1
|
FitzHugh ZT, Schiller MR. Systematic Assessment of Protein C-Termini Mutated in Human Disorders. Biomolecules 2023; 13:biom13020355. [PMID: 36830724 PMCID: PMC9953674 DOI: 10.3390/biom13020355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/23/2023] [Accepted: 02/02/2023] [Indexed: 02/16/2023] Open
Abstract
All proteins have a carboxyl terminus, and we previously summarized eight mutations in binding and trafficking sequence determinants in the C-terminus that, when disrupted, cause human diseases. These sequence elements for binding and trafficking sites, as well as post-translational modifications (PTMs), are called minimotifs or short linear motifs. We wanted to determine how frequently mutations in minimotifs in the C-terminus cause disease. We searched specifically for PTMs because mutation of a modified amino acid almost always changes the chemistry of the side chain and can be interpreted as loss-of-function. We analyzed data from ClinVar for disease variants, Minimotif Miner and the C-terminome for PTMs, and RefSeq for protein sequences, yielding 20 such potential disease-causing variants. After additional screening, they include six with a previously reported PTM disruption mechanism and nine with new hypotheses for mutated minimotifs in C-termini that may cause disease. These mutations were generally for different genes, with four different PTM types and several different diseases. Our study helps to identify new molecular mechanisms for nine separate variants that cause disease, and this type of analysis could be extended as databases grow and to binding and trafficking motifs. We conclude that mutated motifs in C-termini are an infrequent cause of disease.
Collapse
Affiliation(s)
- Zachary T. FitzHugh
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, 4505 S. Maryland Pkwy, Las Vegas, NV 89154, USA
- School of Life Sciences, University of Nevada, 4505 S. Maryland Parkway, Las Vegas, NV 89154, USA
| | - Martin R. Schiller
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, 4505 S. Maryland Pkwy, Las Vegas, NV 89154, USA
- School of Life Sciences, University of Nevada, 4505 S. Maryland Parkway, Las Vegas, NV 89154, USA
- Heligenics Inc., 833 Las Vegas Blvd. North, Suite B, Las Vegas, NV 89101, USA
- Correspondence: ; Tel.: +1-702-895-5546; Fax: +1-702-895-5728
| |
Collapse
|
2
|
Zingg D, Bhin J, Yemelyanenko J, Kas SM, Rolfs F, Lutz C, Lee JK, Klarenbeek S, Silverman IM, Annunziato S, Chan CS, Piersma SR, Eijkman T, Badoux M, Gogola E, Siteur B, Sprengers J, de Klein B, de Goeij-de Haas RR, Riedlinger GM, Ke H, Madison R, Drenth AP, van der Burg E, Schut E, Henneman L, van Miltenburg MH, Proost N, Zhen H, Wientjens E, de Bruijn R, de Ruiter JR, Boon U, de Korte-Grimmerink R, van Gerwen B, Féliz L, Abou-Alfa GK, Ross JS, van de Ven M, Rottenberg S, Cuppen E, Chessex AV, Ali SM, Burn TC, Jimenez CR, Ganesan S, Wessels LFA, Jonkers J. Truncated FGFR2 is a clinically actionable oncogene in multiple cancers. Nature 2022; 608:609-617. [PMID: 35948633 PMCID: PMC9436779 DOI: 10.1038/s41586-022-05066-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 07/03/2022] [Indexed: 12/13/2022]
Abstract
Somatic hotspot mutations and structural amplifications and fusions that affect fibroblast growth factor receptor 2 (encoded by FGFR2) occur in multiple types of cancer1. However, clinical responses to FGFR inhibitors have remained variable1–9, emphasizing the need to better understand which FGFR2 alterations are oncogenic and therapeutically targetable. Here we apply transposon-based screening10,11 and tumour modelling in mice12,13, and find that the truncation of exon 18 (E18) of Fgfr2 is a potent driver mutation. Human oncogenomic datasets revealed a diverse set of FGFR2 alterations, including rearrangements, E1–E17 partial amplifications, and E18 nonsense and frameshift mutations, each causing the transcription of E18-truncated FGFR2 (FGFR2ΔE18). Functional in vitro and in vivo examination of a compendium of FGFR2ΔE18 and full-length variants pinpointed FGFR2-E18 truncation as single-driver alteration in cancer. By contrast, the oncogenic competence of FGFR2 full-length amplifications depended on a distinct landscape of cooperating driver genes. This suggests that genomic alterations that generate stable FGFR2ΔE18 variants are actionable therapeutic targets, which we confirmed in preclinical mouse and human tumour models, and in a clinical trial. We propose that cancers containing any FGFR2 variant with a truncated E18 should be considered for FGFR-targeted therapies. Truncation of exon 18 of FGFR2 (FGFR2ΔE18) is a potent driver mutation in mice and humans, and FGFR-targeted therapy should be considered for patients with cancer expressing stable FGFR2ΔE18 variants.
Collapse
Affiliation(s)
- Daniel Zingg
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands.,Oncode Institute, Utrecht, The Netherlands
| | - Jinhyuk Bhin
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands.,Oncode Institute, Utrecht, The Netherlands.,Division of Molecular Carcinogenesis, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Julia Yemelyanenko
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands.,Oncode Institute, Utrecht, The Netherlands
| | - Sjors M Kas
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands.,Oncode Institute, Utrecht, The Netherlands
| | - Frank Rolfs
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands.,Oncode Institute, Utrecht, The Netherlands.,OncoProteomics Laboratory, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Catrin Lutz
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands.,Oncode Institute, Utrecht, The Netherlands
| | | | - Sjoerd Klarenbeek
- Experimental Animal Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | - Stefano Annunziato
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands.,Oncode Institute, Utrecht, The Netherlands
| | - Chang S Chan
- Department of Medicine, Division of Medical Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA.,Department of Medicine and Pharmacology, Rutgers University, Piscataway, NJ, USA
| | - Sander R Piersma
- OncoProteomics Laboratory, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Timo Eijkman
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands.,Oncode Institute, Utrecht, The Netherlands
| | - Madelon Badoux
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands.,Oncode Institute, Utrecht, The Netherlands
| | - Ewa Gogola
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands.,Oncode Institute, Utrecht, The Netherlands
| | - Bjørn Siteur
- Mouse Clinic for Cancer and Aging, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Justin Sprengers
- Mouse Clinic for Cancer and Aging, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Bim de Klein
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands.,Oncode Institute, Utrecht, The Netherlands
| | - Richard R de Goeij-de Haas
- OncoProteomics Laboratory, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Gregory M Riedlinger
- Department of Medicine and Pharmacology, Rutgers University, Piscataway, NJ, USA.,Department of Pathology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Hua Ke
- Department of Medicine, Division of Medical Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA.,Department of Medicine and Pharmacology, Rutgers University, Piscataway, NJ, USA
| | | | - Anne Paulien Drenth
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands.,Oncode Institute, Utrecht, The Netherlands
| | - Eline van der Burg
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands.,Oncode Institute, Utrecht, The Netherlands
| | - Eva Schut
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands.,Oncode Institute, Utrecht, The Netherlands
| | - Linda Henneman
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands.,Oncode Institute, Utrecht, The Netherlands.,Mouse Clinic for Cancer and Aging, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Martine H van Miltenburg
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands.,Oncode Institute, Utrecht, The Netherlands
| | - Natalie Proost
- Mouse Clinic for Cancer and Aging, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | - Ellen Wientjens
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands.,Oncode Institute, Utrecht, The Netherlands
| | - Roebi de Bruijn
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands.,Oncode Institute, Utrecht, The Netherlands.,Division of Molecular Carcinogenesis, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Julian R de Ruiter
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands.,Oncode Institute, Utrecht, The Netherlands.,Division of Molecular Carcinogenesis, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ute Boon
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands.,Oncode Institute, Utrecht, The Netherlands
| | | | - Bastiaan van Gerwen
- Mouse Clinic for Cancer and Aging, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Luis Féliz
- Incyte Biosciences International, Morges, Switzerland
| | - Ghassan K Abou-Alfa
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Department of Medicine, Weill Medical College at Cornell University, New York, NY, USA
| | - Jeffrey S Ross
- Foundation Medicine, Cambridge, MA, USA.,Upstate University Hospital, Upstate Medical University, Syracuse, NY, USA
| | - Marieke van de Ven
- Mouse Clinic for Cancer and Aging, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Sven Rottenberg
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands.,Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Bern Center for Precision Medicine, University of Bern, Bern, Switzerland
| | - Edwin Cuppen
- Oncode Institute, Utrecht, The Netherlands.,Hartwig Medical Foundation, Amsterdam, The Netherlands.,Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | - Connie R Jimenez
- OncoProteomics Laboratory, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Shridar Ganesan
- Department of Medicine, Division of Medical Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA. .,Department of Medicine and Pharmacology, Rutgers University, Piscataway, NJ, USA.
| | - Lodewyk F A Wessels
- Oncode Institute, Utrecht, The Netherlands. .,Division of Molecular Carcinogenesis, Netherlands Cancer Institute, Amsterdam, The Netherlands.
| | - Jos Jonkers
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands. .,Oncode Institute, Utrecht, The Netherlands.
| |
Collapse
|
3
|
Sapi E. The Role of CSF-1 in Normal Physiology of Mammary Gland and Breast Cancer: An Update. Exp Biol Med (Maywood) 2016; 229:1-11. [PMID: 14709771 DOI: 10.1177/153537020422900101] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Colony stimulating factor (CSF-1) and its receptor (CSF-1R, product of c-fms proto-oncogene) were initially implicated as essential for normal monocyte development as well as for trophoblastic implantation. However, studies have demonstrated that CSF-1 and CSF-1R have additional roles in mammary gland development during pregnancy and lactation. This apparent role for CSF-1/CSF-1R in normal mammary gland development is very intriguing because this receptor/ligand pair has also been found to be important in the biology of breast cancer in which abnormal expression of CSF-1 and its receptor correlates with tumor cell invasiveness and adverse clinical prognosis. Recent findings also implicate tumor-produced CSF-1 in promotion of bone metastasis in breast cancer, and a certain membrane-associated form of CSF-1 appears to induce immunity against tumors. This review aims to summarize recent findings on the role of CSF-1 and its receptor in normal and neoplastic mammary development that may elucidate potential relationships of growth factor–induced biological changes in the breast during pregnancy and tumor progression.
