1
|
Hauser SR, Rodd ZA, Deehan GA, Liang T, Rahman S, Bell RL. Effects of adolescent substance use disorders on central cholinergic function. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2021; 160:175-221. [PMID: 34696873 DOI: 10.1016/bs.irn.2021.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Adolescence is a transitional period between childhood and adulthood, in which the individual undergoes significant cognitive, behavioral, physical, emotional, and social developmental changes. During this period, adolescents engage in experimentation and risky behaviors such as licit and illicit drug use. Adolescents' high vulnerability to abuse drugs and natural reinforcers leads to greater risk for developing substance use disorders (SUDs) during adulthood. Accumulating evidence indicates that the use and abuse of licit and illicit drugs during adolescence and emerging adulthood can disrupt the cholinergic system and its processes. This review will focus on the effects of peri-adolescent nicotine and/or alcohol use, or exposure, on the cholinergic system during adulthood from preclinical and clinical studies. This review further explores potential cholinergic agents and pharmacological manipulations to counteract peri-adolescent nicotine and/or alcohol abuse.
Collapse
Affiliation(s)
- S R Hauser
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States; Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States.
| | - Z A Rodd
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States; Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - G A Deehan
- Department of Psychology, East Tennessee State University, Johnson City, TN, United States
| | - T Liang
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Shafiqur Rahman
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD, United States
| | - Richard L Bell
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States; Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States.
| |
Collapse
|
2
|
Potential roles of 5-HT 3 receptor (5-HT 3R) antagonists in modulating the effects of nicotine. Biomed Pharmacother 2019; 112:108630. [PMID: 30797147 DOI: 10.1016/j.biopha.2019.108630] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 01/17/2019] [Accepted: 01/28/2019] [Indexed: 12/22/2022] Open
Abstract
5-HT3R antagonists such as ondansetron, granisetron and tropisetron have been clinically used to treat nausea and vomiting in chemotherapy patients. However, current study and research revealed novel potentials of these ligands in other diseases like inflammation, Alzheimer's, and drug abuse. Towards utilising these drugs as anti-smoking agents to treat nicotine dependence problem, there are conflicting reports regarding the potential of these ligands in modulating the effects of nicotine in both human and animal behavioural studies. This is complicated by the heterogeneity of 5-HT3R itself, cross regulation between nicotinic acetylcholinergic receptor (nAChR) and distinct pharmacological profiles of 5-HT3R antagonists. This review gathered existing studies conducted investigating the potential of "-setron" class of 5-HT3R antagonists in modulating nicotine effects. We proposed that the mechanism where 5-HT3R antagonists mediate the effects of nicotine could be attributed by both direct at 5-HT3R and indirect mechanism in nicotine addiction downstream regulation. The indirect mechanism mediated by the 5-HT3R antagonist could be through α7 nAChR, 5-HT1B receptor (5-HT1BR), 5-HT1C receptor (5-HT1CR), calcineurin activity, p38 MAPK level, PPAR-γ and NF-κβ. Our review suggested that future studies should focus on newer 5-HT3R antagonist with superior pharmacological profile or the one with multitarget action rather than high selectivity at single receptor.
Collapse
|
3
|
Abstract
BACKGROUND Nicotine is the major psychoactive component of tobacco. A number of pharmacological therapies have been evaluated, with poor results. Given the lack of success of these therapies, several authors have proposed alternative therapeutic strategies. One of these is the use of antidepressant drugs that may have a specific effect on the neural pathways or receptors underlying nicotine addiction. Mirtazapine is an antagonist of α2 NE receptors (noradrenergic receptor), 5-HT2A/C and 5-HT3 receptors and has demonstrated efficacy in reducing behavioral effects induced by drugs of abuse in human and animal models. AIMS In this study, we evaluated the effect of chronic dosing of mirtazapine during extinction on the re-acquisition of nicotine-seeking in rodents. METHODS We used the nicotine self-administration paradigm to assess the effects of mirtazapine on rats trained to self-administer nicotine under a pharmacological fixed-ratio schedule. Mirtazapine (30 mg/kg, i.p.) was administered during extinction. RESULTS In this work, we found that mirtazapine attenuates the re-acquisition of nicotine-seeking responses. CONCLUSIONS These results support the use of mirtazapine in clinical controlled trials as a useful therapy that prolongs and increases rates of preventing relapse into nicotine intake in humans.
Collapse
Affiliation(s)
- Susana Barbosa-Méndez
- Subdirección de Investigaciones Clínicas, Laboratorio de Neurofarmacología Conductual, Microcirugía y Terapéutica Experimental, Instituto Nacional de Psiquiatría, Ciudad de México, México
| | - Alberto Salazar-Juárez
- Subdirección de Investigaciones Clínicas, Laboratorio de Neurofarmacología Conductual, Microcirugía y Terapéutica Experimental, Instituto Nacional de Psiquiatría, Ciudad de México, México
| |
Collapse
|
4
|
Bell RL, Hauser S, Rodd ZA, Liang T, Sari Y, McClintick J, Rahman S, Engleman EA. A Genetic Animal Model of Alcoholism for Screening Medications to Treat Addiction. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2016; 126:179-261. [PMID: 27055615 PMCID: PMC4851471 DOI: 10.1016/bs.irn.2016.02.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The purpose of this review is to present up-to-date pharmacological, genetic, and behavioral findings from the alcohol-preferring P rat and summarize similar past work. Behaviorally, the focus will be on how the P rat meets criteria put forth for a valid animal model of alcoholism with a highlight on its use as an animal model of polysubstance abuse, including alcohol, nicotine, and psychostimulants. Pharmacologically and genetically, the focus will be on the neurotransmitter and neuropeptide systems that have received the most attention: cholinergic, dopaminergic, GABAergic, glutamatergic, serotonergic, noradrenergic, corticotrophin releasing hormone, opioid, and neuropeptide Y. Herein, we sought to place the P rat's behavioral and neurochemical phenotypes, and to some extent its genotype, in the context of the clinical literature. After reviewing the findings thus far, this chapter discusses future directions for expanding the use of this genetic animal model of alcoholism to identify molecular targets for treating drug addiction in general.
