1
|
Mukhopadhyay J, Hausner G. Interconnected roles of fungal nuclear- and intron-encoded maturases: at the crossroads of mitochondrial intron splicing. Biochem Cell Biol 2024; 102:351-372. [PMID: 38833723 DOI: 10.1139/bcb-2024-0046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024] Open
Abstract
Group I and II introns are large catalytic RNAs (ribozymes) that are frequently encountered in fungal mitochondrial genomes. The discovery of respiratory mutants linked to intron splicing defects demonstrated that for the efficient removal of organellar introns there appears to be a requirement of protein splicing factors. These splicing factors can be intron-encoded proteins with maturase activities that usually promote the splicing of the introns that encode them (cis-acting) and/or nuclear-encoded factors that can promote the splicing of a range of different introns (trans-acting). Compared to plants organellar introns, fungal mitochondrial intron splicing is still poorly explored, especially in terms of the synergy of nuclear factors with intron-encoded maturases that has direct impact on splicing through their association with intron RNA. In addition, nuclear-encoded accessory factors might drive the splicing impetus through translational activation, mitoribosome assembly, and phosphorylation-mediated RNA turnover. This review explores protein-assisted splicing of introns by nuclear and mitochondrial-encoded maturases as a means of mitonuclear interplay that could respond to environmental and developmental factors promoting phenotypic adaptation and potentially speciation. It also highlights key evolutionary events that have led to changes in structure and ATP-dependence to accommodate the dual functionality of nuclear and organellar splicing factors.
Collapse
Affiliation(s)
| | - Georg Hausner
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
2
|
Golik P. RNA processing and degradation mechanisms shaping the mitochondrial transcriptome of budding yeasts. IUBMB Life 2024; 76:38-52. [PMID: 37596708 DOI: 10.1002/iub.2779] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 07/25/2023] [Indexed: 08/20/2023]
Abstract
Yeast mitochondrial genes are expressed as polycistronic transcription units that contain RNAs from different classes and show great evolutionary variability. The promoters are simple, and transcriptional control is rudimentary. Posttranscriptional mechanisms involving RNA maturation, stability, and degradation are thus the main force shaping the transcriptome and determining the expression levels of individual genes. Primary transcripts are fragmented by tRNA excision by RNase P and tRNase Z, additional processing events occur at the dodecamer site at the 3' end of protein-coding sequences. groups I and II introns are excised in a self-splicing reaction that is supported by protein splicing factors encoded by the nuclear genes, or by the introns themselves. The 3'-to-5' exoribonucleolytic complex called mtEXO is the main RNA degradation activity involved in RNA turnover and processing, supported by an auxiliary 5'-to-3' exoribonuclease Pet127p. tRNAs and, to a lesser extent, rRNAs undergo several different base modifications. This complex gene expression system relies on the coordinated action of mitochondrial and nuclear genes and undergoes rapid evolution, contributing to speciation events. Moving beyond the classical model yeast Saccharomyces cerevisiae to other budding yeasts should provide important insights into the coevolution of both genomes that constitute the eukaryotic genetic system.
Collapse
Affiliation(s)
- Pawel Golik
- Faculty of Biology, Institute of Genetics and Biotechnology, University of Warsaw, Warsaw, Poland
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
3
|
Overexpression of MRX9 impairs processing of RNAs encoding mitochondrial oxidative phosphorylation factors COB and COX1 in yeast. J Biol Chem 2022; 298:102214. [PMID: 35779633 PMCID: PMC9307953 DOI: 10.1016/j.jbc.2022.102214] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 11/24/2022] Open
Abstract
Mitochondrial translation is a highly regulated process, and newly synthesized mitochondrial products must first associate with several nuclear-encoded auxiliary factors to form oxidative phosphorylation complexes. The output of mitochondrial products should therefore be in stoichiometric equilibrium with the nuclear-encoded products to prevent unnecessary energy expense or the accumulation of pro-oxidant assembly modules. In the mitochondrial DNA of Saccharomyces cerevisiae, COX1 encodes subunit 1 of the cytochrome c oxidase and COB the central core of the cytochrome bc1 electron transfer complex; however, factors regulating the expression of these mitochondrial products are not completely described. Here, we identified Mrx9p as a new factor that controls COX1 and COB expression. We isolated MRX9 in a screen for mitochondrial factors that cause poor accumulation of newly synthesized Cox1p and compromised transition to the respiratory metabolism. Northern analyses indicated lower levels of COX1 and COB mature mRNAs accompanied by an accumulation of unprocessed transcripts in the presence of excess Mrx9p. In a strain devoid of mitochondrial introns, MRX9 overexpression did not affect COX1 and COB translation or respiratory adaptation, implying Mrx9p regulates processing of COX1 and COB RNAs. In addition, we found Mrx9p was localized in the mitochondrial inner membrane, facing the matrix, as a portion of it cosedimented with mitoribosome subunits and its removal or overexpression altered Mss51p sedimentation. Finally, we showed accumulation of newly synthesized Cox1p in the absence of Mrx9p was diminished in cox14 null mutants. Taken together, these data indicate a regulatory role of Mrx9p in COX1 RNA processing.
Collapse
|
4
|
MISF2 Encodes an Essential Mitochondrial Splicing Cofactor Required for nad2 mRNA Processing and Embryo Development in Arabidopsis thaliana. Int J Mol Sci 2022; 23:ijms23052670. [PMID: 35269810 PMCID: PMC8910670 DOI: 10.3390/ijms23052670] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 12/20/2022] Open
Abstract
Mitochondria play key roles in cellular energy metabolism in eukaryotes. Mitochondria of most organisms contain their own genome and specific transcription and translation machineries. The expression of angiosperm mtDNA involves extensive RNA-processing steps, such as RNA trimming, editing, and the splicing of numerous group II-type introns. Pentatricopeptide repeat (PPR) proteins are key players in plant organelle gene expression and RNA metabolism. In the present analysis, we reveal the function of the MITOCHONDRIAL SPLICING FACTOR 2 gene (MISF2, AT3G22670) and show that it encodes a mitochondria-localized PPR protein that is crucial for early embryo development in Arabidopsis. Molecular characterization of embryo-rescued misf2 plantlets indicates that the splicing of nad2 intron 1, and thus respiratory complex I biogenesis, are strongly compromised. Moreover, the molecular function seems conserved between MISF2 protein in Arabidopsis and its orthologous gene (EMP10) in maize, suggesting that the ancestor of MISF2/EMP10 was recruited to function in nad2 processing before the monocot-dicot divergence ~200 million years ago. These data provide new insights into the function of nuclear-encoded factors in mitochondrial gene expression and respiratory chain biogenesis during plant embryo development.
Collapse
|
5
|
Mukhopadhyay J, Hausner G. Organellar Introns in Fungi, Algae, and Plants. Cells 2021; 10:cells10082001. [PMID: 34440770 PMCID: PMC8393795 DOI: 10.3390/cells10082001] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/31/2021] [Accepted: 08/05/2021] [Indexed: 12/16/2022] Open
Abstract
Introns are ubiquitous in eukaryotic genomes and have long been considered as ‘junk RNA’ but the huge energy expenditure in their transcription, removal, and degradation indicate that they may have functional significance and can offer evolutionary advantages. In fungi, plants and algae introns make a significant contribution to the size of the organellar genomes. Organellar introns are classified as catalytic self-splicing introns that can be categorized as either Group I or Group II introns. There are some biases, with Group I introns being more frequently encountered in fungal mitochondrial genomes, whereas among plants Group II introns dominate within the mitochondrial and chloroplast genomes. Organellar introns can encode a variety of proteins, such as maturases, homing endonucleases, reverse transcriptases, and, in some cases, ribosomal proteins, along with other novel open reading frames. Although organellar introns are viewed to be ribozymes, they do interact with various intron- or nuclear genome-encoded protein factors that assist in the intron RNA to fold into competent splicing structures, or facilitate the turn-over of intron RNAs to prevent reverse splicing. Organellar introns are also known to be involved in non-canonical splicing, such as backsplicing and trans-splicing which can result in novel splicing products or, in some instances, compensate for the fragmentation of genes by recombination events. In organellar genomes, Group I and II introns may exist in nested intronic arrangements, such as introns within introns, referred to as twintrons, where splicing of the external intron may be dependent on splicing of the internal intron. These nested or complex introns, with two or three-component intron modules, are being explored as platforms for alternative splicing and their possible function as molecular switches for modulating gene expression which could be potentially applied towards heterologous gene expression. This review explores recent findings on organellar Group I and II introns, focusing on splicing and mobility mechanisms aided by associated intron/nuclear encoded proteins and their potential roles in organellar gene expression and cross talk between nuclear and organellar genomes. Potential application for these types of elements in biotechnology are also discussed.