Collapse
Affiliation(s)
- Eva Sapi
- Department of Obstetrics and Gynecology, Yale University School of Medicine, New Haven, Connecticut 06520-8040, USA.
| |
Collapse
|
4
|
Abstract
The CSF-1 receptor (CSF-1R) is activated by the homodimeric growth factors colony-stimulating factor-1 (CSF-1) and interleukin-34 (IL-34). It plays important roles in development and in innate immunity by regulating the development of most tissue macrophages and osteoclasts, of Langerhans cells of the skin, of Paneth cells of the small intestine, and of brain microglia. It also regulates the differentiation of neural progenitor cells and controls functions of oocytes and trophoblastic cells in the female reproductive tract. Owing to this broad tissue expression pattern, it plays a central role in neoplastic, inflammatory, and neurological diseases. In this review we summarize the evolution, structure, and regulation of expression of the CSF-1R gene. We discuss the structures of CSF-1, IL-34, and the CSF-1R and the mechanism of ligand binding to and activation of the receptor. We further describe the pathways regulating macrophage survival, proliferation, differentiation, and chemotaxis downstream from the CSF-1R.
Collapse
Affiliation(s)
- E Richard Stanley
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Violeta Chitu
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York 10461
| |
Collapse
|
5
|
Gow DJ, Garceau V, Pridans C, Gow AG, Simpson KE, Gunn-Moore D, Hume DA. Cloning and expression of feline colony stimulating factor receptor (CSF-1R) and analysis of the species specificity of stimulation by colony stimulating factor-1 (CSF-1) and interleukin-34 (IL-34). Cytokine 2012; 61:630-8. [PMID: 23260168 PMCID: PMC3573236 DOI: 10.1016/j.cyto.2012.11.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 11/22/2012] [Indexed: 01/02/2023]
Abstract
Colony stimulating factor (CSF-1) and its receptor, CSF-1R, have been previously well studied in humans and rodents to dissect the role they play in development of cells of the mononuclear phagocyte system. A second ligand for the CSF-1R, IL-34 has been described in several species. In this study, we have cloned and expressed the feline CSF-1R and examined the responsiveness to CSF-1 and IL-34 from a range of species. The results indicate that pig and human CSF-1 and human IL-34 are equally effective in cats, where both mouse CSF-1 and IL-34 are significantly less active. Recombinant human CSF-1 can be used to generate populations of feline bone marrow and monocyte derived macrophages that can be used to further dissect macrophage-specific gene expression in this species, and to compare it to data derived from mouse, human and pig. These results set the scene for therapeutic use of CSF-1 and IL-34 in cats.
Collapse
|
6
|
Gow DJ, Garceau V, Kapetanovic R, Sester DP, Fici GJ, Shelly JA, Wilson TL, Hume DA. Cloning and expression of porcine Colony Stimulating Factor-1 (CSF-1) and Colony Stimulating Factor-1 Receptor (CSF-1R) and analysis of the species specificity of stimulation by CSF-1 and Interleukin 34. Cytokine 2012; 60:793-805. [PMID: 22974529 PMCID: PMC3500696 DOI: 10.1016/j.cyto.2012.08.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Revised: 07/02/2012] [Accepted: 08/07/2012] [Indexed: 01/09/2023]
Abstract
Macrophage Colony Stimulating Factor (CSF-1) controls the survival, differentiation and proliferation of cells of the mononuclear phagocyte system. A second ligand for the CSF-1R, Interleukin 34 (IL-34), has been described, but its physiological role is not yet known. The domestic pig provides an alternative to traditional rodent models for evaluating potential therapeutic applications of CSF-1R agonists and antagonists. To enable such studies, we cloned and expressed active pig CSF-1. To provide a bioassay, pig CSF-1R was expressed in the factor-dependent Ba/F3 cell line. On this transfected cell line, recombinant porcine CSF-1 and human CSF-1 had identical activity. Mouse CSF-1 does not interact with the human CSF-1 receptor but was active on pig. By contrast, porcine CSF-1 was active on mouse, human, cat and dog cells. IL-34 was previously shown to be species-specific, with mouse and human proteins demonstrating limited cross-species activity. The pig CSF-1R was equally responsive to both mouse and human IL-34. Based upon the published crystal structures of CSF-1/CSF-1R and IL34/CSF-1R complexes, we discuss the molecular basis for the species specificity.
Collapse
Affiliation(s)
- Deborah J. Gow
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, Scotland, UK
| | - Valerie Garceau
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, Scotland, UK
| | - Ronan Kapetanovic
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, Scotland, UK
| | - David P. Sester
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, Scotland, UK
| | - Greg J. Fici
- Pfizer Animal Health, 7000 Portage Road, Kalamazoo, MI 49001, United States
| | - John A. Shelly
- Pfizer Animal Health, 7000 Portage Road, Kalamazoo, MI 49001, United States
| | - Thomas L. Wilson
- Pfizer Animal Health, 7000 Portage Road, Kalamazoo, MI 49001, United States
| | - David A. Hume
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, Scotland, UK,Corresponding author. Tel.: +44 131 6519181.
| |
Collapse
|
7
|
Mouchemore KA, Pixley FJ. CSF-1 signaling in macrophages: pleiotrophy through phosphotyrosine-based signaling pathways. Crit Rev Clin Lab Sci 2012; 49:49-61. [DOI: 10.3109/10408363.2012.666845] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
8
|
Garceau V, Smith J, Paton IR, Davey M, Fares MA, Sester DP, Burt DW, Hume DA. Pivotal Advance: Avian colony-stimulating factor 1 (CSF-1), interleukin-34 (IL-34), and CSF-1 receptor genes and gene products. J Leukoc Biol 2010; 87:753-64. [PMID: 20051473 DOI: 10.1189/jlb.0909624] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Macrophages are involved in many aspects of development, host defense, pathology, and homeostasis. Their normal differentiation, proliferation, and survival are controlled by CSF-1 via the activation of the CSF1R. A recently discovered cytokine, IL-34, was shown to bind the same receptor in humans. Chicken is a widely used model organism in developmental biology, but the factors that control avian myelopoiesis have not been identified previously. The CSF-1, IL-34, and CSF1R genes in chicken and zebra finch were identified from respective genomic/cDNA sequence resources. Comparative analysis of the avian CSF1R loci revealed likely orthologs of mammalian macrophage-specific promoters and enhancers, and the CSF1R gene is expressed in the developing chick embryo in a pattern consistent with macrophage-specific expression. Chicken CSF-1 and IL-34 were expressed in HEK293 cells and shown to elicit macrophage growth from chicken BM cells in culture. Comparative sequence and co-evolution analysis across all vertebrates suggests that the two ligands interact with distinct regions of the CSF1R. These studies demonstrate that there are two separate ligands for a functional CSF1R across all vertebrates.
Collapse
Affiliation(s)
- Valerie Garceau
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Roslin, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Functional Expression of the Human Receptor for Colony-Stimulating Factor 1 (CSF-1) in Hamster Fibroblasts: CSF-1 Stimulates Na+/H+exchange and DNA-Synthesis in the Absence of Phosphoinositide Breakdown. Growth Factors 2009. [DOI: 10.3109/08977199009078017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
10
|
Abstract
Uterine growth factors appear to play a role in the regulation of pregnancy. One of these, colony stimulating factor-1 (CSF-1), synthesized by the uterine epithelium under the control of female sex steroids, has been shown to have important functions both before implantation and during the formation of the placenta. In the female reproductive tract the CSF-1 receptor, the product of the c-fms proto-oncogene, is expressed in decidual cells, trophoblasts and macrophages, indicating that these cells are the primary targets for CSF-1. This article reviews the biology of CSF-1 during gestation as well as the possible involvement of CSF-1 and its receptor in the aetiology of gynaecological tumours.
Collapse
|
11
|
Douglass TG, Driggers L, Zhang JG, Hoa N, Delgado C, Williams CC, Dan Q, Sanchez R, Jeffes EWB, Wepsic HT, Myers MP, Koths K, Jadus MR. Macrophage colony stimulating factor: not just for macrophages anymore! A gateway into complex biologies. Int Immunopharmacol 2008; 8:1354-76. [PMID: 18687298 DOI: 10.1016/j.intimp.2008.04.016] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2008] [Accepted: 04/21/2008] [Indexed: 12/21/2022]
Abstract
Macrophage colony stimulating factor (M-CSF, also called colony stimulating factor-1) has traditionally been viewed as a growth/differentiation factor for monocytes, macrophages, and some female-specific tumors. As a result of alternative mRNA splicing and post-translational processing, several forms of M-CSF protein are produced: a secreted glycoprotein, a longer secreted form containing proteoglycan, and a short membrane-bound isoform. These different forms of M-CSF all initiate cell signaling in cells bearing the M-CSF receptor, called c-fms. Here we review the biology of M-CSF, which has important roles in bone physiology, the intestinal tract, cancer metastases to the bone, macrophage-mediated tumor cell killing and tumor immunity. Although this review concentrates mostly on the membrane form of human M-CSF (mM-CSF), the biology of the soluble forms and the M-CSF receptor will also be discussed for comparative purposes. The mechanisms of the biological effects of the membrane-bound M-CSF reveal that this cytokine is unexpectedly involved in many complex molecular events. Recent experiments suggest that a tumor vaccine based on membrane-bound M-CSF-transduced tumor cells, combined with anti-angiogenic therapy, should be evaluated further for use in clinical trials.
