1
|
Prieto SG, Almeida MC, Silva JCS, Del-Bel E, Echeverry MB. Extrapyramidal Side Effects with Chronic Atypical Antipsychotic Can Be Predicted by Labeling Pattern of FosB and phosphoThr 34-DARPP-32 in Nucleus Accumbens. Biomedicines 2023; 11:2677. [PMID: 37893051 PMCID: PMC10604349 DOI: 10.3390/biomedicines11102677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/16/2023] [Accepted: 09/19/2023] [Indexed: 10/29/2023] Open
Abstract
Extrapyramidal side effects (EPS) can be induced by neuroleptics that regulate the expression of transcription factor FosB and dopaminergic mediator DARPP-32 in the striatum. However, the long-term neurobiological changes in striatal projection neurons resulting from a cumulative dosage of typical and atypical antipsychotics are poorly understood. The present study aimed to determine the differential and long-lasting changes in FosB distribution and DARPP-32 phosphorylation in the striatum and nucleus accumbens (NAc) associated with chronic antipsychotic-induced EPS. Male C57Bl/6J mice received daily injections of Olanzapine (Olz, 15 mg/kg), Clozapine (Clz, 20 mg/kg), or Haloperidol (Hal, 1 mg/kg), for a period of 11 weeks with a 4-day withdrawal period before the last dosage. Catalepsy for detection of EPS, along with open-field and rotarod tests, were assessed as behavioral correlates of motor responses. Additionally, FosB and phosphorylated-DARPP-32 immunohistochemistry were examined in striatal regions after treatment. All antipsychotics produced catalepsy and reduced open-field exploration, such as impaired rota-rod performance after Olz and Hal. The washout period was critical for Clz-induced side effects reduction. Both Olz and Clz increased FosB in NAc Shell-region, and phosphoThr34-DARPP-32 in NAc. Only Clz reduced phosphoThr75-DARPP-32 in the dorsal striatum and showed FosB/phosphoThr34-Darpp-32-ir in the NAc Core region. This study provides evidence that atypical antipsychotics such as Olz and Clz also give rise to EPS effects frequently associated with a cumulative dosage of typical neuroleptics such as Hal. Nevertheless, FosB/phosphoThr34-Darpp-32-ir in the NAc Core region is associated with hypokinetic movements inhibition.
Collapse
Affiliation(s)
- Sonia G. Prieto
- Center for Mathematics, Computation and Cognition, Federal University of ABC, São Bernardo do Campo 09606-045, SP, Brazil; (S.G.P.); (J.C.S.S.)
| | - Maria Camila Almeida
- Center for Natural and Human Sciences, Federal University of ABC, São Bernardo do Campo 09606-045, SP, Brazil;
| | - João C. S. Silva
- Center for Mathematics, Computation and Cognition, Federal University of ABC, São Bernardo do Campo 09606-045, SP, Brazil; (S.G.P.); (J.C.S.S.)
| | - Elaine Del-Bel
- Department of Morphology, Physiology and Basic Pathology, Dental School of Ribeirão Preto, University of São Paulo, Ribeirão Preto 05508-000, SP, Brazil;
| | - Marcela B. Echeverry
- Center for Mathematics, Computation and Cognition, Federal University of ABC, São Bernardo do Campo 09606-045, SP, Brazil; (S.G.P.); (J.C.S.S.)
- Neuroscience Laboratory, School of Medicine, Universidad de Santander (UDES), Bucaramanga 39006-39005, Santander, Colombia
| |
Collapse
|
2
|
Cross-tolerance between nitric oxide synthase inhibition and atypical antipsychotics modify nicotinamide-adenine-dinucleotide phosphate-diaphorase activity in mouse lateral striatum. Behav Pharmacol 2019; 30:67-78. [PMID: 29664745 DOI: 10.1097/fbp.0000000000000406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Previous research indicates that the subchronic administration of NG-nitro-L-arginine (L-NOARG) produces tolerance to haloperidol-induced catalepsy in Swiss mice. The present study aimed to further investigate whether intermittent subchronic systemic administration of L-NOARG induces tolerance to the cataleptic effects of haloperidol as well as olanzapine or clozapine (Clz) in C57Bl mice after subchronic administration for 5 consecutive days. Striatal FosB protein expression was measured in an attempt to gain further insights into striatal mechanisms in antipsychotic-induced extrapyramidal symptoms side effects. An nicotinamide-adenine-dinucleotide phosphate-diaphorase histochemical reaction was also used to investigate whether tolerance could induce changes in the number of nitric oxide synthase-active neurons. Subchronic administration of all antipsychotics produced catalepsy, but cross-tolerance was observed only between L-NOARG (15 mg/kg, intraperitoneally) and Clz (20 mg/kg, intraperitoneally). This cross-tolerance effect was accompanied by decreased FosB protein expression in the dorsal striatum and the nucleus accumbens shell region, and reduced icotinamide-adenine-dinucleotide phosphate-diaphorase activity in the dorsal and ventral lateral striatum. Overall, these results suggest that interference with the formation of nitric oxide, mainly in the dorsal and ventral lateral-striatal regions, appears to improve the cataleptic effects induced by antipsychotics acting as antagonists of low-affinity dopamine D2 receptor, such as Clz.