Collapse
MESH Headings
- Evolution, Molecular
- Gene Expression Regulation, Fungal
- Gene Expression Regulation, Plant
- Genome, Fungal
- Genome, Plant
- Introns
- Organelles/genetics
- Organelles/metabolism
- RNA Splicing
- RNA Stability
- RNA, Algal/genetics
- RNA, Algal/metabolism
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- RNA, Plant/genetics
- RNA, Plant/metabolism
- RNA, Untranslated/genetics
- RNA, Untranslated/metabolism
- Transcription, Genetic
Collapse
|
6
|
Franco LVR, Su CH, Tzagoloff A. Modular assembly of yeast mitochondrial ATP synthase and cytochrome oxidase. Biol Chem 2021; 401:835-853. [PMID: 32142477 DOI: 10.1515/hsz-2020-0112] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 02/24/2020] [Indexed: 12/27/2022]
Abstract
The respiratory pathway of mitochondria is composed of four electron transfer complexes and the ATP synthase. In this article, we review evidence from studies of Saccharomyces cerevisiae that both ATP synthase and cytochrome oxidase (COX) are assembled from independent modules that correspond to structurally and functionally identifiable components of each complex. Biogenesis of the respiratory chain requires a coordinate and balanced expression of gene products that become partner subunits of the same complex, but are encoded in the two physically separated genomes. Current evidence indicates that synthesis of two key mitochondrial encoded subunits of ATP synthase is regulated by the F1 module. Expression of COX1 that codes for a subunit of the COX catalytic core is also regulated by a mechanism that restricts synthesis of this subunit to the availability of a nuclear-encoded translational activator. The respiratory chain must maintain a fixed stoichiometry of the component enzyme complexes during cell growth. We propose that high-molecular-weight complexes composed of Cox6, a subunit of COX, and of the Atp9 subunit of ATP synthase play a key role in establishing the ratio of the two complexes during their assembly.
Collapse
Affiliation(s)
- Leticia Veloso Ribeiro Franco
- Department of Biological Sciences, Columbia University, New York City, NY 10027, USA.,Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, 05508-000, Brasil
| | - Chen Hsien Su
- Department of Biological Sciences, Columbia University, New York City, NY 10027, USA
| | - Alexander Tzagoloff
- Department of Biological Sciences, Columbia University, New York City, NY 10027, USA
| |
Collapse
|
7
|
Human Mitochondrial Pathologies of the Respiratory Chain and ATP Synthase: Contributions from Studies of Saccharomyces cerevisiae. Life (Basel) 2020; 10:life10110304. [PMID: 33238568 PMCID: PMC7700678 DOI: 10.3390/life10110304] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 12/14/2022] Open
Abstract
The ease with which the unicellular yeast Saccharomyces cerevisiae can be manipulated genetically and biochemically has established this organism as a good model for the study of human mitochondrial diseases. The combined use of biochemical and molecular genetic tools has been instrumental in elucidating the functions of numerous yeast nuclear gene products with human homologs that affect a large number of metabolic and biological processes, including those housed in mitochondria. These include structural and catalytic subunits of enzymes and protein factors that impinge on the biogenesis of the respiratory chain. This article will review what is currently known about the genetics and clinical phenotypes of mitochondrial diseases of the respiratory chain and ATP synthase, with special emphasis on the contribution of information gained from pet mutants with mutations in nuclear genes that impair mitochondrial respiration. Our intent is to provide the yeast mitochondrial specialist with basic knowledge of human mitochondrial pathologies and the human specialist with information on how genes that directly and indirectly affect respiration were identified and characterized in yeast.
Collapse
|
8
|
Seshadri SR, Banarjee C, Barros MH, Fontanesi F. The translational activator Sov1 coordinates mitochondrial gene expression with mitoribosome biogenesis. Nucleic Acids Res 2020; 48:6759-6774. [PMID: 32449921 PMCID: PMC7337963 DOI: 10.1093/nar/gkaa424] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 02/07/2023] Open
Abstract
Mitoribosome biogenesis is an expensive metabolic process that is essential to maintain cellular respiratory capacity and requires the stoichiometric accumulation of rRNAs and proteins encoded in two distinct genomes. In yeast, the ribosomal protein Var1, alias uS3m, is mitochondrion-encoded. uS3m is a protein universally present in all ribosomes, where it forms part of the small subunit (SSU) mRNA entry channel and plays a pivotal role in ribosome loading onto the mRNA. However, despite its critical functional role, very little is known concerning VAR1 gene expression. Here, we demonstrate that the protein Sov1 is an in bona fide VAR1 mRNA translational activator and additionally interacts with newly synthesized Var1 polypeptide. Moreover, we show that Sov1 assists the late steps of mtSSU biogenesis involving the incorporation of Var1, an event necessary for uS14 and mS46 assembly. Notably, we have uncovered a translational regulatory mechanism by which Sov1 fine-tunes Var1 synthesis with its assembly into the mitoribosome.
Collapse
Affiliation(s)
- Suhas R Seshadri
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Chitra Banarjee
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Mario H Barros
- Departamento de Microbiologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508-900, Brazil
| | - Flavia Fontanesi
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
9
|
Fonseca PLC, Badotti F, De-Paula RB, Araújo DS, Bortolini DE, Del-Bem LE, Azevedo VA, Brenig B, Aguiar ERGR, Góes-Neto A. Exploring the Relationship Among Divergence Time and Coding and Non-coding Elements in the Shaping of Fungal Mitochondrial Genomes. Front Microbiol 2020; 11:765. [PMID: 32411111 PMCID: PMC7202290 DOI: 10.3389/fmicb.2020.00765] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 03/30/2020] [Indexed: 12/24/2022] Open
Abstract
The order Hypocreales (Ascomycota) is composed of ubiquitous and ecologically diverse fungi such as saprobes, biotrophs, and pathogens. Despite their phylogenetic relationship, these species exhibit high variability in biomolecules production, lifestyle, and fitness. The mitochondria play an important role in the fungal biology, providing energy to the cells and regulating diverse processes, such as immune response. In spite of its importance, the mechanisms that shape fungal mitogenomes are still poorly understood. Herein, we investigated the variability and evolution of mitogenomes and its relationship with the divergence time using the order Hypocreales as a study model. We sequenced and annotated for the first time Trichoderma harzianum mitochondrial genome (mtDNA), which was compared to other 34 mtDNAs species that were publicly available. Comparative analysis revealed a substantial structural and size variation on non-coding mtDNA regions, despite the conservation of copy number, length, and structure of protein-coding elements. Interestingly, we observed a highly significant correlation between mitogenome length, and the number and size of non-coding sequences in mitochondrial genome. Among the non-coding elements, group I and II introns and homing endonucleases genes (HEGs) were the main contributors to discrepancies in mitogenomes structure and length. Several intronic sequences displayed sequence similarity among species, and some of them are conserved even at gene position, and were present in the majority of mitogenomes, indicating its origin in a common ancestor. On the other hand, we also identified species-specific introns that advocate for the origin by different mechanisms. Investigation of mitochondrial gene transfer to the nuclear genome revealed that nuclear copies of the nad5 are the most frequent while atp8, atp9, and cox3 could not be identified in any of the nuclear genomes analyzed. Moreover, we also estimated the divergence time of each species and investigated its relationship with coding and non-coding elements as well as with the length of mitogenomes. Altogether, our results demonstrated that introns and HEGs are key elements on mitogenome shaping and its presence on fast-evolving mtDNAs could be mostly explained by its divergence time, although the intron sharing profile suggests the involvement of other mechanisms on the mitochondrial genome evolution, such as horizontal transference.
Collapse
Affiliation(s)
- Paula L. C. Fonseca
- Molecular and Computational Biology of Fungi Laboratory, Department of Microbiology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Fernanda Badotti
- Department of Chemistry, Centro Federal de Educação Tecnológica de Minas Gerais, Belo Horizonte, Brazil
| | - Ruth B. De-Paula
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Daniel S. Araújo
- Molecular and Computational Biology of Fungi Laboratory, Department of Microbiology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Dener E. Bortolini
- Program of Bioinformatics, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Luiz-Eduardo Del-Bem
- Program of Bioinformatics, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Department of Botany, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Vasco A. Azevedo
- Program of Bioinformatics, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Bertram Brenig
- Institute of Veterinary Medicine, Burckhardtweg, University of Göttingen, Göttingen, Germany
| | - Eric R. G. R. Aguiar
- Program of Bioinformatics, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Aristóteles Góes-Neto
- Molecular and Computational Biology of Fungi Laboratory, Department of Microbiology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Program of Bioinformatics, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
10
|
Salvatori R, Kehrein K, Singh AP, Aftab W, Möller-Hergt BV, Forne I, Imhof A, Ott M. Molecular Wiring of a Mitochondrial Translational Feedback Loop. Mol Cell 2020; 77:887-900.e5. [DOI: 10.1016/j.molcel.2019.11.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 09/03/2019] [Accepted: 11/25/2019] [Indexed: 11/16/2022]
|
11
|
Dujon B. Mitochondrial genetics revisited. Yeast 2020; 37:191-205. [DOI: 10.1002/yea.3445] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 10/05/2019] [Accepted: 10/08/2019] [Indexed: 12/17/2022] Open
Affiliation(s)
- Bernard Dujon
- Department Genomes and GeneticsInstitut Pasteur Paris France
| |
Collapse
|
12
|
Barros MH, McStay GP. Modular biogenesis of mitochondrial respiratory complexes. Mitochondrion 2019; 50:94-114. [PMID: 31669617 DOI: 10.1016/j.mito.2019.10.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/04/2019] [Accepted: 10/10/2019] [Indexed: 11/29/2022]
Abstract
Mitochondrial function relies on the activity of oxidative phosphorylation to synthesise ATP and generate an electrochemical gradient across the inner mitochondrial membrane. These coupled processes are mediated by five multi-subunit complexes that reside in this inner membrane. These complexes are the product of both nuclear and mitochondrial gene products. Defects in the function or assembly of these complexes can lead to mitochondrial diseases due to deficits in energy production and mitochondrial functions. Appropriate biogenesis and function are mediated by a complex number of assembly factors that promote maturation of specific complex subunits to form the active oxidative phosphorylation complex. The understanding of the biogenesis of each complex has been informed by studies in both simple eukaryotes such as Saccharomyces cerevisiae and human patients with mitochondrial diseases. These studies reveal each complex assembles through a pathway using specific subunits and assembly factors to form kinetically distinct but related assembly modules. The current understanding of these complexes has embraced the revolutions in genomics and proteomics to further our knowledge on the impact of mitochondrial biology in genetics, medicine, and evolution.
