1
|
Shusterman D. History of pollutant adjuvants in respiratory allergy. FRONTIERS IN ALLERGY 2024; 5:1374771. [PMID: 38533354 PMCID: PMC10964904 DOI: 10.3389/falgy.2024.1374771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/04/2024] [Indexed: 03/28/2024] Open
Abstract
Combined exposures to allergens and air pollutants emerged as a topic of concern in scientific circles by the 1980's, when it became clear that parallel increases in respiratory allergies and traffic-related air pollution had been occurring during the 20th century. Although historically there has been a tendency to treat exposure-related symptoms as either allergic or toxicologic in nature, cross-interactions have since been established between the two modalities. For example, exposure to selected air pollutants in concert with a given allergen can increase the likelihood that an individual will become sensitized to that allergen, strongly suggesting that the pollutant acted as an adjuvant. Although not a review of underlying mechanisms, the purpose of this mini-review is to highlight the potential significance of co-exposure to adjuvant chemicals in predicting allergic sensitization in the respiratory tract. The current discussion emphasizes the upper airway as a model for respiratory challenge studies, the results of which may be applicable-not only to allergic rhinitis-but also to conjunctivitis and asthma.
Collapse
Affiliation(s)
- Dennis Shusterman
- Upper Airway Biology Laboratory, Division of Occupational, Environmental and Climate Medicine, Department of Medicine, University of California, San Francisco, CA, United States
| |
Collapse
|
2
|
Kim EY, Park H, Kim EJ, Lee SH, Choi JW, Kim J, Jung HS, Sohn Y. Efficacy of Trigonella foenum-graecum Linné in an animal model of particulate matter-induced asthma exacerbation. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117228. [PMID: 37757990 DOI: 10.1016/j.jep.2023.117228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/20/2023] [Accepted: 09/23/2023] [Indexed: 09/29/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The seeds of Trigonella foenum-graecum Linné (TFG) has traditionally been used in Central Asia to relieve inflammation. AIM OF THE STUDY This study investigated the efficacy of TFG in a bronchial cell model and an animal model of asthma exacerbation caused by PM. METHODS BEAS-2B bronchial epithelial cells were simultaneously treated with tumor necrosis factor-α/interleukin (IL)-4 and PM, and the expression of inflammatory cytokines, DNA damage, and autophagy mechanisms were analyzed. In an animal model of asthma exacerbation, we analyzed changes in organ weight, distribution of inflammatory cytokines and inflammatory cells in the bronchoalveolar lavage fluid, and intra-tissue mucus production. RESULTS In the cell model, TFG suppressed the expression of the inflammatory cytokines IL-6, granulocyte-macrophage colony stimulating factor, monocyte chemoattractant protein-1, and IL-8; reactive oxygen species levels and DNA damage; and the phosphorylation of ERK, JNK, P38, AKT, and mTOR. In the animal model, TFG significantly reduced weight gain of the liver, lung, and spleen; IgE, IL-6, and IFN-γ levels; and bronchial mucus secretion and smooth muscle thickness. CONCLUSION TFG alleviated the PM-exacerbated inflammatory response by inhibiting the MAPK and autophagy signaling pathways; it is expected to be an effective treatment for asthma.
Collapse
Affiliation(s)
- Eun-Young Kim
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, 26, Kyunghee dae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| | - Hoyeon Park
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, 26, Kyunghee dae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| | - Eom Ji Kim
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, 26, Kyunghee dae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| | - Seung Hoon Lee
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, 26, Kyunghee dae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| | - Jun Won Choi
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, 26, Kyunghee dae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| | - Jonghyun Kim
- Department of Medical classics and history, College of Korean Medicine, Gachon University, 1342, Seongnamdaero, Sujeong-Gu, Seongnam-Si, Gyeonggi-Do, 13120, Republic of Korea.
| | - Hyuk-Sang Jung
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, 26, Kyunghee dae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| | - Youngjoo Sohn
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, 26, Kyunghee dae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| |
Collapse
|
3
|
Torres-Borrego J, Sánchez-Solís M. Dissecting Airborne Allergens. J Clin Med 2023; 12:5856. [PMID: 37762797 PMCID: PMC10532401 DOI: 10.3390/jcm12185856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/15/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Asthma is a heterogeneous and very complex group of diseases, and includes different clinical phenotypes depending on symptoms, progression, exacerbation patterns, or responses to treatment, among other characteristics. The allergic phenotype is the most frequent, especially in pediatric asthma. It is characterized by sensitization (the production of specific IgEs) to allergens and frequent comorbidity with rhinitis as well as atopic dermatitis. Given the complexity of allergic asthma, knowledge of it must be approached from different points of view: clinical, histological, physiological, epidemiological, biochemical, and immunological, among others. Since partial approaches do not allow for the understanding of this complexity, it is necessary to have multidimensional knowledge that helps in performing the optimal management of each case, avoiding a "blind men and elephant parable" approach. Allergens are antigens that trigger the production of specific IgE antibodies in susceptible individuals, who present symptoms that will depend on the type and intensity of the allergenic load as well as the tissue where the interaction occurs. Airborne allergens cause their effects in the respiratory tract and eyes, and can be indoor or outdoor, perennial, or seasonal. Although allergens such as mites, pollens, or animal dander are generally considered single particles, it is important to note that they contain different molecules which could trigger distinct specific IgE molecules in different patients. General practitioners, pediatricians, and other physicians typically diagnose and treat asthma based on clinical and pulmonary function data in their daily practice. This nonsystematic and nonexhaustive revision aims to update other topics, especially those focused on airborne allergens, helping the diagnostic and therapeutic processes of allergic asthma and rhinitis.
Collapse
Affiliation(s)
- Javier Torres-Borrego
- Pediatric Allergy and Pulmonology Unit, Reina Sofia Children’s University Hospital, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), University of Cordoba, Av. Menendez Pidal sn, 14004 Cordoba, Spain
| | - Manuel Sánchez-Solís
- Pediatric Respiratory and Cystic Fibrosis Unit, Virgen de la Arrixaca University Children’s Hospital, Biomedical Research Institute of Murcia (IMIB), University of Murcia, Avda Teniente Flomesta, 5, 30003 Murcia, Spain;
| |
Collapse
|
4
|
Bronte-Moreno O, González-Barcala FJ, Muñoz-Gall X, Pueyo-Bastida A, Ramos-González J, Urrutia-Landa I. Impact of Air Pollution on Asthma: A Scoping Review. OPEN RESPIRATORY ARCHIVES 2023; 5:100229. [PMID: 37496874 PMCID: PMC10369532 DOI: 10.1016/j.opresp.2022.100229] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/15/2022] [Indexed: 01/05/2023] Open
Abstract
Asthma is the most common chronic respiratory disease and a major public health problem. Although the causal relationship between air pollution and asthma remains controversial, a large number of studies have provided increasingly consistent evidence of the involvement of air pollutants in asthma onset and exacerbations. We conducted a keyword search-based literature review using PubMed, Scopus and Web of Science databases for studies with titles or abstracts containing predefined terms. This narrative review discusses the current evidence on the pathological effects of pollution throughout life and the mechanisms involved in the onset, development, and exacerbation of asthma, and presents current measures and interventions for pollution damage control. Further global efforts are still needed to improve air quality.
Collapse
Affiliation(s)
- Olaia Bronte-Moreno
- Department of Respiratory Medicine, Hospital Universitario Galdakao, Vizcaya, Spain
| | - Francisco-Javier González-Barcala
- Department of Respiratory Medicine, Hospital Clínico Universitario de Santiago de Compostela, Spain
- Traslational Research In Airway Diseases (TRIAD) Research Group, CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Department of Medicine, Universidad de Santiago de Compostela, Spain
- CIBER Enfermedades Respiratorias (CibeRes), Spain
| | - Xavier Muñoz-Gall
- CIBER Enfermedades Respiratorias (CibeRes), Spain
- Department of Respiratory Medicine, Hospital Universitari Vall d’Hebron, Barcelona, Spain
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Spain
| | - Ana Pueyo-Bastida
- Department of Respiratory Medicine, Hospital Universitario de Burgos, Spain
| | | | - Isabel Urrutia-Landa
- Department of Respiratory Medicine, Hospital Universitario Galdakao, Vizcaya, Spain
| |
Collapse
|
5
|
Serafini MM, Maddalon A, Iulini M, Galbiati V. Air Pollution: Possible Interaction between the Immune and Nervous System? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph192316037. [PMID: 36498110 PMCID: PMC9738575 DOI: 10.3390/ijerph192316037] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/14/2022] [Accepted: 11/26/2022] [Indexed: 06/01/2023]
Abstract
Exposure to environmental pollutants is a serious and common public health concern associated with growing morbidity and mortality worldwide, as well as economic burden. In recent years, the toxic effects associated with air pollution have been intensively studied, with a particular focus on the lung and cardiovascular system, mainly associated with particulate matter exposure. However, epidemiological and mechanistic studies suggest that air pollution can also influence skin integrity and may have a significant adverse impact on the immune and nervous system. Air pollution exposure already starts in utero before birth, potentially causing delayed chronic diseases arising later in life. There are, indeed, time windows during the life of individuals who are more susceptible to air pollution exposure, which may result in more severe outcomes. In this review paper, we provide an overview of findings that have established the effects of air pollutants on the immune and nervous system, and speculate on the possible interaction between them, based on mechanistic data.
