1
|
Species recognition in social amoebae. J Biosci 2018. [DOI: 10.1007/s12038-018-9810-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
2
|
Assembly of the TgrB1-TgrC1 cell adhesion complex during Dictyostelium discoideum development. Biochem J 2014; 459:241-9. [PMID: 24490801 DOI: 10.1042/bj20131594] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In Dictyostelium discoideum, TgrB1 and TgrC1 are partners of a heterophilic cell-adhesion system. To investigate its assembly process, the split GFP complementation assay was used to track the oligomeric status of both proteins. The ability of TgrC1 to form cis-homodimers spontaneously was demonstrated by fluorescence complementation studies and confirmed by chemical cross-linking. In contrast, TgrB1 failed to form cis-homodimers in the absence of TgrC1. Treatment of cell aggregates with antibodies against TgrB1 or TgrC1 did not affect TgrC1 dimerization, but inhibited TgrB1 dimer formation, suggesting that TgrB1 cis-homodimerization is dependent on trans-interaction with TgrC1. When TgrB1 and TgrC1 conjugated with the complementary halves of GFP were co-expressed in cells, cis-heterodimers were not detected. However, weak FRET signals were detected in cells expressing TgrB1-RFP and TgrC1-GFP, suggesting that TgrB1 dimers and TgrC1 dimers were arranged juxtapose to each other in the adhesion complex. The results of the present study suggest that the assembly process is initiated upon trans-interaction of monomeric TgrB1 with TgrC1 homodimers on adjacent cells, which triggers the formation of TgrB1 dimers. The homodimerization of TgrB1 in turn induces the clustering of TgrB1 and TgrC1, and the coalescence of TgrB1-TgrC1 clusters results in the formation of large adhesion complexes.
Collapse
|
3
|
TgrC1 mediates cell–cell adhesion by interacting with TgrB1 via mutual IPT/TIG domains during development of Dictyostelium discoideum. Biochem J 2013; 452:259-69. [DOI: 10.1042/bj20121674] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cell–cell adhesion plays crucial roles in cell differentiation and morphogenesis during development of Dictyostelium discoideum. The heterophilic adhesion protein TgrC1 (Tgr is transmembrane, IPT, IG, E-set, repeat protein) is expressed during cell aggregation, and disruption of the tgrC1 gene results in the arrest of development at the loose aggregate stage. We have used far-Western blotting coupled with MS to identify TgrB1 as the heterophilic binding partner of TgrC1. Co-immunoprecipitation and pull-down studies showed that TgrB1 and TgrC1 are capable of binding with each other in solution. TgrB1 and TgrC1 are encoded by a pair of adjacent genes which share a common promoter. Both TgrB1 and TgrC1 are type I transmembrane proteins, which contain three extracellular IPT/TIG (immunoglobulin, plexin, transcription factor-like/transcription factor immunoglobulin) domains. Antibodies raised against TgrB1 inhibit cell reassociation at the post-aggregation stage of development and block fruiting body formation. Ectopic expression of TgrB1 and TgrC1 driven by the actin15 promoter leads to heterotypic cell aggregation of vegetative cells. Using recombinant proteins that cover different portions of TgrB1 and TgrC1 in binding assays, we have mapped the cell-binding regions in these two proteins to Lys537–Ala783 in TgrB1 and Ile336–Val360 in TgrC1, corresponding to their respective TIG3 and TIG2 domain.
Collapse
|
4
|
Sriskanthadevan S, Zhu Y, Manoharan K, Yang C, Siu CH. The cell adhesion molecule DdCAD-1 regulates morphogenesis through differential spatiotemporal expression in Dictyostelium discoideum. Development 2011; 138:2487-97. [PMID: 21561987 DOI: 10.1242/dev.060129] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
During development of Dictyostelium, multiple cell types are formed and undergo a coordinated series of morphogenetic movements guided by their adhesive properties and other cellular factors. DdCAD-1 is a unique homophilic cell adhesion molecule encoded by the cadA gene. It is synthesized in the cytoplasm and transported to the plasma membrane by contractile vacuoles. In chimeras developed on soil plates, DdCAD-1-expressing cells showed greater propensity to develop into spores than did cadA-null cells. When development was performed on non-nutrient agar, wild-type cells sorted from the cadA-null cells and moved to the anterior zone. They differentiated mostly into stalk cells and eventually died, whereas the cadA-null cells survived as spores. To assess the role of DdCAD-1 in this novel behavior of wild-type and mutant cells, cadA-null cells were rescued by the ectopic expression of DdCAD-1-GFP. Morphological studies have revealed major spatiotemporal changes in the subcellular distribution of DdCAD-1 during development. Whereas DdCAD-1 became internalized in most cells in the post-aggregation stages, it was prominent in the contact regions of anterior cells. Cell sorting was also restored in cadA(-) slugs by exogenous recombinant DdCAD-1. Remarkably, DdCAD-1 remained on the surface of anterior cells, whereas it was internalized in the posterior cells. Additionally, DdCAD-1-expressing cells migrated slower than cadA(-) cells and sorted to the anterior region of chimeric slugs. These results show that DdCAD-1 influences the sorting behavior of cells in slugs by its differential distribution on the prestalk and prespore cells.
Collapse
Affiliation(s)
- Shrivani Sriskanthadevan
- The Banting and Best Department of Medical Research, University of Toronto, Toronto, ON M5S 1A8, Canada
| | | | | | | | | |
Collapse
|
5
|
Dictyostelium discoideum paxillin regulates actin-based processes. Protist 2009; 160:221-32. [PMID: 19213599 DOI: 10.1016/j.protis.2008.09.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Accepted: 09/13/2008] [Indexed: 10/21/2022]
Abstract
Paxillin is a key player in integrating the actin cytoskeleton with adhesion, and thus is essential to numerous cellular processes, including proliferation, differentiation, and migration in animal cells. PaxB, the Dictyostelium discoideum orthologue of paxillin, has been shown to be important for adhesion and development, much like its mammalian counterpart. Here, we use the overproduction of PaxB to gain better insight into its role in regulating the actin cytoskeleton and adhesion. We find that PaxB-overexpressing (PaxBOE) cells can aggregate and form mounds normally, but are blocked in subsequent development. This arrest can be rescued by addition of wild-type cells, indicating a non-cell autonomous role for PaxB. PaxBOE cells also have alterations in several actin-based processes, including adhesion, endocytosis, motility, and chemotaxis. PaxBOE cells exhibit an EDTA-sensitive increase in cell-cell cohesion, suggesting that PaxB-mediated adhesion is Ca(2+) or Mg(2+) dependent. Interestingly, cells overexpressing paxB are less adhesive to the substratum. In addition, PaxBOE cells display decreased motility under starved conditions, decreased endocytosis, and are unable to efficiently chemotax up a folate gradient. Taken together, the data suggest that proper expression of PaxB is vital for the regulation of development and actin-dependent processes.