Collapse
Affiliation(s)
- Mario H Barros
- Departamento de Microbiologia - Instituto de Ciências Biomédicas, Universidade de São Paulo, Brazil.
| | - Gavin P McStay
- Department of Biological Sciences, Staffordshire University, Stoke-on-Trent, United Kingdom.
| |
Collapse
|
13
|
What history tells us XLIV: The construction of the zinc finger nucleases. J Biosci 2017; 42:527-530. [PMID: 29229870 DOI: 10.1007/s12038-017-9723-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Reifschneider O, Marx C, Jacobs J, Kollipara L, Sickmann A, Wolters D, Kück U. A Ribonucleoprotein Supercomplex Involved in trans-Splicing of Organelle Group II Introns. J Biol Chem 2016; 291:23330-23342. [PMID: 27645995 DOI: 10.1074/jbc.m116.750570] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Indexed: 02/01/2023] Open
Abstract
In the chloroplast of the green alga Chlamydomonas reinhardtii, two discontinuous group II introns, psaA-i1 and psaA-i2, splice in trans, and thus their excision process resembles the nuclear spliceosomal splicing pathway. Here, we address the question whether fragmentation of trans-acting RNAs is accompanied by the formation of a chloroplast spliceosome-like machinery. Using a combination of liquid chromatography-mass spectrometry (LC-MS), size exclusion chromatography, and quantitative RT-PCR, we provide the first characterization of a high molecular weight ribonucleoprotein apparatus participating in psaA mRNA splicing. This supercomplex contains two subcomplexes (I and II) that are responsible for trans-splicing of either psaA-i1 or psaA-i2. We further demonstrate that both subcomplexes are associated with intron RNA, which is a prerequisite for the correct assembly of subcomplex I. This study contributes further to our view of how the eukaryotic nuclear spliceosome evolved after bacterial endosymbiosis through fragmentation of self-splicing group II introns into a dynamic, protein-rich RNP machinery.
Collapse
Affiliation(s)
| | - Christina Marx
- From the Lehrstuhl für Allgemeine und Molekulare Botanik
| | - Jessica Jacobs
- From the Lehrstuhl für Allgemeine und Molekulare Botanik
| | - Laxmikanth Kollipara
- the Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Otto-Hahn-Strasse 6b, 44227 Dortmund, Germany, and
| | - Albert Sickmann
- the Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Otto-Hahn-Strasse 6b, 44227 Dortmund, Germany, and.,the School of Natural and Computing Sciences, University of Aberdeen, Meston Building, Meston Walk, Old Aberdeen AB24 3UE, United Kingdom.,the Medizinische Fakultät, Medizinisches Proteom-Center (MPC), and
| | - Dirk Wolters
- the Department of Analytical Chemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44801 Bochum, Germany
| | - Ulrich Kück
- From the Lehrstuhl für Allgemeine und Molekulare Botanik,
| |
Collapse
|
15
|
Ostojić J, Panozzo C, Bourand-Plantefol A, Herbert CJ, Dujardin G, Bonnefoy N. Ribosome recycling defects modify the balance between the synthesis and assembly of specific subunits of the oxidative phosphorylation complexes in yeast mitochondria. Nucleic Acids Res 2016; 44:5785-97. [PMID: 27257059 PMCID: PMC4937339 DOI: 10.1093/nar/gkw490] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 05/20/2016] [Indexed: 01/07/2023] Open
Abstract
Mitochondria have their own translation machinery that produces key subunits of the OXPHOS complexes. This machinery relies on the coordinated action of nuclear-encoded factors of bacterial origin that are well conserved between humans and yeast. In humans, mutations in these factors can cause diseases; in yeast, mutations abolishing mitochondrial translation destabilize the mitochondrial DNA. We show that when the mitochondrial genome contains no introns, the loss of the yeast factors Mif3 and Rrf1 involved in ribosome recycling neither blocks translation nor destabilizes mitochondrial DNA. Rather, the absence of these factors increases the synthesis of the mitochondrially-encoded subunits Cox1, Cytb and Atp9, while strongly impairing the assembly of OXPHOS complexes IV and V. We further show that in the absence of Rrf1, the COX1 specific translation activator Mss51 accumulates in low molecular weight forms, thought to be the source of the translationally-active form, explaining the increased synthesis of Cox1. We propose that Rrf1 takes part in the coordination between translation and OXPHOS assembly in yeast mitochondria. These interactions between general and specific translation factors might reveal an evolutionary adaptation of the bacterial translation machinery to the set of integral membrane proteins that are translated within mitochondria.
Collapse
Affiliation(s)
- Jelena Ostojić
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, UEVE, 91198, Gif-sur-Yvette cedex, France
| | - Cristina Panozzo
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, UEVE, 91198, Gif-sur-Yvette cedex, France
| | - Alexa Bourand-Plantefol
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, UEVE, 91198, Gif-sur-Yvette cedex, France
| | - Christopher J Herbert
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, UEVE, 91198, Gif-sur-Yvette cedex, France
| | - Geneviève Dujardin
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, UEVE, 91198, Gif-sur-Yvette cedex, France
| | - Nathalie Bonnefoy
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, UEVE, 91198, Gif-sur-Yvette cedex, France
| |
Collapse
|
16
|
Slonimski PP, Cooper TG, von Borstel RCJ. Piotr P. Slonimski - The Warrior Pope: The discovery of mitochondrial (petite) mutants and split genes. FEMS Yeast Res 2016; 16:fow004. [PMID: 26825846 DOI: 10.1093/femsyr/fow004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 01/22/2016] [Indexed: 11/14/2022] Open
|
17
|
Kolondra A, Labedzka-Dmoch K, Wenda JM, Drzewicka K, Golik P. The transcriptome of Candida albicans mitochondria and the evolution of organellar transcription units in yeasts. BMC Genomics 2015; 16:827. [PMID: 26487099 PMCID: PMC4618339 DOI: 10.1186/s12864-015-2078-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 10/13/2015] [Indexed: 02/06/2023] Open
Abstract
Background Yeasts show remarkable variation in the organization of their mitochondrial genomes, yet there is little experimental data on organellar gene expression outside few model species. Candida albicans is interesting as a human pathogen, and as a representative of a clade that is distant from the model yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe. Unlike them, it encodes seven Complex I subunits in its mtDNA. No experimental data regarding organellar expression were available prior to this study. Methods We used high-throughput RNA sequencing and traditional RNA biology techniques to study the mitochondrial transcriptome of C. albicans strains BWP17 and SN148. Results The 14 protein-coding genes, two ribosomal RNA genes, and 24 tRNA genes are expressed as eight primary polycistronic transcription units. We also found transcriptional activity in the noncoding regions, and antisense transcripts that could be a part of a regulatory mechanism. The promoter sequence is a variant of the nonanucleotide identified in other yeast mtDNAs, but some of the active promoters show significant departures from the consensus. The primary transcripts are processed by a tRNA punctuation mechanism into the monocistronic and bicistronic mature RNAs. The steady state levels of various mature transcripts exhibit large differences that are a result of posttranscriptional regulation. Transcriptome analysis allowed to precisely annotate the positions of introns in the RNL (2), COB (2) and COX1 (4) genes, as well as to refine the annotation of tRNAs and rRNAs. Comparative study of the mitochondrial genome organization in various Candida species indicates that they undergo shuffling in blocks usually containing 2–3 genes, and that their arrangement in primary transcripts is not conserved. tRNA genes with their associated promoters, as well as GC-rich sequence elements play an important role in these evolutionary events. Conclusions The main evolutionary force shaping the mitochondrial genomes of yeasts is the frequent recombination, constantly breaking apart and joining genes into novel primary transcription units. The mitochondrial transcription units are constantly rearranged in evolution shaping the features of gene expression, such as the presence of secondary promoter sites that are inactive, or act as “booster” promoters, simplified transcriptional regulation and reliance on posttranscriptional mechanisms. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2078-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Adam Kolondra
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106, Warsaw, Poland.
| | - Karolina Labedzka-Dmoch
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106, Warsaw, Poland.
| | - Joanna M Wenda
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106, Warsaw, Poland.
| | - Katarzyna Drzewicka
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106, Warsaw, Poland.
| | - Pawel Golik
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106, Warsaw, Poland. .,Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106, Warsaw, Poland.
| |
Collapse
|
18
|
Gargouri A, Macadré C, Lazowska J. A single mutation in the 15S rRNA gene confers non sense suppressor activity and interacts with mRF1 the release factor in yeast mitochondria. MICROBIAL CELL 2015; 2:343-352. [PMID: 28357310 PMCID: PMC5354577 DOI: 10.15698/mic2015.09.223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We have determined the nucleotide sequence of the mim3-1 mitochondrial ribosomal suppressor, acting on ochre mitochondrial mutations and one frameshift mutation in Saccharomyces cerevisiae. The 15s rRNA suppressor gene contains a G633 to C transversion. Yeast mitochondrial G633 corresponds to G517 of the E.coli 15S rRNA, which is occupied by an invariant G in all known small rRNA sequences. Interestingly, this mutation has occurred at the same position as the known MSU1 mitochondrial suppressor which changes G633 to A. The suppressor mutation lies in a highly conserved region of the rRNA, known in E.coli as the 530-loop, interacting with the S4, S5 and S12 ribosomal proteins. We also show an interesting interaction between the mitochondrial mim3-1 and the nuclear nam3-1 suppressors, both of which have the same action spectrum on mitochondrial mutations: nam3-1 abolishes the suppressor effect when present with mim3-1 in the same haploid cell. We discuss these results in the light of the nature of Nam3, identified by 1 as the yeast mitochondrial translation release factor. A hypothetical mechanism of suppression by "ribosome shifting" is also discussed in view of the nature of mutations suppressed and not suppressed.