Collapse
|
6
|
Lee M, Lim S, Kim YS, Khalmuratova R, Shin SH, Kim I, Kim HJ, Kim DY, Rhee CS, Park JW, Shin HW. DEP-induced ZEB2 promotes nasal polyp formation via epithelial-to-mesenchymal transition. J Allergy Clin Immunol 2022; 149:340-357. [PMID: 33957165 DOI: 10.1016/j.jaci.2021.04.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 04/08/2021] [Accepted: 04/16/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND Diesel exhaust particles (DEPs) are associated with the prevalence and exacerbation of allergic respiratory diseases, including allergic rhinitis and allergic asthma. However, DEP-induced mechanistic pathways promoting upper airway disease and their clinical implications remain unclear. OBJECTIVE We sought to investigate the mechanisms by which DEP exposure contributes to nasal polyposis using human-derived epithelial cells and a murine nasal polyp (NP) model. METHODS Gene set enrichment and weighted gene coexpression network analyses were performed. Cytotoxicity, epithelial-to-mesenchymal transition (EMT) markers, and nasal polyposis were assessed. Effects of DEP exposure on EMT were determined using epithelial cells from normal people or patients with chronic rhinosinusitis with or without NPs. BALB/c mice were exposed to DEP through either a nose-only exposure system or nasal instillation, with or without house dust mite, followed by zinc finger E-box-binding homeobox (ZEB)2 small hairpin RNA delivery. RESULTS Bioinformatics analyses revealed that DEP exposure triggered EMT features in airway epithelial cells. Similarly, DEP-exposed human nasal epithelial cells exhibited EMT characteristics, which were dependent on ZEB2 expression. Human nasal epithelial cells derived from patients with chronic rhinosinusitis presented more prominent EMT features after DEP treatment, when compared with those from control subjects and patients with NPs. Coexposure to DEP and house dust mite synergistically increased the number of NPs, epithelial disruptions, and ZEB2 expression. Most importantly, ZEB2 inhibition prevented DEP-induced EMT, thereby alleviating NP formation in mice. CONCLUSIONS Our data show that DEP facilitated NP formation, possibly via the promotion of ZEB2-induced EMT. ZEB2 may be a therapeutic target for DEP-induced epithelial damage and related airway diseases, including NPs.
Collapse
Affiliation(s)
- Mingyu Lee
- Obstructive Upper airway Research Laboratory, the Department of Pharmacology, Seoul National University College of Medicine, Seoul, Korea; Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea; Division of Allergy and Clinical Immunology, Brigham and Women's Hospital and Department of Medicine, Harvard Medical School, Boston, Mass
| | - Suha Lim
- Obstructive Upper airway Research Laboratory, the Department of Pharmacology, Seoul National University College of Medicine, Seoul, Korea; Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Yi Sook Kim
- Obstructive Upper airway Research Laboratory, the Department of Pharmacology, Seoul National University College of Medicine, Seoul, Korea; Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Roza Khalmuratova
- Obstructive Upper airway Research Laboratory, the Department of Pharmacology, Seoul National University College of Medicine, Seoul, Korea
| | - Seung-Hyun Shin
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Iljin Kim
- Department of Pharmacology, Inha University College of Medicine, Incheon, Korea
| | - Hyun-Jik Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul, Korea
| | - Dong-Young Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul, Korea
| | - Chae-Seo Rhee
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul, Korea
| | - Jong-Wan Park
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea; Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Hyun-Woo Shin
- Obstructive Upper airway Research Laboratory, the Department of Pharmacology, Seoul National University College of Medicine, Seoul, Korea; Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea; Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul, Korea; Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
7
|
Qian Q, Chowdhury BP, Sun Z, Lenberg J, Alam R, Vivier E, Gorska MM. Maternal diesel particle exposure promotes offspring asthma through NK cell-derived granzyme B. J Clin Invest 2021; 130:4133-4151. [PMID: 32407293 DOI: 10.1172/jci130324] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 04/29/2020] [Indexed: 12/31/2022] Open
Abstract
Mothers living near high-traffic roads before or during pregnancy are more likely to have children with asthma. Mechanisms are unknown. Using a mouse model, here we showed that maternal exposure to diesel exhaust particles (DEP) predisposed offspring to allergic airway disease (AAD, murine counterpart of human asthma) through programming of their NK cells; predisposition to AAD did not develop in DEP pups that lacked NK cells and was induced in normal pups receiving NK cells from WT DEP pups. DEP NK cells expressed GATA3 and cosecreted IL-13 and the killer protease granzyme B in response to allergen challenge. Extracellular granzyme B did not kill, but instead stimulated protease-activated receptor 2 (PAR2) to cooperate with IL-13 in the induction of IL-25 in airway epithelial cells. Through loss-of-function and reconstitution experiments in pups, we showed that NK cells and granzyme B were required for IL-25 induction and activation of the type 2 immune response and that IL-25 mediated NK cell effects on type 2 response and AAD. Finally, experiments using human cord blood and airway epithelial cells suggested that DEP might induce an identical pathway in humans. Collectively, we describe an NK cell-dependent endotype of AAD that emerged in early life as a result of maternal exposure to DEP.
Collapse
Affiliation(s)
- Qian Qian
- Division of Allergy and Clinical Immunology, Department of Medicine, National Jewish Health (NJH), Denver, Colorado, USA
| | - Bidisha Paul Chowdhury
- Division of Allergy and Clinical Immunology, Department of Medicine, National Jewish Health (NJH), Denver, Colorado, USA
| | - Zehua Sun
- Division of Allergy and Clinical Immunology, Department of Medicine, National Jewish Health (NJH), Denver, Colorado, USA
| | - Jerica Lenberg
- Division of Allergy and Clinical Immunology, Department of Medicine, National Jewish Health (NJH), Denver, Colorado, USA
| | - Rafeul Alam
- Division of Allergy and Clinical Immunology, Department of Medicine, National Jewish Health (NJH), Denver, Colorado, USA.,Division of Allergy and Clinical Immunology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Eric Vivier
- Innate Pharma Research Labs, Innate Pharma, Marseille, France.,Centre d'Immunologie de Marseille-Luminy, CNRS, INSERM, Aix Marseille University, Marseille, France.,Service d'Immunologie, Marseille Immunopole, Hôpital de la Timone, Assistance Publique des Hôpitaux de Marseille, Marseille, France
| | - Magdalena M Gorska
- Division of Allergy and Clinical Immunology, Department of Medicine, National Jewish Health (NJH), Denver, Colorado, USA.,Division of Allergy and Clinical Immunology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
8
|
Ziska LH. An Overview of Rising CO₂ and Climatic Change on Aeroallergens and Allergic Diseases. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2020; 12:771-782. [PMID: 32638558 PMCID: PMC7346998 DOI: 10.4168/aair.2020.12.5.771] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 03/06/2020] [Indexed: 11/20/2022]
Abstract
There are a number of implications of climate change in regard to human health. Among these, the role of rising carbon dioxide (CO₂) and temperature in aeroallergen exposure and associated changes in the start, duration and intensity of the pollen season, and associated consequences in aeroallergens and allergic disease are a primary concern. This review is intended to provide a synopsis of CO₂ and climate factors associated with likely changes in aeroallergen biology (indoor and outdoor), including changes in the demography of flowering plants, pollen seasonality, aeroallergen production, and potential biotic and abiotic interactions. These factors, in turn, are compared to clinical trials that have linked aeroallergens to allergic disease and associated health impacts. Finally, suggestions to address unmet needs and critical knowledge gaps are offered. Such recommendations are not meant to be inclusive, but to serve as a spur for the additional research and resources that will be necessary to acquire a better understanding of climate change, CO₂, aeroallergens and associated allergic diseases. Such resources will be critical to derive time-relevant scientific and policy solutions that will minimize public health consequences in a changing climate.
Collapse
Affiliation(s)
- Lewis H Ziska
- Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA.
| |
Collapse
|
9
|
Cruz M, Sanchez-Díez S, I O, Romero-Mesones C, J V, Velde G V, X M. The immunomodulatory effects of diesel exhaust particles in asthma. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114600. [PMID: 33618472 DOI: 10.1016/j.envpol.2020.114600] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/31/2020] [Accepted: 04/13/2020] [Indexed: 06/12/2023]
Abstract
Ammonium persulfate (AP) causes occupational asthma (OA) and diesel exhaust particles (DEP) exacerbate asthma; however, the role of DEP in asthma due to chemical agents has not been assessed to date. Therefore, the present work aims to study the immunomodulatory effects of DEP in a mouse model of chemical asthma. BALB/c ByJ mice were randomly divided into four experimental groups. On days 1 and 8, mice were dermally sensitized with AP or saline. On days 15, 18 and 21, they received intranasal instillations of AP or saline. Two experimental groups received DEP on every of the three challenges. Airway hyperresponsiveness (AHR), lung mechanics, pulmonary inflammation in bronchoalveolar lavage, leukocyte numbers in total lung tissue, oxidative stress and optical projection tomography (OPT) studies were assessed. The AP-sensitized and challenged group showed asthma-like responses, such as airway hyperresponsiveness, increased levels of eosinophils and NKs and lower numbers of monocytes and CD11b-Ly6C- dendritic cells (DCs). Mice exposed to DEP alone showed increased levels of neutrophils and NKs, reduced numbers of monocytes and alveolar macrophages, and increased levels of CD11b + Ly6C- DCs. The AP sensitized and AP + DEP challenged group also showed asthma-like symptoms such as AHR, as well as increased numbers of eosinophils, neutrophils, CD11b + Ly6C- DCs and decreased levels of total and alveolar macrophages and tolerogenic DCs. Particle deposition was visualised using OPT. In the DEP group the particles were distributed relatively evenly, while in the AP + DEP group they were seen mainly in the large conducting airways. The results show that DEP exposure activates the innate immune response and, together with AP, exacerbates asthma immune hallmarks. This mouse model provides the first evidence of the capacity of DEPs to increase CD11b + Ly6C- (Th2-related) DCs. This study also demonstrates, for the first time, a differential deposition pattern of DEP in lungs depending on asthma status.
