1
|
Gondalia N, Quiroz LF, Lai L, Singh AK, Khan M, Brychkova G, McKeown PC, Chatterjee M, Spillane C. Harnessing promoter elements to enhance gene editing in plants: perspectives and advances. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:1375-1395. [PMID: 40013512 PMCID: PMC12018835 DOI: 10.1111/pbi.14533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/20/2024] [Accepted: 11/16/2024] [Indexed: 02/28/2025]
Abstract
Genome-edited plants, endowed with climate-smart traits, have been promoted as tools for strengthening resilience against climate change. Successful plant gene editing (GE) requires precise regulation of the GE machinery, a process controlled by the promoters, which drives its transcription through interactions with transcription factors (TFs) and RNA polymerase. While constitutive promoters are extensively used in GE constructs, their limitations highlight the need for alternative approaches. This review emphasizes the promise of tissue/organ specific as well as inducible promoters, which enable targeted GE in a spatiotemporal manner with no effects on other tissues. Advances in synthetic biology have paved the way for the creation of synthetic promoters, offering refined control over gene expression and augmenting the potential of plant GE. The integration of these novel promoters with synthetic systems presents significant opportunities for precise and conditional genome editing. Moreover, the advent of bioinformatic tools and artificial intelligence is revolutionizing the characterization of regulatory elements, enhancing our understanding of their roles in plants. Thus, this review provides novel insights into the strategic use of promoters and promoter editing to enhance the precision, efficiency and specificity of plant GE, setting the stage for innovative crop improvement strategies.
Collapse
Affiliation(s)
- Nikita Gondalia
- Agriculture, Food Systems and Bioeconomy Research Centre, Ryan InstituteUniversity of GalwayGalwayIreland
| | - Luis Felipe Quiroz
- Agriculture, Food Systems and Bioeconomy Research Centre, Ryan InstituteUniversity of GalwayGalwayIreland
| | - Linyi Lai
- Agriculture, Food Systems and Bioeconomy Research Centre, Ryan InstituteUniversity of GalwayGalwayIreland
| | - Avinash Kumar Singh
- Agriculture, Food Systems and Bioeconomy Research Centre, Ryan InstituteUniversity of GalwayGalwayIreland
| | - Moman Khan
- Agriculture, Food Systems and Bioeconomy Research Centre, Ryan InstituteUniversity of GalwayGalwayIreland
| | - Galina Brychkova
- Agriculture, Food Systems and Bioeconomy Research Centre, Ryan InstituteUniversity of GalwayGalwayIreland
| | - Peter C. McKeown
- Agriculture, Food Systems and Bioeconomy Research Centre, Ryan InstituteUniversity of GalwayGalwayIreland
| | - Manash Chatterjee
- Agriculture, Food Systems and Bioeconomy Research Centre, Ryan InstituteUniversity of GalwayGalwayIreland
- Viridian Seeds Ltd.CambridgeUK
| | - Charles Spillane
- Agriculture, Food Systems and Bioeconomy Research Centre, Ryan InstituteUniversity of GalwayGalwayIreland
| |
Collapse
|
2
|
Nar R, Gibbons MD, Perez L, Strouboulis J, Qian Z, Bungert J. TFII-I/GTF2I regulates globin gene expression and stress response in erythroid cells. J Biol Chem 2025; 301:108227. [PMID: 39864622 PMCID: PMC11879681 DOI: 10.1016/j.jbc.2025.108227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/28/2024] [Accepted: 01/17/2025] [Indexed: 01/28/2025] Open
Abstract
Transcription factor TFII-I/GTF2I is ubiquitously expressed and has been shown to play a role in the differentiation of hematopoietic cells and in the response to various cellular stressors. We previously demonstrated that TFII-I acts as a repressor of adult β-globin gene transcription and positively regulates the expression of stress response proteins, including ATF3. Here we analyzed the function of TFII-I in TF-1 cells during erythroid differentiation and in response to cellular stress, including unfolded protein response, hypoxia, and oxidative stress. Ablation of TFII-I leads to mild changes in the cell cycle and proliferation of TF-1 cells. Importantly, TFII-I deficiency increased the expression of the adult β-globin gene with a concomitant reduction in the expression of the fetal γ-globin genes during erythropoietin-mediated erythroid differentiation of TF-1 cells. Furthermore, TFII-I regulates genes involved in stress response, including CHOP, Elongin A, ATF3, ATF4, and Grp78, and participates in the apoptotic response to stressors. In summary, the data provide further support for the role of TFII-I in stress response and the regulation of globin genes.