Collapse
Affiliation(s)
- Ali Gargouri
- Centre de Génétique Moléculaire, Laboratoire propre du C.N.R.S associé à l'Université Pierre et Marie Curie. CNRS F-91198 Gif-sur-Yvette cedex, France
| | - Catherine Macadré
- Centre de Génétique Moléculaire, Laboratoire propre du C.N.R.S associé à l'Université Pierre et Marie Curie. CNRS F-91198 Gif-sur-Yvette cedex, France
| | - Jaga Lazowska
- Centre de Génétique Moléculaire, Laboratoire propre du C.N.R.S associé à l'Université Pierre et Marie Curie. CNRS F-91198 Gif-sur-Yvette cedex, France
| |
Collapse
|
19
|
Hu MJ, Grabke A, Dowling ME, Holstein HJ, Schnabel G. Resistance in Colletotrichum siamense From Peach and Blueberry to Thiophanate-Methyl and Azoxystrobin. PLANT DISEASE 2015; 99:806-814. [PMID: 30699530 DOI: 10.1094/pdis-10-14-1077-re] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Anthracnose fruit rot was observed in some late-season peach cultivars in South Carolina in the 2012 and 2013 production seasons as well as increased anthracnose leaf spot of blueberry in a commercial operation of the same state in 2012. Single-spore isolates of Colletotrichum siamense were either sensitive or resistant to both thiophanate-methyl and azoxystrobin with the concentration of the fungicide at which fungal development is inhibited by 50% of ≥100 μg/ml. Resistant isolates revealed the E198A mutation in β-tubulin and the G143A mutation in cytochrome b. Nucleotide sequence analysis of the complete CYTB gene from genomic DNA of C. siamense isolates revealed an intronless genotype (CsI) and a genotype revealing two introns (CsII) at amino acid positions 131 and 164. Resistance to thiophanate-methyl or azoxystrobin was not found in isolates of C. fructicola collected from peach fruit. The CYTB gene of isolates of this species was of the CfII genotype or revealed a unique CfIIa genotype. Phylogenetic analysis of C. siamense isolates from different locations and different crops showed that the resistant isolates were genetically closer to each other than to sensitive isolates, suggesting that field resistance to thiophanate-methyl and azoxystrobin fungicides is derived from a common ancestor.
Collapse
Affiliation(s)
- Meng-Jun Hu
- School of Agricultural, Forest & Environmental Sciences, Clemson University, Clemson, SC 29634
| | - Anja Grabke
- School of Agricultural, Forest & Environmental Sciences, Clemson University, Clemson, SC 29634
| | - Madeline E Dowling
- School of Agricultural, Forest & Environmental Sciences, Clemson University, Clemson, SC 29634
| | - Helen J Holstein
- School of Agricultural, Forest & Environmental Sciences, Clemson University, Clemson, SC 29634
| | - Guido Schnabel
- School of Agricultural, Forest & Environmental Sciences, Clemson University, Clemson, SC 29634
| |
Collapse
|
20
|
Aguileta G, de Vienne DM, Ross ON, Hood ME, Giraud T, Petit E, Gabaldón T. High variability of mitochondrial gene order among fungi. Genome Biol Evol 2015; 6:451-65. [PMID: 24504088 PMCID: PMC3942027 DOI: 10.1093/gbe/evu028] [Citation(s) in RCA: 162] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
From their origin as an early alpha proteobacterial endosymbiont to their current state as cellular organelles, large-scale genomic reorganization has taken place in the mitochondria of all main eukaryotic lineages. So far, most studies have focused on plant and animal mitochondrial (mt) genomes (mtDNA), but fungi provide new opportunities to study highly differentiated mtDNAs. Here, we analyzed 38 complete fungal mt genomes to investigate the evolution of mtDNA gene order among fungi. In particular, we looked for evidence of nonhomologous intrachromosomal recombination and investigated the dynamics of gene rearrangements. We investigated the effect that introns, intronic open reading frames (ORFs), and repeats may have on gene order. Additionally, we asked whether the distribution of transfer RNAs (tRNAs) evolves independently to that of mt protein-coding genes. We found that fungal mt genomes display remarkable variation between and within the major fungal phyla in terms of gene order, genome size, composition of intergenic regions, and presence of repeats, introns, and associated ORFs. Our results support previous evidence for the presence of mt recombination in all fungal phyla, a process conspicuously lacking in most Metazoa. Overall, the patterns of rearrangements may be explained by the combined influences of recombination (i.e., most likely nonhomologous and intrachromosomal), accumulated repeats, especially at intergenic regions, and to a lesser extent, mobile element dynamics.
Collapse
Affiliation(s)
- Gabriela Aguileta
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
21
|
Yin LF, Wang F, Zhang Y, Kuang H, Schnabel G, Li GQ, Luo CX. Evolutionary analysis revealed the horizontal transfer of the Cyt b gene from Fungi to Chromista. Mol Phylogenet Evol 2014; 76:155-61. [DOI: 10.1016/j.ympev.2014.03.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 03/06/2014] [Accepted: 03/15/2014] [Indexed: 01/21/2023]
|
22
|
Stoddard BL. Homing endonucleases from mobile group I introns: discovery to genome engineering. Mob DNA 2014; 5:7. [PMID: 24589358 PMCID: PMC3943268 DOI: 10.1186/1759-8753-5-7] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 02/13/2014] [Indexed: 12/20/2022] Open
Abstract
Homing endonucleases are highly specific DNA cleaving enzymes that are encoded within genomes of all forms of microbial life including phage and eukaryotic organelles. These proteins drive the mobility and persistence of their own reading frames. The genes that encode homing endonucleases are often embedded within self-splicing elements such as group I introns, group II introns and inteins. This combination of molecular functions is mutually advantageous: the endonuclease activity allows surrounding introns and inteins to act as invasive DNA elements, while the splicing activity allows the endonuclease gene to invade a coding sequence without disrupting its product. Crystallographic analyses of representatives from all known homing endonuclease families have illustrated both their mechanisms of action and their evolutionary relationships to a wide range of host proteins. Several homing endonucleases have been completely redesigned and used for a variety of genome engineering applications. Recent efforts to augment homing endonucleases with auxiliary DNA recognition elements and/or nucleic acid processing factors has further accelerated their use for applications that demand exceptionally high specificity and activity.
Collapse
Affiliation(s)
- Barry L Stoddard
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave, N, A3-025, Seattle, WA 98109, USA.
| |
Collapse
|
23
|
Michel F. A maturase-like coding sequence downstream of the OXI2 gene of yeast mitochondrial DNA is interrupted by two GC clusters and a putative end-of-messenger signal. Curr Genet 2013; 8:307-17. [PMID: 24177800 DOI: 10.1007/bf00419729] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/1984] [Indexed: 11/29/2022]
Abstract
By completing and correcting the sequence of a 1.8 kb DNA segment downstream of the oxi2 gene of Saccharomyces cerevisiae, a long, potentially coding sequence ("RF2") has been identified. The sequence is rather closely related to the RF1 open reading frame, downstream of the oxil gene, and, further, to the major family of intronic open reading frames. The RF2 open reading frame is not continuous, however, for it is interrupted by two GC clusters, both of which ultimately result in a -1 frameshift. Comparison with RF1 reveals a third insertion. This is centered on an oligo nucleotide, AATAATATTCTTA, which is found (sometimes in a slightly modified form) downstream of ten proven or suspected protein coding genes, including RF1 and RF2, and is known to terminate the apocytochrome b messenger RNA. It is suggested from the known distribution of this putative "end-of-messenger" signal, that it could play an essential part in controlling the expression of several minor proteins, both intronic and non-intronic. The possibility of the RF2 sequence being functional in spite of its interruptions is also discussed.
Collapse
Affiliation(s)
- F Michel
- Centre de Génétique Moléculaire, Laboratoire Propre du Centre National de la Recherche Scientifique, Associé à l'Université Pierre et Marie Curie, 91190, Gif-sur-Yvette, France
| |
Collapse
|
24
|
Mitochondrial and nuclear mitoribosomal suppressors that enable misreading of ochre codons in yeast mitochondria : I. Isolation, localization and allelism of suppressors. Curr Genet 2013; 9:1-10. [PMID: 24173504 DOI: 10.1007/bf00396198] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/1984] [Indexed: 10/26/2022]
Abstract
A systematic search for suppressors of mutations which cause a deficiency in the splicing of mitochondrial RNA has been undertaken. These splicing mutations were localized in the mRNA-maturase coding sequence of the second intron of the cob-boxgene, i.e. in the box3locus. A total of 953 revertants (mostly spontaneous in origin) were isolated and their genetic nature (nuclear vs. mitochondrial) and phenotype characterized.Most revertants were mitochondrially determined and displayed a wild-type phenotype. A mitochondrial suppressor unlinked with the box3 (-)target mutation was uncovered among the revertants displaying a pseudo-wild phenotype: out of 26 revertants analyzed, derived from 7 different box3(-) mutants only one such suppressor mutation mim3-1 was found. It was localized by rho(-) deletion mapping in the region between the oxi2 and oxi3 gene, within (or in the vicinity) the gene specifying the 15S ribosomal RNA.Nuclear suppressors were isolated from seven different box3 (-)mutants. All were recessive and had a pseudo-wild phenotype. Three such suppressors nam3-1, nam3-2 and nam3-3 were investigated more extensively. Tetrad analysis has shown that they are alleles of the same nuclear locus NAM3 and mitotic analysis has shown that they do not segregate mitotically.