Collapse
Affiliation(s)
- Mj Cruz
- Pulmonology Service, Hospital Universitari Vall d'Hebron, Barcelona, Spain; CIBER Enfermedades Respiratorias (CibeRes), Spain; Medicine Department, Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - S Sanchez-Díez
- Pulmonology Service, Hospital Universitari Vall d'Hebron, Barcelona, Spain; CIBER Enfermedades Respiratorias (CibeRes), Spain; Medicine Department, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ojanguren I
- Pulmonology Service, Hospital Universitari Vall d'Hebron, Barcelona, Spain; CIBER Enfermedades Respiratorias (CibeRes), Spain; Medicine Department, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - C Romero-Mesones
- Pulmonology Service, Hospital Universitari Vall d'Hebron, Barcelona, Spain; CIBER Enfermedades Respiratorias (CibeRes), Spain; Medicine Department, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Vanoirbeek J
- Centre of Environment and Health, KU Leuven, Leuven, Belgium
| | - Vande Velde G
- Department of Imaging and Pathology, Biomedical MRI, KU Leuven. Molecular Small Animal Imaging Center (MoSAIC), KU Leuven, Leuven, Belgium
| | - Muñoz X
- Pulmonology Service, Hospital Universitari Vall d'Hebron, Barcelona, Spain; CIBER Enfermedades Respiratorias (CibeRes), Spain; Medicine Department, Universitat Autònoma de Barcelona, Barcelona, Spain; Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
10
|
Bosson JA, Mudway IS, Sandström T. Traffic-related Air Pollution, Health, and Allergy: The Role of Nitrogen Dioxide. Am J Respir Crit Care Med 2019; 200:523-524. [PMID: 31059649 PMCID: PMC6727158 DOI: 10.1164/rccm.201904-0834ed] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Jenny A Bosson
- Department of Public Health and Clinical MedicineUmeå UniversityUmeå, Swedenand
| | - Ian S Mudway
- School of Population Health and Environmental SciencesKing's College LondonLondon, United Kingdom
| | - Thomas Sandström
- Department of Public Health and Clinical MedicineUmeå UniversityUmeå, Swedenand
| |
Collapse
|
11
|
Muñoz X, Barreiro E, Bustamante V, Lopez-Campos JL, González-Barcala FJ, Cruz MJ. Diesel exhausts particles: Their role in increasing the incidence of asthma. Reviewing the evidence of a causal link. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 652:1129-1138. [PMID: 30586799 DOI: 10.1016/j.scitotenv.2018.10.188] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 10/13/2018] [Accepted: 10/13/2018] [Indexed: 05/12/2023]
Abstract
Exposure to air pollutants has been correlated with an increase in the severity of asthma and in the exacerbation of pre-existing asthma. However, whether or not environmental pollution can cause asthma remains a controversial issue. The present review analyzes the current scientific evidence of the possible causal link between diesel exhaust particles (DEP), the solid fraction of the complex mixture of diesel exhaust, and asthma. The mechanisms that influence the expression and development of asthma are complex. In children prolonged exposure to pollutants such as DEPs may increase asthma prevalence. In adults, this causal relation is less clear, probably because of the heterogeneity of the studies carried out. There is also evidence of physiological mechanisms by which DEPs can cause asthma. The most frequently described interactions between cellular responses and DEP are the induction of pulmonary oxidative stress and inflammation and the activation of receptors of the bronchial epithelium such as toll-like receptors or increases in Th2 and Th17 cytokines, which generally orchestrate the asthmatic response. Others support indirect mechanisms through epigenetic changes, pulmonary microbiome modifications, or the interaction of DEP with environmental antigens to enhance their activity. However, in spite of this evidence, more studies are needed to assess the harmful effects of pollution - not only in the short term in the form of increases in the rate of exacerbations, but in the medium and long term as well, as a possible trigger of the disease.
Collapse
Affiliation(s)
- X Muñoz
- Pulmonology Service, Medicine Department, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Madrid, Spain; Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - E Barreiro
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Madrid, Spain; Pulmonology Department-Muscle Research and Respiratory System Unit (URMAR), Institut Hospital del Mar d'Investigacions Mèdiques (IMIM)-Hospital del Mar, Department of Experimental and Health Sciences (CEXS), Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona (PRBB), Barcelona, Spain
| | - V Bustamante
- Pneumology Department, Hospital Universitario Basurto, Osakidetza/University of the Basque Country, Bilbao, Spain
| | - J L Lopez-Campos
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Madrid, Spain; Unidad Médico-quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Seville, Spain
| | - F J González-Barcala
- Respiratory Department, Clinic University Hospital, Santiago de Compostela, Spain
| | - M J Cruz
- Pulmonology Service, Medicine Department, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
12
|
Kim D, Chen Z, Zhou LF, Huang SX. Air pollutants and early origins of respiratory diseases. Chronic Dis Transl Med 2018; 4:75-94. [PMID: 29988883 PMCID: PMC6033955 DOI: 10.1016/j.cdtm.2018.03.003] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Indexed: 12/13/2022] Open
Abstract
Air pollution is a global health threat and causes millions of human deaths annually. The late onset of respiratory diseases in children and adults due to prenatal or perinatal exposure to air pollutants is emerging as a critical concern in human health. Pregnancy and fetal development stages are highly susceptible to environmental exposure and tend to develop a long-term impact in later life. In this review, we briefly glance at the direct impact of outdoor and indoor air pollutants on lung diseases and pregnancy disorders. We further focus on lung complications in later life with early exposure to air pollutants. Epidemiological evidence is provided to show the association of prenatal or perinatal exposure to air pollutants with various adverse birth outcomes, such as preterm birth, lower birth weight, and lung developmental defects, which further associate with respiratory diseases and reduced lung function in children and adults. Mechanistic evidence is also discussed to support that air pollutants impact various cellular and molecular targets at early life, which link to the pathogenesis and altered immune responses related to abnormal respiratory functions and lung diseases in later life.
Collapse
Affiliation(s)
- Dasom Kim
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH 45249, USA
| | - Zi Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Lin-Fu Zhou
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Shou-Xiong Huang
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH 45249, USA
| |
Collapse
|
13
|
Affiliation(s)
- William J. Meggs
- Division of Clinical Toxicology Department of Emergency Medicine East Carolina University, School of Medicine Greenville, North Carolina
| |
Collapse
|
14
|
Hansbro PM, Kim RY, Starkey MR, Donovan C, Dua K, Mayall JR, Liu G, Hansbro NG, Simpson JL, Wood LG, Hirota JA, Knight DA, Foster PS, Horvat JC. Mechanisms and treatments for severe, steroid-resistant allergic airway disease and asthma. Immunol Rev 2018; 278:41-62. [PMID: 28658552 DOI: 10.1111/imr.12543] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Severe, steroid-resistant asthma is clinically and economically important since affected individuals do not respond to mainstay corticosteroid treatments for asthma. Patients with this disease experience more frequent exacerbations of asthma, are more likely to be hospitalized, and have a poorer quality of life. Effective therapies are urgently required, however, their development has been hampered by a lack of understanding of the pathological processes that underpin disease. A major obstacle to understanding the processes that drive severe, steroid-resistant asthma is that the several endotypes of the disease have been described that are characterized by different inflammatory and immunological phenotypes. This heterogeneity makes pinpointing processes that drive disease difficult in humans. Clinical studies strongly associate specific respiratory infections with severe, steroid-resistant asthma. In this review, we discuss key findings from our studies where we describe the development of representative experimental models to improve our understanding of the links between infection and severe, steroid-resistant forms of this disease. We also discuss their use in elucidating the mechanisms, and their potential for developing effective therapeutic strategies, for severe, steroid-resistant asthma. Finally, we highlight how the immune mechanisms and therapeutic targets we have identified may be applicable to obesity-or pollution-associated asthma.
Collapse
Affiliation(s)
- Philip M Hansbro
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Richard Y Kim
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Malcolm R Starkey
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Chantal Donovan
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Kamal Dua
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Jemma R Mayall
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Gang Liu
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Nicole G Hansbro
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Jodie L Simpson
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Lisa G Wood
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Jeremy A Hirota
- James Hogg Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Darryl A Knight
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Paul S Foster
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Jay C Horvat
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| |
Collapse
|
15
|
Impact of diesel exhaust exposure on the liver of mice fed on omega-3 polyunsaturated fatty acids-deficient diet. Food Chem Toxicol 2018; 111:284-294. [DOI: 10.1016/j.fct.2017.11.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 11/01/2017] [Accepted: 11/18/2017] [Indexed: 12/26/2022]
|
16
|
Alvarez-Simón D, Muñoz X, Gómez-Ollés S, de Homdedeu M, Untoria MD, Cruz MJ. Effects of diesel exhaust particle exposure on a murine model of asthma due to soybean. PLoS One 2017; 12:e0179569. [PMID: 28628664 PMCID: PMC5476280 DOI: 10.1371/journal.pone.0179569] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 05/31/2017] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Exposure to soybean allergens has been linked to asthma outbreaks. Exposure to diesel exhaust particles (DEP) has been associated with an increase in the risk of asthma and asthma exacerbation; however, in both cases the underlying mechanisms remain poorly understood, as does the possible interaction between the two entities. OBJECTIVE To investigate how the combination of soybean allergens and DEP can affect the induction or exacerbation of asthma in a murine model. METHODS BALB/c mice received intranasal instillations of saline, 3 or 5 mg protein/ml soybean hull extract (SHE), or a combination of one of these three solutions with DEP. Airway hyperresponsiveness (AHR), pulmonary inflammation in bronchoalveolar lavage, total serum immunoglobulin E and histological studies were assessed. RESULTS A 5 mg protein/ml SHE solution was able by itself to enhance AHR (p = 0.0033), increase eosinophilic inflammation (p = 0.0003), increase levels of IL-4, IL-5, IL-13, IL-17A, IL-17F and CCL20, and reduce levels of IFN-γ. The combination of 5 mg protein/ml SHE with DEP also produced an increase in AHR and eosinophilic inflammation, but presented a slightly different cytokine profile with higher levels of Th17-related cytokines. However, while the 3 mg protein/ml SHE solution did not induce asthma, co-exposure with DEP resulted in a markedly enhanced AHR (p = 0.002) and eosinophilic inflammation (p = 0.004), with increased levels of IL-5, IL-17F and CCL20 and decreased levels of IFN-γ. CONCLUSIONS & CLINICAL RELEVANCE The combination of soybean allergens and DEP is capable of triggering an asthmatic response through a Th17-related mechanism when the soybean allergen concentration is too low to promote a response by itself. DEP monitoring may be a useful addition to allergen monitoring in order to prevent new asthma outbreaks.