Collapse
|
3
|
Jain NS, Tandi L, Verma L. Contribution of the central histaminergic transmission in the cataleptic and neuroleptic effects of haloperidol. Pharmacol Biochem Behav 2015; 139:59-66. [DOI: 10.1016/j.pbb.2015.10.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 09/16/2015] [Accepted: 10/07/2015] [Indexed: 10/22/2022]
|
4
|
Collins-Praino LE, Podurgiel SJ, Kovner R, Randall PA, Salamone JD. Extracellular GABA in globus pallidus increases during the induction of oral tremor by haloperidol but not by muscarinic receptor stimulation. Behav Brain Res 2012; 234:129-35. [DOI: 10.1016/j.bbr.2012.06.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 06/07/2012] [Accepted: 06/12/2012] [Indexed: 11/28/2022]
|
5
|
Neural basis of the potentiated inhibition of repeated haloperidol and clozapine treatment on the phencyclidine-induced hyperlocomotion. Prog Neuropsychopharmacol Biol Psychiatry 2012; 38:175-82. [PMID: 22476004 PMCID: PMC3389158 DOI: 10.1016/j.pnpbp.2012.03.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 03/02/2012] [Accepted: 03/16/2012] [Indexed: 11/20/2022]
Abstract
Clinical observations suggest that antipsychotic effect starts early and increases progressively over time. This time course of antipsychotic effect can be captured in a rat phencyclidine (PCP)-induced hyperlocomotion model, as repeated antipsychotic treatment progressively increases its inhibition of the repeated PCP-induced hyperlocomotion. Although the neural basis of acute antipsychotic action has been studied extensively, the system that mediates the potentiated effect of repeated antipsychotic treatment has not been elucidated. In the present study, we investigated the neuroanatomical basis of the potentiated action of haloperidol (HAL) and clozapine (CLZ) treatment in the repeated PCP-induced hyperlocomotion. Once daily for five consecutive days, adult Sprague-Dawley male rats were first injected with HAL (0.05 mg/kg, sc), CLZ (10.0 mg/kg, sc) or saline, followed by an injection of PCP (3.2 mg/kg, sc) or saline 30 min later, and motor activity was measured for 90 min after the PCP injection. C-Fos immunoreactivity was assessed either after the acute (day 1) or repeated (day 5) drug tests. Behaviorally, repeated HAL or CLZ treatment progressively increased the inhibition of PCP-induced hyperlocomotion throughout the five days of drug testing. Neuroanatomically, both acute and repeated treatment of HAL significantly increased PCP-induced c-Fos expression in the nucleus accumbens shell (NAs) and the ventral tegmental area (VTA), but reduced it in the central amygdaloid nucleus (CeA). Acute and repeated CLZ treatment significantly increased PCP-induced c-Fos expression in the ventral part of lateral septal nucleus (LSv) and VTA, but reduced it in the medial prefrontal cortex (mPFC). More importantly, the effects of HAL and CLZ in these brain areas underwent a time-dependent reduction from day 1 to day 5. These findings suggest that repeated HAL achieves its potentiated inhibition of the PCP-induced hyperlocomotion by acting on the NAs, CeA and VTA, while CLZ does so by acting on the mPFC, LSv and VTA.