Collapse
Affiliation(s)
- Thomas G Douglass
- Biology Department, California State University Long Beach, 1250 Bellflower Blvd, Long Beach CA 90840, United States
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Sherr CJ, Kato JY, Borzillo G, Downing JR, Roussel MF. Signal-response coupling mediated by the transduced colony-stimulating factor-1 receptor and its oncogenic fms variants in naive cells. CIBA FOUNDATION SYMPOSIUM 2007; 148:96-104; discussion 104-9. [PMID: 2156660 DOI: 10.1002/9780470513880.ch7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Colony-stimulating factor-1 (CSF-1 or M-CSF) supports the proliferation and survival of mononuclear phagocytes by binding to a receptor (CSF-1R) encoded by the c-fms proto-oncogene. Whereas the CSF-1R kinase is normally regulated by ligand, receptors bearing 'activating mutations' act constitutively as enzymes and can transform fibroblasts and haemopoietic cells of different lineages. Introduction of human CSF-1R enables mouse NIH-3T3 cells to form colonies in agar in response to human CSF-1 and to proliferate in serum-free medium supplemented with CSF-1, albumin, transferrin and insulin. Similarly, expression of human CSF-1R in interleukin 3-dependent mouse FDC-P1 myeloid cells enables them to grow in CSF-1. High levels of CSF-1R expression in FDC-P1 cells can induce factor-independent growth which is abrogated by a 'neutralizing' monoclonal antibody to the receptor. Therefore, critical mutations in the c-fms gene or overexpression of CSF-1R in immature myeloid precursors might each contribute to leukaemia.
Collapse
Affiliation(s)
- C J Sherr
- Howard Hughes Medical Institute, Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | | | | | | | | |
Collapse
|
13
|
Hiyoshi M, Suzu S, Yoshidomi Y, Hassan R, Harada H, Sakashita N, Akari H, Motoyoshi K, Okada S. Interaction between Hck and HIV-1 Nef negatively regulates cell surface expression of M-CSF receptor. Blood 2007; 111:243-50. [PMID: 17893228 DOI: 10.1182/blood-2007-04-086017] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nef is a multifunctional pathogenetic protein of HIV-1, the interaction of which with Hck, a Src tyrosine kinase highly expressed in macrophages, has been shown to be responsible for the development of AIDS. However, how the Nef-Hck interaction leads to the functional aberration of macrophages is poorly understood. We recently showed that Nef markedly inhibited the activity of macrophage colony-stimulating factor (M-CSF), a primary cytokine for macrophages. Here, we show that the inhibitory effect of Nef is due to the Hck-dependent down-regulation of the cell surface expression of M-CSF receptor Fms. In the presence of Hck, Nef induced the accumulation of an immature under-N-glycosylated Fms at the Golgi, thereby down-regulating Fms. The activation of Hck by the direct interaction with Nef was indispensable for the down-regulation. Unexpectedly, the accumulation of the active Hck at the Golgi where Nef prelocalized was likely to be another critical determinant of the function of Nef, because the expression of the constitutive-active forms of Hck alone did not fully down-regulate Fms. These results suggest that Nef perturbs the intracellular maturation and the trafficking of nascent Fms, through a unique mechanism that required both the activation of Hck and the aberrant spatial regulation of the active Hck.
Collapse
MESH Headings
- Adult
- Cell Line, Tumor
- Down-Regulation/immunology
- Golgi Apparatus/metabolism
- HIV Infections/immunology
- HIV-1/immunology
- Humans
- Kidney/cytology
- Leukemia, Myeloid
- Macrophages/immunology
- Macrophages/metabolism
- Macrophages/virology
- Protein Transport/immunology
- Proto-Oncogene Proteins c-hck/genetics
- Proto-Oncogene Proteins c-hck/metabolism
- Receptor, Macrophage Colony-Stimulating Factor/genetics
- Receptor, Macrophage Colony-Stimulating Factor/immunology
- Receptor, Macrophage Colony-Stimulating Factor/metabolism
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/immunology
- Receptors, Cell Surface/metabolism
- Transfection
- nef Gene Products, Human Immunodeficiency Virus/genetics
- nef Gene Products, Human Immunodeficiency Virus/metabolism
Collapse
Affiliation(s)
- Masateru Hiyoshi
- Division of Hematopoiesis, Center for AIDS Research, Kumamoto University, Honjo 2-2-1, Kumamoto-city, Kumamoto 860-0811, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Taylor JR, Brownlow N, Domin J, Dibb NJ. FMS receptor for M-CSF (CSF-1) is sensitive to the kinase inhibitor imatinib and mutation of Asp-802 to Val confers resistance. Oncogene 2005; 25:147-51. [PMID: 16170366 DOI: 10.1038/sj.onc.1209007] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The kinase inhibitor imatinib is used in the treatment of chronic myeloid leukaemia, where it targets the intracellular Bcr-Abl tyrosine kinase, and gastrointestinal stromal tumours, where it targets either the KIT or PDGF tyrosine kinase receptors. Here, we report that imatinib is also an effective inhibitor of the closely related FMS receptor for macrophage colony stimulating factor and that mutation of Asp 802 of FMS to Val confers imatinib resistance. Imatinib readily reverted the transformed phenotype of haemopoietic and fibroblast cell lines that express the oncogene v-fms and also inhibited the growth of the Bacl.2F5 macrophage cell line. The cellular IC50 value of imatinib for FMS was similar to those for Bcr-Abl and KIT. Consequently, imatinib may also prove effective for the treatment of diseases whose progression is dependent upon macrophage-colony stimulating factor, this includes certain aspects of cancer and inflammation.
Collapse
Affiliation(s)
- J R Taylor
- Institute of Reproductive and Developmental Biology, Imperial College London, Hammersmith Campus, London, UK
| | | | | | | |
Collapse
|
15
|
Ling KS, Chen GD, Tsai HJ, Lee MS, Wang PH, Liu FS. Genetic Changes in Ovarian Cancer. Taiwan J Obstet Gynecol 2005. [DOI: 10.1016/s1028-4559(09)60144-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
16
|
Yokoyama N, Ischenko I, Hayman MJ, Miller WT. The C terminus of RON tyrosine kinase plays an autoinhibitory role. J Biol Chem 2005; 280:8893-900. [PMID: 15632155 DOI: 10.1074/jbc.m412623200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RON is a receptor tyrosine kinase in the MET family. We have expressed and purified active RON using the Sf9/baculovirus system. The constructs used in this study comprise the kinase domain alone and the kinase domain plus the C-terminal region. The construct containing the kinase domain alone has a higher specific activity than the construct containing the kinase and C-terminal domains. Purified RON undergoes autophosphorylation, and the exogenous RON C terminus serves as a substrate. Peptides containing a dityrosine motif derived from the C-terminal tail inhibit RON in vitro or when delivered into intact cells, consistent with an autoinhibitory mechanism. Phenylalanine substitutions within these peptides increase the inhibitory potency. Moreover, introduction of these Phe residues into the dityrosine motif of the RON kinase leads to a decrease in kinase activity. Taken together, our data suggest a model in which the C-terminal tail of RON regulates kinase activity via an interaction with the kinase catalytic domain.
Collapse
Affiliation(s)
- Noriko Yokoyama
- Department of Physiology and Biophysics, School of Medicine, State University of New York at Stony Brook, Stony Brook, New York 11794, USA
| | | | | | | |
Collapse
|
17
|
Wilhelmsen K, Copp J, Glenn G, Hoffman RC, Tucker P, van der Geer P. Purification and identification of protein-tyrosine kinase-binding proteins using synthetic phosphopeptides as affinity reagents. Mol Cell Proteomics 2004; 3:887-95. [PMID: 15215307 DOI: 10.1074/mcp.m400062-mcp200] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein-tyrosine kinases are known regulators of cell division that have been implicated in the onset of a variety of malignancies. They act through cellular signaling proteins that bind to specific autophosphorylation sites. To find out whether these autophosphorylation sites can be used to identify downstream signaling proteins, synthetic peptides based on an autophosphorylation site in the colony-stimulating factor-1 (CSF-1) receptor were linked to agarose beads and incubated with lysates from macrophages. Bound proteins were analyzed by MS, leading to the identification of both known and novel CSF-1 receptor-interacting proteins. The approach presented here can be applied to phosphorylation sites in a wide variety of proteins. It will lead to the identification of novel protein-protein interactions and provide new insights into the mechanics of signal transduction. Novel protein-protein interactions may provide useful targets for the development of drugs that interfere with the activation of signaling cascades used by protein-tyrosine kinases to turn on cell division.
Collapse
Affiliation(s)
- Kevin Wilhelmsen
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093-0601, USA
| | | | | | | | | | | |
Collapse
|
18
|
Meyer RD, Singh AJ, Rahimi N. The carboxyl terminus controls ligand-dependent activation of VEGFR-2 and its signaling. J Biol Chem 2004; 279:735-42. [PMID: 14573614 PMCID: PMC1464116 DOI: 10.1074/jbc.m305575200] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vascular endothelial growth factor receptor-2 (VEGFR-2/FLK-1) is a receptor tyrosine kinase whose activation stimulates angiogenesis. We recently generated a chimeric VEGFR-2 in which the extracellular domain of VEGFR-2 was replaced with the extracellular domain of human colony stimulating factor-1 receptor and expressed in endothelial cells. To study the contribution of the carboxyl terminus to activation of VEGFR-2, we created a panel of truncated receptors in which the carboxyl terminus of VEGFR-2 was progressively deleted. Removal of the entire carboxyl terminus eliminated activation of VEGFR-2, its ability to activate signaling proteins, and its ability to stimulate cell proliferation. The carboxyl terminus-deleted VEGFR-2 exhibited impaired ligand-dependent down-regulation and inhibited the activation of wild-type receptor in a dominant-negative fashion. Furthermore, introducing the carboxyl terminus of another receptor, i.e., VEGFR-1, restored the ligand-dependent activation of the carboxyl terminus-deleted VEGFR-2 and its ability to stimulate cell proliferation. Our findings suggest that the carboxyl terminus of VEGFR-2 plays a critical role in VEGFR-2 activation, its ability to activate signaling proteins, and its ability to induce biological responses. The presence of at least 57 amino acids at the carboxyl terminus of VEGFR-2 are required for VEGFR-2 activation. Thus, we propose that the carboxyl terminus is required for activation of VEGFR-2, and absence of the carboxyl terminus renders VEGFR-2 inactive.
