modulating synaptic plasticity and long term memory formation. Some studies demonstrate a complex interplay among the cholinergic system, ERK and mTOR. It has been shown that co-activation of muscarinic acetylcholine receptors and β-adrenergic receptors facilitates the conversion of short term to long term synaptic plasticity through an ERK- and mTOR-dependent mechanism which requires translation initiation. It seems therefore that the complex interplay among the cholinergic system, ERK and mTOR is crucial in the development of new inhibitory avoidance memories in the hippocampus.
Collapse
Affiliation(s)
- Maria Grazia Giovannini
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139 Firenze, Italy.
| | - Daniele Lana
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139 Firenze, Italy.
| | - Giancarlo Pepeu
- Department of Neuroscience, Psychology, Drug Research and Child Health, Division of Pharmacology and Toxicology, University of Florence, Viale Pieraccini 6, 50139 Firenze, Italy.
| |
Collapse
|
11
|
Cholinergic receptor blockade by scopolamine and mecamylamine exacerbates global cerebral ischemia induced memory dysfunction in C57BL/6J mice. Nitric Oxide 2014; 43:62-73. [DOI: 10.1016/j.niox.2014.08.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 08/16/2014] [Accepted: 08/21/2014] [Indexed: 12/19/2022]
|
12
|
Neuropharmacology of memory consolidation and reconsolidation: Insights on central cholinergic mechanisms. ACTA ACUST UNITED AC 2014; 108:286-91. [PMID: 24819880 DOI: 10.1016/j.jphysparis.2014.04.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 04/16/2014] [Accepted: 04/29/2014] [Indexed: 11/23/2022]
Abstract
Central cholinergic system is critically involved in all known memory processes. Endogenous acetylcholine release by cholinergic neurons is necessary for modulation of acquisition, encoding, consolidation, reconsolidation, extinction, retrieval and expression. Experiments from our laboratory are mainly focused on elucidating the mechanisms by which acetylcholine modulates memory processes. Blockade of hippocampal alpha-7-nicotinic receptors (α7-nAChRs) with the antagonist methyllycaconitine impairs memory reconsolidation. However, the administration of a α7-nAChR agonist (choline) produce a paradoxical modulation, causing memory enhancement in mice trained with a weak footshock, but memory impairment in animals trained with a strong footshock. All these effects are long-lasting, and depend on the age of the memory trace. This review summarizes and discusses some of our recent findings, particularly regarding the involvement of α7-nAChRs on memory reconsolidation.
Collapse
|
13
|
Abstract
The precise role of nicotinic acetylcholine receptors (nAChRs) in central cognitive processes still remains incompletely understood almost 150 years after its initial discovery. Central nAChRs are activated by acetylcholine, which functions in the extracellular space as a nonsynaptic messenger. Recently, a novel concept in the nAChR mode of operation has been described as a fast-type nonsynaptic transmission. In this review, we attempt to summarise the experimental findings that support the role of one of the most distributed receptor subtypes, the α7 nAChRs, and particularly focus on its procognitive effects following receptor activation. The basic characteristics of α7 nAChRs are discussed, from receptor homology to cellular-level functions. Synaptic plasticity is often implicated with α7 nAChRs on the basis of several diverse studies. Here, we provide a summary of the plastic features of the α7 receptor subtype and its role in higher level cognitive function. Finally, recent clinical evidence is reviewed, which demonstrates with increasing confidence the promise α7 nAChRs as a molecular target in future pharmacotherapy to prevent cognitive decline in various types of dementia, specifically, via the development of positive allosteric modulator compounds.
Collapse
Affiliation(s)
- Balázs Lendvai
- Gedeon Richter Plc., Pharmacology and Drug Safety Department, Budapest, Gyömrői u, 19-21, Hungary.
| | | | | | | |
Collapse
|
14
|
Feduccia AA, Chatterjee S, Bartlett SE. Neuronal nicotinic acetylcholine receptors: neuroplastic changes underlying alcohol and nicotine addictions. Front Mol Neurosci 2012; 5:83. [PMID: 22876217 PMCID: PMC3411089 DOI: 10.3389/fnmol.2012.00083] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 07/15/2012] [Indexed: 12/23/2022] Open
Abstract
Addictive drugs can activate systems involved in normal reward-related learning, creating long-lasting memories of the drug's reinforcing effects and the environmental cues surrounding the experience. These memories significantly contribute to the maintenance of compulsive drug use as well as cue-induced relapse which can occur even after long periods of abstinence. Synaptic plasticity is thought to be a prominent molecular mechanism underlying drug-induced learning and memories. Ethanol and nicotine are both widely abused drugs that share a common molecular target in the brain, the neuronal nicotinic acetylcholine receptors (nAChRs). The nAChRs are ligand-gated ion channels that are vastly distributed throughout the brain and play a key role in synaptic neurotransmission. In this review, we will delineate the role of nAChRs in the development of ethanol and nicotine addiction. We will characterize both ethanol and nicotine's effects on nAChR-mediated synaptic transmission and plasticity in several key brain areas that are important for addiction. Finally, we will discuss some of the behavioral outcomes of drug-induced synaptic plasticity in animal models. An understanding of the molecular and cellular changes that occur following administration of ethanol and nicotine will lead to better therapeutic strategies.
Collapse
Affiliation(s)
- Allison A Feduccia
- Ernest Gallo Clinic and Research Center, Preclinical Development Emeryville, CA, USA
| | | | | |
Collapse
|
15
|
Timofeeva OA, Levin ED. Glutamate and nicotinic receptor interactions in working memory: importance for the cognitive impairment of schizophrenia. Neuroscience 2011; 195:21-36. [PMID: 21884762 DOI: 10.1016/j.neuroscience.2011.08.038] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 08/16/2011] [Accepted: 08/17/2011] [Indexed: 12/15/2022]
Abstract
This article reaches across disciplines to correlate results in molecular, cellular, behavioral, and clinical research to develop a more complete picture of how working memory (WM) functions. It identifies a new idea that deserves further investigation. NMDA glutamate receptors (NMDAR) are critical for memory function. NMDAR inhibition effectively reproduces principal manifestations of schizophrenia (SP), such as WM impairment and GABAergic deficit (mainly reduction of glutamic acid decarboxylase 67 (GAD67) and parvalbumin (PV) content). Nicotine and selective α7 nicotinic acetylcholine receptor (nAChR) agonists reduce WM impairments in patients with SP and reverse WM deficits in animals treated with NMDAR antagonists. The mechanism of this effect is unknown. Importantly, WM recovery occurs even before restoration of NMDAR blockade-induced molecular alterations, including reduced GAD67 in interneurons. Our insight into the cognitive-enhancing effect of α7 nAChR agonists, particularly in the animal models of SP, combines reviews of recent findings on glutamate and nicotinic receptor expression in the neuronal circuits involved in WM, the properties of these receptors, their implication in WM regulation, generation of rhythmic neuronal activity, resulting in a proposed hypothesis for further investigations. We suggest that (1) cortical/hippocampal interneurons, particularly PV positive, play a crucial role in WM and that impairment of these cells in SP could be behind the WM deficit; (2) activation of α7 nAChRs could restore calcium signaling and intrinsic properties of these interneurons, and associated with these events, computational capacity, gamma rhythmic activity, and WM would also be restored.
Collapse
Affiliation(s)
- O A Timofeeva
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Box 104790, Durham, NC 27710, USA.
| | | |
Collapse
|
16
|
Behavioural studies with a newly developed neuroprotective KYNA-amide. J Neural Transm (Vienna) 2011; 119:165-72. [PMID: 21818601 DOI: 10.1007/s00702-011-0692-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 07/16/2011] [Indexed: 12/29/2022]
Abstract
The neuroactive properties and neuroprotective potential of endogenous L: -kynurenine, kynurenic acid (KYNA) and its derivatives are well established. KYNA acts as an antagonist on the obligatory co-agonist glycine site, and has long been at the focus of neuroprotective trials. Unfortunately, KYNA is barely able to cross the blood-brain barrier. Accordingly, the development and synthesis of KYNA analogs which can readily cross the BBB have been at the focus of research interest with the aim of neuroprotection. Earlier we reported a new KYNA-amide crosses the BBB and proved neuroprotective in several experiments. In the present study, we investigated the locomotor activity, working memory performance, and also the long-lasting, consolidated reference memory of animals treated intraperitoneally (i.p.) with the novel analog. The effects of the novel analog on the spatial orientation and learning ability of rats were assessed in the Morris water maze (MWM) paradigm. The effects on locomotor activity of mice was assessed in the open field (OF) paradigm, and those on the spatial orientation and learning ability of mice were investigated in the radial arm maze (RAM) paradigm. It emerged that there is a dose of this KYNA-amide which is neuroprotective, but does not worsen the cognitive function of the brain. This result is significant in that a putative neuroprotectant without adverse cognitive side-effects is of great benefit.