Collapse
|
6
|
Lazzarini M, Salum C, Del Bel EA. Combined treatment of ascorbic acid or alpha-tocopherol with dopamine receptor antagonist or nitric oxide synthase inhibitor potentiates cataleptic effect in mice. Psychopharmacology (Berl) 2005; 181:71-9. [PMID: 15806417 DOI: 10.1007/s00213-005-2222-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2004] [Accepted: 01/28/2005] [Indexed: 10/25/2022]
Abstract
RATIONALE Drugs like haloperidol (Hal) that decrease dopamine (DA) neurotransmission in the striatum induce catalepsy in rodents and Parkinson disease-like symptoms in humans. Nitric oxide synthase (NOS) inhibitors interfere with motor activity, disrupting rodent exploratory behavior and inducing catalepsy. Catalepsy induced by NOS inhibitors probably involves striatal DA-mediated neurotransmission. Antioxidants such as ascorbic acid (vitamin C) and alpha-tocopherol (vitamin E) have also been shown to interfere with movement modulation and the DA system. OBJECTIVE The objective of the study is to investigate if the antioxidants vitamins C and E would influence the catalepsy produced by Hal and NOS inhibitors. METHODS The effects of the following treatments on catalepsy were examined using the hanging-bar test on male Swiss mice (25-30 g): (1) vitamin C (30-1,000 mg/kg)xHal (1 mg/kg); (2) vitamin C (90-1,000 mg/kg)xN (G)-nitro-L: -arginine (LNOARG, 10 and 40 mg/kg); (3) vitamin C (300 mg/kg)xN (G)-nitro-L: -arginine methylester (LNAME, 20-80 mg/kg); (4) vitamin C (300 mg/kg) x 7-nitroindazole (7NI, 3-50 mg/kg); (5) vitamin C (90 mg/kg i.p.) x LNOARG [40 mg/kg twice a day during 4 days (subchronic treatment)]; (7) vitamin E (3-100 mg/kg) x Hal (1 mg/kg); and (6) vitamin E (3-100 mg/kg) x LNOARG (40 mg/kg). RESULTS Vitamin C enhanced the catalepsy produced by NOS inhibitors and Hal. Treatment with vitamin C did not affect tolerance to LNOARG cataleptic effect induced by subchronic treatment. Vitamin E potentiated the catalepsy induced by LNOARG at all doses tested; in contrast, catalepsy induced by Hal was enhanced only by the dose of 100 mg/kg. CONCLUSIONS Results support an involvement of dopaminergic and nitrergic systems in motor behavior control and provide compelling evidence that combined administration of the antioxidants vitamins C and E with either Hal or NOS inhibitors exacerbates extrapyramidal effects. Further studies are needed to assess possible clinical implications of these findings.
Collapse
Affiliation(s)
- M Lazzarini
- Department of Neurology, Psychiatry and Medical Psychology, School of Medicine, Campus USP, Av Bandeirantes 13400, 14049-900 Ribeirão Preto, SP, Brazil
| | | | | |
Collapse
|
7
|
Heusner CL, Hnasko TS, Szczypka MS, Liu Y, During MJ, Palmiter RD. Viral restoration of dopamine to the nucleus accumbens is sufficient to induce a locomotor response to amphetamine. Brain Res 2003; 980:266-74. [PMID: 12867267 DOI: 10.1016/s0006-8993(03)02986-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Administration of amphetamine to mice evokes hyperlocomotion. Dopamine deficient (DD) mice, in which tyrosine hydroxylase (TH) has been specifically inactivated in dopaminergic neurons, have a blunted response to amphetamine, indicating that the hyperlocomotive response requires dopamine. Dopamine production can be restored to specific brain regions by using adeno-associated viruses expressing TH and GTP cyclohydrolase 1 (GTPCH1). Restoration of dopamine specifically to the nucleus accumbens (NAc) of DD mice completely restores the ability of these mice to respond to amphetamine. This response is specific to the dopamine production in the NAc, as restoration of dopamine production to the caudate putamen (CPu) does not fully restore the hyperlocomotive response to amphetamine. These data support previous studies in which accumbal dopamine is required for producing a normal locomotor response to amphetamine and further show that release of dopamine restricted to the NAc is sufficient for this response
Collapse
Affiliation(s)
- Carrie L Heusner
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | |
Collapse
|
8
|
Afify EA, Daabees TT, Gabra BH, Abou Zeit-Har MS. Role of nitric oxide in catalepsy and hyperthermia in morphine-dependent rats. Pharmacol Res 2001; 44:533-9. [PMID: 11735362 DOI: 10.1006/phrs.2001.0887] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The possible involvement of nitric oxide (NO) in morphine-induced catalepsy and hyperthermia was studied in morphine-dependent rats. Four days repeated injection regimen was used to induce morphine dependence, which was assessed by naloxone challenge (0.5 mg x kg(-1), s.c.). Pretreatment of rats with the NO synthase inhibitor, N(G)-nitro-L-arginine (L-NA, 8 mg x kg(-1) twice daily, i.p.) potentiated the cataleptic response of morphine as shown by a rightward shift in the morphine-log dose-response curve. Prior treatment of rats with the NO precursor, L-arginine (200 mg x kg(-1), twice daily, i.p.) abolished the potent effect of L-NA and restored the cataleptic scores to levels similar to those of morphine-dependent rats. The same dose of L-NA significantly blocked morphine-induced hyperthermia at the dose levels of morphine (15-105 mg x kg(-1)) and this effect was reversed by L-arginine. These data provide the first experimental evidence that NO is involved in morphine induced catalepsy and hyperthermia and demonstrated that blockade of NO synthesis may suggest a dangerous interaction with opioids in the control of motor function.