Collapse
|
25
|
Kruszewska A, Slonimski PP. Mitochondrial and nuclear mitoribosomal suppressors that enable misreading of ochre codons in yeast mitochondria : II. Specificity and extent of suppressor action. Curr Genet 2013; 9:11-9. [PMID: 24173505 DOI: 10.1007/bf00396199] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/1984] [Indexed: 10/26/2022]
Abstract
We describe studies on the action spectra of the mitochondrial suppressor mim3-1 and the three alleles of nuclear suppressor nam3. Their specificity of action was tested on 516 mit (-) mutations located in different mitochondrial genes. The degree of suppression was quantified by the extent of cytochrome oxidase and cytochrome b synthesis. We show that the four suppressors are allele-specific gene-nonspecific informational suppressors. They would act by changing the structure of the small mitoribosomal subunit which would decrease fidelity of translation enabling misreading of some but not all ochre codons. The implications of the results on the role of intron encoded maturases are discussed.
Collapse
Affiliation(s)
- A Kruszewska
- Centre de Génétique Moléculaire Laboratoire propre du C.N.R.S. associé a l'Université Pierre et Marie Curie, F-91190, Gif-sur-Yvette, France
| | | |
Collapse
|
26
|
Mitochondrial DNA from Podospora anserina : IV. The large ribosomal RNA gene contains two long intervening sequences. Curr Genet 2013; 7:151-7. [PMID: 24173158 DOI: 10.1007/bf00365641] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/1982] [Indexed: 10/26/2022]
Abstract
We have examined the structure of the rRNA genes from the mitochondrial genome of Podospora anserina. Using R-loop analysis, nuclease protection experiments, and Southern blot hybridization analysis we have observed two intervening sequences (IVS) in the large rRNA gene, and none in the small rRNA gene. the IVS sequences are 1.65 kbp and 2.73 kbp long, and the larger of the two is in the position of the conserved IVS found in the mitochondrial genomes of other fungi. We have detected precursor transcripts for the large rRNA, and these data support the observation of two IVS in this gene. We also note that the large and small rRNA genes are separated by approximately 6 kbp of DNA.
Collapse
|
27
|
Youssar L, Grüning BA, Günther S, Hüttel W. Characterization and phylogenetic analysis of the mitochondrial genome of Glarea lozoyensis indicates high diversity within the order Helotiales. PLoS One 2013; 8:e74792. [PMID: 24086376 PMCID: PMC3783487 DOI: 10.1371/journal.pone.0074792] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 08/07/2013] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Glarea lozoyensis is a filamentous fungus used for the industrial production of non-ribosomal peptide pneumocandin B0. In the scope of a whole genome sequencing the complete mitochondrial genome of the fungus has been assembled and annotated. It is the first one of the large polyphyletic Helotiaceae family. A phylogenetic analysis was performed based on conserved proteins of the oxidative phosphorylation system in mitochondrial genomes. RESULTS The total size of the mitochondrial genome is 45,038 bp. It contains the expected 14 genes coding for proteins related to oxidative phosphorylation,two rRNA genes, six hypothetical proteins, three intronic genes of which two are homing endonucleases and a ribosomal protein rps3. Additionally there is a set of 33 tRNA genes. All genes are located on the same strand. Phylogenetic analyses based on concatenated mitochondrial protein sequences confirmed that G. lozoyensis belongs to the order of Helotiales and that it is most closely related to Phialocephala subalpina. However, a comparison with the three other mitochondrial genomes known from Helotialean species revealed remarkable differences in size, gene content and sequence. Moreover, it was found that the gene order found in P. subalpina and Sclerotinia sclerotiorum is not conserved in G. lozoyensis. CONCLUSION The arrangement of genes and other differences found between the mitochondrial genome of G. lozoyensis and those of other Helotiales indicates a broad genetic diversity within this large order. Further mitochondrial genomes are required in order to determine whether there is a continuous transition between the different forms of mitochondrial genomes or G. lozoyensis belongs to a distinct subgroup within Helotiales.
Collapse
Affiliation(s)
- Loubna Youssar
- Pharmaceutical Bioinformatics, Institute of Pharmaceutical Sciences; University of Freiburg, Freiburg, Germany
| | - Björn Andreas Grüning
- Pharmaceutical Bioinformatics, Institute of Pharmaceutical Sciences; University of Freiburg, Freiburg, Germany
| | - Stefan Günther
- Pharmaceutical Bioinformatics, Institute of Pharmaceutical Sciences; University of Freiburg, Freiburg, Germany
| | - Wolfgang Hüttel
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, University of Freiburg, Freiburg, Germany
| |
Collapse
|
28
|
Férandon C, Xu J, Barroso G. The 135 kbp mitochondrial genome of Agaricus bisporus is the largest known eukaryotic reservoir of group I introns and plasmid-related sequences. Fungal Genet Biol 2013; 55:85-91. [DOI: 10.1016/j.fgb.2013.01.009] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 01/02/2013] [Accepted: 01/31/2013] [Indexed: 11/26/2022]
|
29
|
Yin LF, Hu MJ, Wang F, Kuang H, Zhang Y, Schnabel G, Li GQ, Luo CX. Frequent gain and loss of introns in fungal cytochrome b genes. PLoS One 2012; 7:e49096. [PMID: 23145081 PMCID: PMC3492308 DOI: 10.1371/journal.pone.0049096] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 10/03/2012] [Indexed: 11/29/2022] Open
Abstract
In this study, all available cytochrome b (Cyt b) genes from the GOBASE database were compiled and the evolutionary dynamics of the Cyt b gene introns was assessed. Cyt b gene introns were frequently present in the fungal kingdom and some lower plants, but generally absent or rare in Chromista, Protozoa, and Animalia. Fungal Cyt b introns were found at 35 positions in Cyt b genes and the number of introns varied at individual positions from a single representative to 32 different introns at position 131, showing a wide and patchy distribution. Many homologous introns were present at the same position in distantly related species but absent in closely related species, suggesting that introns of the Cyt b genes were frequently lost. On the other hand, highly similar intron sequences were observed in some distantly related species rather than in closely related species, suggesting that these introns were gained independently, likely through lateral transfers. The intron loss-and-gain events could be mediated by transpositions that might have occurred between nuclear and mitochondria. Southern hybridization analysis confirmed that some introns contained repetitive sequences and might be transposable elements. An intron gain in Botryotinia fuckeliana prevented the development of QoI fungicide resistance, suggesting that intron loss-and-gain events were not necessarily beneficial to their host organisms.
Collapse
Affiliation(s)
- Liang-Fen Yin
- College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring & Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Meng-Jun Hu
- College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring & Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Fei Wang
- College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring & Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Hanhui Kuang
- College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Yu Zhang
- College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Guido Schnabel
- School of Agricultural, Forestry & Environmental Sciences, Clemson University, Clemson, South Carolina, United States of America
| | - Guo-Qing Li
- College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring & Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Chao-Xi Luo
- College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring & Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, People’s Republic of China
- * E-mail:
| |
Collapse
|
30
|
Soto IC, Fontanesi F, Liu J, Barrientos A. Biogenesis and assembly of eukaryotic cytochrome c oxidase catalytic core. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1817:883-97. [PMID: 21958598 PMCID: PMC3262112 DOI: 10.1016/j.bbabio.2011.09.005] [Citation(s) in RCA: 159] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 09/07/2011] [Accepted: 09/12/2011] [Indexed: 10/17/2022]
Abstract
Eukaryotic cytochrome c oxidase (COX) is the terminal enzyme of the mitochondrial respiratory chain. COX is a multimeric enzyme formed by subunits of dual genetic origin which assembly is intricate and highly regulated. The COX catalytic core is formed by three mitochondrial DNA encoded subunits, Cox1, Cox2 and Cox3, conserved in the bacterial enzyme. Their biogenesis requires the action of messenger-specific and subunit-specific factors which facilitate the synthesis, membrane insertion, maturation or assembly of the core subunits. The study of yeast strains and human cell lines from patients carrying mutations in structural subunits and COX assembly factors has been invaluable to identify these ancillary factors. Here we review the current state of knowledge of the biogenesis and assembly of the eukaryotic COX catalytic core and discuss the degree of conservation of the players and mechanisms operating from yeast to human. This article is part of a Special Issue entitled: Biogenesis/Assembly of Respiratory Enzyme Complexes.