Collapse
|
17
|
Gacar N, Mutlu O, Utkan T, Komsuoglu Celikyurt I, Gocmez SS, Ulak G. Beneficial effects of resveratrol on scopolamine but not mecamylamine induced memory impairment in the passive avoidance and Morris water maze tests in rats. Pharmacol Biochem Behav 2011; 99:316-23. [PMID: 21624386 DOI: 10.1016/j.pbb.2011.05.017] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 05/08/2011] [Accepted: 05/14/2011] [Indexed: 01/05/2023]
Abstract
Resveratrol (3,5,4-trihydroxy-trans-stilbene), which is found in grapes and red wine has been shown to protect neuronal cells with its antioxidant activity, improve memory function in dementia and reverse acetylcholine esterase (AChE) activity. The aim of this study was to investigate the effect of resveratrol on emotional and spatial memory in naive rats, as well as on scopolamine- and mecamylamine-induced memory impairment in the passive avoidance and Morris water maze (MWM) tests. Resveratrol (12.5, 25 and 50 mg/kg), scopolamine (0.6 mg/kg) and mecamylamine (10mg/kg) were administered to male Wistar rats. In the passive avoidance test, there was no significant difference in the first day latency between all groups, whereas scopolamine and mecamylamine significantly shortened the second day latency compared to the control group. Resveratrol reversed the effect of scopolamine at all doses used, but it had no effect on mecamylamine-induced memory impairment in the passive avoidance test. Both scopolamine and mecamylamine significantly decreased the time spent in the escape platform quadrant during the probe trial of the MWM test compared to the control group. Resveratrol reversed the effect of scopolamine at all doses, but did not change the effect of mecamylamine in the MWM test. There were no significant differences in the locomotor activities of any of the groups. In conclusion, we suggested that resveratrol had improving effects on learning and memory by acting on muscarinic cholinergic receptors and at least in part, may reverse AChE activity.
Collapse
Affiliation(s)
- Nejat Gacar
- Pharmacology Department, Kocaeli University Medical Faculty, 41380-Kocaeli, Turkey.
| | | | | | | | | | | |
Collapse
|
18
|
Graef S, Schönknecht P, Sabri O, Hegerl U. Cholinergic receptor subtypes and their role in cognition, emotion, and vigilance control: an overview of preclinical and clinical findings. Psychopharmacology (Berl) 2011; 215:205-29. [PMID: 21212938 DOI: 10.1007/s00213-010-2153-8] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 12/15/2010] [Indexed: 01/10/2023]
Abstract
RATIONALE The cholinergic system has long been linked to cognitive processes. Two main classes of acetylcholine (ACh) receptors exist in the human brain, namely muscarinic and nicotinic receptors, of which several subtypes occur. OBJECTIVES This review seeks to provide an overview of previous findings on the influence of cholinergic receptor manipulations on cognition in animals and humans, with particular emphasis on the role of selected cholinergic receptor subtypes. Furthermore, the involvement of these receptor subtypes in the regulation of emotion and brain electrical activity as measured by electroencephalography (EEG) shall be addressed since these domains are considered to be important modulators of cognitive functioning. RESULTS In regard to cognition, the muscarinic receptor subtypes have been implicated mainly in memory functions, but have also been linked to attentional processes. The nicotinic α7 receptor subtype is involved in working memory, whereas the α4β2* subtype has been linked to tests of attention. Both muscarinic and nicotinic cholinergic mechanisms play a role in modulating brain electrical activity. Nicotinic receptors have been strongly associated with the modulation of depression and anxiety. CONCLUSIONS Cholinergic receptor manipulations have an effect on cognition, emotion, and brain electrical activity as measured by EEG. Changes in cognition can result from direct cholinergic receptor manipulation or from cholinergically induced changes in vigilance or affective state.
Collapse
Affiliation(s)
- Susanne Graef
- Department of Psychiatry, University of Leipzig, Semmelweisstr. 10, 04103 Leipzig, Germany.
| | | | | | | |
Collapse
|
19
|
MacLeod JE, Vucovich MM, Bucci DJ. Differential effects of nicotinic acetylcholine receptor stimulation on negative occasion setting. Behav Neurosci 2011; 124:656-61. [PMID: 20939665 DOI: 10.1037/a0020904] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We have previously shown that nicotine enhances learning in a negative occasion setting task in which rats are trained to distinguish between two different trial types. During reinforced trials, a target stimulus (a tone) is presented and immediately followed by food reward. On nonreinforced trials, a feature stimulus (a light) is presented prior to the tone and indicates the absence of reward following presentation of the tone. The goal of the present study was to identify the behavioral mechanism through which nicotine affects this form of learning, and to determine which subtype(s) of nicotinic acetylcholine receptors mediate the effects of nicotine. Consistent with our prior findings, nicotine administration enhanced the ability of rats to discriminate between the two trial types. Nicotine enhanced the magnitude of the discrimination by decreasing responding to the tone on nonreinforced trials. Nicotine-treated rats also learned the discrimination in fewer sessions than control rats. A significant new finding was that nicotine also increased the orienting response to the light, suggesting that nicotine may enhance learning the serial feature negative discrimination by increasing attention to the visual feature. In addition, we found that RJR-2403, a selective α4β2 nicotinic receptor agonist, also enhanced discrimination. However, RJR-2403 did not affect responding on nonreinforced trials, nor did RJR-2403 affect orienting to the light. Together these data indicate that nicotine may enhance discrimination by enhancing tone-reward associability through α4β2 nicotinic receptors and by enhancing attention to the light through non-α4β2 receptor subtypes.
Collapse
Affiliation(s)
- Jill E MacLeod
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH 03755, USA
| | | | | |
Collapse
|
20
|
Nishimoto T, Kadoyama K, Taniguchi T, Takano M, Otani M, Nakamura-Hirota T, Lu Y, Matsumoto A, Matsuyama S. Synaptotagmin1 synthesis induced by synaptic plasticity in mouse hippocampus through activation of nicotinic acetylcholine receptors. Neurosci Lett 2010; 489:25-9. [PMID: 21129439 DOI: 10.1016/j.neulet.2010.11.059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 11/16/2010] [Accepted: 11/19/2010] [Indexed: 11/15/2022]
Abstract
We have reported that systemic application of nicotinic agonists expresses a long-term potentiation (LTP)-like facilitation, a model of synaptic plasticity, in vivo in the mouse hippocampus. The present study conducted to clarify the involvement of synaptotagmin1 in synaptic plasticity by investigating the time-dependent change of the mRNA and protein levels of synaptotagmin1 during LTP-like facilitation in the mouse hippocampus. The mRNA expression of synaptotagmin1 increased during 2- to 8-h period by intraperitoneal application of nicotine (3mg/kg), returning to the basal level in 12-h. Also, the protein level of synaptotagmin1, but not synaptophysin, in a total fraction from hippocampus increased during 4- to 12-h period by the same treatment, returning to the basal level in 24-h. The protein level of synaptotagmin1 in a membrane fraction from hippocampus also increased during 4- to 8-h period by nicotine, returning to the basal level in 12-h. This nicotine-enhanced synaptotagmin1 protein in a membrane fraction was inhibited by pretreatment of mecamylamine (0.3mg/kg, i.p.), a nonselective nicotinic acetylcholine receptors (nAChRs) antagonist. Furthermore, choline (30mg/kg, i.p.), a selective α7 nAChR agonist, or ABT-418 (10mg/kg, i.p.), a selective α4β2 nAChR agonist, enhanced the level of synaptotagmin1 in a membrane fraction. Our findings demonstrate that synaptotagmin1 protein following mRNA which is enhanced without increasing the number of synapse gathers around pre-synaptic membrane during hippocampal LTP-like facilitation through activation of α7 and/or α4β2 nAChRs in the brain. These results suggest that new-synthesized synaptotagmin1 following synaptic plasticity may contribute to long-lasting synaptic plasticity via positive, feedfoward mechanisms.