Collapse
Affiliation(s)
- Rukiye Nar
- Department of Biochemistry and Molecular Biology, College of Medicine, Center for Epigenetics, Genetics Institute, UF Health Cancer Center, Powell-Gene Therapy Center, University of Florida, Gainesville, Florida, USA; Department of Medicine, College of Medicine, Center for Epigenetics, Genetics Institute, UF Health Cancer Center, Powell-Gene Therapy Center, University of Florida, Gainesville, Florida, USA.
| | - Matthew D Gibbons
- Department of Biochemistry and Molecular Biology, College of Medicine, Center for Epigenetics, Genetics Institute, UF Health Cancer Center, Powell-Gene Therapy Center, University of Florida, Gainesville, Florida, USA
| | - Leonardo Perez
- Department of Biochemistry and Molecular Biology, College of Medicine, Center for Epigenetics, Genetics Institute, UF Health Cancer Center, Powell-Gene Therapy Center, University of Florida, Gainesville, Florida, USA
| | - John Strouboulis
- Red Cell Haematology, Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, King's College London, London, UK
| | - Zhijian Qian
- Department of Medicine, College of Medicine, Center for Epigenetics, Genetics Institute, UF Health Cancer Center, Powell-Gene Therapy Center, University of Florida, Gainesville, Florida, USA
| | - Jörg Bungert
- Department of Biochemistry and Molecular Biology, College of Medicine, Center for Epigenetics, Genetics Institute, UF Health Cancer Center, Powell-Gene Therapy Center, University of Florida, Gainesville, Florida, USA.
| |
Collapse
|
3
|
Krchlikova V, Lu Y, Sauter D. Viral influencers: deciphering the role of endogenous retroviral LTR12 repeats in cellular gene expression. J Virol 2025; 99:e0135124. [PMID: 39887236 PMCID: PMC11853044 DOI: 10.1128/jvi.01351-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025] Open
Abstract
The human genome is like a museum of ancient retroviral infections. It contains a large number of endogenous retroviruses (ERVs) that bear witness to past integration events. About 5,000 of them are so-called long terminal repeat 12 (LTR12) elements. Compared with 20,000 human genes, this is a remarkable number. Although LTR12 elements can act as promoters or enhancers of cellular genes, the function of most of these retroviral elements has remained unclear. In our mini-review, we show that different LTR12 elements share many similarities, including common transcription factor binding sites. Furthermore, we summarize novel insights into the epigenetic mechanisms governing their silencing and activation. Specific examples of genes and pathways that are regulated by LTR12 loci are used to illustrate the regulatory network built by these repetitive elements. A particular focus is on their role in the regulation of antiviral immune responses, tumor cell proliferation, and senescence. Finally, we describe how a targeted activation of this fascinating ERV family could be used for diagnostic or therapeutic purposes.
Collapse
Affiliation(s)
- Veronika Krchlikova
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| | - Yueshuang Lu
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| | - Daniel Sauter
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
4
|
Pavlu S, Nikumbh S, Kovacik M, An T, Lenhard B, Simkova H, Navratilova P. Core promoterome of barley embryo. Comput Struct Biotechnol J 2024; 23:264-277. [PMID: 38173877 PMCID: PMC10762323 DOI: 10.1016/j.csbj.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/01/2023] [Accepted: 12/02/2023] [Indexed: 01/05/2024] Open
Abstract
Precise localization and dissection of gene promoters are key to understanding transcriptional gene regulation and to successful bioengineering applications. The core RNA polymerase II initiation machinery is highly conserved among eukaryotes, leading to a general expectation of equivalent underlying mechanisms. Still, less is known about promoters in the plant kingdom. In this study, we employed cap analysis of gene expression (CAGE) at three embryonic developmental stages in barley to accurately map, annotate, and quantify transcription initiation events. Unsupervised discovery of de novo sequence clusters grouped promoters based on characteristic initiator and position-specific core-promoter motifs. This grouping was complemented by the annotation of transcription factor binding site (TFBS) motifs. Integration with genome-wide epigenomic data sets and gene ontology (GO) enrichment analysis further delineated the chromatin environments and functional roles of genes associated with distinct promoter categories. The TATA-box presence governs all features explored, supporting the general model of two separate genomic regulatory environments. We describe the extent and implications of alternative transcription initiation events, including those that are specific to developmental stages, which can affect the protein sequence or the presence of regions that regulate translation. The generated promoterome dataset provides a valuable genomic resource for enhancing the functional annotation of the barley genome. It also offers insights into the transcriptional regulation of individual genes and presents opportunities for the informed manipulation of promoter architecture, with the aim of enhancing traits of agronomic importance.