Collapse
Affiliation(s)
- Rosana D Meyer
- Department of Ophthalmology, School of Medicine, Boston University, Boston, Massachusetts 02118, USA
| | | | | |
Collapse
|
19
|
Prasanth SG, Ali S. Expression of proto-oncogene c-kit receptor in rats (Rattus norvegicus) and identification of a mutant mRNA transcript implicated in spermatogenic failure. DNA Cell Biol 2003; 22:447-56. [PMID: 12932303 DOI: 10.1089/104454903322247325] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The pleiotropic proto-oncogene c-kit receptor, implicated in hematopoiesis and melanogenesis, is also known to play an important role in germ cell proliferation and differentiation although the mechanisms for the latter remain unknown. We studied c-kit expression by RT-PCR in various tissues of both fertile and infertile Brown Norway rats. Using different sets of primers, several regions from within the extracellular domain were amplified, cloned, and sequenced. One set of primers, in addition to the expected 352-bp amplicon, revealed a 276-bp transcript, although its biological functions remain unknown. These two transcripts showed varying levels of expression in different tissues of infertile rats against nearly uniform expression in the fertile animals. Significantly, the 352 bp testis transcript showed mutational hotspots from nucleotide 84-266 in the infertile rats. Analysis of testis and brain genomic DNA from these infertile rats showed mutations only in the testis suggesting this to be a postzygotic event. In contrast, no mutation was detected in the genomic DNA of testis and brain of the fertile rats. Protein expression studies showed complete absence of the cytoplasmic kinase domain and soluble c-kit protein in one of the infertile rats. Histological examination of testis of these infertile animals showed stem cell depletion resulting in fewer germ cells. Based on these results, we infer that 352-bp mutant mRNA transcript is implicated in the spermatogenic failure.
Collapse
|
20
|
Niu XL, Peters KG, Kontos CD. Deletion of the carboxyl terminus of Tie2 enhances kinase activity, signaling, and function. Evidence for an autoinhibitory mechanism. J Biol Chem 2002; 277:31768-73. [PMID: 12082108 DOI: 10.1074/jbc.m203995200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tie2 is an endothelial receptor tyrosine kinase that is required for both embryonic vascular development and tumor angiogenesis. There is considerable interest in understanding the mechanisms of Tie2 activation for therapeutic purposes. The recent solution of the Tie2 crystal structure suggests that Tie2 activity is autoinhibited by its carboxyl terminus. Here we investigated the role of the C tail in Tie2 activation, signaling, and function both in vitro and in vivo by deleting the C terminus of Tie2 (Delta CT). Compared to wild type Tie2, in vitro autophosphorylation and kinase activity were significantly enhanced by the Delta CT mutation. In NIH 3T3 cells expressing chimeric Tie2 receptors, both basal and ligand-induced tyrosine phosphorylation were markedly enhanced compared to wild type in several independent clones of Tie2-Delta CT. Moreover, the Delta CT mutation enhanced basal and ligand-dependent activation of Akt and extracellular signal-regulated kinase. Enhanced Akt activation correlated with significant inhibition of staurosporine-induced apoptosis. These findings demonstrate that the Tie2 C tail performs a novel negative regulatory role in Tie2 signaling and function, and they provide important insights into the mechanisms by which the Tie2 kinase is activated.
Collapse
Affiliation(s)
- Xi-Lin Niu
- Department of Medicine, Division of Cardiology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
21
|
Affiliation(s)
- Rajeev Gupta
- Section of Gene Function and Regulation, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK.
| | | | | |
Collapse
|
22
|
Scheijen B, Griffin JD. Tyrosine kinase oncogenes in normal hematopoiesis and hematological disease. Oncogene 2002; 21:3314-33. [PMID: 12032772 DOI: 10.1038/sj.onc.1205317] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Tyrosine kinase oncogenes are formed as a result of mutations that induce constitutive kinase activity. Many of these tyrosine kinase oncogenes that are derived from genes, such as c-Abl, c-Fes, Flt3, c-Fms, c-Kit and PDGFRbeta, that are normally involved in the regulation of hematopoiesis or hematopoietic cell function. Despite differences in structure, normal function, and subcellular location, many of the tyrosine kinase oncogenes signal through the same pathways, and typically enhance proliferation and prolong viability. They represent excellent potential drug targets, and it is likely that additional mutations will be identified in other kinases, their immediate downstream targets, or in proteins regulating their function.
Collapse
Affiliation(s)
- Blanca Scheijen
- Department of Adult Oncology, Dana-Farber Cancer Institute, 44 Binney Street, Boston, Massachusetts, MA 02115, USA
| | | |
Collapse
|
23
|
Mancini A, Koch A, Wilms R, Tamura T. c-Cbl associates directly with the C-terminal tail of the receptor for the macrophage colony-stimulating factor, c-Fms, and down-modulates this receptor but not the viral oncogene v-Fms. J Biol Chem 2002; 277:14635-40. [PMID: 11847211 DOI: 10.1074/jbc.m109214200] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The receptor for the macrophage colony-stimulating factor (CSF-1, also termed M-CSF), the tyrosine kinase c-Fms, was originally determined to be the oncogene product of the McDonough strain of feline sarcoma virus, v-Fms. The structural difference between c-Fms and v-Fms amounts to only five point mutations in the extracellular domain, two mutations in the cytoplasmic domain, and the replacement of 50 amino acids by 14 unrelated amino acids at the C-terminal tail. Here, we have identified c-Cbl as the direct binding partner for c-Fms. c-Cbl binds to phosphotyrosine residue 977 at the C-terminal end of feline c-Fms, which is absent in v-Fms. The replacement of the C-terminal end of v-Fms by the corresponding part of c-Fms (vc-Fms) restored the binding potential. As a result, vc-Fms reduced the transforming potency of v-Fms. The overexpression of Cbl did not influence the v-Fms-transformed phenotype, although c-Cbl forms a complex with v-Fms indirectly. In contrast, the expression of Cbl drastically reduced the vc-Fms-transformed phenotype and the activation of Erk and enhanced Fms ubiquitination via phosphotyrosine residue 977. Furthermore, the replacement of tyrosine 977 into phenylalanine in feline c-Fms and vc-Fms reduced the Cbl-dependent ubiquitination. These data suggest that an indirect association of c-Cbl via multimeric complex induced a different signaling pathway from the pathway induced by c-Cbl direct interaction.
Collapse
Affiliation(s)
- Annalisa Mancini
- Institut für Biochemie, OE 4310, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, D-30623 Hannover, Germany
| | | | | | | |
Collapse
|
24
|
Affiliation(s)
- John T Reilly
- Molecular Haematology Unit, Division of Molecular and Genetic Medicine, Royal Hallamshire Hospital, Sheffield, UK.
| |
Collapse
|
25
|
Wilhelmsen K, Burkhalter S, van der Geer P. C-Cbl binds the CSF-1 receptor at tyrosine 973, a novel phosphorylation site in the receptor's carboxy-terminus. Oncogene 2002; 21:1079-89. [PMID: 11850825 DOI: 10.1038/sj.onc.1205166] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2001] [Revised: 11/05/2001] [Accepted: 11/08/2001] [Indexed: 11/08/2022]
Abstract
The colony-stimulating factor-1 (CSF-1) receptor is a protein-tyrosine kinase that regulates the proliferation and differentiation of monocyte and macrophage precursors. Binding of CSF-1 to its receptor results in activation of the kinase domain and autophosphorylation on a number of tyrosine residues. Phosphorylated tyrosine residues function as binding sites for SH2 domain-containing signaling proteins. It is known that activated receptors are internalized and degraded, but the mechanics of this process remain largely unknown. Recently, evidence has started to emerge that the ubiquitin-protein ligase c-Cbl is involved in CSF-1 receptor degradation. In addition, there is evidence that the CSF-1 receptor carboxy-terminus is involved in down regulation of the receptor. Here we show that the c-Cbl tyrosine kinase-binding (TKB) domain binds in vitro and in vivo to the CSF-1 receptor. Binding is dependent on the receptor's protein-kinase activity. Deletion of the carboxy-terminus or mutation of Tyr 973 blocks binding. We further provide evidence that the CSF-1 receptor's carboxy-terminus is a substrate for autophosphorylation. Our observations are consistent with a model in which receptor autophosphorylation at Tyr 973 creates a binding site for c-Cbl. Association of c-Cbl with the receptor leads to ubiquitination, followed by receptor degradation.
Collapse
Affiliation(s)
- Kevin Wilhelmsen
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0601, USA
| | | | | |
Collapse
|
26
|
Dai XM, Ryan GR, Hapel AJ, Dominguez MG, Russell RG, Kapp S, Sylvestre V, Stanley ER. Targeted disruption of the mouse colony-stimulating factor 1 receptor gene results in osteopetrosis, mononuclear phagocyte deficiency, increased primitive progenitor cell frequencies, and reproductive defects. Blood 2002; 99:111-20. [PMID: 11756160 DOI: 10.1182/blood.v99.1.111] [Citation(s) in RCA: 831] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The effects of colony-stimulating factor 1 (CSF-1), the primary regulator of mononuclear phagocyte production, are thought to be mediated by the CSF-1 receptor (CSF-1R), encoded by the c-fms proto-oncogene. To investigate the in vivo specificity of CSF-1 for the CSF-1R, the mouse Csf1r gene was inactivated. The phenotype of Csf1(-)/Csf1r(-) mice closely resembled the phenotype of CSF-1-nullizygous (Csf1(op)/Csf1(op)) mice, including the osteopetrotic, hematopoietic, tissue macrophage, and reproductive phenotypes. Compared with their wild-type littermates, splenic erythroid burst-forming unit and high-proliferative potential colony-forming cell levels in both Csf1(op)/Csf1(op) and Csf1(-)/Csf1r(-) mice were significantly elevated, consistent with a negative regulatory role of CSF-1 in erythropoiesis and the maintenance of primitive hematopoietic progenitor cells. The circulating CSF-1 concentration in Csf1r(-)/Csf1r(-) mice was elevated 20-fold, in agreement with the previously reported clearance of circulating CSF-1 by CSF-1R-mediated endocytosis and intracellular destruction. Despite their overall similarity, several phenotypic characteristics of the Csf1r(-)/Csf1r(-) mice were more severe than those of the Csf1(op)/Csf1(op) mice. The results indicate that all of the effects of CSF-1 are mediated via the CSF-1R, but that subtle effects of the CSF-1R could result from its CSF-1-independent activation.