Collapse
Affiliation(s)
- Takaaki Nishimoto
- Department of Pharmaceutical Health Care, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, 7-2-1 Kamiohno, Himeji 670-8524, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Boccia M, Blake M, Krawczyk M, Baratti C. Hippocampal alpha7 nicotinic receptors modulate memory reconsolidation of an inhibitory avoidance task in mice. Neuroscience 2010; 171:531-43. [DOI: 10.1016/j.neuroscience.2010.08.027] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Revised: 08/12/2010] [Accepted: 08/13/2010] [Indexed: 01/06/2023]
|
22
|
Klinkenberg I, Sambeth A, Blokland A. Acetylcholine and attention. Behav Brain Res 2010; 221:430-42. [PMID: 21108972 DOI: 10.1016/j.bbr.2010.11.033] [Citation(s) in RCA: 213] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 11/15/2010] [Accepted: 11/16/2010] [Indexed: 10/18/2022]
Abstract
Historically, ACh has been implicated in learning and short-term memory functions. However, more recent studies have provided support for a role of cortical ACh in attentional effort, orienting and the detection of behavioral significant stimuli. The current review article summarizes studies in animals and humans which have investigated the role of ACh in attention and cognition. An attempt has been made to differentiate between brain regions involved in attentional processes versus those important for other cognitive functions. To this purpose, various experimental methods and interventions were used. Animal behavioral studies have injected the selective immunotoxin IgG-saporin to induce specific cholinergic lesions, employed electrochemical techniques such as microdialysis, or have administered cholinergic compounds into discrete parts of the brain. Human studies that give some indication on the link between central cholinergic signaling and cognition are obviously confined to less invasive, imaging methods such as fMRI. The brain areas that are deemed most important for intact attentional processing in both animals and humans appear to be the (pre)frontal, parietal and somatosensory (especially visual) regions, where ACh plays a vital role in the top-down control of attentional orienting and stimulus discrimination. In contrast, cholinergic signaling in the septohippocampal system is suggested to be involved in memory processes. Thus, it appears that the role of ACh in cognition is different per brain region and between nicotinic versus muscarinic receptor subtypes.
Collapse
Affiliation(s)
- Inge Klinkenberg
- Faculty of Psychology and Neuroscience, Department of Neuropsychology and Psychopharmacology, European Graduate School of Neuroscience, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands.
| | | | | |
Collapse
|
23
|
|
24
|
A novel touchscreen-automated paired-associate learning (PAL) task sensitive to pharmacological manipulation of the hippocampus: a translational rodent model of cognitive impairments in neurodegenerative disease. Psychopharmacology (Berl) 2009; 205:157-68. [PMID: 19357840 DOI: 10.1007/s00213-009-1526-3] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Accepted: 03/21/2009] [Indexed: 10/20/2022]
Abstract
RATIONALE Paired-associate learning (PAL), as part of the Cambridge Neuropsychological Test Automated Battery, is able to predict who from an at-risk population will develop Alzheimer's disease. Schizophrenic patients are also impaired on this same task. An automated rodent model of PAL would be extremely beneficial in further research into Alzheimer's disease and schizophrenia. OBJECTIVE The objective of this study was to develop a PAL task using touchscreen-equipped operant boxes and test its sensitivity to manipulations of the hippocampus, a brain region of interest in both Alzheimer's disease and schizophrenia. MATERIALS AND METHODS Previous work has shown that spatial and non-spatial memory can be tested in touchscreen-equipped operant boxes. Using this same apparatus, rats were trained on two variants of a PAL task differing only in the nature of the S- (the unrewarded stimuli, a combination of image and location upon the screen). Rats underwent cannulation of the dorsal hippocampus, and after recovery were tested under the influence of intra-hippocampally administered glutamatergic and cholinergic antagonists while performing the PAL task. RESULTS Impairments were seen after the administration of glutamatergic antagonists, but not cholinergic antagonists, in one of the two versions of PAL. CONCLUSIONS De-activation of the hippocampus caused impairments in a PAL task. The selective nature of this effect (only one of the two tasks was impaired), suggests the effect is specific to cognition and cannot be attributed to gross impairments (changes in visual learning). The pattern of results suggests that rodent PAL may be suitable as a translational model of PAL in humans.
Collapse
|
25
|
Abstract
The amyloid precursor protein (APP) undergoes sequential cleavages to generate various polypeptides, including the amyloid beta (1-42) peptide (Abeta[1-42]), which is believed to play a major role in amyloid plaque formation in Alzheimer's disease (AD). Here we provide evidence that, in contrast with its pathological role when accumulated, endogenous Abeta in normal hippocampi mediates learning and memory formation. Furthermore, hippocampal injection of picomolar concentrations of exogenous Abeta(1-42) enhances memory consolidation. Correlative data suggest that Abeta peptides may exert their function via nicotinic acethylcoline receptors. Hence, Abeta peptides, including Abeta(1-42), play an important physiological role in hippocampal memory formation.
Collapse
Affiliation(s)
- Ana Garcia-Osta
- Department of Neuroscience, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | |
Collapse
|
26
|
Levin ED, Perkins A, Brotherton T, Qazi M, Berez C, Montalvo-Ortiz J, Davis K, Williams P, Christopher NC. Chronic underactivity of medial frontal cortical beta2-containing nicotinic receptors increases clozapine-induced working memory impairment in female rats. Prog Neuropsychopharmacol Biol Psychiatry 2009; 33:296-302. [PMID: 19146909 PMCID: PMC2684503 DOI: 10.1016/j.pnpbp.2008.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2008] [Revised: 12/04/2008] [Accepted: 12/05/2008] [Indexed: 11/28/2022]
Abstract
Nicotinic receptor decreases in the frontal cortex and hippocampus are important mediators of cognitive impairment in both schizophrenia and Alzheimer's disease. Drug treatments for these diseases should take into account the impacts of compromised brain function on drug response. This study investigated the impact of compromised nicotinic receptor activity in the frontal cortex in rats on memory function. Since both Alzheimer's disease and schizophrenia can involve psychosis, antipsychotic drugs are often given. The impacts of antipsychotic drugs on cognitive function have been found to be quite variable. It is the hypothesis of this and previous studies that the cognitive effects of antispychotic drugs on cognitive function depend on the integrity of brain systems involved in cognition. Previously in studies of the hippocampus, we found that chronic inhibition of beta2-containing nicotinic receptors with dihydro-beta-erythrodine (DHbetaE) impaired working memory and that this effect was attenuated by the antipsychotic drug clozapine. In contrast, chronic hippocampal alpha7 nicotinic receptor blockade with methyllycaconitine (MLA) potentiated the clozapine-induced memory impairment which is seen in rats without compromised nicotinic receptor activity. The current study determined medial frontal cortical alpha7 and beta2-containing nicotinic receptor involvement in memory and the interactions with antipsychotic drug therapy with clozapine. Chronic DHbetaE and MLA infusion effects and interactions with systemic clozapine were assessed in female rats tested for memory on the radial-arm maze. Antipsychotic drug interactions with chronic systemic nicotine were investigated because nicotinic procognitive treatment has been proposed. The same local infusion DHbetaE dose that impaired memory with hippocampal infusion did not impair memory when infused in the medial frontal cortex. Frontal DHbetaE infusion potentiated clozapine-induced memory impairment, whereas previously the memory impairment caused by hippocampal DHbetaE infusion was attenuated by clozapine. Frontal cortical MLA infusions at a dose that previously was found to potentiate the clozapine-induced memory impairment with hippocampal infusion had no significant effect when infused into the medial frontal cortex. The location and subtype of nicotinic receptor underactivity are critical determinates for clozapine effects on memory. Patients with hippocampal beta2-containing nicotinic receptor loss may be well treated with clozapine therapy, while those with frontal cortical beta2-containing receptor loss may have a potentiated memory impairment caused by clozapine.