Collapse
|
6
|
Vicente JJ, Galardi-Castilla M, Escalante R, Sastre L. Structural and functional studies of a family of Dictyostelium discoideum developmentally regulated, prestalk genes coding for small proteins. BMC Microbiol 2008; 8:1. [PMID: 18173832 PMCID: PMC2257962 DOI: 10.1186/1471-2180-8-1] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Accepted: 01/03/2008] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND The social amoeba Dictyostelium discoideum executes a multicellular development program upon starvation. This morphogenetic process requires the differential regulation of a large number of genes and is coordinated by extracellular signals. The MADS-box transcription factor SrfA is required for several stages of development, including slug migration and spore terminal differentiation. RESULTS Subtractive hybridization allowed the isolation of a gene, sigN (SrfA-induced gene N), that was dependent on the transcription factor SrfA for expression at the slug stage of development. Homology searches detected the existence of a large family of sigN-related genes in the Dictyostelium discoideum genome. The 13 most similar genes are grouped in two regions of chromosome 2 and have been named Group1 and Group2 sigN genes. The putative encoded proteins are 87-89 amino acids long. All these genes have a similar structure, composed of a first exon containing a 13 nucleotides long open reading frame and a second exon comprising the remaining of the putative coding region. The expression of these genes is induced at10 hours of development. Analyses of their promoter regions indicate that these genes are expressed in the prestalk region of developing structures. The addition of antibodies raised against SigN Group 2 proteins induced disintegration of multi-cellular structures at the mound stage of development. CONCLUSION A large family of genes coding for small proteins has been identified in D. discoideum. Two groups of very similar genes from this family have been shown to be specifically expressed in prestalk cells during development. Functional studies using antibodies raised against Group 2 SigN proteins indicate that these genes could play a role during multicellular development.
Collapse
Affiliation(s)
- Juan J Vicente
- Instituto de Investigaciones Biomédicas, CSIC/UAM, C/Arturo Duperier, 4. 28029, Madrid. Spain
| | - María Galardi-Castilla
- Instituto de Investigaciones Biomédicas, CSIC/UAM, C/Arturo Duperier, 4. 28029, Madrid. Spain
| | - Ricardo Escalante
- Instituto de Investigaciones Biomédicas, CSIC/UAM, C/Arturo Duperier, 4. 28029, Madrid. Spain
| | - Leandro Sastre
- Instituto de Investigaciones Biomédicas, CSIC/UAM, C/Arturo Duperier, 4. 28029, Madrid. Spain
| |
Collapse
|
7
|
Lin Z, Sriskanthadevan S, Huang H, Siu CH, Yang D. Solution structures of the adhesion molecule DdCAD-1 reveal new insights into Ca2+-dependent cell-cell adhesion. Nat Struct Mol Biol 2006; 13:1016-22. [PMID: 17057715 DOI: 10.1038/nsmb1162] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2006] [Accepted: 10/03/2006] [Indexed: 02/06/2023]
Abstract
DdCAD-1 is a novel Ca(2+)-dependent cell adhesion molecule that lacks a hydrophobic signal peptide and a transmembrane domain. DdCAD-1 is expressed by the social amoeba Dictyostelium discoideum at the onset of development. It is synthesized as a soluble protein and then transported to the plasma membrane by contractile vacuoles. Here we describe the novel features of the solution structures of Ca(2+)-free and Ca(2+)-bound monomeric DdCAD-1. DdCAD-1 contains two beta-sandwich domains, belonging to the betagamma-crystallin and immunoglobulin fold classes, respectively. Whereas the N-terminal domain has a major role in homophilic binding, the C-terminal domain tethers the protein to the cell membrane. From structural and mutational analyses, we propose a model for the Ca(2+)-bound DdCAD-1 dimer as a basis for understanding DdCAD-1-mediated cell-cell adhesion at the molecular level. Our results provide new insights into Ca(2+)-dependent mechanisms for cell-cell adhesion.
Collapse
Affiliation(s)
- Zhi Lin
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543
| | | | | | | | | |
Collapse
|
8
|
Harris TJC, Ravandi A, Awrey DE, Siu CH. Cytoskeleton interactions involved in the assembly and function of glycoprotein-80 adhesion complexes in dictyostelium. J Biol Chem 2003; 278:2614-23. [PMID: 12421828 DOI: 10.1074/jbc.m206241200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Adhesion complexes typically assemble from clustered receptors that link to the cytoskeleton via cytoplasmic adapter proteins. However, it is unclear how phospholipid-anchored adhesion molecules, such as the Dictyostelium receptor gp80, interact with the cytoskeleton. gp80 has been found to form adhesion complexes from raftlike membrane domains, which can be isolated as a Triton X-100-insoluble floating fraction (TIFF). We report here that the actin-binding protein ponticulin mediates TIFF-cytoskeleton interactions. Analysis of gp80-null cells revealed that these interactions were minimal in the absence of gp80. During development, gp80 was required to enhance these interactions as its adhesion complexes assembled. Whereas ponticulin and gp80 could partition independently into TIFF, gp80 was shown to recruit ponticulin to cell-cell contacts and to increase its partitioning into TIFF. However, these proteins did not co-immunoprecipitate. Furthermore, sterol sequestration abrogated the association of ponticulin with TIFF without affecting gp80, suggesting that sterols may mediate the interactions between ponticulin and gp80. In ponticulin-null cells, large gp80 adhesion complexes assembled in the absence of ponticulin despite the lack of cytoskeleton association. We propose that such nascent gp80 adhesion complexes produce expanded raftlike domains that recruit ponticulin and thereby establish stable cytoskeleton interactions to complete the assembly process.
Collapse
Affiliation(s)
- Tony J C Harris
- Banting and Best Department of Medical Research, University of Toronto, Ontario M5G 1L6, Canada
| | | | | | | |
Collapse
|
9
|
Harris TJC, Siu CH. Reciprocal raft-receptor interactions and the assembly of adhesion complexes. Bioessays 2002; 24:996-1003. [PMID: 12386930 DOI: 10.1002/bies.10172] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cell adhesion complexes are critical for the physical coordination of cell-cell interactions and the morphogenesis of tissues and organs. Many adhesion receptors are anchored to the plasma membrane by a glycosylphosphatidylinositol (GPI) moiety and are thereby partitioned into membrane rafts. In this review, we focus on reciprocal interactions between rafts and adhesion molecules, leading to receptor clustering and raft expansion and stability. A model for a three-stage adhesion complex assembly process is also proposed. First, GPI-anchored adhesion molecules are recruited into rafts, which in turn promote receptor cis-oligomerization and thereby produce precursory complexes primed for avid trans-interactions. Second, trans-interactions of the receptors cross-link and stabilize large amalgams of rafts at sites of adhesion complex assembly. Finally, the enlarged and stabilized rafts acquire enhanced abilities to recruit the cytoskeleton and induce signaling. This process exemplifies how the domain structure of the plasma membrane can impact the function of its receptors.
