1
|
Impact of oral lipid and glucose tolerance tests on the postprandial concentrations of angiopoietin-like proteins (Angptl) 3 and 4. Eur J Nutr 2021; 61:1919-1929. [PMID: 34951653 PMCID: PMC9106616 DOI: 10.1007/s00394-021-02748-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 11/16/2021] [Indexed: 11/22/2022]
Abstract
Background The postprandial regulation of angiopoietin-like proteins (Angptls) and their expression in adipocytes is poorly characterized. Objective Circulating Angptl3 and 4 were analyzed in healthy individuals undergoing either an oral lipid tolerance test (OLTT; n = 98) or an oral glucose tolerance test (OGTT; n = 99). Venous blood was drawn after 0, 2, 4, and 6 h during OLTT and after 0, 1, and 2 h during OGTT. Anthropometric and laboratory parameters were assessed and concentrations of Angptls were quantified by enzyme-linked immunosorbent assay. Angptl gene expression in 3T3-L1 adipocytes and in murine adipose tissues and cellular fractions was analyzed by quantitative real-time PCR. Results Angptl3 concentrations significantly decreased while Angptl4 levels continuously increased during OLTT. Both proteins remained unaffected during OGTT. Angptl3 and Angptl4 were expressed in murine subcutaneous and visceral AT with higher mRNA levels in mature adipocytes when compared to the stroma-vascular cell fraction. Both proteins were strongly induced during 3T3-L1 adipocyte differentiation and they were unresponsive to glucose in mature fat cells. Adipocyte Angptl3 (but not Angptl4) mRNA expression was inhibited by the polyunsaturated fatty acids arachidonic acid and docosahexaenoic acid, whereas nine types of dietary fatty acids remained without any effect. Conclusions There is evidence of short-time regulation of Angptl3/4 levels upon metabolic stress. Angptl4 expression is high and Angptl3 expression is low in AT and restricted mainly to mature adipocytes without any differences concerning fat compartments. Whereas dietary fatty acids and glucose are without any effect, omega-3/-6-polyunsaturated fatty acids inhibited Anptl3 expression in adipocytes.
Collapse
|
2
|
Wan H, Zhu J, Chen F, Xiao F, Huang H, Han X, Zhong L, Zhong H, Xu L, Ni B, Zhong J. SLC29A1 single nucleotide polymorphisms as independent prognostic predictors for survival of patients with acute myeloid leukemia: an in vitro study. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2014; 33:90. [PMID: 25398670 PMCID: PMC4234887 DOI: 10.1186/s13046-014-0090-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 10/20/2014] [Indexed: 12/12/2022]
Abstract
Background The mechanism behind poor survival of acute myeloid leukemia (AML) patients with 1-barabinofuranosylcytosine (Ara-C) based treatment remains unclear. This study aimed to assess the pharmacogenomic effects of Ara-C metabolic pathway in patients with AML. Methods The genotypes of 19 single nucleotide polymorphisms (SNPs) of DCK, CDA and SLC29A1from 100 AML patients treated with Ara-C were examined. All the SNPs were screened with ligase detection reaction assay. The transcription analysis of genes was examined by quantitative real time polymerase chain reaction. The association between clinical outcome and gene variants was evaluated by Kaplan-Meier method. Results Genotypes of rs9394992 and rs324148 for SLC29A1 in remission patients were significantly different from those in relapsed ones. Post-induction overall survival (OS) significantly decreased in patients with the CC genotype of rs324148 compared with CT and TT genotypes (hazard ratio [HR] = 2.997 [95% confidence interval (CI): 1.71-5.27]). As compared with CT and TT genotype, patients with the CC genotype of rs9394992 had longer survival time (HR = 0.25 [95% CI: 0.075-0.81]; HR = 0.43 [95% CI: 0.24-0.78]) and longer disease-free survival (DFS) (HR = 0.52 [95% CI: 0.29-0.93]; HR = 0.15 [95% CI: 0.05-0.47]) as well As compared with CT and TT genotype, patients with the CC genotype of rs324148 had shorter DFS (HR = 3.18 [95% CI: 1.76-5.76]). Additionally, patients with adverse karyotypes had shorter DFS (HR = 0.17 [95% CI: 0.05-0.54]) and OS (HR = 0.18 [95% CI: 0.05-0.68]). Conclusions AML patients with low activity of SLC29A1 genotype have shorter DFS and OS in Ara-C based therapy. Genotypes of rs9394992 and rs324148 may be independent prognostic predictors for the survival of AML patients. Electronic supplementary material The online version of this article (doi:10.1186/s13046-014-0090-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Haixia Wan
- Department of Hematology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China.
| | - Jianyi Zhu
- Department of Hematology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China.
| | - Fangyuan Chen
- Department of Hematology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China.
| | - Fei Xiao
- Department of Hematology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China.
| | - Honghui Huang
- Department of Hematology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China.
| | - Xiaofeng Han
- Department of Hematology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China.
| | - Lu Zhong
- Department of Hematology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China.
| | - Hua Zhong
- Department of Hematology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China.
| | - Lan Xu
- Department of Hematology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China.
| | - Beiwen Ni
- Department of Hematology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China.
| | - Jihua Zhong
- Department of Hematology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China.
| |
Collapse
|
3
|
Deoxycytidine deaminase-deficient Escherichia coli strains display acute sensitivity to cytidine, adenosine, and guanosine and increased sensitivity to a range of antibiotics, including vancomycin. J Bacteriol 2014; 196:1950-7. [PMID: 24633874 DOI: 10.1128/jb.01383-13] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We show here that deoxycytidine deaminase (DCD)-deficient mutants of Escherichia coli are hypersensitive to killing by exogenous cytidine, adenosine, or guanosine, whereas wild-type cells are not. This hypersensitivity is reversed by exogenous thymidine. The mechanism likely involves the allosteric regulation of ribonucleotide reductase and severe limitations of the dTTP pools, resulting in thymineless death, the phenomenon of cell death due to thymidine starvation. We also report here that DCD-deficient mutants of E. coli are more sensitive to a series of different antibiotics, including vancomycin, and we show synergistic killing with the combination of vancomycin and cytidine. One possibility is that a very low, subinhibitory concentration of vancomycin enters Gram-negative cells and that this concentration is potentiated by chromosomal lesions resulting from the thymineless state. A second possibility is that the metabolic imbalance resulting from DCD deficiency affects the assembly of the outer membrane, which normally presents a barrier to drugs such as vancomycin. We consider these findings with regard to ideas of rendering Gram-negative bacteria sensitive to drugs such as vancomycin.