Collapse
Affiliation(s)
- Edward D Levin
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Idazoxan blocks the nicotine-induced reversal of the memory impairment caused by the NMDA glutamate receptor antagonist dizocilpine. Pharmacol Biochem Behav 2008; 90:372-81. [DOI: 10.1016/j.pbb.2008.03.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Revised: 02/20/2008] [Accepted: 03/10/2008] [Indexed: 11/21/2022]
|
28
|
Lendvai B, Vizi ES. Nonsynaptic Chemical Transmission Through Nicotinic Acetylcholine Receptors. Physiol Rev 2008; 88:333-49. [DOI: 10.1152/physrev.00040.2006] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
This review attempts to organize the different aspects of nicotinic transmission in the context of nonsynaptic interactions. Nicotinic acetylcholine receptors (nAChRs) dominantly operate in the nonsynaptic mode in the central nervous system despite their ligand-gated ion-channel nature, which would otherwise be better suited for fast synaptic transmission. This fast form of nonsynaptic transmission, most likely unique to nAChRs, represents a new avenue in the communication platforms of the brain. Cholinergic messages received by nAChRs, arriving at a later phase following synaptic activation, can interfere with dendritic signal integration. Nicotinic transmission plays a role in both neural plasticity and cellular learning processes, as well as in long-term changes in basic activity through fast activation, desensitization of receptors, and fluctuations of the steady-state levels of ACh. ACh release can contribute to plastic changes via activation of nAChRs in neurons and therefore plays a role in learning and memory in different brain regions. Assuming that nAChRs in human subjects are ready to receive long-lasting messages from the extracellular space because of their predominantly nonsynaptic distribution, they offer an ideal target for drug therapy at low, nontoxic drug levels.
Collapse
|
29
|
Ochoa ELM, Lasalde-Dominicci J. Cognitive deficits in schizophrenia: focus on neuronal nicotinic acetylcholine receptors and smoking. Cell Mol Neurobiol 2008; 27:609-39. [PMID: 17554626 PMCID: PMC4676572 DOI: 10.1007/s10571-007-9149-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2006] [Accepted: 04/13/2007] [Indexed: 02/08/2023]
Abstract
Patients with schizophrenia present with deficits in specific areas of cognition. These are quantifiable by neuropsychological testing and can be clinically observable as negative signs. Concomitantly, they self-administer nicotine in the form of cigarette smoking. Nicotine dependence is more prevalent in this patient population when compared to other psychiatric conditions or to non-mentally ill people. The target for nicotine is the neuronal nicotinic acetylcholine receptor (nAChR). There is ample evidence that these receptors are involved in normal cognitive operations within the brain. This review describes neuronal nAChR structure and function, focusing on both cholinergic agonist-induced nAChR desensitization and nAChR up-regulation. The several mechanisms proposed for the nAChR up-regulation are examined in detail. Desensitization and up-regulation of nAChRs may be relevant to the physiopathology of schizophrenia. The participation of several subtypes of neuronal nAChRs in the cognitive processing of non-mentally ill persons and schizophrenic patients is reviewed. The role of smoking is then examined as a possible cognitive remediator in this psychiatric condition. Finally, pharmacological strategies focused on neuronal nAChRs are discussed as possible therapeutic avenues that may ameliorate the cognitive deficits of schizophrenia.
Collapse
Affiliation(s)
- Enrique L. M. Ochoa
- Department of Psychiatry, University of California at Davis, 2230 Stockton Boulevard, Sacramento, CA 95817, USA
| | - Jose Lasalde-Dominicci
- Department of Biology, University of Puerto Rico, Río Piedras Campus, P.O. Box 23360, San Juan 00931-3360, Puerto Rico
| |
Collapse
|
30
|
McKay BE, Placzek AN, Dani JA. Regulation of synaptic transmission and plasticity by neuronal nicotinic acetylcholine receptors. Biochem Pharmacol 2007; 74:1120-33. [PMID: 17689497 PMCID: PMC2047292 DOI: 10.1016/j.bcp.2007.07.001] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Revised: 06/29/2007] [Accepted: 07/02/2007] [Indexed: 11/30/2022]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are widely expressed throughout the central nervous system and participate in a variety of physiological functions. Recent advances have revealed roles of nAChRs in the regulation of synaptic transmission and synaptic plasticity, particularly in the hippocampus and midbrain dopamine centers. In general, activation of nAChRs causes membrane depolarization and directly and indirectly increases the intracellular calcium concentration. Thus, when nAChRs are expressed on presynaptic membranes their activation generally increases the probability of neurotransmitter release. When expressed on postsynaptic membranes, nAChR-initiated calcium signals and depolarization activate intracellular signaling mechanisms and gene transcription. Together, the presynaptic and postsynaptic effects of nAChRs generate and facilitate the induction of long-term changes in synaptic transmission. The direction of hippocampal nAChR-mediated synaptic plasticity - either potentiation or depression - depends on the timing of nAChR activation relative to coincident presynaptic and postsynaptic electrical activity, and also depends on the location of cholinergic stimulation within the local network. Therapeutic activation of nAChRs may prove efficacious in the treatment of neuropathologies where synaptic transmission is compromised, as in Alzheimer's or Parkinson's disease.
Collapse
Affiliation(s)
- Bruce E McKay
- Department of Neuroscience, Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | |
Collapse
|
31
|
Chess AC, Simoni MK, Alling TE, Bucci DJ. Elevations of endogenous kynurenic acid produce spatial working memory deficits. Schizophr Bull 2007; 33:797-804. [PMID: 16920787 PMCID: PMC2526148 DOI: 10.1093/schbul/sbl033] [Citation(s) in RCA: 175] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Kynurenic acid (KYNA) is a tryptophan metabolite that is synthesized and released by astrocytes and acts as a competitive antagonist of the glycine site of N-methyl-D-aspartate receptors at high concentrations and as a noncompetitive antagonist of the alpha7-nicotinic acetylcholine receptor at low concentrations. The discovery of increased cortical KYNA levels in schizophrenia prompted the hypothesis that elevated KYNA concentration may underlie the working memory dysfunction observed in this population that has been attributed to altered glutamatergic and/or cholinergic transmission. The present study investigated the effect of elevated endogenous KYNA on spatial working memory function in rats. Increased KYNA levels were achieved with intraperitoneal administration of kynurenine (100 mg/kg), the precursor of KYNA synthesis. Rats were treated with either kynurenine or a vehicle solution prior to testing in a radial arm maze task at various delays. Elevations of endogenous KYNA resulted in increased errors in the radial arm maze. In separate experiments, assessment of locomotor activity in an open field and latency to retrieve food reward from one of the maze arms ruled out the possibility that deficits in the maze were attributable to altered locomotor activity or motivation to consume food. These results provide evidence that increased KYNA levels produce spatial working memory deficits and are among the first to demonstrate the influence of glia-derived molecules on cognitive function. The implications for psychopathological conditions such as schizophrenia are discussed.