Collapse
Affiliation(s)
- R L Bell
- Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, United States.
| | - S Hauser
- Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Z A Rodd
- Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | - T Liang
- Indiana University School of Medicine, Indianapolis, IN, United States
| | - Y Sari
- University of Toledo, Toledo, OH, United States
| | - J McClintick
- Center for Medical Genomics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - S Rahman
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD, United States
| | - E A Engleman
- Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
5
|
Gomez AM, Sun WL, Midde NM, Harrod SB, Zhu J. Effects of environmental enrichment on ERK1/2 phosphorylation in the rat prefrontal cortex following nicotine-induced sensitization or nicotine self-administration. Eur J Neurosci 2014; 41:109-19. [PMID: 25328101 DOI: 10.1111/ejn.12758] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 09/21/2014] [Accepted: 09/23/2014] [Indexed: 01/03/2023]
Abstract
Rats raised in an enriched condition (EC) exhibit alterations in the neurobiological and behavioral response to nicotine compared with rats reared in an impoverished condition (IC) or a standard condition (SC). The current study determined whether environmental enrichment differentially regulates extracellular signal-regulated kinase1/2 (ERK1/2) activity in the prefrontal cortex in rats following nicotine sensitization or nicotine self-administration. Under the saline control condition, EC rats displayed diminished baseline activity and greater sensitization to repeated administration of nicotine compared with IC and SC rats. After repeated saline injections, the basal levels of phosphorylated ERK1/2 (pERK1/2) were higher in EC compared with IC and SC rats, which was negatively correlated with their respective baseline activities. Repeated nicotine (0.35 mg/kg) injections induced pERK1/2 to similar levels in SC and IC rats; however, the induction of pERK1/2 in EC rats by nicotine was not significantly different from saline controls, owing to their high baseline. In the self-administration paradigm, EC rats self-administered less nicotine (0.03 mg/kg/infusion) relative to IC or SC rats on a fixed ratio-1 schedule of reinforcement. Accordingly, no differences in pERK1/2 were found between EC and IC rats self-administering saline, whereas nicotine self-administration resulted in an increase in pERK1/2 in IC rats but not in EC rats. Furthermore, the levels of pERK1/2 in EC and IC rats were positively correlated with their respective total number of nicotine infusions. Thus, these findings suggest that environmental enrichment alters the basal and nicotine-mediated pERK1/2, which may contribute to enrichment-induced behavioral alterations in response to nicotine.
Collapse
Affiliation(s)
- Adrian M Gomez
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, Columbia, SC, 29208, USA
| | | | | | | | | |
Collapse
|
6
|
Jupp B, Dalley JW. Convergent pharmacological mechanisms in impulsivity and addiction: insights from rodent models. Br J Pharmacol 2014; 171:4729-66. [PMID: 24866553 PMCID: PMC4209940 DOI: 10.1111/bph.12787] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 05/02/2014] [Accepted: 05/12/2014] [Indexed: 01/15/2023] Open
Abstract
Research over the last two decades has widely demonstrated that impulsivity, in its various forms, is antecedent to the development of drug addiction and an important behavioural trait underlying the inability of addicts to refrain from continued drug use. Impulsivity describes a variety of rapidly and prematurely expressed behaviours that span several domains from impaired response inhibition to an intolerance of delayed rewards, and is a core symptom of attention deficit hyperactivity disorder (ADHD) and other brain disorders. Various theories have been advanced to explain how impulsivity interacts with addiction both causally and as a consequence of chronic drug abuse; these acknowledge the strong overlaps in neural circuitry and mechanisms between impulsivity and addiction and the seemingly paradoxical treatment of ADHD with stimulant drugs with high abuse potential. Recent years have witnessed unprecedented progress in the elucidation of pharmacological mechanisms underpinning impulsivity. Collectively, this work has significantly improved the prospect for new therapies in ADHD as well as our understanding of the neural mechanisms underlying the shift from recreational drug use to addiction. In this review, we consider the extent to which pharmacological interventions that target impulsive behaviour are also effective in animal models of addiction. We highlight several promising examples of convergence based on empirical findings in rodent-based studies.
Collapse
Affiliation(s)
- B Jupp
- Behavioural and Clinical Neuroscience Institute and Department of Psychology, University of CambridgeCambridge, UK
- Florey Institute of Neuroscience and Mental Health, University of MelbourneParkville, Australia
| | - J W Dalley
- Behavioural and Clinical Neuroscience Institute and Department of Psychology, University of CambridgeCambridge, UK
- Department of Psychiatry, University of CambridgeCambridge, UK
| |
Collapse
|
7
|
Hauser SR, Deehan GA, Toalston JE, Bell RL, McBride WJ, Rodd ZA. Enhanced alcohol-seeking behavior by nicotine in the posterior ventral tegmental area of female alcohol-preferring (P) rats: modulation by serotonin-3 and nicotinic cholinergic receptors. Psychopharmacology (Berl) 2014; 231:3745-55. [PMID: 24599396 PMCID: PMC4516288 DOI: 10.1007/s00213-014-3508-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 02/12/2014] [Indexed: 12/13/2022]
Abstract
RATIONALE Alcohol and nicotine co-use can reciprocally promote self-administration and drug-craving/drug-seeking behaviors. To date, the neurocircuitry in which nicotine influences ethanol (EtOH) seeking has not been elucidated. Clinical and preclinical research has suggested that the activation of the mesolimbic dopamine system is involved in the promotion of drug seeking. Alcohol, nicotine, and serotonin-3 (5-HT3) receptors interact within the posterior ventral tegmental area (pVTA) to regulate drug reward. Recently, our laboratory has reported that systemic administration of nicotine can promote context-induced EtOH seeking. OBJECTIVES The goals of the current study were to (1) determine if microinjections of pharmacologically relevant levels of nicotine into the pVTA would enhance EtOH seeking, (2) determine if coadministration of nicotinic cholinergic receptor antagonist (nACh) or 5-HT3 receptor antagonists would block the ability of nicotine microinjected into the pVTA to promote EtOH seeking, and (3) determine if 5-HT3 receptors in the pVTA can modulate EtOH seeking. RESULTS Nicotine (100 and 200 μM) microinjected into the pVTA enhanced EtOH seeking. Coinfusion with 200 μM mecamylamine (nACh antagonist) or 100 and 200 μM zacopride (5-HT3 receptor antagonist) blocked the observed nicotine enhancement of EtOH seeking. The data also indicated that microinjection of 1 μM CPBG (5-HT3 receptor agonist) promotes context-induced EtOH seeking; conversely, microinjection of 100 and 200 μM zacopride alone reduced context-induced EtOH seeking. CONCLUSIONS Overall, the results show that nicotine-enhanced EtOH-seeking behavior is modulated by 5-HT3 and nACh receptors within the pVTA and that the 5-HT3 receptor system within pVTA may be a potential pharmacological target to inhibit EtOH-seeking behaviors.
Collapse
Affiliation(s)
- Sheketha R Hauser
- Institute of Psychiatric Research, Department of Psychiatry, Indiana University School of Medicine, 791 Union Drive, Indianapolis, IN, 46202-4887, USA,
| | | | | | | | | | | |
Collapse
|
8
|
The role of serotonin in drug use and addiction. Behav Brain Res 2014; 277:146-92. [PMID: 24769172 DOI: 10.1016/j.bbr.2014.04.007] [Citation(s) in RCA: 214] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 04/04/2014] [Accepted: 04/05/2014] [Indexed: 12/26/2022]
Abstract
The use of psychoactive drugs is a wide spread behaviour in human societies. The systematic use of a drug requires the establishment of different drug use-associated behaviours which need to be learned and controlled. However, controlled drug use may develop into compulsive drug use and addiction, a major psychiatric disorder with severe consequences for the individual and society. Here we review the role of the serotonergic (5-HT) system in the establishment of drug use-associated behaviours on the one hand and the transition and maintenance of addiction on the other hand for the drugs: cocaine, amphetamine, methamphetamine, MDMA (ecstasy), morphine/heroin, cannabis, alcohol, and nicotine. Results show a crucial, but distinct involvement of the 5-HT system in both processes with considerable overlap between psychostimulant and opioidergic drugs and alcohol. A new functional model suggests specific adaptations in the 5-HT system, which coincide with the establishment of controlled drug use-associated behaviours. These serotonergic adaptations render the nervous system susceptible to the transition to compulsive drug use behaviours and often overlap with genetic risk factors for addiction. Altogether we suggest a new trajectory by which serotonergic neuroadaptations induced by first drug exposure pave the way for the establishment of addiction.