Collapse
|
4
|
Abstract
Nucleoside analogs are frequently used to label newly synthesized DNA. These analogs are toxic in many cells, with the exception of the budding yeast. We show that Schizosaccharomyces pombe behaves similarly to metazoans in response to analogs 5-bromo-2'-deoxyuridine (BrdU) and 5-ethynyl-2'-deoxyuridine (EdU). Incorporation causes DNA damage that activates the damage checkpoint kinase Chk1 and sensitizes cells to UV light and other DNA-damaging drugs. Replication checkpoint mutant cds1Δ shows increased DNA damage response after exposure. Finally, we demonstrate that the response to BrdU is influenced by the ribonucleotide reductase inhibitor, Spd1, suggesting that BrdU causes dNTP pool imbalance in fission yeast, as in metazoans. Consistent with this, we show that excess thymidine induces G1 arrest in wild-type fission yeast expressing thymidine kinase. Thus, fission yeast responds to nucleoside analogs similarly to mammalian cells, which has implications for their use in replication and damage research, as well as for dNTP metabolism.
Collapse
|
5
|
Mamantov A. Possible New Reaction Mechanisms of Dideoxynucleosides as Anti-Aids Drugs. PROGRESS IN REACTION KINETICS AND MECHANISM 2008. [DOI: 10.3184/146867807x310783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Evidence is presented that a major class of drugs, the dideoxynucleosides (ddNs) and nucleoside/nucleotide analogues, may inhibit the symptoms of acquired immunodeficiency syndrome (AIDS) by initiation of inactivation at the ribonucleotide reductase (RNR) enzyme stage and/or inactivation of reverse transcriptase enzyme or at a stage more initial than that of the currently accepted DNA chain termination hypothesis. For example, it has been previously shown that ribonucleotide diphosphate reductase (RDPR) and ribonucleotide triphosphate reductase (RTPR) are inactivated with 2′-chloro-2 ‘-deoxyuridine 5′-diphosphate-([3′-3H]ClUDP) and triphosphate ([3′-3H]ClUTP) by reaction with an intermediate furanone, Scheme 2. RDPR has also been inactivated by 2‘-azido-2‘-deoxyuridine 5‘-diphosphate (N3UDP). Furthermore, addition of hydroxyurea to RNR can inhibit DNA synthesis which results in a rapid depletion of limiting deoxynucleotide triphosphate (dNTP) pools. There are similar perturbations of dNTP pools upon interaction of human RNR with 3‘-azido-2‘,3 ‘-dideoxythymidine (AZT), in human cell studies involving AZT/HIV and in adenosine/coformycin experiments in relation to inherited immunodeficiency, Table 1. Also, the herein proposed reduction mechanisms of nucleotides by RNR ( e.g., a single electron transfer from the nucleotide base to the phenol moiety of the tyrosyl radical of RNR via a pathway involving the thiyl radical of a cysteine residue) can also account for the chemistry of some antiretroviral drugs, the ddNs. Analyses are presented that the RNR reductions of regular unsubstituted nucleotides may occur predominantly via initial 2’ C-H abstraction instead of the originally proposed 3’ C-H abstraction mechanism. Also, it is noted that the fate of the phenol moiety of the tyrosyl unit in some RNR reactions with 2‘-halo-2‘-deoxynucleotides is not clear. The proposed reaction mechanisms may provide guidance for the development of potentially effective anti-AIDS drugs.
Collapse
Affiliation(s)
- Andrew Mamantov
- Office of Pollution Prevention and Toxics, U.S. Environmental Protection Agency, 1200 Pennsylvania Avenue, Washington, DC 20460, USA
| |
Collapse
|
6
|
Cohen A, Gudas LJ, Ullman B, Martin DW. Nucleotide metabolism in cultured T cells and in cells of patients deficient in adenosine deaminase and purine nucleoside phosphorylase. CIBA FOUNDATION SYMPOSIUM 2008:101-14. [PMID: 115659 DOI: 10.1002/9780470720516.ch7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
7
|
Månsson E, Flordal E, Liliemark J, Spasokoukotskaja T, Elford H, Lagercrantz S, Eriksson S, Albertioni F. Down-regulation of deoxycytidine kinase in human leukemic cell lines resistant to cladribine and clofarabine and increased ribonucleotide reductase activity contributes to fludarabine resistance. Biochem Pharmacol 2003; 65:237-47. [PMID: 12504799 DOI: 10.1016/s0006-2952(02)01484-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Mechanisms of acquired resistance to three purine analogues, 2-chloro-2'-deoxyadenosine (cladribine, CdA), 9-beta-D-arabinofuranosyl-2-fluoroadenine (fludarabine, Fara-A), and 2-chloro-2'-arabino-fluoro-2'-deoxyadenosine (clofarabine, CAFdA) were investigated in a human T-lymphoblastic leukemia cell line (CCRF-CEM). These analogues are pro-drugs and must be activated by deoxycytidine kinase (dCK). The CdA and CAFdA resistant cell lines exhibited increased resistance to the other nucleoside analogues activated by dCK. This was also the case for the Fara-A resistant cells, except that they were sensitive to CAFdA and guanosine analogues. The CdA and CAFdA resistant cells displayed a deficiency in dCK activity (to <5%) while the Fara-A resistant cells showed only a minor reduction of dCK activity (20% reduction). The activity of high K(m) 5'-nucleotidase (5'-NT) (cN-II) using IMP as substrate, was 2-fold elevated in the resistant cell lines. The amount of the small subunit R2 of ribonucleotide reductase (RR) was higher in the Fara-A resistant cells, which translated into a higher RR activity, while CdA and CAFdA cells had decreased activity compared to the parental cells. Expression of the recently identified RR subunit, p53R2 full-size protein, in CAFdA cells was low compared to parental cells, but a protein of lower molecular weight was detected in CdA and CAFdA cells. Co-incubation of Fara-A with the RR inhibitor 3,4-dihydroxybenzohydroxamic acid (didox) enhanced cytotoxicity in the Fara-A resistant cells by a factors of 20. Exposure of the cells to the nucleoside analogues studied here also caused structural and numerical instability of the chromosomes; the most profound changes were recorded for CAFdA cells, as demonstrated by SKY and CGH analysis. We conclude that down-regulation of dCK in cells resistant to CdA and CAFdA and increased activity of RR in cells resistant to Fara-A contribute to resistance.