Collapse
Affiliation(s)
- Amy C Chess
- Department of Psychological and Brain Sciences, Dartmouth College, 6207 Moore Hall, Hanover, NH 03755, USA.
| | | | | | | |
Collapse
|
32
|
Vago DR, Kesner RP. Cholinergic modulation of Pavlovian fear conditioning in rats: differential effects of intrahippocampal infusion of mecamylamine and methyllycaconitine. Neurobiol Learn Mem 2006; 87:441-9. [PMID: 17178240 PMCID: PMC1951534 DOI: 10.1016/j.nlm.2006.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2006] [Revised: 11/01/2006] [Accepted: 11/03/2006] [Indexed: 11/16/2022]
Abstract
The cholinergic system has consistently been implicated in Pavlovian fear conditioning. Considerable work has been done to localize specific nicotinic receptor subtypes in the hippocampus and determine their functional importance; however, the specific function of many of these subtypes has yet to be determined. An alpha7 nicotinic antagonist methyllycaconitine (MLA) (35 microg), and a broad spectrum non-alpha7 nicotinic antagonist mecamylamine (35 microg) was injected directly into the dorsal hippocampus or overlying cortex either 15 min pre-, 1 min post-, or 6h post-fear conditioning. One week after conditioning, retention of contextual and cue (tone) conditioning were assessed. A significant impairment in retention of contextual fear was observed when mecamylamine was injected 15 min pre- and 1 min post-conditioning. No significant impairment was observed when mecamylamine was injected 6h post-conditioning. Likewise, a significant impairment in retention of contextual fear was observed when MLA was injected 1 min post-conditioning; however, in contrast, MLA did not show any significant impairments when injected 15 min pre-conditioning, but did show a significant impairment when injected 6h post-conditioning. There were no significant impairments observed when either drug was injected into overlying cortex. No significant impairments were observed in cue conditioning for either drug. In general, specific temporal dynamics involved in nicotinic receptor function were found relative to time of receptor dysfunction. The results indicate that the greatest deficits in long-term retention (1 week) of contextual fear are produced by central infusion of MLA minutes to hours post-conditioning or mecamylamine within minutes of conditioning.
Collapse
Affiliation(s)
- David R Vago
- Department of Psychology, University of Utah, 380 South 1530 East, Room 502, Salt Lake City, UT 84112, USA
| | | |
Collapse
|
33
|
MacLeod JE, Potter AS, Simoni MK, Bucci DJ. Nicotine administration enhances conditioned inhibition in rats. Eur J Pharmacol 2006; 551:76-9. [PMID: 17027751 PMCID: PMC1829413 DOI: 10.1016/j.ejphar.2006.08.082] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2006] [Revised: 08/28/2006] [Accepted: 08/31/2006] [Indexed: 11/21/2022]
Abstract
The effect of nicotine on conditioned inhibition was examined using a serial feature negative discrimination task. Nicotine (0.35 mg/kg) or vehicle was administered before each of the 16 training sessions. On some trials in each session, a tone was presented and followed by food reward. On other trials, the tone was preceded by a visual stimulus and not reinforced. Nicotine-treated rats exhibited greater discrimination between the two trial types as evidenced by less frequent responding during non-reinforced trials, and learned the discrimination in fewer sessions than vehicle-treated rats. In contrast, there were no group differences in responding during the reinforced trials.
Collapse
Affiliation(s)
- Jill E. MacLeod
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH 03755 USA
| | - Alexandra S. Potter
- Clinical Neuroscience Research Unit, Department of Psychiatry, University of Vermont, College of Medicine, Burlington, VT 05401 USA
| | - Michael K. Simoni
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH 03755 USA
| | - David J. Bucci
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH 03755 USA
| |
Collapse
|
34
|
Levin ED, McClernon FJ, Rezvani AH. Nicotinic effects on cognitive function: behavioral characterization, pharmacological specification, and anatomic localization. Psychopharmacology (Berl) 2006; 184:523-39. [PMID: 16220335 DOI: 10.1007/s00213-005-0164-7] [Citation(s) in RCA: 590] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2005] [Accepted: 08/06/2005] [Indexed: 10/25/2022]
Abstract
RATIONALE Nicotine has been shown in a variety of studies in humans and experimental animals to improve cognitive function. Nicotinic treatments are being developed as therapeutic treatments for cognitive dysfunction. OBJECTIVES Critical for the development of nicotinic therapeutics is an understanding of the neurobehavioral bases for nicotinic involvement in cognitive function. METHODS Specific and diverse cognitive functions affected by nicotinic treatments are reviewed, including attention, learning, and memory. The neural substrates for these behavioral actions involve the identification of the critical pharmacologic receptor targets, in particular brain locations, and how those incipient targets integrate with broader neural systems involved with cognitive function. RESULTS Nicotine and nicotinic agonists can improve working memory function, learning, and attention. Both alpha4beta2 and alpha7 nicotinic receptors appear to be critical for memory function. The hippocampus and the amygdala in particular have been found to be important for memory, with decreased nicotinic activity in these areas impairing memory. Nicotine and nicotinic analogs have shown promise for inducing cognitive improvement. Positive therapeutic effects have been seen in initial studies with a variety of cognitive dysfunctions, including Alzheimer's disease, age-associated memory impairment, schizophrenia, and attention deficit hyperactivity disorder. CONCLUSIONS Discovery of the behavioral, pharmacological, and anatomic specificity of nicotinic effects on learning, memory, and attention not only aids the understanding of nicotinic involvement in the basis of cognitive function, but also helps in the development of novel nicotinic treatments for cognitive dysfunction. Nicotinic treatments directed at specific receptor subtypes and nicotinic cotreatments with drugs affecting interacting transmitter systems may provide cognitive benefits most relevant to different syndromes of cognitive impairment such as Alzheimer's disease, schizophrenia, and attention deficit hyperactivity disorder. Further research is necessary in order to determine the efficacy and safety of nicotinic treatments of these cognitive disorders.
Collapse
Affiliation(s)
- Edward D Levin
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Box #3412, Durham, NC 27710, USA.
| | | | | |
Collapse
|
35
|
Ge S, Dani JA. Nicotinic acetylcholine receptors at glutamate synapses facilitate long-term depression or potentiation. J Neurosci 2006; 25:6084-91. [PMID: 15987938 PMCID: PMC6725070 DOI: 10.1523/jneurosci.0542-05.2005] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The hippocampus is a center for learning and memory that receives abundant cholinergic innervation and richly expresses nicotinic acetylcholine receptors (nAChRs). Nicotinic mechanisms acting on the hippocampus influence attention, learning, and memory. During Alzheimer's dementia, nAChRs and cholinergic innervation decline in the hippocampus. Using mouse hippocampal slices, we examined the potential diversity of nAChR influences at the Schaffer collateral synapse onto CA1 pyramidal neurons. When nAChR currents were elicited locally at those excitatory synapses, various outcomes were possible depending on the relationship between the nAChR-mediated excitation and mild electrical stimulation. When mild presynaptic stimulation coincided with or preceded nAChR-induced action potentials by 1-5 s, then long-term potentiation was induced. However, if the nAChR-induced action potentials fell within 1 s before the electrical stimulation, then long-term depression resulted. Outside of these time frames, the mismatch of nAChR activity and stimulation led to short-term potentiation. The results indicate that nAChRs may have various influences over excitatory events in the hippocampus. Ongoing nAChR activity likely modulates the impact of glutamate transmission and alters the probabilities for various forms of synaptic plasticity. The fine network of cholinergic fibers running through the hippocampus forms synaptic contacts onto pyramidal cells, granule cells, and interneurons, ensuring continual modulatory influence by nicotinic mechanisms throughout the hippocampal complex. Disruption of events such as those described here may contribute to the deficits associated with the decline of nicotinic cholinergic functions during degenerative diseases such as Alzheimer's dementia.
Collapse
Affiliation(s)
- Shaoyu Ge
- Department of Neuroscience, Program in Structural and Computational Biology and Molecular Biophysics, Baylor College of Medicine, Houston, Texas 77030-3498, USA
| | | |
Collapse
|
36
|
Salgado-Commissariat D, Rosenfield DB, Helekar SA. Nicotine-mediated plasticity in robust nucleus of the archistriatum of the adult zebra finch. Brain Res 2004; 1018:97-105. [PMID: 15262210 DOI: 10.1016/j.brainres.2004.05.051] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2004] [Indexed: 10/26/2022]
Abstract
Activation of neuronal nicotinic acetylcholine receptors (nAChRs) modulates the induction of long-term potentiation (LTP), a possible cellular mechanism for learning. This study was undertaken to determine the effects of activation of nAChRs by nicotine on long-term plasticity in the songbird zebra finch, which is a valuable model to study synaptic plasticity and its implications to behavioral learning. Electrophysiological recordings in the robust nucleus of the archistriatum (RA) in adult zebra finch brain slices reveal that tetanic stimulation alone does not produce LTP. However, LTP is induced by such stimulation in the presence of nicotine. The nicotine-mediated LTP is blocked by dihydro-beta-erythroidine (DHbetaE, 1 microM), an antagonist having a greater effect against nAChRs containing the alpha 4 subunit. In the presence of methyllcaconitine (MLA, 10 nM), an antagonist of nAChRs containing the alpha 7 subunit, a long-term depression (LTD) is unmasked, implicating a bi-directional type of plasticity in the zebra finch RA, which is modulated by differential activation of nAChR subtypes. Intracellular recordings from single neurons show a depression of the afterhyperpolarization (AHP) and an increase in frequency of evoked and spontaneous action potentials in the presence of nicotine. These results suggest that nicotinic cholinergic mechanisms may play a critical role in synaptic plasticity in the zebra finch song system and thereby influence song learning and plasticity.