Collapse
|
9
|
Henderson BJ, González-Cestari TF, Yi B, Pavlovicz RE, Boyd RT, Li C, Bergmeier SC, McKay DB. Defining the putative inhibitory site for a selective negative allosteric modulator of human α4β2 neuronal nicotinic receptors. ACS Chem Neurosci 2012; 3:682-92. [PMID: 23019495 DOI: 10.1021/cn300035f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Accepted: 05/25/2012] [Indexed: 02/05/2023] Open
Abstract
Neuronal nicotinic receptors (nAChRs) have been implicated in several diseases and disorders such as autism spectrum disorders, Alzheimer's disease, Parkinson's disease, epilepsy, and nicotine addiction. To understand the role of nAChRs in these conditions, it would be beneficial to have selective molecules that target specific nAChRs in vitro and in vivo. Our laboratory has previously identified a novel allosteric site on human α4β2 nAChRs using a series of computational and in vitro approaches. At this site, we have identified negative allosteric modulators that selectively inhibit human α4β2 nAChRs, a subtype implicated in nicotine addiction. This study characterizes the allosteric site via site-directed mutagenesis. Three amino acids (Phe118, Glu60, and Thr58) on the β2 subunit were shown to participate in the inhibitory properties of the selective antagonist KAB-18 and provided insights into its antagonism of human α4β2 nAChRs. SAR studies with KAB-18 analogues and various mutant α4β2 nAChRs also provided information concerning how different physiochemical features influence the inhibition of nAChRs through this allosteric site. Together, these studies identify the amino acids that contribute to the selective antagonism of human α4β2 nAChRs at this allosteric site. Finally, these studies define the physiochemical features of ligands that influence interaction with specific amino acids in this allosteric site.
Collapse
Affiliation(s)
- Brandon J. Henderson
- Division of
Biology, California Institute of Technology, Pasadena, California
91125, United States
| | - Tatiana F. González-Cestari
- Division
of Pharmacology, College
of Pharmacy, The Ohio State University,
Columbus, Ohio 43210, United States
| | - Bitna Yi
- Division
of Pharmacology, College
of Pharmacy, The Ohio State University,
Columbus, Ohio 43210, United States
| | - Ryan E. Pavlovicz
- Biophysics Graduate Program, The Ohio State University, Columbus, Ohio 43210, United
States
| | - R. Thomas Boyd
- Department of Neuroscience, The Ohio State University, Columbus, Ohio 43210, United
States
| | - Chenglong Li
- Division of Medicinal Chemistry & Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Stephen C. Bergmeier
- Department of Chemistry
and Biochemistry, Ohio University, Athens,
Ohio 45701, United States
| | - Dennis B. McKay
- Division
of Pharmacology, College
of Pharmacy, The Ohio State University,
Columbus, Ohio 43210, United States
| |
Collapse
|
10
|
Machu TK. Therapeutics of 5-HT3 receptor antagonists: current uses and future directions. Pharmacol Ther 2011; 130:338-47. [PMID: 21356241 PMCID: PMC3103470 DOI: 10.1016/j.pharmthera.2011.02.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Accepted: 02/09/2011] [Indexed: 12/14/2022]
Abstract
The 5-Hydroxytryptamine3 (5-HT3) receptor is a member of the cys-loop family of ligand gated ion channels, of which the nicotinic acetylcholine receptor is the prototype. All other 5-HT receptors identified to date are metabotropic receptors. The 5-HT3 receptor is present in the central and peripheral nervous systems, as well as a number of non-nervous tissues. As an ion channel that is permeable to the cations, Na(+), K(+), and Ca(2+), the 5-HT3 receptor mediates fast depolarizing responses in pre- and post-synaptic neurons. As such, 5-HT3 receptor antagonists that are used clinically block afferent and efferent synaptic transmission. The most well established physiological roles of the 5-HT3 receptor are to coordinate emesis and regulate gastrointestinal motility. Currently marketed 5-HT3 receptor antagonists are indicated for the treatment of chemotherapy, radiation, and anesthesia-induced nausea and vomiting, as well as irritable bowel syndrome. Other therapeutic uses that have been explored include pain and drug addiction. The 5-HT3 receptor is one of a number of receptors that play a role in mediating nausea and vomiting, and as such, 5-HT3 receptor antagonists demonstrate the greatest anti-emetic efficacy when administered in combination with other drug classes.
Collapse
Affiliation(s)
- Tina K Machu
- Dept. of Medical Education and Dept. of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd. Fort Worth, TX 76107-2699, USA.
| |
Collapse
|
11
|
Hayes DJ, Greenshaw AJ. 5-HT receptors and reward-related behaviour: a review. Neurosci Biobehav Rev 2011; 35:1419-49. [PMID: 21402098 DOI: 10.1016/j.neubiorev.2011.03.005] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Revised: 03/03/2011] [Accepted: 03/04/2011] [Indexed: 01/07/2023]
Abstract
The brain's serotonin (5-HT) system is key in the regulation of reward-related behaviours, from eating and drinking to sexual activity. The complexity of studying this system is due, in part, to the fact that 5-HT acts at many receptor subtypes throughout the brain. The recent development of drugs with greater selectivity for individual receptor subtypes has allowed for rapid advancements in our understanding of this system. Use of these drugs in combination with animal models entailing selective reward measures (i.e. intracranial self-stimulation, drug self-administration, conditioned place preference) have resulted in a greater understanding of the pharmacology of reward-related processing and behaviour (particularly regarding drugs of abuse). The putative roles of each 5-HT receptor subtype in the pharmacology of reward are outlined and discussed here. It is concluded that the actions of 5-HT in reward are receptor subtype-dependent (and thus should not be generalized) and that all studied subtypes appear to have a unique profile which is determined by content (e.g. receptor function, localization - both throughout the brain and within the synapse) and context (e.g. type of behavioural paradigm, type of drug). Given evidence of altered reward-related processing and serotonergic function in numerous neuropsychiatric disorders, such as depression, schizophrenia, and addiction, a clearer understanding of the role of 5-HT receptor subtypes in this context may lead to improved drug development and therapeutic approaches.