Collapse
Affiliation(s)
- Ileana C. Soto
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine. Miami, FL
| | - Flavia Fontanesi
- Department of Neurology. University of Miami Miller School of Medicine. Miami, FL
| | - Jingjing Liu
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine. Miami, FL
| | - Antoni Barrientos
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine. Miami, FL
- Department of Neurology. University of Miami Miller School of Medicine. Miami, FL
| |
Collapse
|
31
|
Mounolou JC, Lacroute F. Mitochondrial DNA: an advance in eukaryotic cell biology in the 1960s. Biol Cell 2012; 97:743-8. [PMID: 16104841 DOI: 10.1042/bc20040128] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Between 1950 and 1960 mitochondria were recognized as well-characterized organelles of animal and fungal cells. They shared more functional autonomy than other cellular structures. The transmission of some mitochondrial characteristics did not obey Mendelian rules and followed cytoplasmic inheritance patterns. Was this situation a consequence of still unknown complexities? We present a personal account on how approaches were set up to test very different hypotheses. In the end, it was shown that mitochondria had their own DNA, mitochondrial DNA, and that this molecule carried information specific to these organelles.
Collapse
|
32
|
Férandon C, Moukha S, Callac P, Benedetto JP, Castroviejo M, Barroso G. The Agaricus bisporus cox1 gene: the longest mitochondrial gene and the largest reservoir of mitochondrial group i introns. PLoS One 2010; 5:e14048. [PMID: 21124976 PMCID: PMC2987802 DOI: 10.1371/journal.pone.0014048] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Accepted: 10/29/2010] [Indexed: 11/21/2022] Open
Abstract
In eukaryotes, introns are located in nuclear and organelle genes from several kingdoms. Large introns (up to 5 kbp) are frequent in mitochondrial genomes of plant and fungi but scarce in Metazoa, even if these organisms are grouped with fungi among the Opisthokonts. Mitochondrial introns are classified in two groups (I and II) according to their RNA secondary structure involved in the intron self-splicing mechanism. Most of these mitochondrial group I introns carry a “Homing Endonuclease Gene” (heg) encoding a DNA endonuclease acting in transfer and site-specific integration (“homing”) and allowing intron spreading and gain after lateral transfer even between species from different kingdoms. Opposed to this gain mechanism, is another which implies that introns, which would have been abundant in the ancestral genes, would mainly evolve by loss. The importance of both mechanisms (loss and gain) is matter of debate. Here we report the sequence of the cox1 gene of the button mushroom Agaricus bisporus, the most widely cultivated mushroom in the world. This gene is both the longest mitochondrial gene (29,902 nt) and the largest group I intron reservoir reported to date with 18 group I and 1 group II. An exhaustive analysis of the group I introns available in cox1 genes shows that they are mobile genetic elements whose numerous events of loss and gain by lateral transfer combine to explain their wide and patchy distribution extending over several kingdoms. An overview of intron distribution, together with the high frequency of eroded heg, suggests that they are evolving towards loss. In this landscape of eroded and lost intron sequences, the A. bisporus cox1 gene exhibits a peculiar dynamics of intron keeping and catching, leading to the largest collection of mitochondrial group I introns reported to date in a Eukaryote.
Collapse
Affiliation(s)
- Cyril Férandon
- UMR 5234 CNRS (Centre National de la Recherche Scientifique) – Université Victor Segalen Bordeaux 2, Bordeaux, France
| | - Serge Moukha
- Laboratoire de Toxicologie et Hygiène Appliquée, UFR des Sciences Pharmaceutiques, Université Victor Segalen Bordeaux 2, Bordeaux, France
- INRA (Institut National de la Recherche Agronomique) UR 1264 Mycologie et Sécurité des Aliments, Villenave d'Ornon, France
| | - Philippe Callac
- INRA (Institut National de la Recherche Agronomique) UR 1264 Mycologie et Sécurité des Aliments, Villenave d'Ornon, France
| | - Jean-Pierre Benedetto
- UMR 5234 CNRS (Centre National de la Recherche Scientifique) – Université Victor Segalen Bordeaux 2, Bordeaux, France
| | - Michel Castroviejo
- UMR 5234 CNRS (Centre National de la Recherche Scientifique) – Université Victor Segalen Bordeaux 2, Bordeaux, France
| | - Gérard Barroso
- UMR 5234 CNRS (Centre National de la Recherche Scientifique) – Université Victor Segalen Bordeaux 2, Bordeaux, France
- * E-mail:
| |
Collapse
|
33
|
Doetsch M, Gstrein T, Schroeder R, Fürtig B. Mechanisms of StpA-mediated RNA remodeling. RNA Biol 2010; 7:735-43. [PMID: 21057189 DOI: 10.4161/rna.7.6.13882] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In bacteria, transcription, translation and gene regulation are highly coupled processes. The achievement of a certain functional structure at a distinct temporal and spatial position is therefore essential for RNA molecules. Proteins that facilitate this proper folding of RNA molecules are called RNA chaperones. Here a prominent example from E. coli is reviewed: the nucleoid associated protein StpA. Based on its various RNA remodeling functions, we propose a mechanistic model that explains how StpA promotes RNA folding. Through transient interactions via the RNA backbone, thereby shielding repelling charges in RNA, it pre-positions the RNA molecules for the successful formation of transition states from encounter complexes.
Collapse
|
34
|
Sugita M, Shinozaki K, Sugiura M. Tobacco chloroplast tRNA(UUU) gene contains a 2.5-kilobase-pair intron: An open reading frame and a conserved boundary sequence in the intron. Proc Natl Acad Sci U S A 2010; 82:3557-61. [PMID: 16593561 PMCID: PMC397824 DOI: 10.1073/pnas.82.11.3557] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The nucleotide sequence of a tRNA(Lys)(UUU) gene on tobacco (Nicotiana tabacum) chloroplast DNA has been determined. This gene is located 215 base pairs upstream from the gene for the 32,000-dalton thylakoid membrane protein on the same DNA strand and has a 2526-base-pair intron in the anticodon loop. The intron boundary sequence does not follow the G-U/A-G rule but is similar to those of tobacco chloroplast split genes for tRNA(Gly)(UCC) and ribosomal proteins L2 and S12. The intron contains one major open reading frame of 509 codons. The codon usage in the open reading frame resembles those observed in the genes for tobacco chloroplast proteins so far analyzed. The primary transcript of this tRNA gene is 2.7 kilobases long.
Collapse
Affiliation(s)
- M Sugita
- Department of Botany, Hokkaido University, Sapporo 060, Japan
| | | | | |
Collapse
|
35
|
DMR1 (CCM1/YGR150C) of Saccharomyces cerevisiae encodes an RNA-binding protein from the pentatricopeptide repeat family required for the maintenance of the mitochondrial 15S ribosomal RNA. Genetics 2010; 184:959-73. [PMID: 20124025 DOI: 10.1534/genetics.110.113969] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Pentatricopeptide repeat (PPR) proteins form the largest known RNA-binding protein family and are found in all eukaryotes, being particularly abundant in higher plants. PPR proteins localize mostly in mitochondria and chloroplasts, where they modulate organellar genome expression on the post-transcriptional level. The Saccharomyces cerevisiae DMR1 (CCM1, YGR150C) encodes a PPR protein that localizes to mitochondria. Deletion of DMR1 results in a complete and irreversible loss of respiratory capacity and loss of wild-type mtDNA by conversion to rho(-)/rho(0) petites, regardless of the presence of introns in mtDNA. The phenotype of the dmr1Delta mitochondria is characterized by fragmentation of the small subunit mitochondrial rRNA (15S rRNA), that can be reversed by wild-type Dmr1p. Other mitochondrial transcripts, including the large subunit mitochondrial rRNA (21S rRNA), are not affected by the lack of Dmr1p. The purified Dmr1 protein specifically binds to different regions of 15S rRNA in vitro, consistent with the deletion phenotype. Dmr1p is therefore the first yeast PPR protein, which has an rRNA target and is probably involved in the biogenesis of mitochondrial ribosomes and translation.
Collapse
|
36
|
The horsetail Equisetum arvense mitochondria share two group I introns with the liverwort Marchantia, acquired a novel group II intron but lost intron-encoded ORFs. Curr Genet 2008; 55:69-79. [PMID: 19112563 DOI: 10.1007/s00294-008-0225-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Revised: 12/05/2008] [Accepted: 12/05/2008] [Indexed: 12/16/2022]
Abstract
We studied the genomic structure and RNA editing of mitochondrial cox1, cox2, cob and atp9 from the horsetail Equisetum arvense, a representative of an old fern lineage. Editing of cox1, cob and atp9 mRNAs occur only by C-to-U transitions. No changes were found in cox2 transcripts constituting one of the rare examples of unedited mitochondrial mRNA in land plants. From three intervening sequences in cox1, cox1i395 and cox1i624 are group IB introns homologous to the Marchantia polymorpha cox1 introns, and cox1i747 is a group IIA intron different to other introns found in plant mtDNA. The group II intron cox2i373 is very similar to other introns found in cox2 from vascular plants. While cob and atp9 have no introns and display the gene structure found in seed plants, various nucleotide substitutions abolish the only potential ORF, a LAGLIDADG endonuclease present in cox1i395. Thus, E. arvense mitochondria conserve two group I introns from non-vascular plants, probably inherited from a common ancestor with liverworts. Analogous to seed plants, E. arvense has no potential mitochondrial splicing factors encoded in these introns. This is the first report concerning the presence of vertically inherited group I introns in vascular plant mitochondria.