Collapse
Affiliation(s)
- Tony J C Harris
- Banting and Best Department of Medical Research, University of Toronto, Ontario, Canada
| | | |
Collapse
|
10
|
Wong E, Yang C, Wang J, Fuller D, Loomis WF, Siu CH. Disruption of the gene encoding the cell adhesion molecule DdCAD-1 leads to aberrant cell sorting and cell-type proportioning during Dictyostelium development. Development 2002; 129:3839-50. [PMID: 12135922 DOI: 10.1242/dev.129.16.3839] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The cadA gene in Dictyostelium encodes the Ca2+-dependent cell adhesion molecule DdCAD-1, which is expressed soon after the initiation of development. To investigate the biological role of DdCAD-1, the cadA gene was disrupted by homologous recombination. The cadA-null cells showed a 50% reduction in EDTA-sensitive cell adhesion. The remaining EDTA-sensitive adhesion sites were resistant to dissociation by anti-DdCAD-1 antibody, suggesting that they were distinct adhesion sites. Cells that lacked DdCAD-1 were able to complete development and form fruiting bodies. However, they displayed abnormal slug morphology and culmination was delayed by ∼6 hours. The yield of spores was reduced by ∼50%. The proportion of prestalk cells in cadA– slugs showed a 2.5-fold increase over the parental strain. When cadA– cells were transfected with pcotB::GFP to label prespore cells, aberrant cell-sorting patterns in slugs became apparent. When mutant prestalk cells were mixed with wild-type prespore cells, mutant prestalk cells were unable to return to the anterior position of chimeric slugs, suggesting defects in the sorting mechanism. The wild-type phenotype was restored when cadA– cells were transfected with a cadA-expression vector. These results indicate that, in addition to cell-cell adhesion, DdCAD-1 plays a role in cell type proportioning and pattern formation.
Collapse
Affiliation(s)
- Estella Wong
- Banting and Best Department of Medical Research and Department of Biochemistry, University of Toronto, Toronto, Ontario M5G 1L6, Canada
| | | | | | | | | | | |
Collapse
|
11
|
Varney TR, Casademunt E, Ho HN, Petty C, Dolman J, Blumberg DD. A novel Dictyostelium gene encoding multiple repeats of adhesion inhibitor-like domains has effects on cell-cell and cell-substrate adhesion. Dev Biol 2002; 243:226-48. [PMID: 11884033 DOI: 10.1006/dbio.2002.0569] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Dictyostelium protein AmpA (adhesion modulation protein A) is encoded by the gene originally identified by the D11 cDNA clone. AmpA contains repeated domains homologous to a variety of proteins that influence cell adhesion. The protein accumulates during development, reaching a maximal level at the finger stage. Much of the AmpA protein is found extracellularly during development, and in culminants, AmpA is found in association with anterior-like cells. Characterization of an ampA- strain generated by gene replacement reveals a significant increase in cell-cell clumping when cells are starved in nonnutrient buffer suspensions. Developing ampA- cells are also more adhesive to the underlying substrate and are delayed in developmental progression, with the severity of the delay increasing as cells are grown in the presence of bacteria or on tissue culture dishes rather than in suspension culture. Reintroduction of the ampA gene rescues the developmental defects of ampA- cells; however, expression of additional copies of the gene in wild-type cells results in more severe developmental delays and decreased clumping in suspension culture. We propose that the AmpA protein functions as an anti-adhesive to limit cell-cell and cell-substrate adhesion during development and thus facilitates cell migration during morphogenesis.
Collapse
Affiliation(s)
- Timothy R Varney
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | | | | | | | | | | |
Collapse
|
12
|
Harris TJ, Ravandi A, Siu CH. Assembly of glycoprotein-80 adhesion complexes in Dictyostelium. Receptor compartmentalization and oligomerization in membrane rafts. J Biol Chem 2001; 276:48764-74. [PMID: 11604403 DOI: 10.1074/jbc.m108030200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The phospholipid-anchored membrane glycoprotein (gp)-80 mediates cell-cell adhesion through a homophilic trans-interaction mechanism during Dictyostelium development and is enriched in a Triton X-100-insoluble floating fraction. To elucidate how gp80 adhesion complexes assemble in the plasma membrane, gp80-gp80 and gp80-raft interactions were investigated. A low density raft-like membrane fraction was isolated using a detergent-free method. It was enriched in sterols, the phospholipid-anchored proteins gp80, gp138, and ponticulin, as well as DdCD36 and actin, corresponding to components found in the Triton X-100-insoluble floating fraction. Chemical cross-linking revealed that gp80 oligomers were enriched in the raft-like membrane fraction, implicating stable oligomer-raft interactions. However, gp80 oligomers resisted sterol sequestration and were partially dissociated with Triton X-100, suggesting that compartmentalization in rafts was not solely responsible for their formation. The trans-dimer known to mediate adhesion was identified, but cis-oligomerization predominated and displayed greater accumulation during development. In fact, oligomerization was dependent on the level of gp80 expression and occurred among isolated gp80 extracellular domains, indicating that it was mediated by direct gp80-gp80 interactions. Rafts existed in gp80-null cells and such pre-existent membrane domains may provide optimal microenvironments for gp80 cis-oligomerization and the assembly of adhesion complexes.
Collapse
Affiliation(s)
- T J Harris
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario M5G 1L6, Canada
| | | | | |
Collapse
|
13
|
Coates JC, Harwood AJ. Cell-cell adhesion and signal transduction duringDictyosteliumdevelopment. J Cell Sci 2001; 114:4349-58. [PMID: 11792801 DOI: 10.1242/jcs.114.24.4349] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The development of the non-metazoan eukaryote Dictyostelium discoideum displays many of the features of animal embryogenesis, including regulated cell-cell adhesion. During early development, two proteins, DdCAD-1 and csA, mediate cell-cell adhesion between amoebae as they form a loosely packed multicellular mass. The mechanism governing this process is similar to epithelial sheet sealing in animals. Although cell differentiation can occur in the absence of cell contact, regulated cell-cell adhesion is an important component of Dictyostelium morphogenesis, and a third adhesion molecule, gp150, is required for multicellular development past the aggregation stage.Cell-cell junctions that appear to be adherens junctions form during the late stages of Dictyostelium development. Although they are not essential to establish the basic multicellular body plan, these junctions are required to maintain the structural integrity of the fruiting body. The Dictyostelium β-catenin homologue Aardvark (Aar) is present in adherens junctions, which are lost in its absence. As in the case of its metazoan counterparts, Aar also has a function in cell signalling and regulates expression of the pre-spore gene psA.It is becoming clear that cell-cell adhesion is an integral part of Dictyostelium development. As in animals, cell adhesion molecules have a mechanical function and may also interact with the signal-transduction processes governing morphogenesis.