Collapse
Affiliation(s)
- Dave J Hayes
- Centre for Neuroscience, 513 HMRC, University of Alberta, Edmonton, AB, T6G 2S2, Canada.
| | | |
Collapse
|
12
|
Effects of dopamine antagonists on drug cue-induced reinstatement of nicotine-seeking behavior in rats. Behav Pharmacol 2010; 21:153-60. [PMID: 20168211 DOI: 10.1097/fbp.0b013e328337be95] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Dopaminergic neurotransmission has been implicated in associative learning processes related to drugs of abuse. However, it is not clear whether blockade of activation of dopamine receptors alters conditioned incentive properties of nicotine-associated cues. Using a response-reinstatement procedure, this study examined the effects of antagonists selective for the D1 and the D2 subtypes of dopamine receptors on cue-induced reinstatement of nicotine-seeking behavior. Male Sprague-Dawley rats were trained in 30 daily 1 h sessions to intravenously self-administer nicotine (0.03 mg/kg/infusion) on a fixed ratio 5 schedule and associate a conditioned stimulus (cue) with each nicotine delivery. After extinction of responding by withholding nicotine (saline substitution) and its cue, the reinstatement tests were conducted following subcutaneous administration of a D1 antagonist SCH23390 (0, 5, 10, 30 microg/kg) or a D2 antagonist eticlopride (0, 5, 10, 30 microg/kg) in different groups of animals. Both SCH23390 and eticlopride significantly attenuated the magnitude of cue-elicited reinstatement of nicotine-seeking responding. These results indicate that activation of dopaminergic D1 and D2 receptors may play a role in mediating the conditioned motivational effects of nicotine-associated cues as measured in the response-reinstatement procedure. These findings suggest that manipulation of dopaminergic neurotransmission at D1 and/or D2 receptors may prove to be a potential target for the development of pharmacotherapy for prevention of environmental nicotine cue-triggered smoking relapse.
Collapse
|
13
|
Müller CP, Pum ME, Schumann G, Huston JP. The Role of Serotonin in Drug Addiction. HANDBOOK OF BEHAVIORAL NEUROSCIENCE 2010. [DOI: 10.1016/s1569-7339(10)70099-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
14
|
Subjective, cognitive/psychomotor, and physiological effects of aripiprazole in Chinese light and heavy smokers. Drug Alcohol Depend 2009; 101:42-52. [PMID: 19070440 DOI: 10.1016/j.drugalcdep.2008.10.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Revised: 10/27/2008] [Accepted: 10/29/2008] [Indexed: 11/20/2022]
Abstract
BACKGROUND Drug addiction researchers have begun to study dopamine partial agonists as potential therapeutic agents. The partial dopamine D(2) receptor agonist aripiprazole has recently been tested as a treatment for stimulant and alcohol dependence in both animal and clinical studies. METHODS A randomized and placebo-controlled pilot clinical study was conducted in a population of Chinese light and heavy smokers to assess the effect of aripiprazole on various responses to smoking. The primary outcomes were subject's ratings on questionnaires of smoking urge, withdrawal syndromes, and cigarette evaluation. Placebo, 5, and 10mg aripiprazole were acutely administered in all participants, with administrations at least 7 days apart. Subjective responses to a smoked cigarette, working memory, and attention/psychomotor performance were assessed before and after drug administration in each experimental session. Abstinence-induced smoking urge, withdrawal symptoms, blood pressure, and heart rate were also measured every 45 min after drug administration. Finally, a cue-testing session was carried out 4h after each drug administration. RESULTS Administration of 10mg aripiprazole significantly decreased both the subjective response and psychological reward derived from smoking a cigarette in heavy smokers. While neither 5 nor 10mg aripiprazole significantly decreased abstinence-induced smoking urges or withdrawal symptoms in light and heavy smokers, these doses substantially attenuated drug cue-induced smoking urges in heavy smokers. Aripiprazole did not affect working memory or attention/psychomotor performance. CONCLUSIONS Light and heavy smokers responded differently to aripiprazole across various dependent measures. Aripiprazole may potentially affect various subjective responses to smoking in heavy smokers.
Collapse
|
15
|
Hayes DJ, Mosher TM, Greenshaw AJ. Differential effects of 5-HT2C receptor activation by WAY 161503 on nicotine-induced place conditioning and locomotor activity in rats. Behav Brain Res 2009; 197:323-30. [DOI: 10.1016/j.bbr.2008.08.034] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2008] [Revised: 08/21/2008] [Accepted: 08/26/2008] [Indexed: 10/21/2022]
|
16
|
Engleman EA, Rodd ZA, Bell RL, Murphy JM. The role of 5-HT3 receptors in drug abuse and as a target for pharmacotherapy. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2008; 7:454-67. [PMID: 19128203 PMCID: PMC2878195 DOI: 10.2174/187152708786927886] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Alcohol and drug abuse continue to be a major public health problem in the United States and other industrialized nations. Extensive preclinical research indicates the mesolimbic dopamine (DA) pathway and associated regions mediate the rewarding and reinforcing effects of drugs of abuse and natural rewards, such as food and sex. The serotonergic (5-HT) system, in concert with others neurotransmitter systems, plays a key role in modulating neuronal systems within the mesolimbic pathway. A substantial portion of this modulation is mediated by activity at the 5-HT3 receptor. The 5-HT3 receptor is unique among the 5-HT receptors in that it directly gates an ion channel inducing rapid depolarization that, in turn, causes the release of neurotransmitters and/or peptides. Preclinical findings indicate that antagonism of the 5-HT3 receptor in the ventral tegmental area, nucleus accumbens or amygdala reduces alcohol self-administration and/or alcohol-associated effects. Less is known about the effects of 5-HT3 receptor activity on the self-administration of other drugs of abuse or their associated effects. Clinical findings parallel the preclinical findings such that antagonism of the 5-HT3 receptor reduces alcohol consumption and some of its subjective effects. This review provides an overview of the structure, function, and pharmacology of 5-HT3 receptors, the role of these receptors in regulating DA neurotransmission in mesolimbic brain areas, and discusses data from animal and human studies implicating 5-HT3 receptors as targets for the development of new pharmacological agents to treat addictions.
Collapse
Affiliation(s)
- E A Engleman
- Indiana University School of Medicine, Department of Psychiatry, Institute of Psychiatric Research, 791 Union Drive, Indianapolis, IN 46202, USA.