Collapse
Affiliation(s)
- Simon Pavlu
- Institute of Experimental Botany of the Czech Academy of Sciences, Slechtitelu 31, 77900 Olomouc, Czech Republic
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Slechtitelu 27, 78371 Olomouc, Czech Republic
| | - Sarvesh Nikumbh
- Merck Sharp & Dohme (UK) Limited, 120 Moorgate, London EC2M 6UR, UK
| | - Martin Kovacik
- Institute of Experimental Botany of the Czech Academy of Sciences, Slechtitelu 31, 77900 Olomouc, Czech Republic
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Slechtitelu 27, 78371 Olomouc, Czech Republic
| | - Tadaichi An
- DNAFORM Precision Gene Technologies, 230–0046 Yokohama, Kanagawa, Japan
| | - Boris Lenhard
- Computational Regulatory Genomics, MRC London Institute of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Hana Simkova
- Institute of Experimental Botany of the Czech Academy of Sciences, Slechtitelu 31, 77900 Olomouc, Czech Republic
| | - Pavla Navratilova
- Institute of Experimental Botany of the Czech Academy of Sciences, Slechtitelu 31, 77900 Olomouc, Czech Republic
| |
Collapse
|
5
|
He AY, Danko CG. Dissection of core promoter syntax through single nucleotide resolution modeling of transcription initiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.13.583868. [PMID: 38559255 PMCID: PMC10979970 DOI: 10.1101/2024.03.13.583868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
How the DNA sequence of cis-regulatory elements encode transcription initiation patterns remains poorly understood. Here we introduce CLIPNET, a deep learning model trained on population-scale PRO-cap data that predicts the position and quantity of transcription initiation with single nucleotide resolution from DNA sequence more accurately than existing approaches. Interpretation of CLIPNET revealed a complex regulatory syntax consisting of DNA-protein interactions in five major positions between -200 and +50 bp relative to the transcription start site, as well as more subtle positional preferences among transcriptional activators. Transcriptional activator and core promoter motifs work non-additively to encode distinct aspects of initiation, with the former driving initiation quantity and the latter initiation position. We identified core promoter motifs that explain initiation patterns in the majority of promoters and enhancers, including DPR motifs and AT-rich TBP binding sequences in TATA-less promoters. Our results provide insights into the sequence architecture governing transcription initiation.
Collapse
Affiliation(s)
- Adam Y. He
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University
- Graduate Field of Computational Biology, Cornell University
| | - Charles G. Danko
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University
| |
Collapse
|
6
|
Sloutskin A, Itzhak D, Vogler G, Pozeilov H, Ideses D, Alter H, Adato O, Shachar H, Doniger T, Shohat-Ophir G, Frasch M, Bodmer R, Duttke SH, Juven-Gershon T. From promoter motif to cardiac function: a single DPE motif affects transcription regulation and organ function in vivo. Development 2024; 151:dev202355. [PMID: 38958007 DOI: 10.1242/dev.202355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 06/26/2024] [Indexed: 07/04/2024]
Abstract
Transcription initiates at the core promoter, which contains distinct core promoter elements. Here, we highlight the complexity of transcriptional regulation by outlining the effect of core promoter-dependent regulation on embryonic development and the proper function of an organism. We demonstrate in vivo the importance of the downstream core promoter element (DPE) in complex heart formation in Drosophila. Pioneering a novel approach using both CRISPR and nascent transcriptomics, we show the effects of mutating a single core promoter element within the natural context. Specifically, we targeted the downstream core promoter element (DPE) of the endogenous tin gene, encoding the Tinman transcription factor, a homologue of human NKX2-5 associated with congenital heart diseases. The 7 bp substitution mutation results in massive perturbation of the Tinman regulatory network that orchestrates dorsal musculature, which is manifested as physiological and anatomical changes in the cardiac system, impaired specific activity features, and significantly compromised viability of adult flies. Thus, a single motif can have a critical impact on embryogenesis and, in the case of DPE, functional heart formation.