Collapse
Affiliation(s)
- J C Coates
- MRC Laboratory for Molecular Cell Biology and Department of Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | | |
Collapse
|
14
|
Harris TJ, Awrey DE, Cox BJ, Ravandi A, Tsang A, Siu CH. Involvement of a triton-insoluble floating fraction in Dictyostelium cell-cell adhesion. J Biol Chem 2001; 276:18640-8. [PMID: 11278598 DOI: 10.1074/jbc.m010016200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
We have isolated and characterized a Triton-insoluble floating fraction (TIFF) from Dictyostelium. Ten major proteins were consistently detected in TIFF, and six species were identified by mass spectrometry as actin, porin, comitin, regulatory myosin light chain, a novel member of the CD36 family, and the phospholipid-anchored cell adhesion molecule gp80. TIFF was enriched with many acylated proteins. Also, the sterol/phospholipid ratio of TIFF was 10-fold higher than that of the bulk plasma membrane. Immunoelectron microscopy showed that TIFF has vesicular morphology and confirmed the association of gp80 and comitin with TIFF membranes. Several TIFF properties were similar to those of Dictyostelium contact regions, which were isolated as a cytoskeleton-associated membrane fraction. Mass spectrometry demonstrated that TIFF and contact regions shared the same major proteins. During development, gp80 colocalized with F-actin, porin, and comitin at cell-cell contacts. These proteins were also recruited to gp80 caps induced by antibody cross-linking. Filipin staining revealed high sterol levels in both gp80-enriched cell-cell contacts and gp80 caps. Moreover, sterol sequestration by filipin and digitonin inhibited gp80-mediated cell-cell adhesion. This study reveals that Dictyostelium TIFF has structural properties previously attributed to vertebrate TIFF and establishes a role for Dictyostelium TIFF in cell-cell adhesion during development.
Collapse
Affiliation(s)
- T J Harris
- Banting and Best Department of Medical Research and Department of Biochemistry, University of Toronto, Toronto, Ontario M5G 1L6, Canada
| | | | | | | | | | | |
Collapse
|
15
|
Wang J, Hou L, Awrey D, Loomis WF, Firtel RA, Siu CH. The membrane glycoprotein gp150 is encoded by the lagC gene and mediates cell-cell adhesion by heterophilic binding during Dictyostelium development. Dev Biol 2000; 227:734-45. [PMID: 11071787 DOI: 10.1006/dbio.2000.9881] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
gp150 is a membrane glycoprotein which has been implicated in cell-cell adhesion in the postaggregation stages of Dictyostelium development. An analysis of its tryptic peptides by mass spectrometry has identified gp150 as the product of the lagC gene, which was previously shown to play a role in morphogenesis and cell-type specification. Antibodies raised against the GST-LagC fusion protein specifically recognized gp150 in wild-type cells and showed that it is missing in lagC-null cells. Immunolocalization studies have confirmed its enrichment in cell-cell contact regions. In mutant cells that lack the aggregation stage-specific cell adhesion molecule gp80, gp150 is expressed precociously. Moreover, these cells acquire EDTA-resistant cell-cell binding during aggregation, suggesting a role for gp150 in this process. Cells in which the genes encoding gp80 and gp150 are both inactivated do not acquire EDTA-resistant cell adhesion during aggregation. Strains transformed with an actin 15::lagC construct express gp150 precociously, but do not show EDTA-resistant adhesion during early development. However, vegetative cells expressing gp150 can be recruited into aggregates of 16-h lagC-null cells. These results, together with those obtained with the cell-to-substratum binding assay, indicate that gp150 mediates cell-cell adhesion via heterophilic interactions with another component that accumulates during the aggregation stage.
Collapse
Affiliation(s)
- J Wang
- Banting and Best Department of Medical Research, University of Toronto, Canada
| | | | | | | | | | | |
Collapse
|
16
|
Sesaki H, Wong EF, Siu CH. The cell adhesion molecule DdCAD-1 in Dictyostelium is targeted to the cell surface by a nonclassical transport pathway involving contractile vacuoles. J Cell Biol 1997; 138:939-51. [PMID: 9265658 PMCID: PMC2138044 DOI: 10.1083/jcb.138.4.939] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/1997] [Revised: 05/14/1997] [Indexed: 02/05/2023] Open
Abstract
DdCAD-1 is a 24-kD Ca2+-dependent cell- cell adhesion molecule that is expressed soon after the initiation of development in Dictyostelium cells. DdCAD-1 is present on the cell surface as well as in the cytosol. However, the deduced amino acid sequence of DdCAD-1 lacks a hydrophobic signal peptide or any predicted transmembrane domain, suggesting that it may be presented on the cell surface via a nonclassical transport mechanism. Here we report that DdCAD-1 is transported to the cell surface via contractile vacuoles, which are normally involved in osmoregulation. Immunofluorescence microscopy and subcellular fractionation revealed a preferential association of DdCAD-1 with contractile vacuoles. Proteolytic treatment of isolated contractile vacuoles degraded vacuole-associated calmodulin but not DdCAD-1, demonstrating that DdCAD-1 was present in the lumen. The use of hyperosmotic conditions that suppress contractile vacuole activity led to a dramatic decrease in DdCAD-1 accumulation on the cell surface and the absence of cell cohesiveness. Shifting cells back to a hypotonic condition after hypertonic treatments induced a rapid increase in DdCAD-1-positive contractile vacuoles, followed by the accumulation of DdCAD-1 on the cell membrane. 7-chloro-4-nitrobenzo-2-oxa-1, 3-diazole, a specific inhibitor of vacuolar-type H+-ATPase and thus of the activity of contractile vacuoles, also inhibited the accumulation of DdCAD-1 on the cell surface. Furthermore, an in vitro reconstitution system was established, and isolated contractile vacuoles were shown to import soluble DdCAD-1 into their lumen in an ATP-stimulated manner. Taken together, these data provide the first evidence for a nonclassical protein transport mechanism that uses contractile vacuoles to target a soluble cytosolic protein to the cell surface.
Collapse
Affiliation(s)
- H Sesaki
- Banting and Best Department of Medical Research, University of Toronto, Ontario, Canada
| | | | | |
Collapse
|
17
|
Yang C, Brar SK, Desbarats L, Siu CH. Synthesis of the Ca(2+)-dependent cell adhesion molecule DdCAD-1 is regulated by multiple factors during Dictyostelium development. Differentiation 1997; 61:275-84. [PMID: 9342838 DOI: 10.1046/j.1432-0436.1997.6150275.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In Dictyostelium discoideum, the cadA gene encodes the cell adhesion molecule DdCAD-1, a protein of M(r) 24,000, which mediates Ca(2+)-dependent cell-cell adhesion during development. We have examined the effects of cAMP, cell-cell contact, and growth conditions on cadA expression. cadA has a unique pattern of expression, which appears to be a combination of the expression patterns of early genes and aggregation-stage genes. Expression of the cadA gene in bacterially grown cells is activated at the beginning of the developmental cycle, followed by a period of rapid DdCAD-1 accumulation. The mRNA level reaches its maximum at 9 h of development and then declines to the basal level at approximately 18 h, while the protein level remains constant after reaching its maximum at 12 h. Pulse-chase experiments have demonstrated that DdCAD-1 has a significantly longer half-life than the average cellular protein. Transcription of the cadA gene is stimulated by exogenous cAMP pulses, leading to a 3- to 5-fold increase in the transcription rate. In the fgdA mutant, which lacks a functional G alpha 2, cAMP fails to enhance cadA expression, suggesting that cAMP stimulates cadA transcription via a G protein-dependent pathway. However, inhibition of cell-cell contact has no effect on the synthesis of DdCAD-1. Growth conditions also have a major influence on cadA expression. Axenically grown cells produce a high level of cadA transcripts during vegetative growth. The mRNA level shows a steady decrease during development and is reduced to the basal level by 12 h. In contrast, the level of DdCAD-1 remains relatively high throughout development, suggesting that axenic growth affects the accumulation of cadA mRNA but not the stability of the protein. These results indicate that multiple mechanisms are involved to maintain a high level of DdCAD-1 during development.