Collapse
Affiliation(s)
- Xu-Ming Dai
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Wolf I, Rohrschneider LR. Fiz1, a novel zinc finger protein interacting with the receptor tyrosine kinase Flt3. J Biol Chem 1999; 274:21478-84. [PMID: 10409713 DOI: 10.1074/jbc.274.30.21478] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The receptor tyrosine kinase Flt3 has been shown to play a role in proliferation and survival of hematopoietic progenitor cells as well as differentiation of early B lymphoid progenitors. However, the signaling events that control growth or differentiation are not completely understood. In order to identify new signaling molecules interacting with the cytoplasmic domain of Flt3, we performed a yeast two-hybrid screen. In addition to several SH2 domain-containing proteins, we have isolated a novel Flt3 interacting zinc finger protein (Fiz1) with 11 C(2)H(2)-type zinc fingers. Fiz1 binds to the catalytic domain of Flt3 but not to the structurally related receptor tyrosine kinases Kit, Fms, and platelet-derived growth factor receptor. This association is independent of kinase activity. The interaction between Flt3 and Fiz1 detected in yeast was confirmed by in vitro and in vivo coprecipitation assays. Fiz1 mRNA is expressed in all murine cell lines and tissues tested. Anti-Fiz1 antibodies recognize a 60-kDa protein, which is localized in the nucleus as well as in the cytoplasm. Together, these results identified a novel class of interaction between a receptor tyrosine kinase and a signaling molecule which is independent of the well established SH2 domain/phosphotyrosine binding.
Collapse
Affiliation(s)
- I Wolf
- Fred Hutchinson Cancer Research Center, Division of Basic Sciences, Seattle, Washington 98109-1024, USA.
| | | |
Collapse
|
28
|
Lee RC, Walters JA, Reyland ME, Anderson SM. Constitutive activation of the prolactin receptor results in the induction of growth factor-independent proliferation and constitutive activation of signaling molecules. J Biol Chem 1999; 274:10024-34. [PMID: 10187780 DOI: 10.1074/jbc.274.15.10024] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ability to induce the oncogenic activation of the human prolactin receptor (PRLR) was examined by deleting 178 amino acids of the extracellular ligand-binding domain. Expression of this deletion mutant in the interleukin-3 (IL-3)-dependent murine myeloid cell line 32Dcl3 resulted in the induction of growth factor-independent proliferation. Parental 32Dcl3 cells proliferated only in the presence of exogenous murine IL-3 (mIL-3), while 32Dcl3 cells transfected with the long form of the human PRLR were able to proliferate in response to mIL-3, ovine prolactin, or human PRL. Cells expressing the Delta178 deletion mutant contained numerous phosphotyrosine-containing proteins in the absence of stimulation with either mIL-3 or ovine prolactin. Growth factor stimulation increased the number of proteins phosphorylated and the intensity of phosphorylation. These proteins included constitutively phosphorylated Janus kinase 2, signal transducer and activator of transcription 5, and SHC. Activated extracellular signal-regulated kinases 1 and 2 (ERK1 and ERK2) were observed in unstimulated 32Dcl3 cells expressing the Delta178 mutant. Likewise, transfection of Nb2 cells with the Delta178 deletion mutant induced growth factor-independent proliferation and constitutive activation of Janus kinase 2, ERK1, and ERK2. In addition to the induction of a growth factor-independent state, the expression of the Delta178 deletion mutant also suppressed the apoptosis that occurs when 32Dcl3 cells are cultured in the absence of growth factors such as IL-3. These data suggest that the constitutive activation of the PRLR can be achieved by deletion of the ligand binding domain and that this mutation leads to the oncogenic activation of the receptor as determined by the ability of the receptor to induce growth factor-independent proliferation of factor-dependent hematopoietic cells.
Collapse
Affiliation(s)
- R C Lee
- Department of Pathology, School of Medicine, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | | | | | |
Collapse
|
29
|
Abstract
Growth factor and cytokine control of hemopoiesis, the process of blood cell development, is mediated by specific interactions with cell-surface receptors. Hemopoietic growth factor receptors belong to two major families, the transmembrane protein tyrosine kinases and the hemopoietin receptors. Ligand binding stimulates receptor aggregation and activation resulting in transduction of signals that induce diverse cellular responses including proliferation, maturation, prevention of apoptosis and/or functional activation. Deregulation of hemopoiesis can result in leukemia, the malignant transformation of blood cells, or the development of other hemoproliferative disorders. As hemopoietic growth factor receptors are integral to blood cell regulation, it is feasible that receptor abnormalities may contribute to leukemia by circumventing normal growth factor control or altering the balance of proliferation and differentiation. Although considerable experimental evidence has clearly established the leukemogenic potential of mutated growth factor receptors, studies to date suggest that such abnormalities contribute only rarely to human disease.
Collapse
Affiliation(s)
- W S Alexander
- The Walter and Eliza Hall Institute for Medical Research and the Cooperative Research Centre for Cellular Growth Factors, PO Royal Melbourne Hospital, Victoria, Australia
| | | |
Collapse
|
30
|
c-kit Ligand and Flt3 Ligand: Stem/Progenitor Cell Factors With Overlapping Yet Distinct Activities. Blood 1998. [DOI: 10.1182/blood.v91.4.1101] [Citation(s) in RCA: 522] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
31
|
Rohrschneider LR, Bourette RP, Lioubin MN, Algate PA, Myles GM, Carlberg K. Growth and differentiation signals regulated by the M-CSF receptor. Mol Reprod Dev 1997; 46:96-103. [PMID: 8981370 DOI: 10.1002/(sici)1098-2795(199701)46:1<96::aid-mrd15>3.0.co;2-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The normal proto-oncogene c-fms encodes the macrophage growth factor (M-CSF) receptor involved in growth, survival, and differentiation along the monocyte-macrophage lineage of hematopoietic cell development. A major portion of our research concerns unraveling the temporal, molecular, and structural features that determine and regulate these events. Previous results indicated that c-fms can transmit a growth signal as well as a signal for differentiation in the appropriate cells. To investigate the role of the Fms tyrosine autophosphorylation sites in proliferation vs. differentiation signaling, four of these sites were disrupted and the mutant receptors expressed in a clone derived from the myeloid FDC-P1 cell line. These analyses revealed that: (1) none of the four autophosphorylation sites studied (Y697, Y706, Y721, and Y807) are essential for M-CSF-dependent proliferation of the FDC-P1 clone; (2) Y697, Y706, and Y721 sites, located in the kinase insert region of Fms, are not necessary for differentiation but their presence augments this process; and (3) the Y807 site is essential for the Fms differentiation signal: its mutation totally abrogates the differentiation of the FDC-P1 clone and conversely increases the rate of M-CSF-dependent proliferation. This suggests that the Y807 site may control a switch between growth and differentiation. The assignment of Y807 as a critical site for the reciprocal regulation of growth and differentiation may provide a paradigm for Fms involvement in leukemogenesis, and we are currently investigating the downstream signals transmitted by the tyrosine-phosphorylated 807 site. In Fms-expressing FDC-P1 cells, M-CSF stimulation results in the rapid (30 sec) tyrosine phosphorylation of Fms on the five cytoplasmic tyrosine autophosphorylation sites, and subsequent tyrosine phosphorylation of several host cell proteins occurs within 1-2 min. Complexes are formed between Fms and other signal transduction proteins such as Grb2, Shc, Sos1, and p85. In addition, a new signal transduction protein of 150 kDa is detectable in the FDC-P1 cells. The p150 is phosphorylated on tyrosine, and forms a complex with Shc and Grb2. The interaction with Shc occurs via a protein tyrosine binding (PTB) domain at the N-terminus of Shc. The p150 is not detectable in Fms signaling within fibroblasts, yet the PDGF receptor induces the tyrosine phosphorylation of a similarly sized protein. In hematopoietic cells, this protein is involved in signaling by receptors for GM-CSF, IL-3, KL, MPO, and EPO. We have now cloned a cDNA for this protein and found at least one related family member. The related family member is a Fanconia Anemia gene product, and this suggests potential ways the p150 protein may function in Fms signaling.
Collapse
MESH Headings
- Animals
- Cell Differentiation/drug effects
- Cell Differentiation/physiology
- Cell Division/drug effects
- Cell Division/physiology
- Cloning, Molecular
- DNA, Complementary/genetics
- Humans
- Macrophage Colony-Stimulating Factor/pharmacology
- Macrophage Colony-Stimulating Factor/physiology
- Mice
- Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases
- Phosphoric Monoester Hydrolases/genetics
- Phosphoric Monoester Hydrolases/physiology
- Phosphorylation
- Protein Conformation
- Protein Kinases/metabolism
- Protein Processing, Post-Translational
- Proto-Oncogene Mas
- Receptor, Macrophage Colony-Stimulating Factor/chemistry
- Receptor, Macrophage Colony-Stimulating Factor/deficiency
- Receptor, Macrophage Colony-Stimulating Factor/drug effects
- Receptor, Macrophage Colony-Stimulating Factor/genetics
- Receptor, Macrophage Colony-Stimulating Factor/physiology
- src Homology Domains
Collapse
Affiliation(s)
- L R Rohrschneider
- Fred Hutchinson Cancer Research Center, Seattle, Washington 98104-2092
| | | | | | | | | | | |
Collapse
|
32
|
Joos H, Trouliaris S, Helftenbein G, Niemann H, Tamura T. Tyrosine phosphorylation of the juxtamembrane domain of the v-Fms oncogene product is required for its association with a 55-kDa protein. J Biol Chem 1996; 271:24476-81. [PMID: 8798707 DOI: 10.1074/jbc.271.40.24476] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Tyrosine autophosphorylation of the v-Fms oncogene product results in the formation of high affinity binding sites for cellular proteins with Src homology 2 (SH2) domains that are involved in various signal cascades. Tryptic digestion of the autophosphorylated v-Fms and of its cellular counterpart, the feline c-Fms polypeptide, gave rise to at least six common major phosphopeptides, four of which have been characterized previously. Employing site-directed mutagenesis and phosphopeptide mapping of in vitro phosphorylated glutathione S-transferase v-Fms fusion proteins as well as full-length v-Fms molecules expressed in various cells, we show here that Tyr543 of the juxtamembrane domain and Tyr696 of the kinase insert domain constitute major autophosphorylation sites. Recombinant fusion proteins containing the tyrosine-phosphorylated kinase insert domain bind the growth factor receptor bound protein 2 and the p85 and p110 subunits of phosphatidylinositol 3'-kinase. In contrast, fusion proteins containing the juxtamembrane domain phosphorylated on Tyr543 fail to bind any of the known SH2 domain-containing cellular proteins but associate specifically with an as yet undefined 55-kDa cellular protein that by itself is phosphorylated on tyrosine.