Collapse
Affiliation(s)
- E A Afify
- Department of Pharmacology, Faculty of Pharmacy, University of Alexandria, Alexandria, Egypt.
| | | | | | | |
Collapse
|
9
|
Rodríguez JJ, Garcia DR, Nakabeppu Y, Pickel VM. Enhancement of laminar FosB expression in frontal cortex of rats receiving long chronic clozapine administration. Exp Neurol 2001; 168:392-401. [PMID: 11259127 DOI: 10.1006/exnr.2000.7612] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The frontal cortex (FrC) and cingulate cortex (CgC) are critical sites for normal cognitive function, as well as cognitive dysfunction in schizophrenia. Thus, modulation of synaptic transmission within these cortical areas may, in part, account for the therapeutic actions of antipsychotic drugs such as haloperidol and clozapine. FosB and DeltaFosB are immediate-early gene (IEG) products sensitive to changes in response to chronic neuroleptic drug administration. We quantitatively examine whether there are light microscopic regional and/or laminar variations in FosB or DeltaFosB in the FrC or CgC of normal adult rats, or animals receiving 6 months administration of either drinking water clozapine, or depot haloperidol. Only animals receiving chronic haloperidol developed vacuous chewing movements, the equivalent of tardive dyskinesia in humans. In control animals, the deep and superficial layers of the FrC showed a higher area density of FosB, but not DeltaFosB immunoreactive cells than the medial layers of FrC or any of the CgC layers. In animals receiving clozapine, but not haloperidol there was increase in the area density of FosB immunoreactive neurons in all FrC layers, but the major increase occurs in medial layers. These findings suggest that FosB expression identifies those FrC neurons that are most active during normal waking behaviors and are further activated following chronic administration of atypical neuroleptics without motor side effects. The results also indicate that the actions of clozapine are attributed in large part to modulation of the output of frontal cortical pyramidal neurons residing in the medial layers.
Collapse
Affiliation(s)
- J J Rodríguez
- Division of Neurobiology, Department of Neurology and Neuroscience, Weill Medical College of Cornell University, 411 East 69th Street, New York, New York 10021, USA.
| | | | | | | |
Collapse
|
10
|
Rodríguez JJ, Garcia DR, Nakabeppu Y, Pickel VM. FosB in rat striatum: normal regional distribution and enhanced expression after 6-month haloperidol administration. Synapse 2001; 39:122-32. [PMID: 11180499 DOI: 10.1002/1098-2396(200102)39:2<122::aid-syn3>3.0.co;2-r] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Subcortical motor nuclei show differential expression of FosB immediate early gene products and specifically deltaFosB after short (8, 19, or 21 days) chronic exposure to typical and atypical neuroleptics represented by haloperidol and clozapine, respectively. We quantitatively examined whether there are light microscopic regional variations in area density of FosB or the truncated deltaFosB in several motor-related nuclei of adult rats receiving vehicle or long chronic (6 months) administration of either depot haloperidol or clozapine in their drinking water. In control animals the dorsomedial and ventromedial caudate-putamen nucleus (CPN) had a significantly higher density of FosB-immunoreactive cells than the dorsolateral and ventrolateral regions. The nucleus accumbens (NAc) core also serving motor functions had a higher basal expression than the limbic shell region in control animals. The mediolateral gradient in area density of FosB-labeled cells was maintained in animals receiving either haloperidol or clozapine. In animals receiving haloperidol, but not clozapine, however, there was a regionally selective increase in the area density of only FosB-immunoreactive neurons in the dorsolateral and ventrolateral CPN and in both the core and shell of the NAc. Only the animals receiving chronic haloperidol showed vacuous chewing movements, the animal equivalent of tardive dyskinesia in humans. Our results suggest that, whereas the medial striatal neurons are activated under basal conditions, long chronic haloperidol induced FosB expression more exclusively in the lateral CPN and NAc core, implicating these regions specifically in the motor side effects of this drug.