Collapse
Affiliation(s)
- C Yang
- Banting and Best Department of Medical Research, University of Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
18
|
Dictyostelium discoideum glycoproteins: using a model system for organismic glycobiology. ACTA ACUST UNITED AC 1997. [DOI: 10.1016/s0167-7306(08)60618-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
19
|
Wong EF, Brar SK, Sesaki H, Yang C, Siu CH. Molecular cloning and characterization of DdCAD-1, a Ca2+-dependent cell-cell adhesion molecule, in Dictyostelium discoideum. J Biol Chem 1996; 271:16399-408. [PMID: 8663243 DOI: 10.1074/jbc.271.27.16399] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Dictyostelium discoideum expresses EDTA-sensitive cell-cell adhesion sites soon after the initiation of development, and a Ca2+-binding protein of Mr 24,000 (designated DdCAD-1) has been implicated in this type of adhesiveness. We have previously purified DdCAD-1 to homogeneity and characterized its cell binding activity (Brar, S. K., and Siu, C.-H. (1993) J. Biol. Chem. 268, 24902-24909). In this report, we describe the cloning of DdCAD-1 cDNAs. DNA sequencing revealed a single open reading frame coding for a polypeptide containing 213 amino acids. The identity of the cDNA was confirmed by amino acid sequences of two cyanogen bromide peptides. The deduced amino acid sequence of DdCAD-1 exhibits a relatively high degree of sequence similarity with members of the cadherin family and protein S of Myxococcus xanthus. Unlike the other cadherins, the carboxyl-terminal region of DdCAD-1 contains a Ca2+-binding motif. Although analyses of the sequence suggest that the polypeptide lacks a signal peptide sequence and a transmembrane domain, immunofluorescence microscopy demonstrates the association of DdCAD-1 with the ecto-surface of the plasma membrane. To investigate the structure/function relationships of DdCAD-1, glutathione S-transferase fusion proteins containing different DdCAD-1 fragments were expressed and assayed for their 45Ca2+ and cell binding activities. These studies revealed that the cell binding activity is dependent on the amino-terminal segment and not the carboxyl-terminal Ca2+-binding domain and showed additional Ca2+-binding site(s) within the amino-terminal segment.
Collapse
Affiliation(s)
- E F Wong
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario M5G 1L6, Canada
| | | | | | | | | |
Collapse
|
20
|
Funamoto S, Ochiai H. Antisense RNA inactivation of gene expression of a cell-cell adhesion protein (gp64) in the cellular slime mold Polysphondylium pallidum. J Cell Sci 1996; 109 ( Pt 5):1009-16. [PMID: 8743948 DOI: 10.1242/jcs.109.5.1009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The gp64 protein of Polysphondylium pallidum has been shown to mediate EDTA-stable cell-cell adhesion. To explore the functional role of gp64, we made an antisense RNA expression construct designed to prevent the gene expression of gp64; the construct was introduced into P. pallidum cells and the transformants were characterised. The antisense RNA-expressing clone L3mc2 which had just been harvested at the growth phase tended to re-form in aggregates smaller in size than did the parental cells in either the presence or absence of 10 mM EDTA. In contrast, 6.5-hour starved L3mc2 cells remained considerably dissociated from each other after 5 minutes gyrating, although aggregation gradually increased by 50% during a further 55 minutes gyrating in the presence of 10 mM EDTA. Correspondingly, L3mc2 lacked specifically the cell-cell adhesion protein, gp64. We therefore conclude that the gp64 protein is involved in forming the EDTA-resistant cell-cell contact. In spite of the absence of gp64, L3mc2 exhibited normal developmental processes, a fact which demonstrates that another cell-cell adhesion system exists in the development of Polysphondylium. This is the first report in which an antisense RNA technique was successfully applied to Polysphondylium.
Collapse
Affiliation(s)
- S Funamoto
- Division of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo, Japan
| | | |
Collapse
|
21
|
Beher D, Hesse L, Masters CL, Multhaup G. Regulation of amyloid protein precursor (APP) binding to collagen and mapping of the binding sites on APP and collagen type I. J Biol Chem 1996; 271:1613-20. [PMID: 8576160 DOI: 10.1074/jbc.271.3.1613] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The specific binding of the amyloid precursor protein (APP) to extracellular matrix molecules suggests that APP regulates cell interactions and has a function as a cell adhesion molecule and/or substrate adhesion molecule. On the molecular level APP has binding sites for collagen, laminin, and glycosaminoglycans which is a characteristic feature of cell adhesion molecules. We have examined the interactions between the APP and collagen types I and IV and identified the corresponding binding sites on APP and collagen type I. We show that APP bound most efficiently to collagen type I in a concentration-dependent and specific manner in the native and heat-denatured states, suggesting an involvement of a contiguous binding site on collagen. This binding site was identified on the cyanogen bromide fragment alpha 1(I)CB6 of collagen type I, which also binds heparin. APP did not bind to collagen type I-heparin complexes, which suggests that there are overlapping binding sites for heparin and APP on collagen. We localized the site of APP that mediates collagen binding within residues 448-465 of APP695, which are encoded by the ubiquitously expressed APP exon 12, whereas the high affinity heparin binding site of APP is located in exon 9. Since a peptide encompassing this region binds to collagen type I and inhibits APP-collagen type I binding in nanomolar concentrations, this region may comprise the major part of the collagen type I binding site of APP. Moreover, our data also indicate that the collagen binding site is involved in APP-APP interaction that can be modulated by Zn(II) and heparin. Taken together, the data suggest that the regulation of APP binding to collagen type I by heparin occurs through the competitive binding of heparin and APP to collagen.
Collapse
Affiliation(s)
- D Beher
- Center for Molecular Biology Heidelberg (ZMBH), University of Heidelberg, Federal Republic of Germany
| | | | | | | |
Collapse
|
22
|
Lipke PN. Cell adhesion proteins in the nonvertebrate eukaryotes. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 1996; 17:119-57. [PMID: 8822803 DOI: 10.1007/978-3-642-80106-8_7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- P N Lipke
- Department of Biological Sciences, Hunter College of the City University of New York, New York 10021, USA
| |
Collapse
|
23
|
Abstract
Three forms of cell adhesion determine the life cycle of Dictyostelium: i) adhesion of bacteria to the surface of the growing amoebae, as the prerequisite for phagocytosis; ii) cell-substrate adhesion, necessary for both locomotion of the amoebae and migration of the slug; iii) cell-cell adhesion, essential for transition from the unicellular to the multicellular stage. Intercellular adhesion has received the most attention, and fruitful approaches have been developed over the past 25 years to identify, purify and characterize cell adhesion molecules. The csA glycoprotein, in particular, which mediates adhesion during the aggregation stage, is one of the best defined cell adhesion molecules. The molecular components involved in phagocytosis and cell-substratum adhesion are less well understood, but the basis has been laid for a systematic investigation of both topics in the near future.