Collapse
Affiliation(s)
- Daniel Alvarez-Simón
- Pulmonology Service, Hospital Universitari Vall d’Hebron, Barcelona, Spain
- Medicine Department Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Xavier Muñoz
- Pulmonology Service, Hospital Universitari Vall d’Hebron, Barcelona, Spain
- Medicine Department Universitat Autònoma de Barcelona, Barcelona, Spain
- CIBER Enfermedades Respiratorias (Ciberes), Barcelona, Spain
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Susana Gómez-Ollés
- Pulmonology Service, Hospital Universitari Vall d’Hebron, Barcelona, Spain
- CIBER Enfermedades Respiratorias (Ciberes), Barcelona, Spain
| | - Miquel de Homdedeu
- Pulmonology Service, Hospital Universitari Vall d’Hebron, Barcelona, Spain
| | - María-Dolores Untoria
- Pulmonology Service, Hospital Universitari Vall d’Hebron, Barcelona, Spain
- CIBER Enfermedades Respiratorias (Ciberes), Barcelona, Spain
| | - María-Jesús Cruz
- Pulmonology Service, Hospital Universitari Vall d’Hebron, Barcelona, Spain
- CIBER Enfermedades Respiratorias (Ciberes), Barcelona, Spain
| |
Collapse
|
17
|
|
18
|
Association between the First Occurrence of Allergic Rhinitis in Preschool Children and Air Pollution in Taiwan. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:ijerph13030268. [PMID: 26927153 PMCID: PMC4808931 DOI: 10.3390/ijerph13030268] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 02/23/2016] [Accepted: 02/23/2016] [Indexed: 12/03/2022]
Abstract
The occurrence of allergic rhinitis (AR) may be significantly influenced by air pollution. This study examined the association between the first occurrence of AR in preschool children and the pre-incident levels of air pollutants in Taiwan. We identified 9960 eligible subjects from a systematic sampling cohort database containing 400,000 insureds of the National Health Insurance from 2007 to 2011 and matched them with the environmental monitoring data from 2006 to 2011 according to the locations of their clinics. Pre-incident levels were determined using the average concentrations of air pollutants one or two weeks prior to the AR diagnoses. Logistic regression analyses were performed to determine any significant relationships between AR and specific air pollutants. The first AR incidence for Taiwanese preschool children, which increased with age, was 10.9% on average; boys appeared to have a higher percentage (14.2%) than girls (8.27%). Among the air pollutants, carbon monoxide (CO) and nitrogen oxides (NOX) were significantly related to AR after adjusting for age and gender (p < 0.05). Because both pollutants are considered to be traffic emissions, this study suggests that traffic emissions in Taiwan need to be controlled to lower the prevalence of children’s AR.
Collapse
|
19
|
Krämer U, Buters J, Ring J, Behrendt H. Allergie und Umwelt. ALLERGOLOGIE 2016. [DOI: 10.1007/978-3-642-37203-2_40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Sénéchal H, Visez N, Charpin D, Shahali Y, Peltre G, Biolley JP, Lhuissier F, Couderc R, Yamada O, Malrat-Domenge A, Pham-Thi N, Poncet P, Sutra JP. A Review of the Effects of Major Atmospheric Pollutants on Pollen Grains, Pollen Content, and Allergenicity. ScientificWorldJournal 2015; 2015:940243. [PMID: 26819967 PMCID: PMC4706970 DOI: 10.1155/2015/940243] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 10/30/2015] [Accepted: 11/09/2015] [Indexed: 12/12/2022] Open
Abstract
This review summarizes the available data related to the effects of air pollution on pollen grains from different plant species. Several studies carried out either on in situ harvested pollen or on pollen exposed in different places more or less polluted are presented and discussed. The different experimental procedures used to monitor the impact of pollution on pollen grains and on various produced external or internal subparticles are listed. Physicochemical and biological effects of artificial pollution (gaseous and particulate) on pollen from different plants, in different laboratory conditions, are considered. The effects of polluted pollen grains, subparticles, and derived aeroallergens in animal models, in in vitro cell culture, on healthy human and allergic patients are described. Combined effects of atmospheric pollutants and pollen grains-derived biological material on allergic population are specifically discussed. Within the notion of "polluen," some methodological biases are underlined and research tracks in this field are proposed.
Collapse
Affiliation(s)
- Hélène Sénéchal
- Allergy & Environment Team, Biochemistry Department, Armand Trousseau Children Hospital (AP-HP), 26 avenue du Dr. Arnold Netter, 75571 Paris, France
| | - Nicolas Visez
- Physical Chemistry of Combustion and Atmosphere Processes (PC2A), UMR CNRS 8522, University of Lille, 59655 Villeneuve d'Ascq, France
| | - Denis Charpin
- Pneumo-Allergology Department, North Hospital, 265 chemin des Bourrely, 13915 Marseille 20, France
| | - Youcef Shahali
- Allergy & Environment Team, Biochemistry Department, Armand Trousseau Children Hospital (AP-HP), 26 avenue du Dr. Arnold Netter, 75571 Paris, France
- Persiflore, 18 avenue du Parc, 91220 Le Plessis-Pâté, France
| | | | - Jean-Philippe Biolley
- SEVE Team, Ecology and Biology of Interactions (EBI), UMR-CNRS-UP 7267, University of Poitiers, 3 rue Jacques Fort, 86073 Poitiers, France
| | | | - Rémy Couderc
- Biochemistry Department, Armand Trousseau Children Hospital (AP-HP), 26 avenue du Dr. Arnold Netter, 75571 Paris 12, France
| | - Ohri Yamada
- French Agency for Food, Environmental and Occupational Health Safety, 14 rue Pierre et Marie Curie, 94701 Maisons-Alfort, France
| | - Audrey Malrat-Domenge
- French Agency for Food, Environmental and Occupational Health Safety, 14 rue Pierre et Marie Curie, 94701 Maisons-Alfort, France
| | - Nhân Pham-Thi
- Allergology Department, Pasteur Institute, 25-28 rue du Dr. Roux, 75724 Paris 15, France
| | - Pascal Poncet
- Allergy & Environment Team, Biochemistry Department, Armand Trousseau Children Hospital (AP-HP), 26 avenue du Dr. Arnold Netter, 75571 Paris, France
- Infections & Epidemiology Department, Pasteur Institute, 25-28 rue du Dr. Roux, 75724 Paris 15, France
| | - Jean-Pierre Sutra
- Allergy & Environment Team, Biochemistry Department, Armand Trousseau Children Hospital (AP-HP), 26 avenue du Dr. Arnold Netter, 75571 Paris, France
| |
Collapse
|
21
|
Fukuoka A, Matsushita K, Morikawa T, Takano H, Yoshimoto T. Diesel exhaust particles exacerbate allergic rhinitis in mice by disrupting the nasal epithelial barrier. Clin Exp Allergy 2015. [DOI: 10.1111/cea.12597] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- A. Fukuoka
- Laboratory of Allergic Diseases; Institute for Advanced Medical Sciences; Hyogo College of Medicine; Nishinomiya Hyogo Japan
| | - K. Matsushita
- Laboratory of Allergic Diseases; Institute for Advanced Medical Sciences; Hyogo College of Medicine; Nishinomiya Hyogo Japan
| | - T. Morikawa
- Laboratory of Allergic Diseases; Institute for Advanced Medical Sciences; Hyogo College of Medicine; Nishinomiya Hyogo Japan
- Department of Otorhinolaryngology-Head and Neck Surgery; Faculty of Medical Science; University of Fukui; Fukui Japan
| | - H. Takano
- Environmental Health Division; Department of Environmental Engineering; Graduate School of Engineering; Kyoto University; Kyoto Japan
| | - T. Yoshimoto
- Laboratory of Allergic Diseases; Institute for Advanced Medical Sciences; Hyogo College of Medicine; Nishinomiya Hyogo Japan
- Department of Immunology; Hyogo College of Medicine; Nishinomiya Hyogo Japan
| |
Collapse
|
22
|
Gandhi VD, Vliagoftis H. Airway epithelium interactions with aeroallergens: role of secreted cytokines and chemokines in innate immunity. Front Immunol 2015; 6:147. [PMID: 25883597 PMCID: PMC4382984 DOI: 10.3389/fimmu.2015.00147] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 03/18/2015] [Indexed: 11/13/2022] Open
Abstract
Airway epithelial cells are the first line of defense against the constituents of the inhaled air, which include allergens, pathogens, pollutants, and toxic compounds. The epithelium not only prevents the penetration of these foreign substances into the interstitium, but also senses their presence and informs the organism’s immune system of the impending assault. The epithelium accomplishes the latter through the release of inflammatory cytokines and chemokines that recruit and activate innate immune cells at the site of assault. These epithelial responses aim to eliminate the inhaled foreign substances and minimize their detrimental effects to the organism. Quite frequently, however, the innate immune responses of the epithelium to inhaled substances lead to chronic and high level release of pro-inflammatory mediators that may mediate the lung pathology seen in asthma. The interactions of airway epithelial cells with allergens will be discussed with particular focus on interactions-mediated epithelial release of cytokines and chemokines and their role in the immune response. As pollutants are other major constituents of inhaled air, we will also discuss how pollutants may alter the responses of airway epithelial cells to allergens.