Collapse
Affiliation(s)
- H Joos
- Institut für Virologie, Justus-Liebig-Universität Giessen, Frankfurter Strasse 107, D-35392 Giessen, Federal Republic of Germany
| | | | | | | | | |
Collapse
|
33
|
Collesi C, Santoro MM, Gaudino G, Comoglio PM. A splicing variant of the RON transcript induces constitutive tyrosine kinase activity and an invasive phenotype. Mol Cell Biol 1996; 16:5518-26. [PMID: 8816464 PMCID: PMC231551 DOI: 10.1128/mcb.16.10.5518] [Citation(s) in RCA: 135] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The Ron tyrosine kinase receptor shares with the members of its subfamily (Met and Sea) a unique functional feature: the control of cell dissociation, motility, and invasion of extracellular matrices (scattering). The mature Ron protein is a heterodimer of disulfide-linked alpha and beta chains, originated by proteolytic cleavage of a single-chain precursor of 185 kDa. In a human gastric cancer cell line (KATO-III), we found abnormal accumulation of an uncleaved single-chain protein (delta-Ron) of 165 kDa; this molecule is encoded by a transcript differing from the full-length RON mRNA by an in-frame deletion of 49 amino acids in the beta-chain extracellular domain. The deleted transcript originates by an alternatively spliced cassette exon of 147 bp, flanked by two short introns. The delta-Ron tyrosine kinase is constitutively activated by disulfide-linked intracellular oligomerization because it contains an uneven number of cysteine residues. Oligomerization and constitutive tyrosine phosphorylation of the full-size Ron was obtained by site-directed mutagenesis of a single cysteine residue in the region encoded by the cassette exon, mimicking that occurring in the delta-Ron isoform. Inhibition of thiol-mediated intermolecular disulfide bonding prevented delta-Ron oligomerization. The intracellular activation of Ron is followed by acquisition of invasive properties in vitro. These data (i) provide a novel molecular mechanism for posttranscriptional activation of a tyrosine kinase receptor protein and (ii) suggest a role for the Ron receptor in progression toward malignancy.
Collapse
Affiliation(s)
- C Collesi
- Institute for Cancer Research, University of Turin Medical School, Italy
| | | | | | | |
Collapse
|
34
|
Lorenzi MV, Horii Y, Yamanaka R, Sakaguchi K, Miki T. FRAG1, a gene that potently activates fibroblast growth factor receptor by C-terminal fusion through chromosomal rearrangement. Proc Natl Acad Sci U S A 1996; 93:8956-61. [PMID: 8799135 PMCID: PMC38576 DOI: 10.1073/pnas.93.17.8956] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
A constitutively active form of fibroblast growth factor 2 (FGFR2) was identified in rat osteosarcoma (ROS) cells by an expression cloning strategy. Unlike other tyrosine kinase receptors activated by N-terminal truncation in tumors, this receptor, FGFR2-ROS, contains an altered C terminus generated from chromosomal rearrangement with a novel gene, designated FGFR activating gene 1 (FRAG1). While the removal of the C terminus slightly activates FGFR2, the presence of the FRAG1 sequence drastically stimulates the transforming activity and autophosphorylation of the receptor. FGFR2-ROS is expressed as a unusually large protein and is highly phosphorylated in NIH 3T3 transfectants. FRAG1 is ubiquitously expressed and encodes a predicted protein of 28 kDa lacking significant structural similarity to known proteins. Epitope-tagged FRAG1 protein showed a perinuclear localization by immunofluorescence staining. The highly activated state of FGFR2-ROS appears to be attributed to constitutive dimer formation and higher phosphorylation level as well as possibly altered subcellular localization. These results indicate a unique mechanism of receptor activation by a C terminus alteration through a chromosomal fusion with FRAG1.
Collapse
Affiliation(s)
- M V Lorenzi
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
35
|
Liang TJ, Reid AE, Xavier R, Cardiff RD, Wang TC. Transgenic expression of tpr-met oncogene leads to development of mammary hyperplasia and tumors. J Clin Invest 1996; 97:2872-7. [PMID: 8675700 PMCID: PMC507382 DOI: 10.1172/jci118744] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Receptor tyrosine kinases are important in cell signal transduction and proliferation. Abnormal expression of tyrosine kinases often leads to malignant transformation. C-met is a tyrosine kinase receptor and its ligand is hepatocyte growth factor (HGF). HGF/c-met plays diverse role in regulation of cell growth, shape and movement. Constitutively activated met, such as tpr-met, is a potent oncogene in vitro, but its carcinogenic role in vivo remains unclear. Our study demonstrates that expression of tpr-met leads to development of mammary tumors and other malignancies in transgenic mice, and suggests that deregulated met expression may be involved in mammary carcinogenesis.
Collapse
Affiliation(s)
- T J Liang
- Department of Medicine, Massachusetts General Hospital, Boston 02114, USA.
| | | | | | | | | |
Collapse
|
36
|
Katz WS, Lesa GM, Yannoukakos D, Clandinin TR, Schlessinger J, Sternberg PW. A point mutation in the extracellular domain activates LET-23, the Caenorhabditis elegans epidermal growth factor receptor homolog. Mol Cell Biol 1996; 16:529-37. [PMID: 8552080 PMCID: PMC231031 DOI: 10.1128/mcb.16.2.529] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The let-23 gene encodes a Caenorhabditis elegans homolog of the epidermal growth factor receptor (EGFR) necessary for vulval development. We have characterized a mutation of let-23 that activates the receptor and downstream signal transduction, leading to excess vulval differentiation. This mutation alters a conserved cysteine residue in the extracellular domain and is the first such point mutation in the EGFR subfamily of tyrosine kinases. Mutation of a different cysteine in the same subdomain causes a strong loss-of-function phenotype, suggesting that cysteines in this region are important for function and nonequivalent. Vulval precursor cells can generate either of two subsets of vulval cells (distinct fates) in response to sa62 activity. The fates produced depended on the copy number of the mutation, suggesting that quantitative differences in receptor activity influence the decision between these two fates.
Collapse
Affiliation(s)
- W S Katz
- Howard Hughes Medical Institute, California Institute of Technology, Pasadena, 91125, USA
| | | | | | | | | | | |
Collapse
|
37
|
Trouliaris S, Smola U, Chang JH, Parsons SJ, Niemann H, Tamura T. Tyrosine 807 of the v-Fms oncogene product controls cell morphology and association with p120RasGAP. J Virol 1995; 69:6010-20. [PMID: 7666506 PMCID: PMC189497 DOI: 10.1128/jvi.69.10.6010-6020.1995] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Expression of the v-fms oncogene of feline sarcoma virus in fibroblasts causes surface exposure of an activated receptor tyrosine kinase, v-Fms, that is autophosphorylated at multiple sites within its cytoplasmic domain. Cellular proteins interacting with this part of v-Fms modulate the mitogenic activity and morphology of the cells. We show here that the tyrosine residue in position 807 (Y-807) of the v-Fms molecule constitutes a major autophosphorylation site. The replacement of this residue by phenylalanine (Y807F mutation) allowed us to functionally dissect v-Fms-specific mitogenic and morphogenic cascades. Cells expressing the mutant v-Fms molecule resembled wild-type (wt) v-Fms-transformed (wt-v-Fms) cells in terms of [3H]thymidine uptake rates and activation of the Ras/Raf-1 mitogenic cascade. Such cells showed, however, a flat morphology and contained intact actin cables and fibronectin network. Our studies indicate that the v-Fms molecule controls cell morphology by a cascade that involves a direct interaction with p120RasGAP and p190RhoGAP: (i) in contrast to wt v-Fms molecules, the Y807F v-Fms protein failed to associate with and phosphorylate p120RasGAP; (ii) tight complexes between p120RasGAP and p190RhoGAP as well as detectable RhoGAP activity were present exclusively in wt-v-Fms cells; and (iii) p190RhoGAP was dispersed throughout the cytoplasm of wt-v-Fms cells, whereas its distribution was restricted to perinuclear regions of cells expressing the mutant v-Fms gene.