| | | | | | | |
Collapse
|
17
|
Silverstone P, Greenshaw A. Section Review Central & Peripheral Nervous Systems: 5-HT3receptor antagonists. Expert Opin Ther Pat 2008. [DOI: 10.1517/13543776.6.5.471] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
18
|
Palmatier MI, Liu X, Caggiula AR, Donny EC, Sved AF. The role of nicotinic acetylcholine receptors in the primary reinforcing and reinforcement-enhancing effects of nicotine. Neuropsychopharmacology 2007; 32:1098-108. [PMID: 17091131 PMCID: PMC2907080 DOI: 10.1038/sj.npp.1301228] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The primary reinforcing effects of nicotine are mediated by the drugs action at central nervous system nicotinic acetylcholine receptors (nAChRs). Although previous studies have demonstrated that nicotine potently enhances responding for non-pharmacological stimuli, the role of nAChRs in this reinforcement-enhancing effect is not known. The two reinforcement-related effects of nicotine can be dissociated in a paradigm that provides concurrent access to drug infusions and a non-pharmacological visual stimulus (VS). The present study characterized the role of nAChRs in the primary reinforcing effect of nicotine and the reinforcement-enhancing effect of nicotine. For rats with access to VS (VS-Only), nicotine (NIC-Only), both reinforcers contingent upon one response (NIC+VS) or both reinforcers contingent upon separate responses (2-Lever), unit dose-response relationships (0, 30, 60, or 90 microg/kg/infusion, free base) were determined over a 22-day acquisition period. Expression of the two reinforcement-related effects of nicotine was manipulated by pharmacological antagonism of nAChRs (1 mg/kg mecamylamine, subcutaneous, 5-min before the session) or by substituting saline for nicotine infusions (ie extinction) over a series of seven test sessions. Unit dose manipulations yielded an inverse dose-response relationship for active lever responding in the NIC+VS group. The dose-response relationships for rats with independent access to each reinforcer (2-Lever group) were relatively flat. For the 2-Lever group, acute mecamylamine challenge blocked the reinforcement-enhancing effects of nicotine, VS-lever responding decreased to basal levels on the first day of mecamylamine treatment or saline substitution (to the level of the VS-Only group). In contrast, nicotine-lever responding decreased gradually over the 7-day testing period (similar to saline extinction). The two reinforcement-related effects of nicotine are mediated by nAChRs but can be dissociated by acute and chronic profiles.
Collapse
Affiliation(s)
- Matthew I Palmatier
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | | | | | | | | |
Collapse
|
19
|
Lê AD, Funk D, Harding S, Juzytsch W, Fletcher PJ, Shaham Y. Effects of dexfenfluramine and 5-HT3 receptor antagonists on stress-induced reinstatement of alcohol seeking in rats. Psychopharmacology (Berl) 2006; 186:82-92. [PMID: 16521030 DOI: 10.1007/s00213-006-0346-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2005] [Accepted: 02/03/2006] [Indexed: 12/21/2022]
Abstract
RATIONALE AND OBJECTIVES We previously found that systemic injections of the 5-HT uptake blocker fluoxetine attenuate intermittent footshock stress-induced reinstatement of alcohol seeking in rats, while inhibition of 5-HT neurons in the median raphe induces reinstatement of alcohol seeking. In this study, we further explored the role of 5-HT in footshock stress-induced reinstatement of alcohol seeking by determining the effects of the 5-HT releaser and reuptake blocker dexfenfluramine, and the 5-HT receptor antagonists ondansetron and tropisetron, which decrease alcohol self-administration and anxiety-like responses in rats, on this reinstatement. METHODS Different groups of male Wistar rats were trained to self-administer alcohol (12% v/v) for 28-31 days (1 h/day, 0.19 ml per alcohol delivery) and then their lever responding for alcohol was extinguished over 9-10 days. Subsequently, the effect of systemic injections of vehicle or dexfenfluramine (0.25 or 0.5 mg/kg, i.p), ondansetron (0.001, 0.01, or 0.1 mg/kg, i.p), or tropisetron (0.001, 0.01, and 0.1 mg/kg, i.p) on reinstatement induced by 10 min of intermittent footshock (0.8 mA) was determined. RESULTS Systemic injections of dexfenfluramine, ondansetron or tropisetron attenuated footshock-induced reinstatement of alcohol seeking. Injections of dexfenfluramine, ondansetron, or tropisetron had no effect on extinguished lever responding in the absence of footshock. CONCLUSIONS The present results provide additional support for the hypothesis that brain 5-HT systems are involved in stress-induced reinstatement of alcohol seeking. The neuronal mechanisms that potentially mediate the unexpected observation that both stimulation of 5-HT release and blockade of 5-HT3 receptors attenuate footshock-induced reinstatement are discussed.
Collapse
Affiliation(s)
- Anh Dzung Lê
- Department of Neuroscience, Centre for Addiction and Mental Health, 33 Russell Street, Toronto, Ontario, M5S 2S1, Canada.
| | | | | | | | | | | |
Collapse
|
20
|
Palmatier MI, Evans-Martin FF, Hoffman A, Caggiula AR, Chaudhri N, Donny EC, Liu X, Booth S, Gharib M, Craven L, Sved AF. Dissociating the primary reinforcing and reinforcement-enhancing effects of nicotine using a rat self-administration paradigm with concurrently available drug and environmental reinforcers. Psychopharmacology (Berl) 2006; 184:391-400. [PMID: 16249908 DOI: 10.1007/s00213-005-0183-4] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2005] [Accepted: 08/29/2005] [Indexed: 10/25/2022]
Abstract
RATIONALE Nicotine has two effects on reinforcement in traditional self-administration paradigms. It serves as a primary reinforcer by increasing the probability of behaviors that result in nicotine delivery. However, nicotine also potently enhances behaviors that result in the delivery of nonpharmacological reinforcers. OBJECTIVES The present study sought to dissociate these two effects of nicotine on reinforcement. METHODS For one group of rats (2 lever), a nonpharmacological reinforcer [visual stimulus (VS)] was available for pressing one lever. Nicotine infusions were available for pressing a different lever. A second group (NIC + VS) received more traditional self-administration training; both the VS and nicotine were delivered for pressing a single active lever. Control groups received either nicotine infusions (NIC only) or VS presentations (VS only) for pressing the active lever. RESULTS Nicotine alone was a weak reinforcer; the VS alone was slightly more reinforcing than nicotine. When these two reinforcers were combined (NIC + VS), response rates were synergistically increased. For the 2-lever group, responding on the nicotine lever was weak, matching the response rates of rats receiving nicotine alone. However, responding on the VS lever was potently enhanced in this group; equaling the response rates for rats receiving both reinforcers for making a single response (NIC + VS). CONCLUSIONS These data indicate that the reinforcement-enhancing effects of nicotine are very potent even when only moderate quantities of the drug are self-administered. Moreover, they provide the first demonstration that the reinforcement-enhancing and primary reinforcing effects of nicotine can be dissociated behaviorally.