Collapse
Affiliation(s)
- Vivek D Gandhi
- Pulmonary Research Group, Department of Medicine, University of Alberta , Edmonton, AB , Canada
| | - Harissios Vliagoftis
- Pulmonary Research Group, Department of Medicine, University of Alberta , Edmonton, AB , Canada
| |
Collapse
|
23
|
Habert C, Garnier R. [Health effects of diesel exhaust: a state of the art]. Rev Mal Respir 2014; 32:138-54. [PMID: 25765120 DOI: 10.1016/j.rmr.2014.07.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 07/25/2014] [Indexed: 11/28/2022]
Abstract
INTRODUCTION This review presents the state of knowledge regarding the acute and chronic toxicity of diesel engine exhaust in humans. STATE OF ART The health effects of diesel engine exhaust, which is a complex mixture of gas and particulate matter (ultrafine and fine particles), are mainly irritation of the respiratory tract and carcinogenicity. They may also facilitate the development of respiratory allergies. A recent reassessment by the International Agency for Research on Cancer concluded that there is sufficient evidence of a causal association between exposure to diesel engine exhaust and lung cancer. PERSPECTIVES The epidemiologic data collected during the last two decades also show limited evidence of increased risks of bladder cancer, as well as of chronic obstructive pulmonary disease in diesel engine exhaust exposed workers. Both experimental and epidemiological studies have involved the effect of emissions from traditional diesel engine technology. Major developments in this technology have occurred recently and the toxicity of emissions from these new engines is still to be characterized. CONCLUSION Further studies are needed to explore the link between diesel engine exhaust exposure and the risks of bladder cancer, as well as of chronic obstructive pulmonary disease and respiratory allergies. Research is also needed to get more information about the toxicity of the new diesel technology emissions.
Collapse
Affiliation(s)
- C Habert
- Société nationale des chemins de fer, cellule de toxicologie, département prévention et santé, 44, rue de Rome, 75008 Paris, France.
| | - R Garnier
- Société nationale des chemins de fer, cellule de toxicologie, département prévention et santé, 44, rue de Rome, 75008 Paris, France; Centre antipoison de Paris, groupe hospitalier Lariboisière-Saint Louis, Assistance publique-Hôpitaux de Paris, Paris, France
| |
Collapse
|
24
|
Manners S, Alam R, Schwartz DA, Gorska MM. A mouse model links asthma susceptibility to prenatal exposure to diesel exhaust. J Allergy Clin Immunol 2014; 134:63-72. [PMID: 24365139 PMCID: PMC4065237 DOI: 10.1016/j.jaci.2013.10.047] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 08/30/2013] [Accepted: 10/14/2013] [Indexed: 01/07/2023]
Abstract
BACKGROUND Most asthma begins in the first years of life. This early onset cannot be attributed merely to genetic factors because the prevalence of asthma is increasing. Epidemiologic studies have indicated roles for prenatal and early childhood exposures, including exposure to diesel exhaust. However, little is known about the mechanisms. This is largely due to a paucity of animal models. OBJECTIVE We aimed to develop a mouse model of asthma susceptibility through prenatal exposure to diesel exhaust. METHODS Pregnant C57BL/6 female mice were given repeated intranasal applications of diesel exhaust particles (DEPs) or PBS. Offspring underwent suboptimal immunization and challenge with ovalbumin (OVA) or received PBS. Pups were examined for features of asthma; lung and liver tissues were analyzed for transcription of DEP-regulated genes. RESULTS Offspring of mice exposed to DEPs were hypersensitive to OVA, as indicated by airway inflammation and hyperresponsiveness, increased serum OVA-specific IgE levels, and increased pulmonary and systemic TH2 and TH17 cytokine levels. These cytokines were primarily produced by natural killer (NK) cells. Antibody-mediated depletion of NK cells prevented airway inflammation. Asthma susceptibility was associated with increased transcription of genes known to be specifically regulated by the aryl hydrocarbon receptor and oxidative stress. Features of asthma were either marginal or absent in OVA-treated pups of PBS-exposed mice. CONCLUSION We created a mouse model that linked maternal exposure to DEPs with asthma susceptibility in offspring. Development of asthma was dependent on NK cells and associated with increased transcription from aryl hydrocarbon receptor- and oxidative stress-regulated genes.
Collapse
Affiliation(s)
- Sarah Manners
- Department of Medicine, Division of Allergy and Clinical Immunology, National Jewish Health, Denver, Colo
| | - Rafeul Alam
- Department of Medicine, Division of Allergy and Clinical Immunology, National Jewish Health, Denver, Colo; Department of Medicine, Division of Allergy and Clinical Immunology, University of Colorado Denver, Aurora, Colo
| | - David A Schwartz
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver, Aurora, Colo
| | - Magdalena M Gorska
- Department of Medicine, Division of Allergy and Clinical Immunology, National Jewish Health, Denver, Colo; Department of Medicine, Division of Allergy and Clinical Immunology, University of Colorado Denver, Aurora, Colo.
| |
Collapse
|
25
|
Abstract
Cypress belongs to the Cupressaceae family, which includes 140 species with non-deciduous foliage. The most important genera in allergic diseases are Cupressus sempervirens or Green cypress, Cupressus arizonica or Blue cypress, Juniperus oxycedrus, Juniperus communis and Thuya. Because J. oxycedrus pollinates in October, C. sempervirens in January and February, C. arizonica in February and March, J. communis in April, the symptomatic period is long-lasting. Because of global warming, the pollination period is tending to last longer and Cupressaceae species are becoming established further the north. In Mediterranean countries, cypress is by far the most important pollinating species, accounting for half of the total pollination. The major allergens belong to group 1. The other allergens from cypress and Juniper share 75 to 97 % structural homology with group 1 major allergens. The prevalence of cypress allergy in the general population ranges from 5 % to 13 %, according to exposure to the pollen. Among outpatients consulting an allergist, between 9 and 35 %, according to different studies, are sensitized to cypress pollen. Repeated cross-sectional studies performed at different time intervals have demonstrated a threefold increase in the percentage of cypress allergy. Risk factors include a genetic predisposition and/or a strong exposure to pollen, but air pollutants could play a synergistic role. The study of the natural history of cypress allergy allows the identification of a subgroup of patients who have no personal or family history of atopy, whose disease began later in life, with low total IgE and often monosensitization to cypress pollen. In these patients, the disease is allergic than rather atopic. In the clinical picture, rhinitis is the most prevalent symptom but conjunctivitis the most disabling. A cross-reactivity between cypress and peach allergy has been demonstrated. The pharmacological treatment of cypress allergy is not different from that for other allergies. Hyposensitization has been used, at first by injection, but nowadays mostly through the sublingual route, but clinical trials have included few patients. Avoidance can be implemented at the individual level but also at the community levels using alternative plants, low-pollinating cypresses or by trimming hedges prior to pollination.
Collapse
|
26
|
Shahali Y, Poncet P, Sénéchal H. Pollinose aux Cupressacées et pollution atmosphérique. REVUE FRANCAISE D ALLERGOLOGIE 2013. [DOI: 10.1016/j.reval.2013.01.050] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
27
|
|
28
|
Yokota S, Hori H, Umezawa M, Kubota N, Niki R, Yanagita S, Takeda K. Gene expression changes in the olfactory bulb of mice induced by exposure to diesel exhaust are dependent on animal rearing environment. PLoS One 2013; 8:e70145. [PMID: 23940539 PMCID: PMC3734019 DOI: 10.1371/journal.pone.0070145] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Accepted: 06/16/2013] [Indexed: 01/07/2023] Open
Abstract
There is an emerging concern that particulate air pollution increases the risk of cranial nerve disease onset. Small nanoparticles, mainly derived from diesel exhaust particles reach the olfactory bulb by their nasal depositions. It has been reported that diesel exhaust inhalation causes inflammation of the olfactory bulb and other brain regions. However, these toxicological studies have not evaluated animal rearing environment. We hypothesized that rearing environment can change mice phenotypes and thus might alter toxicological study results. In this study, we exposed mice to diesel exhaust inhalation at 90 µg/m3, 8 hours/day, for 28 consecutive days after rearing in a standard cage or environmental enrichment conditions. Microarray analysis found that expression levels of 112 genes were changed by diesel exhaust inhalation. Functional analysis using Gene Ontology revealed that the dysregulated genes were involved in inflammation and immune response. This result was supported by pathway analysis. Quantitative RT-PCR analysis confirmed 10 genes. Interestingly, background gene expression of the olfactory bulb of mice reared in a standard cage environment was changed by diesel exhaust inhalation, whereas there was no significant effect of diesel exhaust exposure on gene expression levels of mice reared with environmental enrichment. The results indicate for the first time that the effect of diesel exhaust exposure on gene expression of the olfactory bulb was influenced by rearing environment. Rearing environment, such as environmental enrichment, may be an important contributive factor to causation in evaluating still undefined toxic environmental substances such as diesel exhaust.