Collapse
Affiliation(s)
- J J Rodríguez
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, New York 10021, USA.
| | | | | | | |
Collapse
|
11
|
Semba J, Sakai MW, Suhara T, Akanuma N. Differential effects of acute and chronic treatment with typical and atypical neuroleptics on c-fos mRNA expression in rat forebrain regions using non-radioactive in situ hybridization. Neurochem Int 1999; 34:269-77. [PMID: 10372913 DOI: 10.1016/s0197-0186(99)00009-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The regional difference in the expression of c-fos mRNA in rat forebrain after either acute or chronic administration of typical (haloperidol and fluphenazine) and atypical neuroleptics (clozapine and (+/-)-sulpiride) was investigated. Rats were injected intraperitoneally with vehicle or neuroleptics daily for 14 days. Twenty-four hours after the last injection, the rats were challenged with vehicle or neuroleptics. C-fos mRNA expression was determined by non-radioactive in situ hybridization. Acute treatment with typical neuroleptics induced a remarkable induction of c-fos mRNA in the dorsolateral striatum, whereas this induction was greatly attenuated by chronic administration. All neuroleptics examined induced c-fos mRNA in the shell region of N. accumbens by acute administration and this expression was still elevated after chronic treatment. Since chronic neuroleptics do not induce tolerance to their antipsychotic activities, our study suggests that the shell region of N. accumbens is an important target site for antipsychotic effects of neuroleptics.
Collapse
Affiliation(s)
- J Semba
- University of the Air, Chiba, Japan.
| | | | | | | |
Collapse
|
12
|
Bezard E, Imbert C, Gross CE. Experimental models of Parkinson's disease: from the static to the dynamic. Rev Neurosci 1998; 9:71-90. [PMID: 9711900 DOI: 10.1515/revneuro.1998.9.2.71] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The experimental models of Parkinson's disease (PD) available today can be divided into two categories according to the mode of action of the compound used: transient pharmacological impairment of dopaminergic transmission along the nigrostriatal pathway or selective destruction by a neurotoxic agent of the dopaminergic neurons of the substantia nigra pars compacta. The present article looks at the relative merits of each model, the clinical symptoms and neuronal impairment it induces, and the contribution it could make to the development of a truly dynamic model. It is becoming more and more clear that there is an urgent need for a chronic model integrating all the clinical features of PD including resting tremor, and reproducing the gradual but continuous nigral degeneration observed in the human pathology. Discrepancies have been reported several times between results obtained in classic animal models and those described in PD, and it would seem probable that such contradictions can be ascribed to the fact that animal models do not, as yet, reproduce the continuous evolution of the human disease. Dynamic experimental models which come closer to the progressive neurodegeneration and gradual intensification of motor disability so characteristic of human PD will enable us to investigate crucial aspects of the disease, such as compensatory mechanisms and dyskinesia.
Collapse
Affiliation(s)
- E Bezard
- Basal Gang, Laboratoire de Neurophysiologie, Université de Bordeaux II, France
| | | | | |
Collapse
|
13
|
Del Bel EA, da Silva CA, Guimarães FS. Catalepsy induced by nitric oxide synthase inhibitors. GENERAL PHARMACOLOGY 1998; 30:245-8. [PMID: 9580128 DOI: 10.1016/s0306-3623(97)00075-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
1. Previous study showed that N(G)-nitro-L-arginine (L-NOARG), an inhibitor of nitric bxide synthase, induces catalepsy in a dose-dependent manner in male albino-Swiss mice. 2. The objective of the present work was to further investigate this effect, extending it to other NOS inhibitors. 3. Results showed that L-NOARG (40-80 mg/kg i.p.), N(G)-nitro-L-arginine methylester (L-NAME, 40-160 mg/kg i.p.) or N(G)-monomethyl-L-arginine (L-NMMA, 80 mg/kg i.p.) were able to induce catalepsy in mice. The effect of L-NOARG (40 mg/kg) was antagonized by pretreatment with L-arginine (300 mg/kg), but not by D-arginine (300 mg/kg). The catalepsy-inducing effect of L-NOARG suffered rapid tolerance, showing a significant decrease after two days of chronic treatment (40 mg/kg i.p., twice a day). 4. The results suggest that interference with the formation of nitric oxide induces significant motor effects in mice.