Collapse
|
37
|
Szczepanek T, Gora M, Monteilhet C, Wysocka M, Lazowska J, Golik P. In vivo analysis of the relationships between the splicing and homing activities of a group I intron-encoded I-ScaI/bi2-maturase of Saccharomyces capensis produced in the yeast cytoplasm. FEMS Yeast Res 2006; 6:823-35. [PMID: 16879432 DOI: 10.1111/j.1567-1364.2006.00064.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
The I-ScaI/bi2-maturase of Saccharomyces capensis acts as a specific homing endonuclease promoting intron homing, and as a maturase promoting intron splicing. Using the universal code equivalent of the mitochondrial gene encoding the I-ScaI/bi2-maturase, a number of truncated forms of the synthetic gene were constructed, shortened on either side, as were several mutated alleles of the protein. The shortest translation product that fully retains both activities in vivo corresponds to 228 codons of the C-terminal region of the bi2 intron-encoded protein, whereas proteins resulting from more extensive deletions either at the N-terminus or at the C-terminus (up to 73 and four residues, respectively) were able to complement wholly the lack of endogenous maturase, but all lost the endonuclease activity. Similarly, all introduced mutations completely abolished the I-ScaI activity while some mutant proteins retained substantial splicing function. Immunodetection experiments demonstrated that different cytoplasmically translated forms of the I-ScaI/bi2-maturase protein were imported into mitochondria and correctly processed. They appeared to be tightly associated with mitochondrial membranes. Homology modelling of the I-ScaI/bi2-maturase protein allowed us to relate both enzymatic activities to elements of enzyme structure.
Collapse
|
38
|
Pombert JF, Beauchamp P, Otis C, Lemieux C, Turmel M. The complete mitochondrial DNA sequence of the green alga Oltmannsiellopsis viridis: evolutionary trends of the mitochondrial genome in the Ulvophyceae. Curr Genet 2006; 50:137-47. [PMID: 16721603 DOI: 10.1007/s00294-006-0076-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2006] [Revised: 04/11/2006] [Accepted: 04/13/2006] [Indexed: 10/24/2022]
Abstract
The mitochondrial genome displays a highly plastic architecture in the green algal division comprising the classes Prasinophyceae, Trebouxiophyceae, Ulvophyceae, and Chlorophyceae (Chlorophyta). The compact mitochondrial DNAs (mtDNAs) of Nephroselmis (Prasinophyceae) and Prototheca (Trebouxiophyceae) encode about 60 genes and have been ascribed an 'ancestral' pattern of evolution, whereas those of chlorophycean green algae are much more reduced in gene content and size. Although the mtDNA of the early-diverging ulvophyte Pseudendoclonium contains 57 conserved genes, it differs from 'ancestral' chlorophyte mtDNAs by its unusually large size (96 kb) and long intergenic spacers. To gain insights into the evolutionary trends of mtDNA in the Ulvophyceae, we have determined the complete mtDNA sequence of Oltmannsiellopsis viridis, an ulvophyte belonging to a distinct, early-diverging lineage. This 56,761 bp genome harbours 54 conserved genes, numerous repeated sequences, and only three introns. From our comparative analyses with Pseudendoclonium mtDNA, we infer that the mitochondrial genome of the last common ancestor of the two ulvophytes closely resembled that of the trebouxiophyte Prototheca in terms of gene content and gene density. Our results also provide strong evidence for the intracellular, interorganellar transfer of a group I intron and for two distinct events of intercellular, horizontal DNA transfer.
Collapse
Affiliation(s)
- Jean-François Pombert
- Département de biochimie et de microbiologie, Pavillon Charles-Eugène Marchand, Université Laval, Québec, Canada
| | | | | | | | | |
Collapse
|
39
|
Abstract
During the twentieth century the gene emerged as the major driving force of biology. Initially, even the nature and behavior of gene vehicles, the chromosomes, were subjected to doubts. The basic or standard gene concept, as a unit of function, mutation, and recombination, had to be revised. Half a century was required for reaching a general consensus about the chemical nature of the genetic material, DNA and RNA. The relationship between single genes and individual proteins was a great milestone at the middle of the twentieth century, but within two decades it was realized that the relationship was more complex. Understanding of genetic coding, transcription, and translation during the 1960s laid a firm foundation to the "nucleic doctrine," harking back to the dicta of Lederberg (1959) and meaning that single nucleic acid genes alone were responsible for each separate function within the cell. However, important aspects of gene expression are recognized now as a function of the genome and many genes collaborate in circuits. It has come to light that genes may be mobile, exist in plasmids and cytoplasmic organelles, and can be imported by nonsexual means from other organisms or as synthetic products. Epigenetics has reborn as a new field of developmental genetics. The unorthodox prion proteins can even simulate some gene properties. Genetics was to an extent reincarnated as of the twenty-first century by assimilating the tools of cybernetics and of many formerly distant areas of science. This overview highlights some of the historical milestones that contributed to the development of our image of the gene, extending elements of issues laid down by Rédei (2003).
Collapse
Affiliation(s)
- George P Rédei
- University of Missouri, Life Sciences Center, Columbia, Missouri 65203, USA
| | | | | |
Collapse
|
40
|
Barros MH, Myers AM, Van Driesche S, Tzagoloff A. COX24 codes for a mitochondrial protein required for processing of the COX1 transcript. J Biol Chem 2005; 281:3743-51. [PMID: 16339141 DOI: 10.1074/jbc.m510778200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In most strains of Saccharomyces cerevisiae the mitochondrial gene COX1, for subunit 1 of cytochrome oxidase, contains multiple exons and introns. Processing of COX1 primary transcript requires accessory proteins factors, some of which are encoded by nuclear genes and others by reading frames residing in some of the introns of the COX1 and COB genes. Here we show that the low molecular weight protein product of open reading frame YLR204W, for which we propose the name COX24, is also involved in processing of COX1 RNA intermediates. The growth defect of cox24 mutants is partially rescued in strains harboring mitochondrial DNA lacking introns. Northern blot analyses of mitochondrial transcripts indicate cox24 null mutants to be blocked in processing of introns aI2 and aI3. The dependence of intron aI3 excision on Cox24p is also supported by the growth properties of the cox24 mutant harboring mitochondrial DNA with different intron compositions. The intermediate phenotype of the cox24 mutant in the background of intronless mitochondrial DNA, however, suggests that in addition to its role in splicing of the COX1 pre-mRNA, Cox24p still has another function. Based on the analysis of a cox14-cox24 double mutant, we propose that the other function of Cox24p is related to translation of the COX1 mRNA.
Collapse
Affiliation(s)
- Mario H Barros
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | | | | | |
Collapse
|
41
|
Longo A, Leonard CW, Bassi GS, Berndt D, Krahn JM, Hall TMT, Weeks KM. Evolution from DNA to RNA recognition by the bI3 LAGLIDADG maturase. Nat Struct Mol Biol 2005; 12:779-87. [PMID: 16116439 DOI: 10.1038/nsmb976] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2005] [Accepted: 07/19/2005] [Indexed: 11/09/2022]
Abstract
LAGLIDADG endonucleases bind across adjacent major grooves via a saddle-shaped surface and catalyze DNA cleavage. Some LAGLIDADG proteins, called maturases, facilitate splicing by group I introns, raising the issue of how a DNA-binding protein and an RNA have evolved to function together. In this report, crystallographic analysis shows that the global architecture of the bI3 maturase is unchanged from its DNA-binding homologs; in contrast, the endonuclease active site, dispensable for splicing facilitation, is efficiently compromised by a lysine residue replacing essential catalytic groups. Biochemical experiments show that the maturase binds a peripheral RNA domain 50 A from the splicing active site, exemplifying long-distance structural communication in a ribonucleoprotein complex. The bI3 maturase nucleic acid recognition saddle interacts at the RNA minor groove; thus, evolution from DNA to RNA function has been mediated by a switch from major to minor groove interaction.
Collapse
Affiliation(s)
- Antonella Longo
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Affiliation(s)
- L A Grivell
- Section for Molecular Biology, Department of Molecular Cell Biology, University of Amsterdam, Kruislaan 318, 1098 SM Amsterdam, The Netherlands
| |
Collapse
|
43
|
Gargouri A. The reverse transcriptase encoded by ai1 intron is active in trans in the retro-deletion of yeast mitochondrial introns. FEMS Yeast Res 2005; 5:813-22. [PMID: 15925309 DOI: 10.1016/j.femsyr.2004.11.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2004] [Revised: 11/12/2004] [Accepted: 11/23/2004] [Indexed: 11/25/2022] Open
Abstract
Genomic mitochondrial intron deletion occurs frequently during the reversion of mitochondrial intronic mutations in Saccharomyces cerevisiae. The multiplicity as well as the apparent polarity of intron deletion led us to propose the implication of reverse transcription in this process. The two first introns of the COX1 (cytochrome oxidase I) gene, ai1 and ai2, are known to be homologous to viral reverse transcriptase and to encode such activity. We have tested the involvement of these introns in the deletion process by constructing three isogenic strains. They contain the same reporter mutation in the second intron of the CYTb (cytochrome b) gene but differ from each other by the presence or the absence of the ai1 and/or ai2 introns in the other gene encoding the COX1 subunit. Only the strain lacking ai1 and ai2 introns is no more able to revert by intron deletion. The strain retaining only the ai1 intron was able to revert by intron deletion. We conclude that the reverse transcriptase activity, even when encoded by only ai1 intron, can act in trans in the intron deletion process, during the reversion of intronic mutations.