Collapse
Affiliation(s)
- Emma Månsson
- Department of Medicine, Division of Clinical Pharmacology, Karolinska Hospital, SE-17176 Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Månsson E, Paul A, Löfgren C, Ullberg K, Paul C, Eriksson S, Albertioni F. Cross-resistance to cytosine arabinoside in a multidrug-resistant human promyelocytic cell line selected for resistance to doxorubicin: implications for combination chemotherapy. Br J Haematol 2001; 114:557-65. [PMID: 11552980 DOI: 10.1046/j.1365-2141.2001.02979.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The pyrimidine analogue cytosine arabinoside (AraC) is one of the most effective drugs used in the treatment of acute leukaemia. Overexpression of the multidrug resistance (MDR-1) gene and its product, P-glycoprotein (P-gp), is associated with cellular resistance to drugs, such as anthracyclines and vinca alkaloids. This resistance can be reversed by cyclosporine analogues or verapamil (ver). We investigated the in vitro cross-resistance to AraC in a doxorubicin-resistant HL60 cell line, with an elevated expression of the MDR-1 gene. The resistant clone showed an eightfold increased resistance to AraC and a two- to fourfold resistance to the other analogues, as measured by cytotoxicity test. There was no significant increase in the activity of 5'-nucleotidase or in the amount of deoxyribonucleotide pools between cell lines. We could, however, detect a reduction in deoxycytidine kinase (dCK) activity (30%, P = 0.021, using deoxycytidine as substrate) and the level of AraC triphosphates was significantly reduced in the resistant cells (70%, P = 0.009). When the cells were exposed to cyclosporin A (CsA) or the cyclosporine analogue PSC 833 (PSC) in combination with AraC, there was more extensive apoptosis, as measured by formation of oligonucleosomal DNA fragmentation and caspase-3-like activity, than with exposure to AraC alone. We also found an increased retention of AraC in the resistant cells when incubated with AraC in combination with CsA. Ver in combination with AraC, failed to increase apoptosis for the resistant cell line. Our data suggests that the resistance to AraC for the P-gp-expressing cells is a result of a reduction of dCK activity and an increase in efflux, the latter possibly depending on P-gp. A combination of CsA or PSC with AraC may improve the effect of AraC in vivo.
Collapse
Affiliation(s)
- E Månsson
- Department of Medicine, Division of Clinical Pharmacology, Karolinska Hospital, Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
9
|
Chabes A, Thelander L. Controlled protein degradation regulates ribonucleotide reductase activity in proliferating mammalian cells during the normal cell cycle and in response to DNA damage and replication blocks. J Biol Chem 2000; 275:17747-53. [PMID: 10747958 DOI: 10.1074/jbc.m000799200] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ribonucleotide reductase (RNR) plays a central role in the formation and control of the optimal levels of deoxyribonucleoside triphosphates, which are required for DNA replication and DNA repair processes. Mammalian RNRs are composed of two nonidentical subunits, proteins R1 and R2. The levels of the limiting R2 protein control overall RNR activity during the mammalian cell cycle, being undetectable in G(1) phase and increasing in S phase. We show that in proliferating mammalian cells, the transcription of the R2 gene, once activated in the beginning of S phase, reaches its maximum 6-7 h later and then declines. Surprisingly, DNA damage and replication blocks neither increase nor prolong the R2 promoter activity in S phase. Instead, the cell cycle activity of the mammalian enzyme is controlled by an S phase/DNA damage-specific stabilization of the R2 protein, which is effective until cells pass into mitosis.
Collapse
Affiliation(s)
- A Chabes
- Department of Medical Biosciences, Medical Biochemistry, Umeå University, SE-901 87 Umeå, Sweden.
| | | |
Collapse
|
10
|
Tsuruga H, Kumagai H, Kojima T, Kitamura T. Identification of novel membrane and secreted proteins upregulated during adipocyte differentiation. Biochem Biophys Res Commun 2000; 272:293-7. [PMID: 10872842 DOI: 10.1006/bbrc.2000.2759] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Adipose tissue is the largest organ in the body that secretes soluble proteins such as cytokines. A preadipocyte cell line 3T3-L1 has been widely used for investigations of mechanisms of adipocyte differentiation. 3T3-L1 cells convert to adipocytes in the presence of 1-methyl-3-isobutylxanthine, dexamethasone, and insulin. We screened a cDNA library derived from differentiated 3T3-L1 cells, using the SST-REX method (signal sequence trap by retrovirus-mediated expression screening method). Screening of 4 x 10(5) clones gave rise to 63 known and 8 novel clones. The known clones represented 28 independent proteins, 21 of which were secreted proteins and 7 were membrane proteins. The novel clones represented 7 independent proteins, 5 of which had no similarity to known proteins. Interestingly, most of these novel genes showed differentiation- and tissue-specific expression. The present results indicate that adipocytes specific genes or adipocyte differentiation-related genes encoding membrane and secreted proteins can be readily identified if signal sequence trap screening of differentiated adipocyte-derived cDNAs is done.
Collapse
Affiliation(s)
- H Tsuruga
- Department of Hematopoietic Factors, Institute of Medical Science, University of Tokyo, Japan
| | | | | | | |
Collapse
|
11
|
Abstract
Confluent 3T3-L1 preadipocytes differentiate to adipocytes in the presence of insulin, dexamethasone, and isobutylmethylxanthine (IDI). A transient increase of DNA synthesis is induced in 3T3-L1 cells 18 h after addition of IDI, followed by an arrest in the G1 phase of the cell cycle. Growth arrested cells express the proto-oncogene c-myc and the gene for the CCAAT/enhancer binding protein (C/EBPalpha) between day 2 and 5. While c-Myc is strongly implicated in cell proliferation, C/EBPalpha: is a differentiation-specific transcription factor with antiproliferative activity. Here we have characterized the cell cycle arrest in differentiating 3T3-L1 cells. Arrested cells express the Cdk inhibitors p21 and p27, but, at the same time, show hyperphosphorylation of Rb and expression of the E2F-regulated thymidine kinase gene. The addition of new serum to arrested cells resulted in cyclin A expression and Cdk2 activity, but not in DNA synthesis. Simian virus 40 large tumor antigen (LTAg) is a potent mitogen. The mutant LTAg-K1, deficient in binding of pocket proteins and unable to induce DNA synthesis in serum-starved 3T3-L1 cells, efficiently induced DNA synthesis in differentiating 3T3-L1 cells. This indicates that pocket proteins are probably not involved in the control of the cell cycle arrest during 3T3-L1 cell differentiation. Our data suggest that the differentiation-specific cell cycle block in 3T3-L1 cells is resistant to high levels of c-Myc, inactivation of pocket proteins, upregulation of cyclin A levels, and Cdk2 activation, but can be abolished by a function of LTAg that is independent of binding to pocket proteins.