Collapse
Affiliation(s)
- Anna Sloutskin
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Dekel Itzhak
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Georg Vogler
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Hadar Pozeilov
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Diana Ideses
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Hadar Alter
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Orit Adato
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Hadar Shachar
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Tirza Doniger
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Galit Shohat-Ophir
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Manfred Frasch
- Division of Developmental Biology, Department of Biology, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen 91058, Germany
| | - Rolf Bodmer
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Sascha H Duttke
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Tamar Juven-Gershon
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| |
Collapse
|
7
|
Dudnyk K, Cai D, Shi C, Xu J, Zhou J. Sequence basis of transcription initiation in the human genome. Science 2024; 384:eadj0116. [PMID: 38662817 PMCID: PMC11223672 DOI: 10.1126/science.adj0116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 02/28/2024] [Indexed: 05/03/2024]
Abstract
Transcription initiation is a process that is essential to ensuring the proper function of any gene, yet we still lack a unified understanding of sequence patterns and rules that explain most transcription start sites in the human genome. By predicting transcription initiation at base-pair resolution from sequences with a deep learning-inspired explainable model called Puffin, we show that a small set of simple rules can explain transcription initiation at most human promoters. We identify key sequence patterns that contribute to human promoter activity, each activating transcription with distinct position-specific effects. Furthermore, we explain the sequence basis of bidirectional transcription at promoters, identify the links between promoter sequence and gene expression variation across cell types, and explore the conservation of sequence determinants of transcription initiation across mammalian species.
Collapse
Affiliation(s)
- Kseniia Dudnyk
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center; Dallas, Texas, United States of America
| | - Donghong Cai
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center; Dallas, Texas, United States of America
- Center of Excellence for Leukemia Studies (CELS), Department of Pathology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Chenlai Shi
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center; Dallas, Texas, United States of America
| | - Jian Xu
- Center of Excellence for Leukemia Studies (CELS), Department of Pathology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Jian Zhou
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center; Dallas, Texas, United States of America
| |
Collapse
|
8
|
Chen G, Yu D, Yang Y, Li X, Wang X, Sun D, Lu Y, Ke R, Zhang G, Cui J, Feng S. Adaptive expansion of ERVK solo-LTRs is associated with Passeriformes speciation events. Nat Commun 2024; 15:3151. [PMID: 38605055 PMCID: PMC11009239 DOI: 10.1038/s41467-024-47501-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 04/02/2024] [Indexed: 04/13/2024] Open
Abstract
Endogenous retroviruses (ERVs) are ancient retroviral remnants integrated in host genomes, and commonly deleted through unequal homologous recombination, leaving solitary long terminal repeats (solo-LTRs). This study, analysing the genomes of 362 bird species and their reptilian and mammalian outgroups, reveals an unusually higher level of solo-LTRs formation in birds, indicating evolutionary forces might have purged ERVs during evolution. Strikingly in the order Passeriformes, and especially the parvorder Passerida, endogenous retrovirus K (ERVK) solo-LTRs showed bursts of formation and recurrent accumulations coinciding with speciation events over past 22 million years. Moreover, our results indicate that the ongoing expansion of ERVK solo-LTRs in these bird species, marked by high transcriptional activity of ERVK retroviral genes in reproductive organs, caused variation of solo-LTRs between individual zebra finches. We experimentally demonstrated that cis-regulatory activity of recently evolved ERVK solo-LTRs may significantly increase the expression level of ITGA2 in the brain of zebra finches compared to chickens. These findings suggest that ERVK solo-LTRs expansion may introduce novel genomic sequences acting as cis-regulatory elements and contribute to adaptive evolution. Overall, our results underscore that the residual sequences of ancient retroviruses could influence the adaptive diversification of species by regulating host gene expression.