Collapse
Affiliation(s)
- S Bozzaro
- Department of Clinical and Biological Sciences, University of Turin, Ospedale S. Luigi, Italy
| | | |
Collapse
|
24
|
Zhao X, Siu CH. Colocalization of the homophilic binding site and the neuritogenic activity of the cell adhesion molecule L1 to its second Ig-like domain. J Biol Chem 1995; 270:29413-21. [PMID: 7493978 DOI: 10.1074/jbc.270.49.29413] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The cell adhesion molecule L1 has been implicated in mediating cell-cell adhesion and in promoting neurite outgrowth. The extracellular region of L1 contains six immunoglobulin (Ig)-like domains in the amino-terminal region, followed by five fibronectin type III-like repeats. L1 is capable of undergoing homophilic binding as well as heterophilic interactions. To map the homophilic binding domain in L1, three glutathione S-transferase (GST) fusion proteins (GST-Ig1-2-3, GST-Ig4-5-6, and GST-Fn) were prepared and coupled to Covaspheres and their homophilic binding activity was determined using the Covasphere-to-substratum binding assay. Only GST-Ig1-2-3 was capable of homophilic binding. Next, His-tagged recombinant Ig-domain proteins (His-Ig1-2, His-Ig1, and His-Ig2) were expressed and subjected to similar assays. Only His-Ig1-2 and His-Ig2 were capable of homophilic interactions. Binding of His-Ig2-conjugated Covaspheres to substrate-coated His-Ig2 was inhibited by anti-Ig1-2-3 Fab and soluble His-Ig2. These results indicate that the L1 homophilic binding site resides within Ig2. To examine effects of these L1 recombinant proteins on neurite outgrowth, neural retinal cells were cultured on different substrate-coated fusion proteins. Both GST-Ig1-2-3 and His-Ig2 were potent inducers of neurite extension. These results thus indicate that the L1 Ig-like domain 2 alone is sufficient to mediate L1-L1 interaction and promote neurite outgrowth from retinal cells.
Collapse
Affiliation(s)
- X Zhao
- Banting and Best Department of Medical Research, University of Toronto, Ontario, Canada
| | | |
Collapse
|
25
|
Assignment of disulfide bonds in gp64, a putative cell-cell adhesion protein of Polysphondylium pallidum. Presence of Sushi domains in the cellular slime mold protein. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(19)61976-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
26
|
Rao Y, Zhao X, Siu CH. Mechanism of homophilic binding mediated by the neural cell adhesion molecule NCAM. Evidence for isologous interaction. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)47018-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
27
|
Dahl G, Nonner W, Werner R. Attempts to define functional domains of gap junction proteins with synthetic peptides. Biophys J 1994; 67:1816-22. [PMID: 7858120 PMCID: PMC1225555 DOI: 10.1016/s0006-3495(94)80663-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
To map the binding sites involved in channel formation, synthetic peptides representing sequences of connexin 32 were tested for their ability to inhibit cell-cell channel formation. Both large peptides representing most of the two presumed extracellular loops of connexin32 and shorter peptides representing subsets of these larger peptides were found to inhibit cell-cell channel formation. The properties of the peptide inhibition suggested that the binding site is complex, involving several segments of both extracellular loops. One of the peptides (a 12-mer) did not inhibit but instead was found to form channels in membranes. Both in oocyte membranes and in bilayers, the channels formed by the peptide were asymmetrically voltage dependent. Their unit conductances ranged from 20 to 160 pS. These data are discussed in the form of a model in which the connexin sequence represented by the peptide is part of a beta structure providing the lining of the channel pore.
Collapse
Affiliation(s)
- G Dahl
- Department of Physiology and Biophysics, University of Miami, School of Medicine, Florida 33101
| | | | | |
Collapse
|
28
|
Holness CL, Simmons DL. Structural motifs for recognition and adhesion in members of the immunoglobulin superfamily. J Cell Sci 1994; 107 ( Pt 8):2065-70. [PMID: 7983168 DOI: 10.1242/jcs.107.8.2065] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- C L Holness
- Cell Adhesion Laboratory, John Radcliffe Hospital, Headington, Oxford, UK
| | | |
Collapse
|
29
|
Keller T, Eitle E, Balding K, Corrick C, Parish RW. A monoclonal antibody that interferes with the post-aggregation adhesion of Dictyostelium discoideum cells. FEBS Lett 1994; 339:119-23. [PMID: 8313959 DOI: 10.1016/0014-5793(94)80397-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A monoclonal antibody that interferes with the EDTA-resistant adhesion of Dictyostelium discoideum slug cells recognised a carbohydrate epitope on four major antigens (95, 90, 35 and 30 kDa) in slug cells. The 35 and 30 kDa antigens were specific for stalks and spores, respectively. The 30 kDa antigen was identified as the cell surface glycoprotein, PsA. Cyclic AMP, acting via cell surface receptors, induced only the 90 kDa slug cell antigen. Slug cell adhesion proteins may be involved in cell-sorting and the glycosylation of the 95 and 90 kDa antigens appeared to be abnormal in a mutant defective in cell-sorting. Previously, a 150 kDa glycoprotein has been strongly implicated in slug cell adhesion and the present work suggests that additional glycoprotein(s) are involved.
Collapse
Affiliation(s)
- T Keller
- Department of Botany, La Trobe University, Bundoora, Vic., Australia
| | | | | | | | | |
Collapse
|
30
|
Molecular cloning and the COOH-terminal processing of gp64, a putative cell-cell adhesion protein of the cellular slime mold Polysphondylium pallidum. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)42381-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
31
|
Brar SK, Siu CH. Characterization of the cell adhesion molecule gp24 in Dictyostelium discoideum. Mediation of cell-cell adhesion via a Ca(2+)-dependent mechanism. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)74550-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
32
|
Rao Y, Wu X, Yip P, Gariepy J, Siu C. Structural characterization of a homophilic binding site in the neural cell adhesion molecule. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(20)80771-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
33
|
Fontana DR. Two distinct adhesion systems are responsible for EDTA-sensitive adhesion in Dictyostelium discoideum. Differentiation 1993; 53:139-47. [PMID: 8405764 DOI: 10.1111/j.1432-0436.1993.tb00702.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Early in their developmental program, Dictyostelium discoideum exhibit EDTA-sensitive and EDTA-resistant adhesion. The molecules which mediate the adhesions have been called contact sites, with contact sites A mediating EDTA-resistant adhesion and contact sites B mediating EDTA-sensitive adhesion. The studies described here have revealed that prior to aggregation, a second EDTA-sensitive adhesion system emerges. In keeping with previously established nomenclature, the molecules mediating the newly discovered adhesion system have been called contact sites C. Unlike contact sites B, contact sites C are unaffected by a contact sites B-blocking peptide. Contact sites C-mediated adhesion is also distinct from contact sites B-mediated adhesion in that contact sites C-mediated adhesion is EGTA-resistant and in the presence of EDTA it can be rescued by the addition of Mg2+. Thus Mg2+ may be the cation present under physiological conditions that is essential for contact sites C activity. Unlike contact sites B-mediated adhesion, contact sites C-mediated adhesion is not observed in growing amoebae. Contact sites C-mediated adhesion first becomes apparent within hours after the initiation of development and its strength appears to increase throughout the first 10 h of the developmental program. A mutant lacking the EDTA-resistant contact sites A exhibits normal contact sites B- and C-mediated adhesion, demonstrating that both EDTA-sensitive adhesion systems are independent of contact sites A. Thus aggregating D. discoideum amoebae possess three distinct adhesion systems, one of them is EDTA-resistant and the other two are EDTA-sensitive.