Collapse
Affiliation(s)
- Matthew I Palmatier
- Department of Psychology, University of Pittsburgh, 3137 Sennott Square, 210 S. Bouquet St., Pittsburgh, PA 15260, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Batman AM, Munzar P, Beardsley PM. Attenuation of nicotine's discriminative stimulus effects in rats and its locomotor activity effects in mice by serotonergic 5-HT2A/2C receptor agonists. Psychopharmacology (Berl) 2005; 179:393-401. [PMID: 15565434 DOI: 10.1007/s00213-004-2035-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2004] [Accepted: 09/10/2004] [Indexed: 10/26/2022]
Abstract
RATIONALE Reports have indicated that administration of nicotine inhibits, while withdrawal of chronically administered nicotine augments effects of serotonergic 5HT2A/2C agonists. OBJECTIVE It was our objective to determine whether 5HT2A/2C agonists can modulate the discriminative stimulus effects of nicotine in rats or its locomotor activity effects in mice. METHODS Adult male Sprague-Dawley rats were trained to discriminate 0.3 mg/kg nicotine base from saline in a two-lever, fixed-ratio (FR10), food-reinforced, operant-conditioning task during daily (Monday-Friday) 15-min experimental sessions. After characterizing a dose-response curve for nicotine, we tested the ability of the 5HT(2A/2C) agonists (+/-)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane HCL (DOI; 0.18-1.0 mg/kg) and 1-(4-bromo-2, 5-dimethoxyphenyl)-2-aminopropane (DOB; 0.1-1.0 mg/kg), the 5HT2C agonist 6-chloro-2-(1-piperazinyl)pyrazine hydrochloride (MK 212; 0.1 mg/kg-1.0 mg/kg), and the 5HT1A agonist (+/-)-8-hydroxy-2-(di-n-propylamino)tetralin hydrobromide (8-OH-DPAT; 0.01 mg/kg-1.0 mg/kg) to modulate nicotine's discriminative stimulus effects. After finding that DOI was able to attenuate the percentage nicotine lever responding (%NLR), we tested for it to also reverse nicotine's effects on locomotor activity in mice. RESULTS The 5HT2A/2C agonists-in particular DOI-dose dependently attenuated %NLR. The effects of DOI were reversed by the 5HT2A/2C antagonist ketanserin. MK 212 and 8-OH-DPAT had irregular effects among rats and only reduced %NLR to below 50% levels at doses markedly suppressing responding. DOI also dose dependently blocked nicotine's acute rate-lowering locomotor activity effects. CONCLUSIONS These results indicate that activation of serotonin 5HT2A/2C receptors can blunt the discriminative stimulus and locomotor activity effects of nicotine and presents the possibility that activation of these receptors might also be able to attenuate other effects of nicotine.
Collapse
Affiliation(s)
- Angela M Batman
- Department of Pharmacology and Toxicology, VCU Medical Center, Virginia Commonwealth University, P.O. Box 980613, 410 North 12th Street, Smith Bld. #756, Richmond, VA 23298-0613, USA
| | | | | |
Collapse
|
22
|
Abstract
Pharmacological manipulation of the 5-hydroxytryptamine (5-HT; serotonin) system has long been associated with a regulation of feeding behaviour, however, the initial part of this article reviews evidence that central 5-HT systems similarly modulate reward-related behaviours, particularly drug reward. The second part of this article considers what we believe to be strong emerging pharmacological and genetic evidence that many of these effects are mediated through 5-HT(2C) receptor signalling mechanisms. Finally, we consider the potential for selective 5-HT(2C) agonists as therapies for substance abuse disorders and the medical implications for different 5-HT(2C) receptor isoforms generated by RNA editing.
Collapse
Affiliation(s)
- Guy A Higgins
- Schering-Plough Research Institute, K15-2-2600, 2015 Galloping Hill Road, Kenilworth, NJ 07033, USA.
| | | |
Collapse
|
23
|
Hatsukami DK, Jensen J, Brauer LH, Mooney M, Schulte S, Sofuoglu M, Pentel PR. Lack of effect of 5HT3 antagonist in mediating subjective and behavioral responses to cotinine. Pharmacol Biochem Behav 2003; 75:1-7. [PMID: 12759107 DOI: 10.1016/s0091-3057(03)00035-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Previous studies have shown that cotinine, a metabolite of nicotine, may antagonize some of the therapeutic effects of nicotine. The mechanisms underlying cotinine's effects are unclear, but cotinine has been observed to increase serotonin levels in the brain. Thus, it is possible that blocking serotonin effects may antagonize the actions of cotinine, thereby reducing its impact on responses to nicotine. This study determined whether granisetron, a 5HT(3) receptor antagonist, would enhance the efficacy of the nicotine patch. Subjects were randomly assigned to one of the three granisetron conditions (N=43 for 2 mg/day; N=43 for 1 mg/day; N=42 for 0 mg/day) and asked to take the assigned medication daily during 15 days of tobacco abstinence. Because we were interested in interactions between cotinine and serotonin, all groups were also treated with a 21-mg nicotine patch. Assessments of withdrawal symptoms were made for 1 week during baseline smoking and several times during the experimental period. There was a near but nonsignificant difference among groups on a measure of tobacco withdrawal and no significant differences on global measures of drug effects or physiological measures. The data do not strongly support the hypothesis that 5HT(3) agonism is the mechanism by which cotinine offsets the effects of nicotine.
Collapse
Affiliation(s)
- Dorothy K Hatsukami
- Tobacco Use Research Center, University of Minnesota, 2701 University Avenue, #201, Minneapolis, MN 55414, USA.
| | | | | | | | | | | | | |
Collapse
|
24
|
Olausson P, Engel JA, Söderpalm B. Involvement of serotonin in nicotine dependence: processes relevant to positive and negative regulation of drug intake. Pharmacol Biochem Behav 2002; 71:757-71. [PMID: 11888567 DOI: 10.1016/s0091-3057(01)00673-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The neurobiological substrate of nicotine dependence has been the subject of extensive preclinical and clinical research. Many experimental reports have implicated the brain serotonin (5-HT) systems in processes relevant to nicotine dependence, but the specific role of this neurotransmitter system largely remains to be elucidated. This review will focus on the role of 5-HT in the acute and chronic effects of nicotine. In particular, the evidence for a role of 5-HT neurotransmission in brain processes thought to be involved in positive and negative control of nicotine use will be examined, and potential clinical implications discussed.
Collapse
Affiliation(s)
- Peter Olausson
- Department of Psychiatry, Laboratory of Molecular Psychiatry, Yale University, 34 Park Street, New Haven, CT 06508, USA.
| | | | | |
Collapse
|
25
|
Abstract
This review focuses on nicotinic--serotonergic interactions in the central nervous system (CNS). Nicotine increases 5-hydroxytryptamine (5-HT) release in the cortex, striatum, hippocampus, dorsal raphé nucleus (DRN), hypothalamus, and spinal cord. As yet, there is little firm evidence for nicotinic receptors on serotonergic terminals and thus nicotine's effects on 5-HT may not necessarily be directly mediated, but there is strong evidence that the 5-HT tone plays a permissive role in nicotine's effects. The effects in the cortex, hippocampus, and DRN involve stimulation of 5-HT(1A) receptors, and in the striatum, 5-HT(3) receptors. The 5-HT(1A) receptors in the DRN play a role in mediating the anxiolytic effects of nicotine and the 5-HT(1A) receptors in the dorsal hippocampus and lateral septum mediate its anxiogenic effects. The increased startle and anxiety during nicotine withdrawal is mediated by 5-HT(1A) and 5-HT(3) receptors. The locomotor stimulant effect of acute nicotine is mediated by 5-HT(1A) receptors and 5-HT(2) receptors may play a role in the expression of a sensitised response after chronic nicotine treatment. Unfortunately, the role of 5-HT(1A) receptors in mediating nicotine seeking has not yet been investigated and would seem an important area for future research. There is also evidence for nicotinic--serotonergic interactions in the acquisition of the water maze, passive avoidance, and impulsivity in the five-choice serial reaction task.