Collapse
Affiliation(s)
- M Reichert
- Institut für Klinische Molekularbiologie und Tumorgenetic, GSF-Forschungszentrum für Umwelt und Gesundheit, München, Germany
| | | |
Collapse
|
12
|
Abstract
Immunodeficiency in adenosine deaminase deficiency has been attributed to the lymphotoxicity of deoxyadenosine that accumulates to high levels in patients. To gain insight into the mechanism of deoxyadenosine toxicity, we investigated the dose-response and time course of its toxic effects on concanavalin A-stimulated mouse splenic lymphocytes by thymidine incorporation and flow cytometry. Deoxyadenosine at a level as low as 0.3 microM inhibited the progression of G0. In contrast, higher concentrations of the nucleoside, i.e., in the range of 1 to 3 microM, were needed to block transition of the stimulated lymphocytes from G0 to G1. The inhibition of their S entry and progression required even higher concentrations. Furthermore, staurosporine, a potent inhibitor of protein kinases, was found to potentiate the toxicity of deoxyadenosine in mitogen-stimulated lymphocytes. Calcium mobilization in mitogen-activated lymphocytes was inhibited by deoxyadenosine. Our data suggest that, while ribonucleotide reductase inhibition by dATP could explain the blockade of S entry and progression by deoxyadenosine in cycling lymphocytes or leukemic cells, more important effects of this compound on antigen-activated lymphocytes occur at the early G0 phase. A possible mechanism of deoxyadenosine lethality is its inhibition of protein phosphorylation.
Collapse
Affiliation(s)
- T Sato
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston 77555, USA
| | | |
Collapse
|
13
|
Chan TS, Nelson JA. Specific selection of deoxycytidine kinase mutants with tritiated deoxyadenosine. Biochem Genet 1995; 33:327-40. [PMID: 8748457 DOI: 10.1007/bf02399931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We have shown previously that a low concentration of tritiated deoxyadenosine, i.e., 1 microCi/ml, selectively kills wild-type S49 murine lymphoma cells. Mutant cells resistant to [3H] deoxyadenosine lacked adenosine kinase completely but retained a significant level of deoxyadenosine phosphorylating activity. To study further the specificity of [3H] deoxyadenosine selection, lymphoma cell clones resistant to 15 microCi/ml [3H] deoxyadenosine have been derived. The resistant line, S49-dA15, is also resistant to high levels of nonradioactive deoxyadenosine and to deoxyguanosine but remains sensitive to thymidine. The thymidine inhibition of the growth of the mutant, in contrast to that of the wild-type cells, cannot be prevented by deoxycytidine. The mutant line lacks deoxycytidine kinase that also phosphorylates deoxyadenosine. In addition, the mutant cells excrete a large amount of deoxycytidine into culture medium, consistent with a failure of salvage of the nucleoside in the absence of an appropriate kinase, i.e., deoxycytidine kinase. In contrast, a deoxycytidine kinase-deficient cell line that was selected with arabinosylcytosine does not excrete deoxycytidine and contains high deoxycytidine deaminase activity. [3H] Deoxyadenosine can be used as a selective agent for specific selection of deoxycytidine kinase-negative mutants.
Collapse
Affiliation(s)
- T S Chan
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston 77555-1019, USA
| | | |
Collapse
|
14
|
Specific selection of deoxycytidine kinase mutants with tritiated deoxyadenosine. Biochem Genet 1995. [DOI: 10.1007/pl00020529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
Hamlin JL, Leu TH, Vaughn JP, Ma C, Dijkwel PA. Amplification of DNA sequences in mammalian cells. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1991; 41:203-39. [PMID: 1882075 DOI: 10.1016/s0079-6603(08)60010-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- J L Hamlin
- Department of Biochemistry, University of Virginia School of Medicine, Charlottesville 22908
| | | | | | | | | |
Collapse
|
16
|
Abstract
Two mutator genes of mammalian cells were demonstrated. One was associated with the ribonucleoside diphosphate reductase, and the other was associated with an extreme adenosine sensitivity.
Collapse
|
17
|
Sastry KJ, Huang C, Chan TS. Adenosine kinase deficiency in tritiated deoxyadenosine-resistant mouse S49 lymphoma cell lines. Biochem Genet 1987; 25:765-77. [PMID: 2835956 DOI: 10.1007/bf00502597] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Mutant sublines were derived of S49 mouse T-lymphoma cells that were resistant to tritiated deoxyadenosine. Twenty-five isolates that were selected in 1 microCi/ml of the nucleoside were cross-resistant to 6-thioguanine, were sensitive to HAT (hypoxanthine, aminopterin, and thymidine), and contained less than 1% of hypoxanthine phosphoribosyltransferase activity in wild-type cells. One of the mutant clones, S49-dA2, was further subjected to selection in a medium containing 2 microCi/ml tritiated deoxyadenosine and 1 microgram/ml deoxycoformycin, an inhibitor of adenosine deaminase. All resistant subclones were cross-resistant to tubercidin, 6-methylmercaptopurine riboside, and arabinosyladenine. One of the subclones, S49-12, was completely devoid of adenosine kinase and was partially deficient in deoxyadenosine kinase. This subclone, however, contained wild-type levels of deoxycytidine kinase. DEAE chromatography of the wild-type cell extracts revealed two deoxyadenosine phosphorylating activities, one of which coeluted with adenosine kinase and was the enzyme missing in S49-12. The other species phosphorylated both deoxyadenosine and deoxycytidine, of which deoxycytidine was the preferred substrate.