Collapse
Affiliation(s)
- Satoshi Yokota
- Department of Hygiene Chemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, Japan.
| | | | | | | | | | | | | |
Collapse
|
29
|
Li C, Li X, Jigami J, Hasegawa C, Suzuki AK, Zhang Y, Fujitani Y, Nagaoka K, Watanabe G, Taya K. Effect of nanoparticle-rich diesel exhaust on testosterone biosynthesis in adult male mice. Inhal Toxicol 2012; 24:599-608. [PMID: 22861003 DOI: 10.3109/08958378.2012.702140] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The effect of nanoparticle-rich diesel exhaust (NR-DE) on the testicular function and factors related with the biosynthesis of testosterone gene expression were investigated in mice. Male C57BL/Jcl mice were exposed to clean air, low-dose NR-DE (Low NR-DE), high-dose NR-DE (High NR-DE) or filtered diesel exhaust (F-DE) for 8 weeks. We found that the mice exposed to High NR-DE had significantly higher testosterone levels than those in the control and F-DE groups. To determine the effects of NR-DE on testicular testosterone production, interstitial cells dissected from the male mice which were exposed to NR-DE, F-DE, or clean air for 8 weeks were incubated with or without human chorionic gonadotropin (hCG; 0.1 IU/mL) for 4 h. The concentrations of testosterone in the culture media were measured. The testosterone production was significantly increased in with or without hCG of High NR-DE exposed group, and significantly decreased in both with or without hCG of F-DE exposed groups. Moreover, several genes, which is associated with testicular cholesterol synthesis, HMG-CoA, LDL-R, SR-B1, PBR, and P450scc, P450 17α, and 17β-HSD were determined in the testis of adult male mice. The results showed High NR-DE exposure significantly increased the expression of these genes. Whereas, the levels in the F-DE exposure group returned to those in the control group, implicating that the nanoparticles in DE contribute to the observed reproductive toxicity. We conclude that enhancement of testosterone biosynthesis by NR-DE exposure may be regulated by increasing testicular enzymes of testosterone biosynthesis.
Collapse
Affiliation(s)
- ChunMei Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Ebisawa K, Yamada N, Kobayashi M, Katahira M, Konno H, Okada S. Cluster of diffuse alveolar hemorrhage cases after the 2011 Tohoku Region Pacific Coast Earthquake. Respir Investig 2012; 51:2-8. [PMID: 23561252 DOI: 10.1016/j.resinv.2012.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 09/29/2012] [Accepted: 10/04/2012] [Indexed: 11/29/2022]
Abstract
BACKGROUND Diffuse alveolar hemorrhage (DAH) is a clinical syndrome that presents with progressively hemorrhagic bronchoalveolar lavage fluid (BALF) in serial samples and generally has a poor prognosis. The South Miyagi Medical Center, located on the inland side of southern Miyagi Prefecture, documented an increase in the number of patients with DAH after the 2011 Tohoku Region Pacific Coast Earthquake. METHODS We describe the clinical features of post-earthquake DAH in comparison to pre-earthquake DAH. We analyzed the data of the DAH patients we have been able to follow for at least 6 months since we started performing bronchoscopy and bronchoalveolar lavage (BAL) for all patients with interstitial lung disease in August 2009 until September 2011, and separated these patients into pre- and post-earthquake groups according to the earthquake date of March 11, 2011. RESULTS Post-earthquake DAH patients tended to test positive for infectious agents and showed higher serum IgE titers, with BALF that exhibited a tendency to higher silica concentrations. Post-earthquake DAH generally had a better prognosis than pre-earthquake DAH. CONCLUSIONS In describing the clinical features of post-earthquake cases of DAH, this report documents the possibility of an infection- and/or dust-induced, partially allergic, and relatively benign form of DAH.
Collapse
Affiliation(s)
- Kei Ebisawa
- South Miyagi Medical Center, 38-1 Aza-Nishi, Ogawara, Shibata-gun, Miyagi 989-1253, Japan
| | | | | | | | | | | |
Collapse
|
31
|
Yue Z, She RP, Bao HH, Tian J, Yu P, Zhu J, Chang L, Ding Y, Sun Q. Necrosis and apoptosis of renal tubular epithelial cells in rats exposed to 3-methyl-4-nitrophenol. ENVIRONMENTAL TOXICOLOGY 2012; 27:653-661. [PMID: 21374789 DOI: 10.1002/tox.20688] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2010] [Revised: 11/10/2010] [Accepted: 11/16/2010] [Indexed: 05/30/2023]
Abstract
The 3-methyl-4-nitrophenol (4-nitro-m-cresol; PNMC) exists in diesel exhaust particles (DEP), and is also one of the degradation products of insecticide fenitrothion. To assess potential nephrotoxicity of PNMC, male Sprague-Dawley (SD) rats were subcutaneously dosed with PNMC at 1, 10, and 100 mg/kg/day for five consecutive days. No significant changes were detected in body weights and relative weights of kidneys by the treatment of PNMC. However, the extent of cellular necrosis was found to be severe in renal tubular epithelial cells of PNMC-treated rats. In addition, PNMC exposure significantly increased the number of terminal deoxynucleotidyle transferase-mediated dUTP nick end-labeling (TUNEL)-positive cells compared to the control in renal tubule of PNMC-treated rats. Moreover, immunohistochemical results indicated that significant decrease in the B-cell lymphoma 2 (Bcl-2) expressions andincrease in the Bcl-2 associated × protein (Bax) expression were detected in PNMC-treated rats. The ratio of Bcl-2/Bax was also reduced significantly at PNMC-treated rats dosed at 10 or 100 mg kg(-1) . Furthermore, the significant increase of FAS (CD95/APO-1) expression was found in the groups dosed at 10 or 100 mg kg(-1) of PNMC. The expression of Caspase-3 was higher in PNMC-treated rats, compared to the control group. Our results indicated that activation of mitochondria and Caspase-3 protease may contribute to the PNMC-induced apoptosis, suggesting that PNMC could cause both necrosis and apoptosis resulting in cell death of renal epithelium cells and could induce renal toxicity.
Collapse
Affiliation(s)
- Zhuo Yue
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
SIERRA-VARGAS MARTHAPATRICIA, TERAN LUISM. Air pollution: impact and prevention. Respirology 2012; 17:1031-8. [PMID: 22726103 PMCID: PMC3532603 DOI: 10.1111/j.1440-1843.2012.02213.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 05/03/2012] [Accepted: 05/05/2012] [Indexed: 01/06/2023]
Abstract
Air pollution is becoming a major health problem that affects millions of people worldwide. In support of this observation, the World Health Organization estimates that every year, 2.4 million people die because of the effects of air pollution on health. Mitigation strategies such as changes in diesel engine technology could result in fewer premature mortalities, as suggested by the US Environmental Protection Agency. This review: (i) discusses the impact of air pollution on respiratory disease; (ii) provides evidence that reducing air pollution may have a positive impact on the prevention of disease; and (iii) demonstrates the impact concerted polices may have on population health when governments take actions to reduce air pollution.
Collapse
Affiliation(s)
| | - LUIS M TERAN
- National Institute for Respiratory Diseases ‘Ismael Cosío Villegas’México
- Biomedicine in the Post-Genomic EraHuitzilac, Morelos, Mexico
| |
Collapse
|
33
|
Kim BJ, Hong SJ. Ambient air pollution and allergic diseases in children. KOREAN JOURNAL OF PEDIATRICS 2012; 55:185-92. [PMID: 22745642 PMCID: PMC3382698 DOI: 10.3345/kjp.2012.55.6.185] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 03/19/2012] [Indexed: 12/13/2022]
Abstract
The prevalence of allergic diseases has increased worldwide, a phenomenon that can be largely attributed to environmental effects. Among environmental factors, air pollution due to traffic is thought to be a major threat to childhood health. Residing near busy roadways is associated with increased asthma hospitalization, decreased lung function, and increased prevalence and severity of wheezing and allergic rhinitis. Recently, prospective cohort studies using more accurate measurements of individual exposure to air pollution have been conducted and have provided definitive evidence of the impact of air pollution on allergic diseases. Particulate matter and ground-level ozone are the most frequent air pollutants that cause harmful effects, and the mechanisms underlying these effects may be related to oxidative stress. The reactive oxidative species produced in response to air pollutants can overwhelm the redox system and damage the cell wall, lipids, proteins, and DNA, leading to airway inflammation and hyper-reactivity. Pollutants may also cause harmful effects via epigenetic mechanisms, which control the expression of genes without changing the DNA sequence itself. These mechanisms are likely to be a target for the prevention of allergies. Further studies are necessary to identify children at risk and understand how these mechanisms regulate gene-environment interactions. This review provides an update of the current understanding on the impact of air pollution on allergic diseases in children and facilitates the integration of issues regarding air pollution and allergies into pediatric practices, with the goal of improving pediatric health.
Collapse
Affiliation(s)
- Byoung-Ju Kim
- Department of Pediatrics, Inje University Haeundae Paik Hospital, Busan, Korea
| | | |
Collapse
|
34
|
Effects of exposure to nanoparticle-rich diesel exhaust on adrenocortical function in adult male mice. Toxicol Lett 2012; 209:277-81. [DOI: 10.1016/j.toxlet.2012.01.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2011] [Revised: 01/03/2012] [Accepted: 01/04/2012] [Indexed: 11/23/2022]
|
35
|
Pulmonary effects of diesel exhaust: neutrophilic inflammation, oxidative injury, and asthma. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:2678-82. [PMID: 22005277 DOI: 10.1016/j.ajpath.2011.08.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 08/31/2011] [Indexed: 01/24/2023]
|
36
|
|
37
|
Yue Z, She R, Bao H, Li W, Wang D, Zhu J, Chang L, Yu P. Exposure to 3-methyl-4-nitrophenol affects testicular morphology and induces spermatogenic cell apoptosis in immature male rats. Res Vet Sci 2011; 91:261-8. [DOI: 10.1016/j.rvsc.2010.12.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Revised: 09/28/2010] [Accepted: 12/23/2010] [Indexed: 10/18/2022]
|
38
|
Abstract
The incidence of allergic diseases in most industrialized countries has increased. Although the exact mechanisms behind this rapid increase in prevalence remain uncertain, a variety of air pollutants have been attracting attention as one causative factor. Epidemiological and toxicological research suggests a causative relationship between air pollution and the increased incidence of asthma, allergic rhinitis, and other allergic disorders. These include ozone, nitrogen dioxide and, especially particulate matter, produced by traffic-related and industrial activities. Strong epidemiological evidence supports a relationship between air pollution and the exacerbation of asthma and other respiratory diseases. Recent studies have suggested that air pollutants play a role in the development of asthma and allergies. Researchers have elucidated the mechanisms whereby these pollutants induce adverse effects; they appear to affect the balance between antioxidant pathways and airway inflammation. Gene polymorphisms involved in antioxidant pathways can modify responses to air pollution exposure. While the characterization and monitoring of pollutant components currently dictates pollution control policies, it will be necessary to identify susceptible subpopulations to target therapy/prevention of pollution-induced respiratory diseases.