Collapse
Affiliation(s)
- Delanthi Salgado-Commissariat
- Speech and Language Center, Department of Neurology, Baylor College of Medicine, 6501 Fannin Street, NB 422, Houston, TX 77030, USA.
| | | | | |
Collapse
|
37
|
Sylvester Vizi E, Rózsa B, Mayer A, Kiss JP, Zelles T, Lendvai B. Further evidence for the functional role of nonsynaptic nicotinic acetylcholine receptors. Eur J Pharmacol 2004; 500:499-508. [PMID: 15464055 DOI: 10.1016/j.ejphar.2004.07.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2004] [Indexed: 11/30/2022]
Abstract
The function of nicotinic acetylcholine receptors in the main central systems has been documented in the past decade. These studies focused mostly on the synaptic functions, although acetylcholine is released dominantly into the extrasynaptic space and the majority of nicotinic acetylcholine receptors on remote neurons are found on extrasynaptic membranes. Here, we show further evidence for the role of nonsynaptic nicotinic functions in the cognitive and the reward system. Dendrites of gamma-amino-n-butyric acid (GABA)-containing interneurons of the hippocampus are densely equipped with nicotinic acetylcholine receptors. These cells play an important role in memory processing. We analysed the effects of nicotinic acetylcholine receptor stimulation on the Ca(2+) dynamics of interneurons in different dendritic compartments. We also investigated the role of nicotinic receptors in the nucleus accumbens where nicotine stimulated vesicular dopamine release via activation of receptors located on varicosities. Nicotine produced comparable effects with 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) on dopamine release. These examples demonstrate that nonsynaptic nicotinic acetylcholine receptors can effectively influence activity pattern of neural networks in key structures of central systems.
Collapse
Affiliation(s)
- E Sylvester Vizi
- Department of Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, P.O. Box 67, H-1450 Budapest, Hungary.
| | | | | | | | | | | |
Collapse
|
38
|
Parent MB, Baxter MG. Septohippocampal acetylcholine: involved in but not necessary for learning and memory? Learn Mem 2004; 11:9-20. [PMID: 14747512 PMCID: PMC1668717 DOI: 10.1101/lm.69104] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The neurotransmitter acetylcholine (ACh) has been accorded an important role in supporting learning and memory processes in the hippocampus. Cholinergic activity in the hippocampus is correlated with memory, and restoration of ACh in the hippocampus after disruption of the septohippocampal pathway is sufficient to rescue memory. However, selective ablation of cholinergic septohippocampal projections is largely without effect on hippocampal-dependent learning and memory processes. We consider the evidence underlying each of these statements, and the contradictions they pose for understanding the functional role of hippocampal ACh in memory. We suggest that although hippocampal ACh is involved in memory in the intact brain, it is not necessary for many aspects of hippocampal memory function.
Collapse
Affiliation(s)
- Marise B Parent
- Department of Psychology and Center for Behavioral Neuroscience, Georgia State University, Atlanta, Georgia 30303, USA.
| | | |
Collapse
|
39
|
Pratt WE, Kelley AE. Nucleus Accumbens Acetylcholine Regulates Appetitive Learning and Motivation for Food via Activation of Muscarinic Receptors. Behav Neurosci 2004; 118:730-9. [PMID: 15301600 DOI: 10.1037/0735-7044.118.4.730] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
These experiments tested whether nucleus accumbens muscarinic or nicotinic acetylcholine receptor activation is required for rats to learn to lever press for sucrose. Muscarinic blockade with scopolamine (1.0 microg/side or 10.0 microg/side), but not nicotinic antagonism with mecamylamine (10.0 microg/side), inhibited learning and performance when applied to the core or shell. Further experiments showed that acute accumbens scopolamine treatment increased locomotor activity and reduced sucrose consumption. However, microanalyses of behavioral events in the instrumental chamber revealed that reductions of lever press performance during muscarinic blockade were not due to gross motor dysfunction. Accumbens core scopolamine was subsequently shown to reduce the amount of work rats would expend under a progressive ratio paradigm. These novel results implicate nucleus accumbens muscarinic receptors in the modulation of appetitive learning, performance, and motivation for food.
Collapse
Affiliation(s)
- Wayne E Pratt
- Wisconsin Psychiatric Institute and Clinics, Department of Psychiatry, University of Wisconsin-Madison Medical School, Madison, WI 53719, USA.
| | | |
Collapse
|
40
|
Martí Barros D, Ramirez MR, Dos Reis EA, Izquierdo I. Participation of hippocampal nicotinic receptors in acquisition, consolidation and retrieval of memory for one trial inhibitory avoidance in rats. Neuroscience 2004; 126:651-6. [PMID: 15183514 DOI: 10.1016/j.neuroscience.2004.03.010] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2004] [Indexed: 10/26/2022]
Abstract
One-trial step-down inhibitory avoidance in rats involves the activation of two separate memory types, a short-term system (STM) that lasts 3-6 h, and a long-term system (LTM) that takes 3-6 h to be formed and lasts for many days or even months. Here we investigate the effect of nicotinic receptor (nAChR) ligands infused bilaterally in the hippocampus on STM and LTM formation and on LTM retrieval of this task. Rats were implanted with chronic cannulae in the CA1 region of the dorsal hippocampus, trained using a 0.5 mA foot shock, and tested twice, first 1.5 h after training to measure STM, and again at 24 h to measure LTM. The drugs used were the nAChR antagonists, mecamylamine (1, 3 and 10 microg/side) and dihydro-beta-erythroidine (DHbetaE; 2, 6 and 18 microg/side) and the agonist, nicotine (0.6, 1 and 3 microg/side). They were given either 15 min before training, immediately after training or 15 min prior to LTM retrieval. Mecamylamine and DHbetaE impaired and nicotine enhanced STM, LTM and retrieval similarly. The results indicate that nAChRs in CA1 participate in the regulation of both STM and LTM formation, and on the retrieval of LTM.
Collapse
Affiliation(s)
- D Martí Barros
- Departamento de Ciências Fisiológicas, Fundação Universidade Federal de Rio Grande, Av. Itália Km 8, CEP 96.201-900, Rio Grande, RS, Brazil.
| | | | | | | |
Collapse
|
41
|
Woodson JC, Macintosh D, Fleshner M, Diamond DM. Emotion-induced amnesia in rats: working memory-specific impairment, corticosterone-memory correlation, and fear versus arousal effects on memory. Learn Mem 2003; 10:326-36. [PMID: 14557605 PMCID: PMC217998 DOI: 10.1101/lm.62903] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We have shown previously that psychological stress (predator exposure) impairs spatial memory in rats. We have extended that finding here to show that predator stress selectively impaired recently acquired (hippocampal-dependent) spatial working memory without affecting long-term (hippocampal-independent) spatial reference memory. We also investigated why predator exposure impairs memory. Was spatial memory impaired because of the fear-provoking aspects of predator exposure or only because the cat was a novel and arousing stimulus? If the latter possibility was correct, then any novel and arousing stimulus, independent of its emotional valence (i.e., aversive or appetitive), would impair memory. We found that spatial working memory was not impaired when the male rats were exposed to a sexually receptive female rat, a stimulus that was novel and arousing to them, but not aversive. We also found that there was an equivalent increase in serum corticosterone levels in male rats exposed to either a cat or a female rat, but only the cat-exposed rats exhibited a significant correlation between corticosterone levels and impaired memory. Overall, this series of experiments demonstrates that (1). predator stress selectively impaired working (hippocampal-dependent), but not reference (hippocampal-independent), memory; (2). a fear-provoking stimulus, and not merely novelty and increased arousal, impaired spatial memory; and (3). increased corticosterone levels correlated with impaired spatial working memory only under predator exposure, that is, fear-provoking conditions.