Collapse
Affiliation(s)
- K J Sastry
- Department of Microbiology, University of Texas Medical Branch, Galveston 77550
| | | | | |
Collapse
|
18
|
Cocking JM, Tonin PN, Stokoe NM, Wensing EJ, Lewis WH, Srinivasan PR. Gene for M1 subunit of ribonucleotide reductase is amplified in hydroxyurea-resistant hamster cells. SOMATIC CELL AND MOLECULAR GENETICS 1987; 13:221-33. [PMID: 3299747 DOI: 10.1007/bf01535204] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The hydroxyurea-resistant Chinese hamster cell line 600H has been shown to have greatly elevated quantities of ribonucleotide reductase. This increase in enzyme activity is due to an increased level of both the M1 and M2 subunit activities. The M1 subunit has been purified from the 600H cell line and shown to consist of a series of six protein spots with apparent molecular weights of 88,000 daltons, but with varying isoelectric points in the range of pH 6.5-7.0. Western blot analyses with antisera against the M1 and M2 proteins indicated that both subunit proteins are present in elevated quantities in the 600H cell line when compared to the wild-type V79 cell line. Southern blot analyses with genomic DNA from the series of stepwise-selected hydroxyurea-resistant cell lines leading to 600H showed that, in latter steps of selection, genomic sequences homologous to a mouse M1 cDNA have undergone a fivefold amplification. This was accompanied by a four- to eightfold increase in the single M1 homologous mRNA.
Collapse
|
19
|
Nyce J, Liu L, Jones PA. Variable effects of DNA-synthesis inhibitors upon DNA methylation in mammalian cells. Nucleic Acids Res 1986; 14:4353-67. [PMID: 3086840 PMCID: PMC339866 DOI: 10.1093/nar/14.10.4353] [Citation(s) in RCA: 63] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Post-synthetic enzymatic hypermethylation of DNA was induced in hamster fibrosarcoma cells by the DNA synthesis inhibitors cytosine arabinoside, hydroxyurea and aphidicolin. This effect required direct inhibition of DNA polymerase alpha or reduction in deoxynucleotide pools and was not specific to a single cell type. At equivalently reduced levels of DNA synthesis, neither cycloheximide, actinomycin D nor serum deprivation affected DNA methylation in this way. The topoisomerase inhibitors nalidixic acid and novobiocin caused significant hypomethylation indicating that increased 5-mCyt content was not a necessary consequence of DNA synthesis inhibition. The induced hypermethylation occurred predominantly in that fraction of the DNA synthesized in the presence of inhibitor; was stable in the absence of drug; was most prominent in low molecular weight DNA representing sites of initiated but incomplete DNA synthesis; and occurred primarily within CpG dinucleotides, although other dinucleotides were overmethylated as well. Drug-induced CpG hypermethylation may be capable of silencing genes, an effect which may be relevant to the aberrantly expressed genes characteristic of neoplastic cells.
Collapse
|
20
|
|
21
|
Dahbo Y, Eriksson S. On the mechanism of deoxyribonucleoside toxicity in human T-lymphoblastoid cells. Reversal of growth inhibition by addition of cytidine. EUROPEAN JOURNAL OF BIOCHEMISTRY 1985; 150:429-34. [PMID: 3874778 DOI: 10.1111/j.1432-1033.1985.tb09038.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
High levels of deoxyadenosine and deoxyguanosine in patients with inherited deficiency of either adenosine deaminase or purine-nucleoside phosphorylase, respectively, are considered to be responsible for the associated immunological disorder. The mechanism involves phosphorylation to the corresponding deoxyribonucleoside triphosphates which subsequently inhibit the CDP-reducing activity of ribonucleotide reductase. Addition of deoxycytidine protects cells from the cytotoxic effects of deoxyadenosine and deoxyguanosine by competition for phosphorylation and by replenishing dCTP, the apparent limiting DNA precursor. Addition of cytidine, but not uridine, led to a reversal of deoxyguanosine and thymidine growth inhibition, comparable to that obtained with deoxycytidine. Analysis of the intracellular nucleotide pools showed that increased levels of cytidine ribonucleotides were sufficient to overcome the inhibitory effects of dGTP and dTTP on CDP reduction, thereby circumventing a depletion of the dCTP pool. A partial reversal of deoxyadenosine toxicity was also obtained with addition of cytidine. In this case little change in the dCTP level was observed, but a decreased dGTP pool appeared to be correlated with growth inhibition. High cytidine ribonucleotide levels partially prevented this effect. The present results may encourage the use of cytidine in combination with deoxycytidine as a pharmacological regime in treatment of immunodeficiency disease associated with increased deoxyribonucleotide levels.
Collapse
|
22
|
Newman CN, Miller JH. Mechanism of UV-induced deoxynucleoside triphosphate pool imbalance in CHO-K1 cells. Mutat Res 1985; 145:95-101. [PMID: 3974608 DOI: 10.1016/0167-8817(85)90046-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Several laboratories have reported that exposure of cells to UV radiation results in a significant imbalance in deoxynucleoside triphosphate pool concentrations. In our CHO-K1 cells, a rapid drop in dCTP is accompanied by a rapid increase in dTTP. Examination of enzyme activities associated with synthesis/degradation of these molecules suggests that UV transiently enhances a putative dCTPase, dCMP deaminase and CdR kinase activities. This results in accumulation of excess dUMP which is probably converted to dTMP, then to dTTP. The absence of dCMP deaminase in V79 cells prohibits this rapid response in those cells. Moreover, significantly different dCMP deaminase activities were observed in CHO-K1 cells obtained from other laboratories, suggesting they, too, may respond differently to irradiation.
Collapse
|
23
|
Goodman MF, Hopkins RL, Lasken R, Mhaskar DN. The biochemical basis of 5-bromouracil- and 2-aminopurine-induced mutagenesis. BASIC LIFE SCIENCES 1985; 31:409-23. [PMID: 3994630 DOI: 10.1007/978-1-4613-2449-2_25] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We describe in vitro measurements of heteroduplex base mispaired intermediates involving 5-bromouracil and 2-aminopurine in A X T----G X C and G X C----A X T transition mutation pathways. For the case of 2-aminopurine, 2-aminopurine X cytosine mispairs are formed at a much higher frequency than adenine X cytosine mispairs in either transition pathway. For the case of 5-bromouracil, at least a 40-fold increase in 5-bromouracil X guanine mispairs are observed over thymine X guanine mispairs but only in the G X C----A X T pathway. In the A X T----G X C pathway, mispairs involving 5-bromouracil are formed 2.5-fold more frequently to those involving thymine suggesting perhaps that 5-bromouracil may exhibit substantially different base-pairing behavior depending on whether it is present as a template base or as a deoxyribonucleosides triphosphate substrate. The effect of the base analogs on dNTP pool size perturbations is discussed. A measurement of dNTP pools in 2-aminopurine mutagenized bacteriophage T4-infected cells is presented. An approximate eight-fold expansion in common dNTP pools is observed in a ts L141 antimutator genetic background compared to wild type T4 43+ and ts L56 mutator backgrounds. The effects of distorted dNTP pools on mutagenesis will be considered.