Collapse
Affiliation(s)
- Guangji Chen
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Center for Evolutionary & Organismal Biology, Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- BGI Research, Wuhan, China
| | - Dan Yu
- Center for Evolutionary & Organismal Biology, Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Center for Genomic Research, International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Yu Yang
- School of Medicine, Huaqiao University, Xiamen, Fujian, 361021, China
| | - Xiang Li
- CAS Key Laboratory of Molecular Virology & Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
| | - Xiaojing Wang
- CAS Key Laboratory of Molecular Virology & Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
| | - Danyang Sun
- Center for Evolutionary & Organismal Biology, Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Center for Genomic Research, International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Yanlin Lu
- Center for Evolutionary & Organismal Biology, Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Center for Genomic Research, International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Rongqin Ke
- School of Medicine, Huaqiao University, Xiamen, Fujian, 361021, China
| | - Guojie Zhang
- Center for Evolutionary & Organismal Biology, Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan, China
| | - Jie Cui
- Department of Infectious Diseases, National Medical Center for Infectious Diseases, Huashan Hospital, Institute of Infection and Health Research, Fudan University, Shanghai, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China.
- Shanghai Sci-Tech Inno Center for Infection & Immunity, Shanghai, 200052, China.
- Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Fudan University, Shanghai, China.
| | - Shaohong Feng
- Center for Evolutionary & Organismal Biology, Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China.
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan, China.
- Department of General Surgery of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
9
|
Zhu Y, Vvedenskaya IO, Sze SH, Nickels BE, Kaplan CD. Quantitative analysis of transcription start site selection reveals control by DNA sequence, RNA polymerase II activity and NTP levels. Nat Struct Mol Biol 2024; 31:190-202. [PMID: 38177677 PMCID: PMC10928753 DOI: 10.1038/s41594-023-01171-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 11/03/2023] [Indexed: 01/06/2024]
Abstract
Transcription start site (TSS) selection is a key step in gene expression and occurs at many promoter positions over a wide range of efficiencies. Here we develop a massively parallel reporter assay to quantitatively dissect contributions of promoter sequence, nucleoside triphosphate substrate levels and RNA polymerase II (Pol II) activity to TSS selection by 'promoter scanning' in Saccharomyces cerevisiae (Pol II MAssively Systematic Transcript End Readout, 'Pol II MASTER'). Using Pol II MASTER, we measure the efficiency of Pol II initiation at 1,000,000 individual TSS sequences in a defined promoter context. Pol II MASTER confirms proposed critical qualities of S. cerevisiae TSS -8, -1 and +1 positions, quantitatively, in a controlled promoter context. Pol II MASTER extends quantitative analysis to surrounding sequences and determines that they tune initiation over a wide range of efficiencies. These results enabled the development of a predictive model for initiation efficiency based on sequence. We show that genetic perturbation of Pol II catalytic activity alters initiation efficiency mostly independently of TSS sequence, but selectively modulates preference for the initiating nucleotide. Intriguingly, we find that Pol II initiation efficiency is directly sensitive to guanosine-5'-triphosphate levels at the first five transcript positions and to cytosine-5'-triphosphate and uridine-5'-triphosphate levels at the second position genome wide. These results suggest individual nucleoside triphosphate levels can have transcript-specific effects on initiation, representing a cryptic layer of potential regulation at the level of Pol II biochemical properties. The results establish Pol II MASTER as a method for quantitative dissection of transcription initiation in eukaryotes.
Collapse
Affiliation(s)
- Yunye Zhu
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Irina O Vvedenskaya
- Department of Genetics and Waksman Institute, Rutgers University, Piscataway, NJ, USA
| | - Sing-Hoi Sze
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
- Department of Computer Science and Engineering, Texas A&M University, College Station, TX, USA
| | - Bryce E Nickels
- Department of Genetics and Waksman Institute, Rutgers University, Piscataway, NJ, USA
| | - Craig D Kaplan
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
10
|
Kleinschmidt H, Xu C, Bai L. Using Synthetic DNA Libraries to Investigate Chromatin and Gene Regulation. Chromosoma 2023; 132:167-189. [PMID: 37184694 PMCID: PMC10542970 DOI: 10.1007/s00412-023-00796-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/16/2023]
Abstract
Despite the recent explosion in genome-wide studies in chromatin and gene regulation, we are still far from extracting a set of genetic rules that can predict the function of the regulatory genome. One major reason for this deficiency is that gene regulation is a multi-layered process that involves an enormous variable space, which cannot be fully explored using native genomes. This problem can be partially solved by introducing synthetic DNA libraries into cells, a method that can test the regulatory roles of thousands to millions of sequences with limited variables. Here, we review recent applications of this method to study transcription factor (TF) binding, nucleosome positioning, and transcriptional activity. We discuss the design principles, experimental procedures, and major findings from these studies and compare the pros and cons of different approaches.