Collapse
Affiliation(s)
- James C Woodson
- Departments of Psychology and Pharmacology, Tampa, Florida 33620, USA
| | | | | | | |
Collapse
|
42
|
Maviel T, Durkin TP. Role of central cholinergic receptor sub-types in spatial working memory: a five-arm maze task in mice provides evidence for a functional role of nicotinic receptors in mediating trace access processes. Neuroscience 2003; 120:1049-59. [PMID: 12927210 DOI: 10.1016/s0306-4522(03)00403-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A delayed-matching spatial working memory protocol in a 5-arm maze was used to test the hypothesis of differential roles for central nicotinic and muscarinic cholinergic receptors in mediating task performance. In experiment 1, using a within subjects-repeated design, groups of C57Bl/6 mice, previously trained to criterion with a 4 h retention interval separating presentation and test phases, received i.p. injections of either saline, scopolamine (0.8 mg/kg), mecamylamine (8.0 mg/kg), or the combination of scopolamine and mecamylamine before re-testing. Injections were given either, a) 15 min pre-presentation or, b) 30 s, c) 15 min, d) 3 h 45 min post-presentation in order to differentially affect the acquisition, trace maintenance and recall phases. Significant decreases in correct responses were observed for each drug treatment but the effects were a function of the time of treatment. Results of condition d), (i.e.15 min before retention test) confirm previous reports of severe disruption by each antagonist and their combination on retention. However, conditions a-c) show a constant disruption by scopolamine, increasing disruption by mecamylamine, whereas the combined treatment was without effect. Although the data show that central nicotinic and muscarinic antagonists both modulate working memory performance, they indicate first, that scopolamine-induced "amnesia" results, not from selective post-synaptic M1 muscarinic blockade but from indirect over-activation of nicotinic receptors. Second, the observation of high levels of retention although nicotinic and muscarinic receptors had undergone combined blockade during a large part of the retention interval is incompatible with the concept that test-induced activation of central cholinergic neurones mediates memory trace maintenance. Finally, taken with data from experiment 2, using a short (20 min) treatment-to-test interval, we conclude that central nicotinic receptors play a key role in attentional processes enabling working memory trace access during retrieval.
Collapse
Affiliation(s)
- T Maviel
- Laboratoire de Neurosciences Cognitives, CNRS UMR 5106, Université de Bordeaux 1, Avenue des Facultés, 33405, Talence, France
| | | |
Collapse
|
43
|
Addy NA, Nakijama A, Levin ED. Nicotinic mechanisms of memory: effects of acute local DHbetaE and MLA infusions in the basolateral amygdala. BRAIN RESEARCH. COGNITIVE BRAIN RESEARCH 2003; 16:51-7. [PMID: 12589888 DOI: 10.1016/s0926-6410(02)00209-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Nicotine has been shown to improve working memory. The neural mechanisms underlying this effect are still being determined. The ventral hippocampus is critical for nicotinic effects on memory. Local ventral hippocampal infusions of either the nicotinic alpha7 nicotinic receptor antagonist methyllycaconitine (MLA) or the alpha4beta2 nicotinic receptor antagonist dihydro-beta-erythroidine (DHbetaE) caused working memory impairments, but no additive effects were seen. Other areas, such as the amygdala, also likely play important roles in nicotinic effects on memory. Amygdalar lesions cause memory impairment and there is a dense concentration of nicotinic receptors in the basolateral amygdala. The current study used local basolateral amygdalar infusions of the nicotinic antagonists MLA and DHbetaE to determine the involvement of alpha7 and alpha4beta2 nicotinic receptors in spatial working and reference memory. Rats (n=8) were trained in the 16-arm radial maze and were implanted with bilateral infusion cannulae into the basolateral amygdala. Acute infusions of MLA (6.75 micro g/side, P<0.0005) or DHbetaE (3.38 micro g/side, P<0.025) caused significant working memory impairments. When given together MLA and DHbetaE did not produce an additive effect. In fact, the 6.75 micro g/kg dose of DHbetaE produced a significant (P<0.0005) attenuation of the MLA-induced working memory impairment. Significant effects were not seen with reference memory or response latency. Nicotinic systems in the basolateral amygdala, as in the ventral hippocampus, are important for spatial working memory. In both the basolateral amygdala and the ventral hippocampus, MLA and DHbetaE individually caused working memory impairments. The lowest effective dose of DHbetaE was lower in the basolateral amygdala than in the ventral hippocampus. In both the basolateral amygdala and the ventral hippocampus, combined MLA and DHbetaE treatment did not produce additive working memory deficits. Unlike in the ventral hippocampus, the addition of DHbetaE to MLA in the basolateral amygdala significantly reduced the MLA-induced working memory deficit.
Collapse
Affiliation(s)
- Nii A Addy
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
44
|
Abstract
Nicotinic receptor systems are involved in a wide variety of behavioral functions including cognitive function. Nicotinic medications may provide beneficial treatment for cognitive dysfunction such as Alzheimer's disease, schizophrenia, and attention deficit hyperactivity disorder (ADHD). Nicotine has been shown to improve attentional performance in all of these disorders. Better efficacy with fewer side effects might be achieved with novel nicotinic ligands selective for particular nicotinic subtypes. To develop these novel selective nicotinic ligands it is important to use animal models to determine the critical neurobehavioral bases for nicotinic involvement in cognitive function. Nicotine-induced cognitive improvement in rats is most consistently seen in working memory tasks. We have found that both acute and chronic nicotine administration significantly improves working memory performance of rats in the radial-arm maze. The pharmacologic and anatomic mechanisms for this effect have been examined in our laboratory in a series of local drug infusion studies. Both alpha 4 beta 2 and alpha 7 nicotinic receptors in the ventral hippocampus and basolateral amygdala are involved in working memory function. Working memory impairments were caused by local infusion of either alpha 4 beta 2 or alpha 7 antagonists. Ventral hippocampal alpha 4 beta 2 blockade-induced working memory deficits are reversed by chronic systemic nicotine treatment, while ventral hippocampal alpha 7 blockade-induced working memory deficits were not found to be reversed by the same nicotine regimen. Interestingly, alpha 4 beta 2 and alpha 7 induced deficits were not found to be additive in either the ventral hippocampus or the basolateral amygdala. In fact, in the amygdala, alpha 7 antagonist cotreatment actually reversed the working memory impairment caused by alpha 4 beta 2 antagonist administration. These studies of the neural nicotinic mechanisms underlying cognitive function are key for opening avenues for development of safe and effective nicotinic treatments for cognitive dysfunction.
Collapse
Affiliation(s)
- Edward D Levin
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Neurobehavioral Research Laboratory, Box 3412, Durham, North Carolina 27710, USA.
| |
Collapse
|
45
|
Schildein S, Huston JP, Schwarting RKW. Open field habituation learning is improved by nicotine and attenuated by mecamylamine administered posttrial into the nucleus accumbens. Neurobiol Learn Mem 2002; 77:277-90. [PMID: 11991758 DOI: 10.1006/nlme.2001.4017] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Using the paradigm of habituation learning in the open field, we tested the effects of unilateral microinjections of the agonist nicotine (8.0, 40.0, and 80.0 microg) and the nicotine receptor antagonist mecamylamine (0.1, 1.0, 10.0 microg) into the core of the nucleus accumbens. When injected posttrial, that is, immediately after the first exposure to the open field, nicotine dose-dependently enhanced behavioral habituation during the test on the following day, indicating a facilitation of memory, whereas mecamylamine impaired habituation at the highest dose, but not at the two lower doses. When injected 5 h after the learning trial, nicotine (40 microg) and mecamylamine (10 microg) impaired habituation on the subsequent day. A control experiment did not provide evidence for possible proactive effects of mecamylamine. These findings are discussed with respect to the possible behavioral functions of cholinergic, and especially nicotinic, mechanisms in the nucleus accumbens. They may also be relevant for understanding cholinergic-linked psychopathologies such as Alzheimer's disease, since the nucleus accumbens is one of the sites where cholinergic neurons are lost in this neurodegenerative disease.