Collapse
|
24
|
Schimke RT, Beverley S, Brown P, Cassin R, Federspiel N, Gasser C, Hill A, Johnston R, Mariani B, Mosse E. Gene amplification and drug resistance in cultured animal cells. Cancer Treat Rev 1984; 11 Suppl A:9-17. [PMID: 6375865 DOI: 10.1016/0305-7372(84)90038-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
25
|
Correlation of unstable multidrug cross resistance in Chinese hamster ovary cells with a homogeneously staining region on chromosome 1. Mol Cell Biol 1983. [PMID: 6633534 DOI: 10.1128/mcb.3.9.1634] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An enrichment selection method using repeated pulses of low drug concentration (1 microgram/ml) was used to isolate CHO (AK412) variants that are 20-fold more resistant to cytochalasin D (CD). CD-resistant (CydR) variants possess a unique unstable phenotype, including a longer doubling time in nonselective medium, a higher frequency of multinucleate cells in the population (probably due to a defect in cytokinesis), an altered morphology, and increased resistance or sensitivity to a number of unrelated drugs. In each of two variant lines examined cytologically, this multiple phenotype is associated with a small homogeneously staining region on chromosome 1. The homogeneously staining region is present in the CydR variants, but absent both in the CD-sensitive parent and in a CD-sensitive revertant subpopulation. Studies of CD-displaceable binding of [3H]cytochalasin B show a fourfold reduction in CD binding or uptake when whole cells of the variant line were examined. Lactoperoxidase-catalyzed iodination and metabolic labeling with [H3]fucose of cell surface proteins of the CydR variants showed multiple differences in electrophoretic band migration when compared with parental proteins.
Collapse
|
26
|
Grund SH, Patil SR, Shah HO, Pauw PG, Stadler JK. Correlation of unstable multidrug cross resistance in Chinese hamster ovary cells with a homogeneously staining region on chromosome 1. Mol Cell Biol 1983; 3:1634-47. [PMID: 6633534 PMCID: PMC370017 DOI: 10.1128/mcb.3.9.1634-1647.1983] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
An enrichment selection method using repeated pulses of low drug concentration (1 microgram/ml) was used to isolate CHO (AK412) variants that are 20-fold more resistant to cytochalasin D (CD). CD-resistant (CydR) variants possess a unique unstable phenotype, including a longer doubling time in nonselective medium, a higher frequency of multinucleate cells in the population (probably due to a defect in cytokinesis), an altered morphology, and increased resistance or sensitivity to a number of unrelated drugs. In each of two variant lines examined cytologically, this multiple phenotype is associated with a small homogeneously staining region on chromosome 1. The homogeneously staining region is present in the CydR variants, but absent both in the CD-sensitive parent and in a CD-sensitive revertant subpopulation. Studies of CD-displaceable binding of [3H]cytochalasin B show a fourfold reduction in CD binding or uptake when whole cells of the variant line were examined. Lactoperoxidase-catalyzed iodination and metabolic labeling with [H3]fucose of cell surface proteins of the CydR variants showed multiple differences in electrophoretic band migration when compared with parental proteins.
Collapse
|
27
|
Meuth M. Deoxycytidine kinase-deficient mutants of Chinese hamster ovary cells are hypersensitive to DNA alkylating agents. Mutat Res 1983; 110:383-91. [PMID: 6308437 DOI: 10.1016/0027-5107(83)90154-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Chinese hamster ovary cell strains deficient in deoxycytidine kinase activity were selected by isolating mutants resistant to high concentrations of the analogue arabinosyl cytosine. Mutants isolated were deficient in the pool of dCTP, supporting earlier a suggestion that the deoxycytidine kinase may play a role in the turnover and maintenance of the dCTP pool. Consistent with earlier observations that increased intracellular levels of dTTP relative to dCTP lead to increased sensitivity to monofunctional DNA alkylating agents, deoxycytidine kinase-deficient mutants showed a 2-5-fold increase in sensitivity to the cytotoxic and mutagenic effects of one agent, ethyl methanesulfonate (EMS). The survival of the two kinase-deficient strains after mutagen treatment was clearly related to dCTP level as the strain with lowest dCTP was most sensitive to EMS. Thus hypersensitivity to this class of DNA damaging agents can result from cellular mutations decreasing the intracellular level of dCTP.
Collapse
|
28
|
Abstract
Bone-marrow macrophages from both rat and mouse release deoxycytidine derived from phagocytosed nuclei. Mouse plasma contains no detectable deoxycytidine (less than 0.1 microM), whereas the concentration in rat plasma is 18 microM. Enzyme assays of tissue extracts show that both mouse and rat spleen contain high deoxycytidine kinase activity. Mouse organs, including kidney, liver and lung, also have deoxycytidine deaminase activity. In contrast, rat tissues have virtually no deoxycytidine deaminase activity. Lack of deaminase provides an explanation for the presence of deoxycytidine in rat plasma. Cytotoxicity assays show that cultured mouse lymphoid cells grown in undialysed rat serum are more resistant to cytotoxic effects of deoxyadenosine than are those cells grown in dialysed rat serum. The results suggest that a major difference in deoxycytidine metabolism between mouse and rat may account for discrepancies in the pharmacological response of the two animals to certain nucleoside compounds.
Collapse
|
29
|
Wright JA. Altered forms of mammalian nucleoside diphosphate reductase from mutant cell lines. Pharmacol Ther 1983; 22:81-102. [PMID: 6361799 DOI: 10.1016/0163-7258(83)90053-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
30
|
Abstract
Mammalian ribonucleotide reductase catalyzes the rate-limiting for the de novo synthesis 2'-deoxyribonucleoside 5'-triphosphates. There is some suggestion that this step may also be the rate-limiting step of DNA synthesis. It is apparent that the level of the enzyme, ribonucleotide reductase, varies through the cell cycle and is highest in those tissues with the greatest proliferation rate. This increase in activity is associated with increased protein synthesis. The purified enzyme has been shown to be subject to strict allosteric regulation by the various nucleoside triphosphates and it has been proposed that allosteric regulation plays an important role in the level of ribonucleotide reductase activity which is expressed. All experimental data relating to this point, however, do not support the role of deoxyribonucleoside triphosphates as a major factor in determining cellular reductase activity during normal cell division. Several naturally occurring factors have been isolated from cells which lower ribonucleotide reductase activity in vitro. These factors have been found in tissues of low growth fraction and appear to be absent or low in tissues or high growth fraction such as tumor, regenerating liver and embryonic tissues. The expression of intracellular ribonucleotide reductase activity is therefore controlled at various levels and by various factors and the prevailing mode of regulation may vary throughout the cell cycle transverse and also in the various types of cells.