Collapse
Affiliation(s)
- D R Fontana
- Department of Microbiology, University of Minnesota, Minneapolis 55455
| |
Collapse
|
34
|
Saito T, Kumazaki T, Ochiai H. A purification method and N-glycosylation sites of a 36-cysteine-containing, putative cell/cell adhesion glycoprotein gp64 of the cellular slime mold, Polysphondylium pallidum. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 211:147-55. [PMID: 8425525 DOI: 10.1111/j.1432-1033.1993.tb19881.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A 64-kDa membrane-bound glycoprotein (gp64) of the cellular slime mold Polysphondylium pallidum, is a putative cell/cell adhesion protein identified by adhesion-blocking antibody fragments (Fab). gp64 is expressed on the cell surface of growth-phase cells and seems to mediate cell/cell adhesion. This paper describes an improved purification method based on the lipophilic nature of this protein. A critical step in the purification method is to collect an insoluble top layer appearing during ammonium sulfate precipitation. The sequence of cDNA encoding gp64 and its deduced amino acid sequence have been determined previously. Based on cDNA sequence data, the structure of gp64 protein was analyzed: almost all amino acid compositions and partial amino acid sequences of lysylendopeptidase-digested peptides of gp64 were determined by protein analysis; all six asparagine-linked glycosylation sites (Asn-Xaa-Ser/Thr) in fact contain carbohydrates, and all 36 cysteine residues were involved in forming disulfide bridges. From these data, gp64 seems to be a unique protein among cell/cell adhesion proteins.
Collapse
Affiliation(s)
- T Saito
- Department of Botany, Faculty of Science, Hokkaido University, Sapporo, Japan
| | | | | |
Collapse
|
35
|
Rao Y, Wu XF, Gariepy J, Rutishauser U, Siu CH. Identification of a peptide sequence involved in homophilic binding in the neural cell adhesion molecule NCAM. J Cell Biol 1992; 118:937-49. [PMID: 1380002 PMCID: PMC2289564 DOI: 10.1083/jcb.118.4.937] [Citation(s) in RCA: 110] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The neural cell adhesion molecule NCAM is capable of mediating cell-cell adhesion via homophilic interactions. In this study, three strategies have been combined to identify regions of NCAM that participate directly in NCAM-NCAM binding: analysis of domain deletion mutations, mapping of epitopes of monoclonal antibodies, and use of synthetic peptides to inhibit NCAM activity. Studies on L cells transfected with NCAM mutant cDNAs using cell aggregation and NCAM-covasphere binding assays indicate that the third immunoglobulin-like domain is involved in homophilic binding. The epitopes of four monoclonal antibodies that have been previously shown to affect cell-cell adhesion mediated by NCAM were also mapped to domain 3. Overlapping hexapeptides were synthesized on plastic pins and assayed for binding with these monoclonal antibodies. One of them (PP) reacted specifically with the sequence KYSFNY. Synthetic oligopeptides containing the PP epitope were potent and specific inhibitors of NCAM binding activity. A substratum containing immobilized peptide conjugates also exhibited adhesiveness for neural retinal cells. Cell attachment was specifically inhibited by peptides that contained the PP-epitope and by anti-NCAM univalent antibodies. The shortest active peptide has the sequence KYSFNYDGSE, suggesting that this site is directly involved in NCAM homophilic interaction.
Collapse
Affiliation(s)
- Y Rao
- Banting and Best Department of Medical Research, University of Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
36
|
Siu CH, Brar P, Fritz IB. Inhibition of cell-cell adhesion and morphogenesis of Dictyostelium by carnitine. J Cell Physiol 1992; 152:157-65. [PMID: 1618917 DOI: 10.1002/jcp.1041520120] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Carnitine (gamma-trimethylammonium beta-hydroxy-butyric acid) possesses the novel property of preventing cell aggregation elicited by clusterin or by fibrinogen (I.B. Fritz and K. Burdzy, J. Cell. Physiol., 140:18-28 [1989]). In investigations reported here, we show that carnitine also affects cell-cell adhesion in Dictyostelium discoideum, a cellular slime mold whose cells interact in specific and complex manners during discrete stages of development. Two types of cell adhesion systems sequentially appear on the surface of developing Dictyostelium cells, involving the surface glycoprotein gp24 which mediates EDTA-sensitive binding sites, and the surface glycoprotein gp80 which mediates the EDTA-resistant binding sites. Addition of increasing concentrations of D(+)-carnitine and L(-)-carnitine resulted in a progressive inhibition of both the EDTA-sensitive binding sites and the EDTA-resistant binding sites of Dictyostelium cells at different stages of development. In contrast, comparable or higher concentrations of choline, acetyl-beta-methylcholine, or deoxycarnitine had no detectable effects on cell aggregation. Concentrations of carnitine required for 50% inhibition of EDTA-resistant adhesion sites were found to be dependent upon levels of gp80 expressed by Dictyostelium, with greatest inhibition by carnitine of reassociation of cells containing the lowest levels of gp80. Removal of carnitine from cells by washing resulted in the rapid restoration of the ability of Dictyostelium to form aggregates and to resume normal development. We discuss possible mechanisms by which carnitine inhibits the aggregation of cells.