Collapse
Affiliation(s)
- S Schildein
- Institute of Physiological Psychology I and Center for Biological and Medical Research, Heinrich-Heine-Universität of Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | | | | |
Collapse
|
46
|
Gil Z, Sack RA, Kedmi M, Harmelin A, Orr-Urtreger A. Increased sensitivity to nicotine-induced seizures in mice heterozygous for the L250T mutation in the alpha7 nicotinic acetylcholine receptor. Neuroreport 2002; 13:191-6. [PMID: 11893908 DOI: 10.1097/00001756-200202110-00004] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
alpha7 Nicotinic acetylcholine receptors (nAChRs) are sparsely distributed throughout the peripheral and central nervous systems. Several studies have suggested that central alpha7 nicotinic receptors may influence sensitivity to nicotine-induced seizures in mice. In order to investigate the effect of alpha7 nAChRs on seizure sensitivity, we tested heterozygous mice with a threonine for leucine substitution at position 250 (L250T) within the channel domain, which is known to increase current amplitude and decreases desensitization of the channel. We show that administration of low doses of nicotine to these mutant mice increased the sensitivity to nicotine-induced seizures and the mortality rate. EEG recordings showed high amplitude rhythmic activity during tonic-clonic seizures. Pretreatment with the alpha7 nicotinic receptor antagonist methyllycaconitine inhibited the seizures induced by nicotine. These findings further suggest an important role for alpha7 nAChRs in the nicotine-induced seizures model of epilepsy.
Collapse
Affiliation(s)
- Ziv Gil
- Department of Otolaryngology Head and Neck Surgery , Tel-Aviv Sourasky Medical Center, Sackler Medical School, Tel-Aviv University, Israel
| | | | | | | | | |
Collapse
|
47
|
Bettany JH, Levin ED. Ventral hippocampal alpha 7 nicotinic receptor blockade and chronic nicotine effects on memory performance in the radial-arm maze. Pharmacol Biochem Behav 2001; 70:467-74. [PMID: 11796146 DOI: 10.1016/s0091-3057(01)00643-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Chronic nicotine administration has been shown to significantly improve working memory. Nicotinic involvement in memory function critically involves the ventral hippocampus. Local ventral hippocampal infusions of the nicotinic antagonists mecamylamine, dihydro-beta-erythroidine (DH beta E) and methyllycaconitine (MLA) significantly impair working memory. The impairment caused by hippocampal infusion of the alpha 4 beta 2 antagonist DH beta E is reversed by chronic systemic nicotine. This study determined the interaction of chronic systemic nicotine with acute ventral hippocampal infusions of the alpha 7 antagonist MLA. Adult female Sprague-Dawley rats were trained on an 8-arm radial maze working memory task. Then they underwent ventral hippocampal cannulation and received sc implants of minipumps delivering nicotine (0 or 5 mg/kg/day for 28 days). Acute ventral hippocampal infusions of MLA (0, 4.88, 14.64 and 43.92 microg/side) were given during 3-4 weeks of chronic nicotine. MLA caused a significant dose-related memory impairment. In the rats not receiving nicotine, the 14.64 and 43.92 microg/side MLA doses caused significant memory impairment. Chronic systemic nicotine exposure did not block the MLA-induced memory impairment. Comparing the current results with MLA with previous results with DH beta E, equimolar ventral hippocampal DH beta E more effectively impaired memory than MLA, but the DH beta E-induced impairment was more effectively reversed by chronic systemic nicotine administration.
Collapse
Affiliation(s)
- J H Bettany
- Neurobehavioral Research Laboratory, Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Bell Building Box 3412, Durham, NC 27710, USA
| | | |
Collapse
|
48
|
Ji D, Lape R, Dani JA. Timing and location of nicotinic activity enhances or depresses hippocampal synaptic plasticity. Neuron 2001; 31:131-41. [PMID: 11498056 DOI: 10.1016/s0896-6273(01)00332-4] [Citation(s) in RCA: 361] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This study reveals mechanisms in the mouse hippocampus that may underlie nicotinic influences on attention, memory, and cognition. Induction of synaptic plasticity, arising via generally accepted mechanisms, is modulated by nicotinic acetylcholine receptors. Properly timed nicotinic activity at pyramidal neurons boosted the induction of long-term potentiation via presynaptic and postsynaptic pathways. On the other hand, nicotinic activity on interneurons inhibited nearby pyramidal neurons and thereby prevented or diminished the induction of synaptic potentiation. The synaptic modulation was dependent on the location and timing of the nicotinic activity. Loss of these synaptic mechanisms may contribute to the cognitive deficits experienced during Alzheimer's diseases, which is associated with a loss of cholinergic projections and with a decrease in the number of nicotinic receptors.
Collapse
Affiliation(s)
- D Ji
- Division of Neuroscience and, Structural and Computational Biology and Molecular Biophysics Program, Baylor College of Medicine, One Baylor Plaza, 77030, Houston, TX, USA.
| | | | | |
Collapse
|
49
|
Abstract
Nicotine and other nicotinic agonists have been found to improve performance on attention and memory tasks. Clinical studies using nicotine skin patches have demonstrated the efficacy of nicotine in treating cognitive impairments associated with Alzheimer's disease, schizophrenia, and attention-deficit/hyperactivity disorder. Experimental animal studies have demonstrated the persistence of nicotine-induced working memory improvement with chronic exposure, in addition to the efficacy of a variety of nicotinic agonists. Mechanistic studies have found that alpha7 and alpha4beta2 nicotinic receptors in the hippocampus are critical for nicotinic involvement in cognitive function. Clinical and experimental animal studies provide mutually supporting information for the development of novel nicotinic therapies for cognitive dysfunction.
Collapse
Affiliation(s)
- A H Rezvani
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
50
|
Bevins RA, Koznarova J, Armiger TJ. Environmental familiarization in rats: differential effects of acute and chronic nicotine. Neurobiol Learn Mem 2001; 75:63-76. [PMID: 11124047 DOI: 10.1006/nlme.1999.3955] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
If an environment is familiar, rats will interact more with a novel object than if the environment is unfamiliar. In two experiments we used this behavioral tendency to assess the effects of nicotine on environmental familiarization (i.e., an elevated platform). As expected, rats given 2 min of exposure to the platform on 2 consecutive days (familiarization phase) interacted more with a novel object in a subsequent test than rats that had not experienced the platform until the test day. During the familiarization phase acute pretreatment with nicotine (0.6 and 1.8 mg/kg, subcutaneous) 10 min before platform exposure interfered with familiarization processes, as measured by object interaction on the drug-free test day. Behavioral measures of activity (e.g., turning and midline crosses) eliminated an account based on nicotine-induced motor impairment. Furthermore, this effect of acute nicotine on familiarization was not due to nonspecific effects of nicotine. Controls that received equivalent nicotine exposure temporally separated from platform exposure interacted more with the novel object than similarly treated controls that were unfamiliar with the platform on the test day. Interestingly, rats treated once daily with 0.6 mg/kg nicotine for 14 days before the familiarization phase (chronic condition) did not show a decrease in environmental familiarity. This dissociation extends a growing literature finding that the behavioral and neurobiological effects of nicotine differ, in part, after acute and chronic exposure. Indeed, acute nicotine (0. 2, 0.6, and 1.2 mg/kg) in the present report consistently decreased the amount of time spent with one paw on the edge of the platform; chronic nicotine did not affect this behavior.
Collapse
Affiliation(s)
- R A Bevins
- Department of Psychology, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0308, USA.
| | | | | |
Collapse
|