Collapse
Affiliation(s)
- Pallab Seth
- Psychopharmacology Research Unit, Centre for Neuroscience, GKT School of Biomedical Sciences, King's College London, Hodgkin Building, Guy's Campus, SE1 1UL, London, UK
| | | | | | | |
Collapse
|
26
|
Pogun S. Sex differences in brain and behavior: emphasis on nicotine, nitric oxide and place learning. Int J Psychophysiol 2001; 42:195-208. [PMID: 11587776 DOI: 10.1016/s0167-8760(01)00168-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although males and females are unmistakably different, the recognition of sex as a key variable in science and medicine is considered a revolution in some circles. Sex differences transcend reproductive functions, are evident in the structural and functional organization of the brain, and are reflected in group differences in cognitive abilities and behavior. Males and females have different neural organizational patterns for information processing and different strategies in problem solving. Research on sex differences not only provides descriptive data, but also allows us to elucidate mechanisms that underlie our behavior. In this review, sex differences in the central actions of nicotine (an addictive substance) and nitric oxide, and performance on active avoidance and place learning tasks are discussed as examples, and biobehavioral approaches relating to these topics are presented.
Collapse
Affiliation(s)
- S Pogun
- Ege University Center for Brain Research and School of Medicine, Department of Physiology, Bornova, Izmir, Turkey.
| |
Collapse
|
27
|
Nicotine as an Addictive Substance: A Critical Examination of the Basic Concepts and Empirical Evidence. JOURNAL OF DRUG ISSUES 2001. [DOI: 10.1177/002204260103100202] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The present review is a critical analysis of the concepts behind and the empirical data supporting the view that tobacco use represents an addiction to nicotine. It deals with general aspects of the notion of addiction, while concentrating on specific problems associated with incorporating nicotine into current frameworks. The notion of addiction suffers from unprecedented definitional difficulties. The definitions offered by various authorities are very different, even contradictory. Definitions that reasonably include nicotine are so broad and vague that they allow many trivial things, such as salt, sugar, and watching television, to be considered addictive. Definitions that exclude the trivia also exclude nicotine. The addiction hypothesis, in general, is strongly shaped by views that certain drugs bring about a molecular level subversion of rationality. The main human evidence for this is verbal reports of smokers who say that they can't quit. On the other hand, the existence of many millions of successful quitters suggests that most people can quit. Some smokers don't quit, but whether they can't is another matter. The addiction hypothesis would be greatly strengthened by the demonstration that any drug of abuse produces special changes in the brain. It has yet to be shown that any drug produces changes in the brain different from those produced by many innocuous substances and events. The effects of nicotine on the brain are similar to those of sugar, salt, exercise, and other harmless substances and events. Apart from numerous conceptual and definitional inadequacies with the addiction concept in general, the notion that nicotine is addictive lacks reasonable empirical support. Nicotine does not have the properties of reference drugs of abuse. There are so many findings that conflict so starkly with the view that nicotine is addictive that it increasingly appears that adhering to the nicotine addiction thesis is only defensible on extra-scientific grounds.
Collapse
|
28
|
Abstract
Experimental impairment of dopamine function by 6-hydroxydopamine lesions or by dopamine receptor antagonists shows that dopamine is involved in nicotine's discriminative stimulus properties, nicotine-induced facilitation of intracranial self-stimulation, intravenous nicotine self-administration, nicotine conditioned place-preference and nicotine-induced disruption of latent inhibition. Therefore, nicotine depends on dopamine for those behavioural effects that are most relevant for its reinforcing properties and are likely to be the basis of the abuse liability of tobacco smoke. On the other hand, in vivo monitoring studies show that nicotine stimulates dopamine transmission in specific brain areas and in particular, in the shell of the nucleus accumbens and in areas of the extended amygdala. These effects of nicotine resemble those of a reward like food except that nicotine-induced release of dopamine does not undergo single-trial, long-lasting habituation. It is speculated that repeated non-habituating stimulation of dopamine release by nicotine in the nucleus accumbens shell abnormally facilitates associative stimulus-reward learning. Acute effects of nicotine on dopamine transmission undergo acute and chronic tolerance; with repeated, discontinuous exposure, sensitization of nicotine-induced stimulation of dopamine release in the nucleus accumbens core takes place while the response in the shell is reduced. It is speculated that these adaptive changes are the substrate of a switch from abnormal incentive responding controlled by consequences (action-outcome responding) into abnormal habit responding, triggered by conditional stimuli and automatically driven by action schemata relatively independent from nicotine reward. These two modalities might coexist, being utilized alternatively in relation to the availability of tobacco. Unavailability of tobacco disrupts the automatic, implicit modality of abnormal habit responding switching responding into the explicit, conscious modality of incentive drug-seeking and craving.
Collapse
Affiliation(s)
- G Di Chiara
- Department of Toxicology and CNR Center of Neuropharmacology, University of Cagliari, Viale Diaz 182, 09100 Cagliari, Italy.
| |
Collapse
|
29
|
Rasmussen K, Kallman MJ, Helton DR. Serotonin-1A antagonists attenuate the effects of nicotine withdrawal on the auditory startle response. Synapse 1997; 27:145-52. [PMID: 9266775 DOI: 10.1002/(sici)1098-2396(199710)27:2<145::aid-syn5>3.0.co;2-e] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Withdrawal from the chronic administration of nicotine has previously been shown to lead to an enhanced auditory startle response in rats. In order to explore the neuropharmacology and neurophysiology underlying this phenomenon, we examined the effects of various 5-hydroxytryptamine (5-HT)-1A antagonists and agonists on the nicotine-withdrawal-enhanced auditory startle response in male rats. Animals were treated with nicotine (6 mg/kg/day nicotine base, via subcutaneously implanted osmotic minipumps) for 12 days. After 12 days the pumps were removed and the animals allowed to undergo spontaneous withdrawal for several days. In agreement with previous results, nicotine withdrawal led to a significant elevation of the auditory startle response. Pretreatment with the 5-HT-1A agonists (+)8-OH-DPAT (0.001-0.1 mg/kg) and LY274600 (0.3-3.0 mg/kg) either had no affect or exacerbated the nicotine-withdrawal-enhanced startle response. Pretreatment with the 5-HT-1A antagonists NAN-190 (1-3 mg/kg), LY206130 (1-10 mg/kg), or WAY-100635 (0.1-1.0 mg/kg) blocked the increase in the startle response caused by nicotine withdrawal at doses that had no effect on baseline startle responses. These data indicate that 5-HT-1A receptors play a role in the neurophysiology of nicotine withdrawal. In addition, 5-HT-1A antagonists may be able to relieve some nicotine withdrawal symptoms in man and may represent a novel pharmacotherapy for smoking cessation.