Collapse
Affiliation(s)
- Hajime Takizawa
- Department of Respiratory Medicine, Kyorin University School of Medicine, Tokyo, Japan.
| |
Collapse
|
39
|
Sharkhuu T, Doerfler DL, Copeland C, Luebke RW, Gilmour MI. Effect of maternal exposure to ozone on reproductive outcome and immune, inflammatory, and allergic responses in the offspring. J Immunotoxicol 2011; 8:183-94. [PMID: 21534884 DOI: 10.3109/1547691x.2011.568978] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
There is growing concern that exposure to air pollutants during pregnancy affects health outcomes in the offspring due to alterations in the development of immune and other homeostatic processes. To assess the risks of maternal inhalation exposure to ozone (O(3)), timed pregnant BALB/c mice were exposed to different concentrations of O(3) (0, 0.4, 0.8, and 1.2 ppm) for 4 h/day for 10 days during gestation (GD9-GD18), and pulmonary inflammation and immune responses were assessed in the offspring at 6 weeks-of-age. Maternal O(3) exposure reduced the number of productive dams by 25% at the highest O(3) concentration (1.2 ppm) and decreased the rate of weight gain in the offspring. Delayed-type hypersensitivity responses to bovine serum albumin were suppressed in the female offspring by maternal exposure to the two highest concentrations of O(3), whereas humoral immune responses to sheep red blood cells were not altered in either sex. Maternal exposure to 1.2 ppm O(3) increased lactate dehydrogenase (LDH) activity in bronchoalveolar lavage fluid (BALF) of the offspring but did not affect the number of inflammatory cells or levels of total protein, IFN-γ, IL-17, and IL-4 cytokines in BALF, or CD4(+), CD8(+), CD25(+), and TCRβ(+)CD1d(+) T-cells in the spleen. Offspring born from air-exposed dams sensitized early in life (postnatal day [PND] 3) to ovalbumin (OVA) antigen and then challenged as adults developed eosinophilia, elevated levels of LDH activity and total protein in BALF, and increased pulmonary responsiveness to methacholine, compared with animals sensitized at PND42. Maternal O(3) exposure in the 1.2 ppm O(3) group decreased BALF eosinophilia and serum OVA-specific IgE in the female offspring sensitized early in life but did not affect development of allergic airway inflammation by offspring sensitized late in life. In summary, maternal exposure to O(3) affected reproductive outcome and produced modest decreases in immune function and indicators of allergic lung disease in surviving offspring.
Collapse
Affiliation(s)
- Tuya Sharkhuu
- Cardiopulmonary and Immunotoxicology Branch, Environmental Public Health Division, US Environmental Protection Agency (EPA), Research Triangle Park, NC 27711, USA
| | | | | | | | | |
Collapse
|
40
|
Alberg T, Nilsen A, Hansen JS, Nygaard UC, Løvik M. Nitrogen dioxide: no influence on allergic sensitization in an intranasal mouse model with ovalbumin and diesel exhaust particles. Inhal Toxicol 2011; 23:268-76. [PMID: 21506877 DOI: 10.3109/08958378.2011.566898] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The role of traffic-related air pollution in the development of allergic diseases is still unclear. We therefore investigated if NO₂, an important constituent of traffic-related air pollution, promotes allergic sensitization to the allergen ovalbumin (OVA). We also examined if NO₂ influenced the allergy adjuvant activity of diesel exhaust particles (DEP). For this purpose, mice were exposed intranasally to OVA with or without DEP present, immediately followed by exposure to NO₂ (5 or 25 parts per million [ppm]) or room air for 4 h in whole body exposure chambers. Eighteen hours after the last of three exposures, the lungs of half of the animals were lavaged with saline and markers of lung damage and lung inflammation in the bronchoalveolar lavage fluid (BALF) were measured. Three weeks later, after intranasal booster immunizations with OVA, the levels of OVA-specific IgE and IgG2a antibodies in serum were determined. Both NO₂ (25 ppm) and DEP gave lung damage, measured as increased total protein concentration in BALF, whereas only NO₂ seemed to stimulate release of the proinflammatory cytokine tumor necrosis factor alpha (TNF-α). In contrast, only DEP significantly increased the number of neutrophils. Furthermore, DEP in combination with OVA stimulated the production of serum allergen-specific IgE antibodies. NO₂, however, neither increased the production of allergen-specific IgE antibodies, nor influenced the IgE adjuvant activity of DEP. Thus, based on our findings, NO₂ seems to be of less importance than combustion particles in the development of allergic diseases after exposure to traffic-related air pollution.
Collapse
Affiliation(s)
- T Alberg
- Norwegian Institute of Public Health, Oslo, Norway.
| | | | | | | | | |
Collapse
|
41
|
Wagner W, Sachrajda I, Pułaski Ł, Hałatek T, Dastych J. Application of cellular biosensors for analysis of bioactivity associated with airborne particulate matter. Toxicol In Vitro 2011; 25:1132-42. [DOI: 10.1016/j.tiv.2011.03.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2010] [Revised: 02/28/2011] [Accepted: 03/25/2011] [Indexed: 10/18/2022]
|
42
|
Seki KI, Noya Y, Mikami Y, Taneda S, Suzuki AK, Kuge Y, Ohkura K. Isolation and identification of new vasodilative substances in diesel exhaust particles. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2010; 17:717-723. [PMID: 19557451 DOI: 10.1007/s11356-009-0207-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Accepted: 05/11/2009] [Indexed: 05/28/2023]
Abstract
BACKGROUND, AIM, AND SCOPE We recently developed a new isolation method for diesel exhaust particles (DEP), involving successive extraction with H(2)O, sodium bicarbonate, and sodium hydroxide, in which the sodium hydroxide extract was found to consist of phenolic components. Analysis of the extract revealed that vasodilative-active nitrophenols are in DEP in significantly higher concentrations than those estimated by an earlier method involving a combination of solvent extraction and repeated chromatography. These findings indicated that our new procedure offers a simple, efficient, and reliable method for the isolation and identification of bioactive substances in DEP. This encouraged us to extend our work toward investigating new vasodilatory substances in the sodium bicarbonate extract. MATERIALS AND METHODS DEP were collected from the exhaust of a 4JB1-type engine (ISUZU Automobile Co., Tokyo, Japan). GC-MS analysis was performed with a GCMS-QP2010 instrument (Shimadzu, Kyoto, Japan). RESULTS DEP dissolved in 1-butanol was successively extracted with water, sodium bicarbonate, and then aqueous sodium hydroxide. The sodium bicarbonate extract was neutralized and the resulting mixture of acidic components was subjected to reverse-phase (RP) column chromatography followed by RP-HPLC with fractions assayed for vasodilative activity. This led to the identification of terephthalic acid, p-hydroxybenzoic acid, isophthalic acid, phthalic acid, 3-hydroxy-4-nitrobenzoic acid, 4-hydroxy-3-nitrophenol, and 1,4,5-naphthalene tricarboxylic acid as components of DEP. DISCUSSION The sodium bicarbonate extract was rich in aromatic carboxylic acid components. Repeated reverse-phase chromatography resulted in the successful isolation of several acidic substances including the new vasodilative materials, 4-hydroxy-3-nitrobenzoic acid, and 3-hydroxy-4-nitrobenzoic acid. CONCLUSIONS Our new fractionation method for DEP has made possible the isolation of new vasodilative compounds from the sodium bicarbonate extract.
Collapse
Affiliation(s)
- Koh-ichi Seki
- Central Institute of Isotope Science, Graduate School of Medicine, Hokkaido University, Sapporo, 060-0815, Japan.
| | | | | | | | | | | | | |
Collapse
|
43
|
Takahashi G, Tanaka H, Wakahara K, Nasu R, Hashimoto M, Miyoshi K, Takano H, Yamashita H, Inagaki N, Nagai H. Effect of diesel exhaust particles on house dust mite-induced airway eosinophilic inflammation and remodeling in mice. J Pharmacol Sci 2010; 112:192-202. [PMID: 20093792 DOI: 10.1254/jphs.09276fp] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Recent research has focused on the effects of ambient particulate pollution and much evidence has indicated that particulate pollution is associated with the onset of asthma and allergy; however, the effect of diesel exhaust particles (DEP) on the development of allergen-induced airway remodeling has not been fully investigated in vivo. In the present study, we examined the effects of DEP on Dermatophagoides farinae allergens (Der f)-induced asthma-like phenotypes in mice. Mice were administered i.t. 8 times with Der f. DEP were injected i.t. with Der f 4 times throughout the experiment or twice at the sensitization period. In both cases, DEP aggravated Der f-induced increases in airway responsiveness to acetylcholine, the number of eosinophils and neutrophils in the bronchoalveolar lavage fluid (BALF), serum Der f-specific IgG1 levels, Th2 cytokines and transforming growth factor-beta1 levels in BALF, and amount of hydroxyproline in the right lungs. Furthermore, goblet cell hyperplasia and subepithelial fibrosis were also markedly aggravated. These findings indicate that DEP can potentiate airway remodeling induced by repeated allergen challenge as well as Th2-drived airway hyperresponsiveness, eosinophilic inflammation, and IgG1 production and that DEP can exhibit adjuvant activity for airway remodeling, probably due to the enhancement of allergen sensitization and/or of Th2 polarizing pathways.