Collapse
Affiliation(s)
- S Trouliaris
- Institut für Virologie, Justus-Liebig-Universität Giessen, Germany
| | | | | | | | | | | |
Collapse
|
38
|
Affiliation(s)
- J M Blechman
- Department of Chemical Immunology, Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
39
|
Miloso M, Mazzotti M, Vass WC, Beguinot L. SHC and GRB-2 are constitutively by an epidermal growth factor receptor with a point mutation in the transmembrane domain. J Biol Chem 1995; 270:19557-62. [PMID: 7642641 DOI: 10.1074/jbc.270.33.19557] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
A single point mutation, Glu627--> Val, equivalent to the activating mutation in the Neu oncogene, was inserted in the transmembrane domain of the human epidermal growth factor (EGF) receptor. Unlike the wild type, Glu627-EGF receptor, transfected in NIH3T3 cells, gave rise to focal transformation and growth in agar even in the absence EGF. Constitutive activity of mutant EGF receptor amounted to 20% of that of wild type receptor stimulated by EGF. In addition, the mutant receptor was more sensitive to EGF, reaching maximum transforming activity at 5 ng/ml EGF. NIH3T3 cells expressing Glu627-EGF receptor showed a transformed phenotype and were not arrested in G0 upon serum deprivation. The mutant receptor was constitutively autophosphorylated, and several other cellular proteins were phosphorylated on tyrosine in absence of the ligand. Among these, the SHC adaptor protein was phosphorylated in absence of EGF, the other adaptor, GRB-2 was constitutively associated with the Glu627-EGF receptor in vivo and in vitro, and mitogen-activated protein kinase was constitutively phosphorylated. In contrast, other EGF receptor substrates, like phospholipase C gamma, were not phosphorylated in absence of EGF. The mutant receptor showed a higher sensitivity to cleavage by calpain both in absence and presence of EGF, appeared as a 170- and 150-kDa doublet in cell extracts, and a specific calpain inhibitor blocked the appearance of the 150-kDa form. Since the calpain cleavage site is located in the receptor cytoplasmic tail, this finding suggests that the Glu627 mutation induces a slightly different conformation in the EGF receptor intracellular domain. In conclusion, our data show that a point mutation in the EGF receptor transmembrane domain was able to constitutively activate the receptor and to induce transformation via constitutive activation of the Ras pathway.
Collapse
Affiliation(s)
- M Miloso
- Laboratorio di Oncologia Molecolare, DIBIT, HS Raffaele, Milano, Italy
| | | | | | | |
Collapse
|
40
|
de Parseval N, Bordereaux D, Varlet P, Gisselbrecht S, Sola B. Isolation of new oncogenic forms of the murine c-fms gene. J Virol 1995; 69:3597-604. [PMID: 7745707 PMCID: PMC189074 DOI: 10.1128/jvi.69.6.3597-3604.1995] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The c-fms gene encodes the receptor for the macrophage colony-stimulating factor, which plays a key role in the proliferation and differentiation of cells of the myelomonocytic lineage. In order to study the effects of overexpression of the macrophage colony-stimulating factor receptor in hematopoietic cells, a Harvey sarcoma virus-derived retroviral vector containing the murine c-fms cDNA was pseudotyped with Friend murine leukemia virus and inoculated into newborn DBA/2 mice. This viral complex induced monoclonal or oligoclonal leukemias with a shorter latency than that for Friend murine leukemia virus alone. Unexpectedly, 60% of the integrated fms proviruses had deletions at the 5' end of the c-fms gene. Sequence analysis of seven mutant proviruses indicated that the deletions always included the c-fms ligand binding domain and either occurred within the c-fms sequences, leaving the fms open reading frame unchanged, or joined VL30 sequences located at the 5' end of the parental retroviral vector to internal c-fms sequences, resulting in truncated fms proteins devoid of the canonical signal peptide. In contrast to all tyrosine kinase receptors transduced in retroviruses, no helper gag- or env-derived sequences were fused to the rearranged fms sequences. Viral supernatants isolated from hematopoietic tumors with viruses with deletions were able to transform NIH 3T3 cells as efficiently as parental fms virus, indicating that deletions resulted in constitutive activation of the c-fms gene. These oncogenic variants differ from those transduced in the Suzan McDonough strain of feline sarcoma viruses (L. Donner, L. A. Fedele, C. F. Garon, S. J. Anderson, and C. J. Sherr, J. Virol. 41:489-500, 1982). The high rate of c-fms rearrangement and its relevance in the occurrence of hematopoietic tumors are discussed.
Collapse
Affiliation(s)
- N de Parseval
- Hopital Cochin, Institut Cochin de Genetique Moleculaire, U-363 Institut National de la Santé et de la Recherche Médicale, Université Paris V, France
| | | | | | | | | |
Collapse
|
41
|
Asai N, Iwashita T, Matsuyama M, Takahashi M. Mechanism of activation of the ret proto-oncogene by multiple endocrine neoplasia 2A mutations. Mol Cell Biol 1995; 15:1613-9. [PMID: 7532281 PMCID: PMC230385 DOI: 10.1128/mcb.15.3.1613] [Citation(s) in RCA: 254] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Transforming activity of the c-ret proto-oncogene with multiple endocrine neoplasia (MEN) 2A mutations was investigated by transfection of NIH 3T3 cells. Mutant c-ret genes driven by the simian virus 40 or cytomegalovirus promoter induced transformation with high efficiencies. The 170-kDa Ret protein present on the cell surface of transformed cells was highly phosphorylated on tyrosine and formed disulfide-linked homodimers. This result indicated that MEN 2A mutations induced ligand-independent dimerization of the c-Ret protein on the cell surface, leading to activation of its intrinsic tyrosine kinase. In addition to the MEN 2A mutations, we further introduced a mutation (lysine for asparaginic acid at codon 300 [D300K]) in a putative Ca(2+)-binding site of the cadherin-like domain. When c-ret cDNA with both MEN 2A and D300K mutations was transfected into NIH 3T3 cells, transforming activity drastically decreased. Western blot (immunoblot) analysis revealed that very little of the 170-kDa Ret protein with the D300K mutation was expressed in transfectants while expression of the 150-kDa Ret protein retained in the endoplasmic reticulum was not affected. This result also demonstrated that transport of the Ret protein to the plasma membrane is required for its transforming activity.
Collapse
Affiliation(s)
- N Asai
- Department of Pathology, Nagoya University School of Medicine, Japan
| | | | | | | |
Collapse
|
42
|
Abstract
The aim of this report is to review the role of CSF-1 and its receptor in neoplasms of the breast and female reproductive tract. Expression and function of CSF-1 and its receptor were studied in tumours of the human breast, ovary and endometrium. CSF-1 and its receptor, initially implicated as essential to normal monocyte development and trophoblastic implantation, have been more recently shown to be expressed by carcinomas of the breast, ovary and endometrium where activation of the receptor by ligand produced either by the tumour cells or by stromal elements stimulates tumour cell invasion by a urokinase-dependent mechanism. Breast carcinomas express wild-type CSF-1 receptors at levels comparable to those observed in trophoblast and monocytes. Ovarian and endometrial carcinomas express significantly lower levels of wild-type, functional CSF-1Rs while ovarian carcinomas also express unusual transcripts which diverge from the wild-type CSF-1R transcript in their 5' extracellular and other sequences. Tumour cell expression of CSF-1R is under the control of several steroid hormones (glucocorticoids and progestins) and tumour cell CSF-1 expression appears to be regulated by other hormones, some of which are involved in normal lactogenic differentiation. In addition, tumour cells often produce CSF-1 at such high levels that CSF-1 spills into the extracellular fluid and circulation. Measurements of circulating levels of CSF-1 have proved useful in patients with ovarian, endometrial and breast carcinoma patients both for disease detection and monitoring of response to breast carcinoma patients both for disease detection and monitoring of response to therapy.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- B M Kacinski
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520-8040, USA
| |
Collapse
|
43
|
Novel activating mutations in the neu proto-oncogene involved in induction of mammary tumors. Mol Cell Biol 1994. [PMID: 7935422 DOI: 10.1128/mcb.14.11.7068] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Amplification of the Neu/c-erbB-2 receptor tyrosine kinase has been implicated as an important event in the genesis of human breast cancer. Indeed, transgenic mice bearing either an activated form of neu or the wild-type proto-oncogene under the transcriptional control of the mouse mammary tumor virus promoter-enhancer frequently develop mammary carcinomas (L. Bouchard, L. Lamarre, P. J. Tremblay, and P. Jolicoeur, Cell 57:931-936, 1989; C. T. Guy, M. A. Webster, M. Schaller, T. J. Parson, R. D. Cardiff, and W. J. Muller, Proc. Natl. Acad. Sci. USA 89:10578-10582, 1992; W. J. Muller, E. Sinn, R. Wallace, P. K. Pattengale, and P. Leder, Cell 54:105-115, 1988). Induction of mammary tumors in transgenic mice expressing the wild-type Neu receptor is associated with activation of the receptor's intrinsic tyrosine kinase activity (Guy et al., Proc. Natl. Acad. Sci. USA 89:10578-10582, 1992). Here, we demonstrate that activation of Neu in these transgenic mice occurs through somatic mutations located within the transgene itself. Sequence analyses of these mutations revealed that they contain in-frame deletions of 7 to 12 amino acids in the extracellular region proximal to the transmembrane domain. Introduction of these mutations into a wild-type neu cDNA results in an increased transforming ability of the altered Neu tyrosine kinase. These observations suggest that oncogenic activation of Neu in mammary tumorigenesis frequently occurs by somatic mutation.
Collapse
|
44
|
Siegel PM, Dankort DL, Hardy WR, Muller WJ. Novel activating mutations in the neu proto-oncogene involved in induction of mammary tumors. Mol Cell Biol 1994; 14:7068-77. [PMID: 7935422 PMCID: PMC359240 DOI: 10.1128/mcb.14.11.7068-7077.1994] [Citation(s) in RCA: 90] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Amplification of the Neu/c-erbB-2 receptor tyrosine kinase has been implicated as an important event in the genesis of human breast cancer. Indeed, transgenic mice bearing either an activated form of neu or the wild-type proto-oncogene under the transcriptional control of the mouse mammary tumor virus promoter-enhancer frequently develop mammary carcinomas (L. Bouchard, L. Lamarre, P. J. Tremblay, and P. Jolicoeur, Cell 57:931-936, 1989; C. T. Guy, M. A. Webster, M. Schaller, T. J. Parson, R. D. Cardiff, and W. J. Muller, Proc. Natl. Acad. Sci. USA 89:10578-10582, 1992; W. J. Muller, E. Sinn, R. Wallace, P. K. Pattengale, and P. Leder, Cell 54:105-115, 1988). Induction of mammary tumors in transgenic mice expressing the wild-type Neu receptor is associated with activation of the receptor's intrinsic tyrosine kinase activity (Guy et al., Proc. Natl. Acad. Sci. USA 89:10578-10582, 1992). Here, we demonstrate that activation of Neu in these transgenic mice occurs through somatic mutations located within the transgene itself. Sequence analyses of these mutations revealed that they contain in-frame deletions of 7 to 12 amino acids in the extracellular region proximal to the transmembrane domain. Introduction of these mutations into a wild-type neu cDNA results in an increased transforming ability of the altered Neu tyrosine kinase. These observations suggest that oncogenic activation of Neu in mammary tumorigenesis frequently occurs by somatic mutation.