Collapse
|
31
|
Akerblom L, Pontis E, Reichard P. Effects of azidocytidine on DNA synthesis and deoxynucleotide pools of mouse fibroblast cell lines. J Biol Chem 1982. [DOI: 10.1016/s0021-9258(18)34497-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
32
|
Chan TS, Lakhchaura BD. Deoxycytidine excretion by mouse peritoneal macrophages: its implication in modulation of immunological functions. J Cell Physiol 1982; 111:28-32. [PMID: 7085768 DOI: 10.1002/jcp.1041110106] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Pyrimidine excretion by macrophages was studied in order to identify the potential immunoregulatory effector molecules. Deoxycytidine was found in the culture medium of thioglycollate-elicited mouse peritoneal macrophages, along with thymidine, which was shown by others to be a possible immunoregulatory substance. The identification of deoxycytidine was based on: (1) cochromatography with the authentic compound in four different solvents, (2) UV absorption spectral analysis, and (3) the enzymatic peak shift method. Phagocytosis of nucleated chicken erythrocytes, but not enucleated sheep erythrocytes, increased deoxycytidine excretion. The macrophages lacked both deoxycytidine kinase and deoxycytidine deaminase, which is consistent with their excretory pattern. Since it has been known that deoxycytidine can protect cells against cytotoxic effects of thymidine, we propose that deoxycytidine has a role in preventing immunosuppression by thimidine. In patients with adenosine deaminase deficiency, however, immunosuppression caused by combined toxicity of thymidine and deoxyadenosine may not be adequately prevented by deoxycytidine.
Collapse
|
33
|
Kunz BA. Genetic effects of deoxyribonucleotide pool imbalances. ENVIRONMENTAL MUTAGENESIS 1982; 4:695-725. [PMID: 6761109 DOI: 10.1002/em.2860040609] [Citation(s) in RCA: 106] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
34
|
Nicander B, Reichard P. Aphidicolin sensitivity of variant 3T6 cells selected for changes in ribonucleotide reductase. Biochem Biophys Res Commun 1981; 103:148-55. [PMID: 6797427 DOI: 10.1016/0006-291x(81)91672-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
35
|
Eriksson S, Gudas L, Clift S, Caras I, Ullman B, Martin D. Evidence for genetically independent allosteric regulatory domains of the protein M1 subunit of mouse ribonucleotide reductase. J Biol Chem 1981. [DOI: 10.1016/s0021-9258(19)68762-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
36
|
Kit S, Qavi H, Hazen M, Trkula D, Otsuka H. Biochemical transformation of LM(TK-) cells by hybrid plasmids containing the coding region of the herpes simplex virus type 1 thymidine kinase gene. Virology 1981; 113:452-64. [PMID: 6267793 DOI: 10.1016/0042-6822(81)90174-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
37
|
Sato A, Cory JG. In vitro generation of ribonucleotide reductase with altered sensitivity to the inhibitors hydroxyurea and deoxynucleoside triphosphates. Biosci Rep 1981. [DOI: 10.1007/bf01116278] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Affiliation(s)
- Atsushi Sato
- Department of Biochemistry, University of South Florida College of Medicine, Tampa, FL 33612, U.S.A
| | - Joseph G. Cory
- Department of Biochemistry, University of South Florida College of Medicine, Tampa, FL 33612, U.S.A
| |
Collapse
|
38
|
Abstract
Two mutator genes of mammalian cells were demonstrated. One was associated with the ribonucleoside diphosphate reductase, and the other was associated with an extreme adenosine sensitivity.
Collapse
Affiliation(s)
- V L Chan
- Department of Microbiology and Parasitology, University of Toronto, Ontario, Canada
| | | | | |
Collapse
|
39
|
Chang CC, Boezi JA, Warren ST, Sabourin CL, Liu PK, Glatzer L, Trosko JE. Isolation and characterization of a UV-sensitive hypermutable aphidicolin-resistant Chinese hamster cell line. SOMATIC CELL GENETICS 1981; 7:235-53. [PMID: 6794164 DOI: 10.1007/bf01567660] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Aphidicolin is a specific inhibitor of DNA polymerase alpha and blocks DNA synthesis in vivo. The inhibition of purified alpha-polymerase has been shown to be competitive with dCTP but not with the other three deoxynucleoside triphosphates (dNTPs). In order to study the various roles that the alpha-polymerase might play in DNA replication and/or repair, we have attempted to isolate Chinese hamster V79 cells that are resistant to aphidicolin. Four resistant mutants were isolated from BrdU--black light- and UV-mutagenized cells. None of the mutants isolated contains an alpha-polymerase that is resistant, in crude extract measurements, to aphidicolin. Three mutants isolated, however, were found to be resistant to araC. Two mutants tested were found to be sensitive to cytidine and have elevated levels of dCTP or all 4 dNTPs. These results indicate that they are nucleotide pool mutants instead of alpha-polymerase mutants. One mutant, aphr-4, is characterized by the following: (1) high level of dCTP; (2) thymidine (or CdR, UdR) auxotrophic; (3) sensitive to thymidine (and AdR, GdR); (4) slow-growing; (5) cytidine sensitive; (6) UV sensitive and hypermutable at the ouabain-resistant locus; and (7) a ninefold increase in frequency of chromatid gaps and breaks when cells are exposed to BrdU-containing medium. Revertants of aphr-4 which are partially aphidicolin-resistant and retain the first three characteristics listed above, but not the others, have been isolated. The appearance of this type of revertant indicates that either aphr-4 or its "revertant" is a double mutant.