Collapse
Affiliation(s)
- Go Takahashi
- Laboratory of Pharmacology, Department of Bioactive Molecules, Gifu Pharmaceutical University, Mitahora-higashi, Gifu 502-8585, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Maes T, Provoost S, Lanckacker EA, Cataldo DD, Vanoirbeek JAJ, Nemery B, Tournoy KG, Joos GF. Mouse models to unravel the role of inhaled pollutants on allergic sensitization and airway inflammation. Respir Res 2010; 11:7. [PMID: 20092634 PMCID: PMC2831838 DOI: 10.1186/1465-9921-11-7] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Accepted: 01/21/2010] [Indexed: 02/06/2023] Open
Abstract
Air pollutant exposure has been linked to a rise in wheezing illnesses. Clinical data highlight that exposure to mainstream tobacco smoke (MS) and environmental tobacco smoke (ETS) as well as exposure to diesel exhaust particles (DEP) could promote allergic sensitization or aggravate symptoms of asthma, suggesting a role for these inhaled pollutants in the pathogenesis of asthma. Mouse models are a valuable tool to study the potential effects of these pollutants in the pathogenesis of asthma, with the opportunity to investigate their impact during processes leading to sensitization, acute inflammation and chronic disease. Mice allow us to perform mechanistic studies and to evaluate the importance of specific cell types in asthma pathogenesis. In this review, the major clinical effects of tobacco smoke and diesel exhaust exposure regarding to asthma development and progression are described. Clinical data are compared with findings from murine models of asthma and inhalable pollutant exposure. Moreover, the potential mechanisms by which both pollutants could aggravate asthma are discussed.
Collapse
Affiliation(s)
- Tania Maes
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Munidasa DT, Koike E, Kobayashi T. An in vitro study of the effect of size and timing of administration of titanium dioxide particles on antigen presenting activity of alveolar macrophages and peripheral blood monocytes. Inhal Toxicol 2009; 21:849-56. [PMID: 19653805 DOI: 10.1080/08958370802524373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Previous studies have shown that inhaled particles exacerbate asthma and allergic rhinitis. Several factors related to the particle may play a role in immune-stimulating activity; however, the underlying mechanisms remain unclear. We carried out in vitro studies to investigate the effects of TiO(2) particle exposure on antigen presenting activity and expression of the associated cell-surface molecules (Ia, B7.1, B7.2) in rat derived monocytes and alveolar macrophages, in terms of two aspects of the particles: (1) size (59 nm (ST) and 350 nm (LT) particles), and (2) the timing of particle exposure (before antigen exposure or co-administered). Results indicated that particle exposure prior to antigen exposure led to decreased antigen presenting activity in both types of cell. This decrease was greater with ST particles. In monocytes, the expression of cell surface molecules decreased similarly with both particles. Conversely, alveolar macrophages showed greater expression of Ia with ST than with LT exposures. Ia expression was confirmed to be functionally active by a mixed lymphocyte reaction. It is possible that particle exposure might result in poor antigen processing, thereby leading to decreased antigen presenting activity. Co-exposure of particles and antigen induced an increase in antigen presenting activity with both types of particle; however, ST exposure induced greater antigen presenting activity. The expression of Ia also increased similarly with both particle sizes. This suggests that, in a co-exposure situation, antigen may be processed without intensive retardation by particles, and factors other than Ia may affect antigen presenting activity. In conclusion, both size and timing of exposure to TiO(2) particles affect antigen presenting activity of monocytes and alveolar macrophages.
Collapse
|
46
|
Li C, Taneda S, Taya K, Watanabe G, Li X, Fujitani Y, Ito Y, Nakajima T, Suzuki AK. Effects of inhaled nanoparticle-rich diesel exhaust on regulation of testicular function in adult male rats. Inhal Toxicol 2009; 21:803-11. [PMID: 19653803 DOI: 10.1080/08958370802524381] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
We investigated the effects of nanoparticle-rich diesel exhaust (NR-DE) on reproductive function. Eight-week-old male F344 rats were divided into 12 experimental groups and exposed to either whole NR-DE at low (15.37 microg/m(3), 2.27 x 10(5) particles/cm(3)), middle (36.35 microg/m(3), 5.11 x 10(5) particles/cm(3)), or high (168.84 microg/m(3), 1.36 x 10(6) particles/cm(3)) concentrations or clean air for 4, 8, or 12 weeks (5 hours/day, 5 days/week). NR-DE exposure for 4 or 8 weeks did not affect body weight; however, body weight was significantly decreased in rats exposed to low- or high- concentration NR-DE for 12 weeks compared to the control group. Relative weights of testes, epididymides, seminal vesicles, and prostate had increased non-significantly in all NR-DE-exposed rats at 4, 8, and 12 weeks. Adrenal gland relative weights were significantly increased at 4 weeks in rats exposed to low-concentration NR-DE. Plasma luteinizing hormone and follicle stimulating hormone concentrations did not change significantly. Plasma testosterone concentrations were significantly increased after exposure to low- or middle-concentration NR-DE for 4 or 8 weeks compared to controls. Plasma immunoreactive (ir-) inhibin concentrations were significantly increased after exposure to high-concentration NR-DE for 4 weeks or middle- or high-concentration NR-DE for 12 weeks compared to controls. Testicular testosterone concentrations were significantly increased at 4, 8, and 12 weeks after exposure to low-concentration NR-DE compared to controls. In contrast, with exposure to low- or high-concentration NR-DE, testicular ir-inhibin concentrations were significantly greater than in controls, but only at 4 weeks. These results suggest that NR-DE inhalation disrupts the endocrine activity of the male reproductive system.
Collapse
Affiliation(s)
- ChunMei Li
- Research Center for Environmental Risk, National Institute for Environmental Studies, Ibaraki, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Fukuyama T, Tajima Y, Ueda H, Hayashi K, Shutoh Y, Harada T, Kosaka T. Apoptosis in immunocytes induced by several types of pesticides. J Immunotoxicol 2009; 7:39-56. [DOI: 10.3109/15476910903321704] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
48
|
The impact of air pollutants as an adjuvant for allergic sensitization and asthma. Curr Allergy Asthma Rep 2009; 9:327-33. [PMID: 19656481 DOI: 10.1007/s11882-009-0046-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The current global epidemic of atopy and asthma has been related to the changes in environmental exposures brought about by the development and expansion of industrialized societies. This article reviews the evidence supporting the fundamental role of air pollutants in fostering allergic inflammation of the airways, with emphasis on the molecular and genetic pathways that link ambient particulate matter (PM) exposure to the induction of proinflammatory changes and proallergic effects in the respiratory tract. We propose that the link between PM exposure and proallergic effects involves organic PM components that generate oxygen radicals capable of perturbing the redox equilibrium mucosal immune cells.
Collapse
|
49
|
Braun A, Bewersdorff M, Lintelmann J, Matuschek G, Jakob T, Göttlicher M, Schober W, Buters JTM, Behrendt H, Mempel M. Differential impact of diesel particle composition on pro-allergic dendritic cell function. Toxicol Sci 2009; 113:85-94. [PMID: 19805405 DOI: 10.1093/toxsci/kfp239] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Diesel exhaust particles (DEP) were described as potent adjuvant in the induction and maintenance of allergic diseases, suggesting that they might play a role in the increase of allergic diseases in the industrialized countries. However, the cellular basis by which these particles enhance allergic immune responses is still a matter of debate. Thus, we exposed immature murine bone marrow-derived dendritic cells (BMDC) to different particles or particle-associated organic compounds in the absence or presence of the maturation stimuli lipopolysaccharide (LPS) and analyzed the cellular maturation, viability, and cytokine production. Furthermore, we monitored the functionality of particle-exposed BMDC to suppress B cell isotype switching to immunoglobulin (Ig) E. Only highly polluted DEP (standard reference material 1650a [SRM1650a]) but not particle-associated organic compounds or less polluted DEP from modern diesel engines were able to modulate the dendritic cell phenotype. SRM1650a particles significantly suppressed LPS-induced IL-12p70 production in murine BMDC, whereas cell-surface marker expression was not altered. Furthermore, SRM1650a-exposed immature BMDC lost the ability to suppress IgE isotype switch in B cells. This study revealed that highly polluted DEP not only interfere with dendritic cell maturation but also additionally with dendritic cell function, thus suggesting a role in T(h)2 immune deviation.
Collapse
Affiliation(s)
- Andrea Braun
- ZAUM-Center for Allergy and Environment, Technische Universität München, Division of Environmental Dermatology and Allergy, Helmholtz Zentrum München/TUM, 80802 Munich, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Endocrine disruptive effect of 3-methyl-4-nitrophenol isolated from diesel exhaust particles in Hershberger assay using castrated immature rats. Biosci Biotechnol Biochem 2009; 73:2018-21. [PMID: 19734673 DOI: 10.1271/bbb.90204] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
To examine the endocrine disruptive effects of 3-methyl-4-nitrophenol (4-nitro-m-cresol; PNMC) in diesel exhaust particles (DEP), the rat Hershberger assay was carried out using castrated immature rats. Castrated 28-d-old immature male rats were implanted with a 5-mm-long silastic tube containing crystalline testosterone and injected with PNMC subcutaneously at doses 1, 10, or 100 mg/kg for 5 consecutive d. The weights of the livers significantly decreased in the 10 and 100 mg/kg PNMC treatment groups as compared with the control group. The weights of the seminal vesicles significantly increased in the 10 mg/kg PNMC treatment group as compared with the control group. The weights of the Cowper's glands were significantly increased in 1 mg/kg PNMC treatment group compared with the control group. The concentrations of plasma testosterone significantly increased in the 10 and 100 mg/kg PNMC treatment groups, indicating that PNMC induced accumulation of bioactive testosterone released from the implanted tube in circulation. Plasma follicle-stimulating hormone (FSH) and luteinizing hormone (LH) levels significantly decreased under all the doses in the PNMC treatment groups, indicating that PNMC acts on the hypothalamus-pituitary axis.
Collapse
|