Collapse
Affiliation(s)
- P M Siegel
- Institute for Molecular Biology and Biotechnology, McMaster University, Hamilton, Ontario, Canada
| | | | | | | |
Collapse
|
45
|
Chambers SK, Wang Y, Gilmore-Hebert M, Kacinski BM. Post-transcriptional regulation of c-fms proto-oncogene expression by dexamethasone and of CSF-1 in human breast carcinomas in vitro. Steroids 1994; 59:514-22. [PMID: 7846733 DOI: 10.1016/0039-128x(94)90069-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The c-fms proto-oncogene encodes the receptor for a hematopoietic growth factor, CSF-1. Recently, the importance of c-fms and its ligand CSF-1 in malignancies of non-hematopoietic origin, such as breast, ovarian, endometrial, pulmonary, and trophoblastic cancers has been recognized. We have previously shown that glucocorticoids induce a large increase in c-fms mRNA and protein levels in breast carcinoma cell lines. In this report, we investigate the mechanism underlying such c-fms overexpression by dexamethasone. We show that dexamethasone treatment of two breast carcinoma cell lines (BT20-c-fms expressor, and SKBR3-co-expressor of both c-fms and CSF-1) does not increase the rate of c-fms gene transcription, suggesting a post-transcriptional mechanism of regulation of c-fms expression by dexamethasone. The effect of protein synthesis inhibition was studied to help determine whether there was a role for intermediary regulatory proteins in the regulation of c-fms expression. We find that several protein synthesis inhibitors interfere with dexamethasone induction of c-fms transcripts, suggesting the existence of regulatory proteins. These regulatory proteins do not appear to be constitutively expressed, as we show no effect of protein synthesis inhibition on c-fms transcript expression in resting BT20 cells. These findings suggest that the putative regulatory proteins are induced by dexamethasone. Furthermore, the addition of a protein synthesis inhibitor, pactamycin, to dexamethasone-treated BT20 cells results in a decrease in c-fms mRNA stability.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- S K Chambers
- Department of Obstetrics and Gynecology, Yale University School of Medicine, New Haven, Connecticut 06520-8063
| | | | | | | |
Collapse
|
46
|
Tyrosine 569 in the c-Fms juxtamembrane domain is essential for kinase activity and macrophage colony-stimulating factor-dependent internalization. Mol Cell Biol 1994. [PMID: 8007983 DOI: 10.1128/mcb.14.7.4843] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The receptor (Fms) for macrophage colony-stimulating factor (M-CSF) is a member of the tyrosine kinase class of growth factor receptors. It maintains survival, stimulates growth, and drives differentiation of the macrophage lineage of hematopoietic cells. Fms accumulates on the cell surface and becomes activated for signal transduction after M-CSF binding and is then internalized via endocytosis for eventual degradation in lysosomes. We have investigated the mechanism of endocytosis as part of the overall signaling process of this receptor and have identified an amino acid segment near the cytoplasmic juxtamembrane region surrounding tyrosine 569 that is important for internalization. Mutation of tyrosine 569 to alanine (Y569A) eliminates ligand-induced rapid endocytosis of receptor molecules. The mutant Fms Y569A also lacks tyrosine kinase activity; however, tyrosine kinase activity is not essential for endocytosis because the kinase inactive receptor Fms K614A does undergo ligand-induced endocytosis, albeit at a reduced rate. Mutation of tyrosine 569 to phenylalanine had no effect on the M-CSF-induced endocytosis of Fms, and a four-amino-acid sequence containing Y-569 could support endocytosis when transferred into the cytoplasmic juxtamembrane region of a glycophorin A construct. These results indicate that tyrosine 569 within the juxtamembrane region of Fms is part of a signal recognition sequence for endocytosis that does not require tyrosine phosphorylation at this site and that this domain also influences the kinase activity of the receptor. These results are consistent with a ligand-dependent step in recognition of the potential cryptic internalization signal.
Collapse
|
47
|
Myles GM, Brandt CS, Carlberg K, Rohrschneider LR. Tyrosine 569 in the c-Fms juxtamembrane domain is essential for kinase activity and macrophage colony-stimulating factor-dependent internalization. Mol Cell Biol 1994; 14:4843-54. [PMID: 8007983 PMCID: PMC358857 DOI: 10.1128/mcb.14.7.4843-4854.1994] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The receptor (Fms) for macrophage colony-stimulating factor (M-CSF) is a member of the tyrosine kinase class of growth factor receptors. It maintains survival, stimulates growth, and drives differentiation of the macrophage lineage of hematopoietic cells. Fms accumulates on the cell surface and becomes activated for signal transduction after M-CSF binding and is then internalized via endocytosis for eventual degradation in lysosomes. We have investigated the mechanism of endocytosis as part of the overall signaling process of this receptor and have identified an amino acid segment near the cytoplasmic juxtamembrane region surrounding tyrosine 569 that is important for internalization. Mutation of tyrosine 569 to alanine (Y569A) eliminates ligand-induced rapid endocytosis of receptor molecules. The mutant Fms Y569A also lacks tyrosine kinase activity; however, tyrosine kinase activity is not essential for endocytosis because the kinase inactive receptor Fms K614A does undergo ligand-induced endocytosis, albeit at a reduced rate. Mutation of tyrosine 569 to phenylalanine had no effect on the M-CSF-induced endocytosis of Fms, and a four-amino-acid sequence containing Y-569 could support endocytosis when transferred into the cytoplasmic juxtamembrane region of a glycophorin A construct. These results indicate that tyrosine 569 within the juxtamembrane region of Fms is part of a signal recognition sequence for endocytosis that does not require tyrosine phosphorylation at this site and that this domain also influences the kinase activity of the receptor. These results are consistent with a ligand-dependent step in recognition of the potential cryptic internalization signal.
Collapse
Affiliation(s)
- G M Myles
- Cell Biology Department, Fred Hutchinson Cancer Research Center, Seattle, Washington 98104
| | | | | | | |
Collapse
|
48
|
Malitschek B, Wittbrodt J, Fischer P, Lammers R, Ullrich A, Schartl M. Autocrine stimulation of the Xmrk receptor tyrosine kinase in Xiphophorus melanoma cells and identification of a source for the physiological ligand. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)34077-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
49
|
The macrophage transcription factor PU.1 directs tissue-specific expression of the macrophage colony-stimulating factor receptor. Mol Cell Biol 1994. [PMID: 8264604 DOI: 10.1128/mcb.14.1.373] [Citation(s) in RCA: 245] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The macrophage colony-stimulating factor (M-CSF) receptor is expressed in a tissue-specific fashion from two distinct promoters in monocytes/macrophages and the placenta. In order to further understand the transcription factors which play a role in the commitment of multipotential progenitors to the monocyte/macrophage lineage, we have initiated an investigation of the factors which activate the M-CSF receptor very early during the monocyte differentiation process. Here we demonstrate that the human monocytic M-CSF receptor promoter directs reporter gene activity in a tissue-specific fashion. Since one of the few transcription factors which have been implicated in the regulation of monocyte genes is the macrophage- and B-cell-specific PU.1 transcription factor, we investigated whether PU.1 binds and activates the M-CSF receptor promoter. Here we demonstrate that both in vitro-translated PU.1 and PU.1 from nuclear extracts bind to a specific site in the M-CSF receptor promoter just upstream from the major transcription initiation site. Mutations in this site which eliminate PU.1 binding decrease M-CSF receptor promoter activity significantly in macrophage cell lines only. Furthermore, PU.1 transactivates the M-CSF receptor promoter in nonmacrophage cells. These results suggest that PU.1 plays a major role in macrophage gene regulation and development by directing the expression of a receptor for a key macrophage growth factor.
Collapse
|
50
|
Zhang DE, Hetherington CJ, Chen HM, Tenen DG. The macrophage transcription factor PU.1 directs tissue-specific expression of the macrophage colony-stimulating factor receptor. Mol Cell Biol 1994; 14:373-81. [PMID: 8264604 PMCID: PMC358386 DOI: 10.1128/mcb.14.1.373-381.1994] [Citation(s) in RCA: 124] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The macrophage colony-stimulating factor (M-CSF) receptor is expressed in a tissue-specific fashion from two distinct promoters in monocytes/macrophages and the placenta. In order to further understand the transcription factors which play a role in the commitment of multipotential progenitors to the monocyte/macrophage lineage, we have initiated an investigation of the factors which activate the M-CSF receptor very early during the monocyte differentiation process. Here we demonstrate that the human monocytic M-CSF receptor promoter directs reporter gene activity in a tissue-specific fashion. Since one of the few transcription factors which have been implicated in the regulation of monocyte genes is the macrophage- and B-cell-specific PU.1 transcription factor, we investigated whether PU.1 binds and activates the M-CSF receptor promoter. Here we demonstrate that both in vitro-translated PU.1 and PU.1 from nuclear extracts bind to a specific site in the M-CSF receptor promoter just upstream from the major transcription initiation site. Mutations in this site which eliminate PU.1 binding decrease M-CSF receptor promoter activity significantly in macrophage cell lines only. Furthermore, PU.1 transactivates the M-CSF receptor promoter in nonmacrophage cells. These results suggest that PU.1 plays a major role in macrophage gene regulation and development by directing the expression of a receptor for a key macrophage growth factor.
Collapse
Affiliation(s)
- D E Zhang
- Department of Medicine, Beth Israel Hospital, Boston, Massachusetts 02115
| | | | | | | |
Collapse
|