Collapse
Affiliation(s)
- E A Del Bel
- Department of Physiology, School of Odontology, Campus USP, Ribeirão Preto, SP, Brazil
| | | | | |
Collapse
|
14
|
The significance of the expression of Fos protein in the brain for the classification of antipsychotics. Acta Neuropsychiatr 1997; 9:143-50. [PMID: 26972456 DOI: 10.1017/s0924270800036711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Samenvatting In de afgelopen zes jaar is veel onderzoek verficht naar de effecten van antipsychotica op de regionale c-fos-expressie in de hersenen. Deze benadering biedt in een dierexperimentele proefopzet de mogelijkheid op cellulair niveau de effecten van psychofarmaca te bestuderen. Het fos-gen behoort tot de groep 'immediate early genes'. Dit zijn genen die de transcriptie van andere, vaak onbekende genen reguleren. Een aantal aspecten van dit mechanisme wordt in deze bijdrage beschreven. Het onderzoek naar de effecten van antipsychotica op c-fos-expressie wordt samengevat en de betekenis voor de classificatie van antipsychotica benadrukt. Het blijkt dat deze farmaca effectief zijn in zowel de (meso)limbische gebieden (als nucleus accumbens, septum en amygdala) als ook in de basale ganglia. De relatieve effecten, wat betreft de c-fos-reactie, van de atypische antipsychotica (als clozapine en risperidon) zijn hoger in de limbische structuren, vergeleken met de effecten van de typische (als haloperidol). De potentie van de c-fos-methodiek voor verdere ontwikkelingen in dit gebied wordt aangegeven.
Collapse
|
15
|
Vahid-Ansari F, Nakabeppu Y, Robertson GS. Contrasting effects of chronic clozapine, Seroquel(TM) (ICI 204,636) and haloperidol administration of deltaFosB-like immunoreactivity in the rodent forebrain. Eur J Neurosci 1996; 8:927-36. [PMID: 8743740 DOI: 10.1111/j.1460-9568.1996.tb01579.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We have recently demonstrated that specific neuroanatomical patterns of Fos-like immunoreactivity are predictive of atypical antipsychotic activity. However, the fact that neuroleptics must be administered chronically in order to generate both extrapyramidal side effects and an optimal therapeutic response calls into question the relevance of acute changes in Fos-like immunoreactivity for these slowly developing events. Fos-like immunoreactivity cannot be used to identify neurons activated by chronic neuroleptic administration because the increase in Fos-like immunoreactivity produced by an acute antipsychotic injection is dramatically reduced following repeated neuroleptic administration. In contrast, expression of the immediate-early gene product deltaFosB is persistently elevated in the striatum by chronic haloperidol administration. This suggests that deltaFosB-like immunoreactivity may be used to identify neurons activated by chronic antipsychotic administration. Since typical and atypical neuroleptics elevate Fos-like immunoreactivity in different regions of the forebrain acutely, the purpose of the present study was to determine whether typical (haloperidol) and atypical (clozapine, ICI 204,636) antipsychotics produce distinct patterns of elevated deltaFosB-like immunoreactivity in the forebrain after chronic administration. Administration of haloperidol (2 mg/kg/day) to rats for 19 days induced a homogeneous elevation of neurons which displayed deltaFosB-like immunoreactivity in the ventral, medial and dorsolateral aspects of the striatum. Chronic haloperidol administration did not enhance the deltaFos-like immunoreactivity in the prefrontal cortex and lateral septal nucleus. Repeated administration of clozapine (20 mg/kg/day) and ICI 204,636 (20 mg/kg/day) for 19 days elevated deltaFosB-like immunoreactivity not only in the ventral striatum but also in the prefrontal cortex and lateral septal nucleus. However, these compounds had weak effects on deltaFosB-like immunoreactivity in the dorsolateral striatum. These results suggest that a preferential action on limbic structures such as the prefrontal cortex, ventral striatum and lateral septal nucleus may account for the ability of chronic clozapine and ICI 204, 636 administration to reduce the symptoms of schizophrenia without generating extrapyramidal side effects.
Collapse
Affiliation(s)
- F Vahid-Ansari
- Department of Pharmacology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, Canada K1H 8M5
| | | | | |
Collapse
|