Collapse
Affiliation(s)
- K Rasmussen
- Neuroscience Research, Lilly Research Laboratories, Eli Lilly & Co., Indianapolis, Indiana 46285, USA.
| | | | | |
Collapse
|
30
|
Crooks PA, Dwoskin LP. Contribution of CNS nicotine metabolites to the neuropharmacological effects of nicotine and tobacco smoking. Biochem Pharmacol 1997; 54:743-53. [PMID: 9353128 DOI: 10.1016/s0006-2952(97)00117-2] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Nicotine, the principal alkaloid in tobacco products, is generally accepted to be the active pharmacological agent responsible for CNS effects resulting from tobacco use. Arguments are presented in this commentary which take issue with this popular dogma, by providing evidence that nicotine metabolites may also be responsible for the CNS effects commonly attributed to nicotine. CNS effects attributed to nicotine include reinforcing effects, mood elevation, arousal, locomotor stimulant effects, and learning and memory enhancement. The reinforcing and locomotor stimulant effects of nicotine have been suggested to be the result of activation of CNS dopaminergic systems, and nicotine-induced modulation of dopaminergic neurotransmission has been studied in detail. Nicotine acts at a family of nicotinic receptor subtypes composed of multiple subunits; however, the exact composition of the subunits in native nicotinic receptors and the functional significance of the receptor subtype diversity are currently unknown. This nicotinic subtype diversity increases the complexity of the potential mechanisms of action of nicotine and its metabolites. Although peripheral metabolism of nicotine has been studied extensively, metabolism in the CNS has not been investigated to any great extent. Recently, studies from our laboratory have demonstrated that several nicotine metabolites are present in the CNS after acute nicotine administration. Moreover, nicotine metabolites are pharmacologically active in neurochemical and behavioral assays. Thus, CNS effects resulting from nicotine exposure may not be due solely to nicotine, but may result, at least in part, from the actions of nicotine metabolites.
Collapse
Affiliation(s)
- P A Crooks
- College of Pharmacy, University of Kentucky, Lexington 40536-0082, USA
| | | |
Collapse
|
31
|
Lê AD, Tomkins D, Higgins G, Quan B, Sellers EM. Effects of 5-HT3, D1 and D2 receptor antagonists on ethanol- and cocaine-induced locomotion. Pharmacol Biochem Behav 1997; 57:325-32. [PMID: 9164590 DOI: 10.1016/s0091-3057(96)00333-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The effects of acute treatment with 5-HT3 receptor antagonists, ondansetron and ICS 205-930, on the stimulation of activity induced by ethanol-and cocaine were examined. Ethanol (1.8 or 2 g/kg i.p.) or cocaine (15 mg/kg i.p.) produced a significant increase in locomotor activity (LMA) in DBA/2N mice. Pretreatment with ondansetron or ICS 205-930, in doses ranging from 0.001 to 0.1 mg/kg (s.c), did not modify ethanol or cocaine induced stimulation of activity. In contrast, pretreatment with a 10 micrograms/kg dose of either SCH 23390 or spiperone, a D1 and D2 dopamine (DA) receptor antagonist respectively, completely antagonized the stimulation of LMA induced by ethanol. Similar dose of SCH23390, but not spiperone, blocked the stimulation of activity induced by cocaine. These results indicate that D1 but not D 2 DA receptors play a significant role in cocaine induced hyperactivity whereas both D1 and D2 are involved the locomotor activating effects of ethanol.
Collapse
Affiliation(s)
- A D Lê
- Addiction Research Foundation of Ontario, Toronto, Canada
| | | | | | | | | |
Collapse
|
32
|
Robinson SF, Marks MJ, Collins AC. Inbred mouse strains vary in oral self-selection of nicotine. Psychopharmacology (Berl) 1996; 124:332-9. [PMID: 8739548 DOI: 10.1007/bf02247438] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Inbred mouse strains differ in sensitivity to a first dose of nicotine and in the development of tolerance to nicotine. The experiments reported here used six inbred mouse strains (A, BUB, C3H, C57BL/6, DBA/2, ST/b) that differ in sensitivity to an acute challenge dose of nicotine to determine whether differences in oral self-selection of nicotine exist. Animals were presented with solutions containing nicotine or vehicle (water or 0.2% saccharin) and their daily intake of the two fluids was measured for 4 days starting with a 10 micrograms/ml nicotine solution. This was followed by sequential 4-day testing with 20, 35, 50, 65, 80, 100, 125, 160 and 200 micrograms/ml nicotine solutions. The strains differed dramatically in their self-selection of nicotine and in maximal daily dose (mg/kg); the rank order of the strains was C57BL/6 > DBA > BUB > A > or = C3H > or = ST/b for both the tap water and 0.2% saccharin choice experiments. Correlations between nicotine consumption and sensitivity to nicotine, as measured by a battery of behavioral and physiological responses, were also calculated. Strain differences in nicotine intake were highly correlated with sensitivity to nicotine-induced seizures. As sensitivity to nicotine-induced seizures increases, oral self-selection of nicotine decreases. This finding may suggest that this toxic action of nicotine serves to limit intake.
Collapse
Affiliation(s)
- S F Robinson
- Institute for Behavioral Genetics, University of Colorado, Boulder 80309, USA
| | | | | |
Collapse
|
33
|
Arnold B, Allison K, Ivanová S, Paetsch PR, Paslawski T, Greenshaw AJ. 5HT3 receptor antagonists do not block nicotine induced hyperactivity in rats. Psychopharmacology (Berl) 1995; 119:213-21. [PMID: 7659769 DOI: 10.1007/bf02246163] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The effects of 5-HT3 receptor antagonists (ondansetron 0.1 mg kg-1 SC 30 min; bemesetron 0.03 mg kg-1 SC 45 min) on nicotine-induced increases in locomotor activity were measured in male Sprague-Dawley rats. Intermittent daily injections of nicotine (0.3-1.2 mg kg-1 SC 30 min) resulted in increased locomotor activity as measured by photocell counts. The effect of nicotine was not affected by administration of the 5-HT3 receptor antagonists at doses that are reported to block nicotine- and morphine-induced place-preference conditioning. Neither of the 5-HT3 receptor antagonists tested affected activity counts in vehicle treated animals. Nicotine-induced hyperactivity was blocked by the dopamine antagonist haloperidol (0.03 mg kg-1 SC 2 h) and by the nicotinic antagonist mecamylamine (1 mg kg-1 SC 1 min). The effects of a range of doses (0-1 mg kg-1) of the 5-HT3 receptor antagonists ondansetron, bemesetron, granisetron and tropisetron on hyperactivity induced by 0.6 mg kg-1 nicotine were then assessed. Only tropisetron at 1 mg kg-1 attenuated nicotine-induced hyperactivity. To demonstrate the efficacy of the present range of doses of the 5-HT3 receptor antagonists in this study, conditioned taste aversion experiments were conducted. Ondansetron (0.1 mg kg-1) failed to attenuate a conditioned taste aversion to saccharin induced by nicotine (0.6 mg kg-1), but did induce a reduction in saccharin preference in choice tests following three saccharin-ondansetron pairings.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- B Arnold
- Department of Psychiatry, University of Alberta, Edmonton, Canada
| | | | | | | | | | | |
Collapse
|