Collapse
Affiliation(s)
- Ali Gargouri
- Centre de Génétique Moléculaire du CNRS, Laboratoire associé à l'Université Pierre et Marie Curie, GIF-SUR-YVETTE, France.
| |
Collapse
|
44
|
|
45
|
Maciaszczyk E, Ulaszewski S, Lazowska J. Intragenic suppressors that restore the activity of the maturase encoded by the second intron of the Saccharomyces cerevisiae cyt b gene. Curr Genet 2004; 46:67-71. [PMID: 15168075 DOI: 10.1007/s00294-004-0509-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2004] [Revised: 04/19/2004] [Accepted: 04/23/2004] [Indexed: 11/25/2022]
Abstract
The protein encoded by the second intron (bi2) of the mitochondrial cyt b gene from Saccharomyces cerevisiae functions as a maturase promoting intron splicing. This protein belongs to a large family characterized by the presence of two conserved motifs: LAGLIDADG (or P1 and P2). We have isolated and characterized spontaneous revertants from two mis-sense mutations, G85D and H92P (localized in the P1 motif of the bi2-maturase), that have a detrimental effect on intron splicing. All analyzed revertants are intragenic and resulted from monosubstitutions in the mutated codons. Only true back-mutations that restor the initial glycine 85 and a pseudoreversion that replaces the deleterious aspartic acid 85 by alanine were found in revertants of the mutant G85D. In contrast, all possible monosubstitutions in the mutated codon H92P were identified among the revertants of this mutant. The maturase activity of all novel forms of the protein is similar to the wild-type protein.
Collapse
Affiliation(s)
- Ewa Maciaszczyk
- Centre de Génétique Moléculaire, CNRS, 91198 Gif-sur-Yvette, France
| | | | | |
Collapse
|
46
|
Belfort M. Two for the price of one: a bifunctional intron-encoded DNA endonuclease-RNA maturase. Genes Dev 2004; 17:2860-3. [PMID: 14665667 DOI: 10.1101/gad.1162503] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Marlene Belfort
- Molecular Genetics Program, Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York at Albany, Albany, New York 12201, USA.
| |
Collapse
|
47
|
Koprowski P, Fikus MU, Dzierzbicki P, Mieczkowski P, Lazowska J, Ciesla Z. Enhanced expression of the DNA damage-inducible gene DIN7 results in increased mutagenesis of mitochondrial DNA in Saccharomyces cerevisiae. Mol Genet Genomics 2003; 269:632-9. [PMID: 12827502 DOI: 10.1007/s00438-003-0873-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2003] [Accepted: 05/30/2003] [Indexed: 11/26/2022]
Abstract
We reported previously that the product of DIN7, a DNA damage-inducible gene of Saccharomyces cerevisiae, belongs to the XPG family of proteins, which are involved in DNA repair and replication. This family includes the S. cerevisiae protein Rad2p and its human homolog XPGC, Rad27p and its mammalian homolog FEN-1, and Exonuclease I (Exo I). Interestingly, Din7p is the only member of the XPG family which specifically functions in mitochondria. We reported previously that overexpression of DIN7 results in a mitochondrial mutator phenotype. In the present study we wished to test the hypothesis that this phenotype is dependent on the nuclease activity of Din7p. For this purpose, we constructed two alleles, din7-D78A and din7-D173A, which encode proteins in which highly conserved aspartates important for the nuclease activity of the XPG proteins have been replaced by alanines. Here, we report that overexpression of the mutant alleles, in contrast to DIN7, fails to increase the frequency of mitochondrial petite mutants or erythromycin-resistant (Er) mutants. Also, overproduction of din7-D78Ap does not result in destabilization of poly GT tracts in mitochondrial DNA (mtDNA), the phenotype observed in cells that overexpress Din7p. We also show that petite mutants induced by enhanced synthesis of wild-type Din7p exhibit gross rearrangements of mtDNA, and that this correlates with enhanced recombination within the mitochondrial cyt b gene. These results suggest that the stability of the mitochondrial genome of S. cerevisiae is modulated by the level of the nuclease Din7p.
Collapse
Affiliation(s)
- P Koprowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 5A Pawinskiego St., 02-106 Warsaw, Poland
| | | | | | | | | | | |
Collapse
|
48
|
Golik P, Bonnefoy N, Szczepanek T, Saint-Georges Y, Lazowska J. The Rieske FeS protein encoded and synthesized within mitochondria complements a deficiency in the nuclear gene. Proc Natl Acad Sci U S A 2003; 100:8844-9. [PMID: 12837937 PMCID: PMC166401 DOI: 10.1073/pnas.1432907100] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2003] [Indexed: 11/18/2022] Open
Abstract
The Rieske FeS protein, an essential catalytic subunit of the mitochondrial cytochrome bc1 complex, is encoded in yeast by the nuclear gene RIP1, whose deletion leads to a respiratory-deficient phenotype. By using biolistic transformation, we have relocated the nuclear RIP1 gene into mitochondria. To allow its expression within the organelle and to direct its integration downstream of the cox1 gene, we have fused the 3' end of the Saccharomyces douglasii cox1 gene upstream of the mitochondrial copy of RIP1 (RIP1m) flanked by the Saccharomyces cerevisiae cox1 promoter and terminator regions. We show that RIP1m integrated between the cox1 and atp8 genes is mitotically stable and expressed, and it complements a deletion of the nuclear gene. Immunodetection experiments demonstrate that the mitochondrial genome containing RIP1m is able to produce the Rip1 protein in lower steady-state amounts than the wild type but still sufficient to maintain a functional cytochrome bc1 complex and respiratory competence to a RIP1-deleted strain. Thus, this recombined mitochondrial genome is a fully functional mitochondrial chromosome with an extended gene content. This successful mitochondrial expression of a nuclear gene essential for respiration can be viewed at the evolutionary level as an artificial reversal of evolutionary events.
Collapse
Affiliation(s)
- Pawel Golik
- Centre de Génétique Moléculaire Centre National de la Recherche Scientifique, 91198 Gif-sur-Yvette Cedex, France
| | | | | | | | | |
Collapse
|
49
|
Rodeheffer MS, Shadel GS. Multiple interactions involving the amino-terminal domain of yeast mtRNA polymerase determine the efficiency of mitochondrial protein synthesis. J Biol Chem 2003; 278:18695-701. [PMID: 12637560 PMCID: PMC2606056 DOI: 10.1074/jbc.m301399200] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The amino-terminal domain (ATD) of Saccharomyces cerevisiae mitochondrial RNA polymerase has been shown to provide a functional link between transcription and post-transcriptional events during mitochondrial gene expression. This connection is mediated in large part by its interactions with the matrix protein Nam1p and, based on genetic phenotypes, the mitochondrial membrane protein Sls1p. These observations led us to propose previously that mtRNA polymerase, Nam1p, and Sls1p work together to coordinate transcription and translation of mtDNA-encoded gene products. Here we demonstrate by specific labeling of mitochondrial gene products in vivo that Nam1p and Sls1p indeed work together in a pathway that is required globally for efficient mitochondrial translation. Likewise, mutations in the ATD result in similar global reductions in mitochondrial translation efficiency and sensitivity to the mitochondrial translation inhibitor erythromycin. These data, coupled with the observation that the ATD is required to co-purify Sls1p in association with mtDNA nucleoids, suggest that efficient expression of mtDNA-encoded genes in yeast involves a complex series of interactions that localize active transcription complexes to the inner membrane in order to coordinate translation with transcription.
Collapse
Affiliation(s)
- Matthew S. Rodeheffer
- Department of Biochemistry and the Graduate Program in Biochemistry, Cell and Developmental Biology, Rollins Research Center, Emory University School of Medicine, Atlanta, Georgia 30322-3050
| | - Gerald S. Shadel
- To whom correspondence should be addressed. Tel.: 404-727-3798; Fax: 404-727-3954; E-mail:
| |
Collapse
|
50
|
Soares ML, Centola M, Chae J, Saraiva MJ, Kastner DL. Human transthyretin intronic open reading frames are not independently expressed in vivo or part of functional transcripts. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1626:65-74. [PMID: 12697331 DOI: 10.1016/s0167-4781(03)00043-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The human transthyretin (TTR) gene encodes a protein composed of four identical subunits with an important role in the plasma transport of thyroid hormone T4 and retinol. TTR spans 7.6 kilobases and consists of four exons. Two independent open reading frames (ORFs) with putative regulatory sequences have been described in the first and third introns, but their function--if any--is unknown. We have screened human cDNA libraries to determine if these sequences are transcribed. Transcripts of both ORFs were found in liver, pancreas and brain. Hybridization of the two sequences with multiple-tissue Northern blots further confirmed these results and revealed transcript sizes of approximately 1.5 and approximately 2.2 kb for ORF 1, and approximately 5.2 and approximately 7.8 kb for ORF 2. Rapid Amplification of cDNA Ends (RACE) was performed to characterize the full-length cDNAs containing each sequence. All products containing the ORFs were continuous in the genomic sequence corresponding to unspliced or partially spliced TTR. No evidence was found for novel transcripts containing productively spliced products of either ORF, or for shorter transcripts using the promoter and polyadenylation signals associated with them. ORF 1 RACE products identified in liver, pancreas and brain correspond to TTR transcripts in which intron 1 had not been removed; the transcripts containing ORF 2 may represent TTR hnRNA. Neither ORF is productively expressed as part of a larger transcript, or as an independent polypeptide.
Collapse
Affiliation(s)
- Miguel Luz Soares
- Arthritis and Rheumatism Branch, Genetics Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bldg. 10, Rm. 9N216, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|