Collapse
|
40
|
Sabourin CL, Bates PF, Glatzer L, Chang CC, Trosko JE, Boezi JA. Selection of aphidicolin-resistant CHO cells with altered levels of ribonucleotide reductase. SOMATIC CELL GENETICS 1981; 7:255-68. [PMID: 6794165 DOI: 10.1007/bf01567661] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Chinese hamster ovary cells were initially selected for resistance to aphidicolin at 0.3 microgram/ml. Serial cultivation with aphidicolin at concentrations up to 5.0 micrograms/ml yielded a series of mutants with increasing resistance. The most resistant mutant isolated was 44 times more resistant to aphidicolin than the parental CHO. The alpha-polymerases, assayed in the cytoplasmic extracts of the mutants, did not increase in specific activity or differ from the parental CHO in their sensitivity to aphidicolin. When cultured in the presence of deoxythymidine, deoxyadenosine, and 1-beta-D-arabinofuranosyl cytosine (araC) the mutants showed considerably more resistance to these inhibitors than did the parental CHO. The intracellular pools of all four deoxynucleoside triphosphates (dNTPs) in the mutants increased with increasing resistance to aphidicolin. The elevated dNTP pools in the mutant most resistant to aphidicolin appear to be the result of a 4- to 8-fold increase in the level of ribonucleotide reductase (2'-deoxyribonucleoside diphosphate:oxidized thioredoxin 2'-oxidoreductase, EC 1.17.4.1).
Collapse
|
41
|
Chan VL, Juranka P. Isolation and preliminary characterization of 9-beta-d-arabinofuranosyladenine-resistant mutants of baby hamster cells. SOMATIC CELL GENETICS 1981; 7:147-60. [PMID: 6974904 DOI: 10.1007/bf01567654] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A large number of 9-beta-D-arabinofuranosyladenine (araA) -resistant mutants of baby hamster kidney cells (BHK 21/Cl3) were isolated. These mutants can be grouped into three mechanistically distinct classes. All the mutants showed cross-resistance to deoxyadenosine (dAdo). The mechanism of resistance to araA and dAdo in the class I mutants can be attributed to a mutation to adenosine kinase (AK) deficiency. The class II mutants have normal levels of AK, adenosine deaminase, and deoxyadenosine kinase. These mutants also show resistance to 1-beta-D-arabinofuranosylcytosine (araC), and the mechanism of resistance is probably due to a mutation in the ribonucleotide reductase gene producing an enzyme that has an increased resistance to the inhibition by 9-beta-D-arabinofuranosyladenine 5'-triphosphate (araATP) and 2'-deoxyadenosine 5'-triphosphate (dATP). The class III mutants, unlike those of classes I and II, show extreme adenosine (Ado) sensitivity. The Ados/araAr/dAdor phenotypic properties can be attributed to a single mutation. Classes II and III are novel araA-resistant mutants.
Collapse
|
42
|
Ayusawa D, Iwata K, Seno T. Alteration of ribonucleotide reductase in aphidicolin-resistant mutants of mouse FM3A cells with associated resistance to arabinosyladenine and arabinosylcytosine. SOMATIC CELL GENETICS 1981; 7:27-42. [PMID: 6784257 DOI: 10.1007/bf01544746] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Aphidicolin-resistant mutants of mouse FM3A cells were isolated and characterized. Most of the mutants were of a type showing associated resistance to arabinosyladenine, arabinosylcytosine, deoxyadenosine, and excess thymidine. This phenotype could also be observed in a variant line selected by resistance to a low level of arabinosylcytosine. In cell-cell hybrids, aphidicolin resistance as well as this cross-resistance behaved a codominant traits. The mutants had an increased dATP pool and decreased ability to incorporate labeled deoxycytidine into macromolecules. Genetic and biochemical evidence suggested that the mutation conferring the pleiotropic phenotype resulted from a change in ribonucleotide reductase activity such that the enzyme was desensitized to the allosteric negative effector dATP. This alteration of the enzyme could account for the marked change in deoxynucleotide pools and for the aphidicolin resistance of the mutants.
Collapse
|
43
|
|
44
|
Gudas L, Eriksson S, Ullman B, Martin D. Purification of a mutant ribonucleotide reductase from cultured mouse T-lymphoma cells. ADVANCES IN ENZYME REGULATION 1981; 19:129-37. [PMID: 7039255 DOI: 10.1016/0065-2571(81)90012-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
45
|
Studies on 1-β-d-arabinofuranosylcytosine-resistant mutants of Chinese hamster fibroblasts IV. Altered regulation of CTP synthetase generates arabinosylcytosine and thymidine resistance. ACTA ACUST UNITED AC 1980. [DOI: 10.1016/0005-2787(80)90016-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
46
|
Abstract
Thymidine resistance in V79 Chinese hamster cells has been investigated. Phenotypically stable variant resistant lines occurred at a high frequency, and the mutation rate (2.67 x 10(-3) per cell per generation) to 400 micrograms/ml thymidine resistance as measured by the standard Luria--Delbrück fluctuation analysis was extremely high. Populations of cells maintained for extended periods in F-10 medium spontaneously increased in resistance, possibly as a result of selective pressures due to the thymidine present in F-10 medium since this change was not observed in Dulbecco's medium. The degree of resistance for a given variant was correlated with the amount of thymidine employed in its selection. Metabolic cooperation, resulting in the suppression of the resistant phenotype, was demonstrated in artificial mixtures of sensitive and resistant clonal lines. Clones isolated in high levels of thymidine possessed lowered uptake of [3H]thymidine and the depression in uptake was related to the level of resistance of the particular clone. Although thymidine kinase specific activity levels were slightly depressed in variant cell lines, growth rate and uridine uptake were unaffected. We conclude that thymidine resistance is due to a genetically controlled depression of external thymidine uptake.
Collapse
|
47
|
Ullman B, Clift S, Gudas L, Levinson B, Wormsted M, Martin D. Alterations in deoxyribonucleotide metabolism in cultured cells with ribonucleotide reductase activities refractory to feedback inhibition by 2'-deoxyadenosine triphosphate. J Biol Chem 1980. [DOI: 10.1016/s0021-9258(19)70648-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
48
|
Kit S, Michalak M, Otsuka H. Resistance of cells biochemically transformed by herpes simplex virus DNA fragments to thymidine and deoxyadenosine cytotoxicity. Biochem Biophys Res Commun 1980; 95:1489-94. [PMID: 6251842 DOI: 10.1016/s0006-291x(80)80065-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
49
|
Henderson JF, Scott FW, Lowe JK. Toxicity of naturally occurring purine deoxyribonucleosides. Pharmacol Ther 1980; 8:573-604. [PMID: 6247724 DOI: 10.1016/0163-7258(80)90077-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
50
|
The modulation of the thymidine triphosphate pool of Chinese hamster cells by dCMP deaminase and UDP reductase. Thymidine auxotrophy induced by CTP in dCMP deaminase-deficient lines. J Biol Chem 1980. [DOI: 10.1016/s0021-9258(19)86279-8] [Citation(s) in RCA: 65] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|