Collapse
Affiliation(s)
- C H Siu
- Banting and Best Department of Medical Research, C.H. Best Institute, University of Toronto, Ontario, Canada
| | | | | |
Collapse
|
37
|
Gao E, Shier P, Siu C. Purification and partial characterization of a cell adhesion molecule (gp150) involved in postaggregation stage cell-cell binding in Dictyostelium discoideum. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)50438-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
38
|
|
39
|
Ishikawa TO, Urushihara H, Yanagisawa K. Involvement of Cell Surface Carbohydrates in the Sexual Cell Fusion of Dictyostelium discoideum. (Dictyostellium discoideum/sexual cell fusion/monoclonal antibodies/surface carbohydrates). Dev Growth Differ 1991. [DOI: 10.1111/j.1440-169x.1991.00131.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
40
|
Lane TF, Sage EH. Functional mapping of SPARC: peptides from two distinct Ca+(+)-binding sites modulate cell shape. J Biophys Biochem Cytol 1990; 111:3065-76. [PMID: 2269665 PMCID: PMC2116372 DOI: 10.1083/jcb.111.6.3065] [Citation(s) in RCA: 130] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Using synthetic peptides, we have identified two distinct regions of the glycoprotein SPARC (Secreted Protein Acidic and Rich in Cysteine) (osteonectin/BM-40) that inhibit cell spreading. One of these sites also contributes to the affinity of SPARC for extracellular matrix components. Peptides representing subregions of SPARC were synthesized and antipeptide antibodies were produced. Immunoglobulin fractions of sera recognizing an NH2-terminal peptide (designated 1.1) blocked SPARC-mediated anti-spreading activity. Furthermore, when peptides were added to newly plated endothelial cells or fibroblasts, peptide 1.1 and a peptide corresponding to the COOH terminal EF-hand domain (designated 4.2) inhibited cell spreading in a dose-dependent manner. These peptides exhibited anti-spreading activity at concentrations from 0.1 to 1 mM. The ability of peptides 1.1 and 4.2 to modulate cell shape was augmented by an inhibitor of protein synthesis and was blocked by specific antipeptide immunoglobulins. In addition to blocking cell spreading, peptide 4.2 competed for binding of [125I]SPARC and exhibited differential affinity for extracellular matrix molecules in solid-phase binding assays. The binding of peptide 4.2 to matrix components was Ca+(+)-dependent and displayed specificities similar to those of native SPARC. These studies demonstrate that both anti-spreading activity and affinity for collagens are functions of unique regions within the SPARC amino acid sequence. The finding that two separate regions of the SPARC protein contribute to its anti-spreading activity lead us to propose that multiple regions of the protein act in concert to regulate the interactions of cells with their extracellular matrix.
Collapse
Affiliation(s)
- T F Lane
- Department of Biological Structure, University of Washington, Seattle 98195
| | | |
Collapse
|
41
|
The species-specific cell-binding site of the aggregation factor from the sponge Microciona prolifera is a highly repetitive novel glycan containing glucuronic acid, fucose, and mannose. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(17)30541-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
42
|
Kamboj RK, Lam TY, Siu CH. Regulation of slug size by the cell adhesion molecule gp80 in Dictyostelium discoideum. CELL REGULATION 1990; 1:715-29. [PMID: 1966011 PMCID: PMC361651 DOI: 10.1091/mbc.1.10.715] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We previously provided in vitro evidence that the cell surface glycoprotein of Mr80,000 (gp80) of Dictyostelium discoideum is capable of mediating EDTA-resistant cell-cell binding. Expression of gp80 is specific for the aggregation stage when cells form tight aggregates. To investigate the physiological role of gp80, Dictyostelium cells were transformed with a vector containing gp80 cDNA fused to an actin promoter. gp80 transcripts were detected in transformed cells in their vegetative growth phase. Transformants at this stage also exhibited EDTA-resistant cell cohesion, thus providing direct in vivo evidence that gp80 mediates cell-cell binding via homophilic interaction. While aggregates of the parental strain KAX3 had the tendency to break up to form small slugs, transformants expressing an increased amount of gp80 were able to maintain the integrity of aggregates, giving rise to larger slugs, resulting in the formation of bigger fruiting bodies. To further demonstrate that the increase in slug size could be correlated with the expression of gp80, cells of the parental strain were treated with exogenous cAMP pulses to stimulate an over-expression of gp80. The treated cells also gave rise to larger slugs, consistent with the notion that slug size is influenced by intercellular adhesiveness during development.
Collapse
Affiliation(s)
- R K Kamboj
- Banting and Best Department of Medical Research, University of Toronto, Ontario, Canada
| | | | | |
Collapse
|
43
|
Abstract
Multicellularity in the cellular slime mold Dictyostelium discoideum is achieved by the expression of two types of cell-cell adhesion sites. The EDTA-sensitive adhesion sites are expressed very early in the development cycle and a surface glycoprotein of 24,000 Da is known to be responsible for these sites. The EDTA-resistant contact sites begin to accumulate on the cell surface at the aggregation stage of development. Several glycoproteins have been implicated in the EDTA-resistant type of cell-cell binding and the best characterized one has an Mr of 80,000 (gp80). gp80 mediates cell-cell binding via homophilic interaction and its cell binding site has been mapped to an octapeptide sequence. The mechanism by which gp80 mediates cell-cell adhesion will be discussed.
Collapse
Affiliation(s)
- C H Siu
- Charles H. Best Institute, University of Toronto, Ontario, Canada
| |
Collapse
|
44
|
Siu CH, Kamboj RK. Cell-cell adhesion and morphogenesis in Dictyostelium discoideum. DEVELOPMENTAL GENETICS 1990; 11:377-87. [PMID: 2096015 DOI: 10.1002/dvg.1020110509] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
During development of Dictyostelium discoideum, cells acquire EDTA-resistant cell-cell adhesion at the aggregation stage. The EDTA-resistant cell binding activity is associated with a cell surface glycoprotein of Mr 80,000 (gp80), which mediates cell-cell binding via homophilic interaction. Analysis of the structure of gp80 deduced from cDNA sequence reveals the presence of three internally homologous segments in the NH2-terminal domain, which also contains regions with homology to the neural cell adhesion molecule. Secondary structure predictions show an abundance of beta-structures and very few alpha-helices. This is confirmed by circular dichroism measurements. It is likely that the homologous segments are organized into globular structures, extended from the cell surface by a Pro-rich stalk domain. The cell binding activity of gp80 resides within the first globular repeat of the NH2-terminal domain and has been mapped to a 51 amino acid region between Val123 and Leu173. Synthetic oligopeptides corresponding to sequences within this region have been prepared and assayed for their ability to bind to cell surface gp80. Results lead to identification of the homophilic binding site to an octapeptide sequence within this region. Synthetic peptides containing this octapeptide sequence and univalent antibodies directed against this site block the formation of organized cell streams during aggregation. Although cell aggregates are eventually formed, most fail to undergo further development to give rise to slugs and fruiting bodies, indicating that cell-cell adhesion involving gp80 is an important step in normal morphogenesis.
Collapse
Affiliation(s)
- C H Siu
- Banting and Best Department of Medical Research, Charles H. Best Institute, University of Toronto, Ontario, Canada
| | | |
Collapse
|
45
|
Luna EJ, Condeelis JS. Actin-associated proteins in Dictyostelium discoideum. DEVELOPMENTAL GENETICS 1990; 11:328-32. [PMID: 2096013 DOI: 10.1002/dvg.1020110503] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The cellular slime mold Dictyostelium discoideum is becoming the premier system for the explication of the biochemical and cellular events that occur during motile processes. Proteins associated with the actin cytoskeleton, in particular, appear to play key roles in cellular responses to many external stimuli. This review summarizes our present understanding of the actin-associated proteins in Dictyostelium, including their in vitro activities and their structural and/or functional analogues in mammalian cells.
Collapse
Affiliation(s)
- E J Luna
- Cell Biology Group, Worcester Foundation for Experimental Biology, Shrewsbury, Massachusetts 01545
| | | |
Collapse
|