Collapse
Affiliation(s)
- Holly Kleinschmidt
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
- Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Cheng Xu
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
- Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Lu Bai
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA.
- Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA, 16802, USA.
- Department of Physics, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
11
|
Dudnyk K, Shi C, Zhou J. Sequence basis of transcription initiation in human genome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.27.546584. [PMID: 37425823 PMCID: PMC10327147 DOI: 10.1101/2023.06.27.546584] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Transcription initiation is an essential process for ensuring proper function of any gene, however, a unified understanding of sequence patterns and rules that determine transcription initiation sites in human genome remains elusive. By explaining transcription initiation at basepair resolution from sequence with a deep learning-inspired explainable modeling approach, here we show that simple rules can explain the vast majority of human promoters. We identified key sequence patterns that contribute to human promoter function, each activating transcription with a distinct position-specific effect curve that likely reflects its mechanism of promoting transcription initiation. Most of these position-specific effects have not been previously characterized, and we verified them using experimental perturbations of transcription factors and sequences. We revealed the sequence basis of bidirectional transcription at promoters and links between promoter selectivity and gene expression variation across cell types. Additionally, by analyzing 241 mammalian genomes and mouse transcription initiation site data, we showed that the sequence determinants are conserved across mammalian species. Taken together, we provide a unified model of the sequence basis of transcription initiation at the basepair level that is broadly applicable across mammalian species, and shed new light on basic questions related to promoter sequence and function.
Collapse
Affiliation(s)
- Kseniia Dudnyk
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center; Dallas, Texas, United States of America
| | - Chenlai Shi
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center; Dallas, Texas, United States of America
| | - Jian Zhou
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center; Dallas, Texas, United States of America
| |
Collapse
|
12
|
Sloutskin A, Itzhak D, Vogler G, Ideses D, Alter H, Shachar H, Doniger T, Frasch M, Bodmer R, Duttke SH, Juven-Gershon T. A single DPE core promoter motif contributes to in vivo transcriptional regulation and affects cardiac function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.11.544490. [PMID: 37398300 PMCID: PMC10312617 DOI: 10.1101/2023.06.11.544490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Transcription is initiated at the core promoter, which confers specific functions depending on the unique combination of core promoter elements. The downstream core promoter element (DPE) is found in many genes related to heart and mesodermal development. However, the function of these core promoter elements has thus far been studied primarily in isolated, in vitro or reporter gene settings. tinman (tin) encodes a key transcription factor that regulates the formation of the dorsal musculature and heart. Pioneering a novel approach utilizing both CRISPR and nascent transcriptomics, we show that a substitution mutation of the functional tin DPE motif within the natural context of the core promoter results in a massive perturbation of Tinman's regulatory network orchestrating dorsal musculature and heart formation. Mutation of endogenous tin DPE reduced the expression of tin and distinct target genes, resulting in significantly reduced viability and an overall decrease in adult heart function. We demonstrate the feasibility and importance of characterizing DNA sequence elements in vivo in their natural context, and accentuate the critical impact a single DPE motif has during Drosophila embryogenesis and functional heart formation.
Collapse
Affiliation(s)
- Anna Sloutskin
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Dekel Itzhak
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Georg Vogler
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Diana Ideses
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Hadar Alter
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Hadar Shachar
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Tirza Doniger
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Manfred Frasch
- Division of Developmental Biology, Department of Biology, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Rolf Bodmer
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Sascha H Duttke
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Tamar Juven-Gershon
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
13
|
Abstract
The core promoter determines not only where gene transcription initiates but also the transcriptional activity in both basal and enhancer-induced conditions. Multiple short sequence elements within the core promoter have been identified in different species, but how they function together and to what extent they are truly species-specific has remained unclear. In this issue of Genes & Development, Vo ngoc and colleagues (pp. 377-382) report undertaking massively parallel measurements of synthetic core promoters to generate a large data set of their activities that informs a statistical learning model to identify the sequence differences of human and Drosophila core promoters. This machine learning model was then applied to design gene core promoters that are particularly specific for the human transcriptional machinery.
Collapse
Affiliation(s)
- Alexander Hoffmann
- Signaling Systems Laboratory, Department of Microbiology, Immunology, and Molecular Genetics, Institute for Quantitative and Computational Biosciences, Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California 90025, USA
| |
Collapse
|
14
|
Dragon AH, Rowe CJ, Rhodes AM, Pak OL, Davis TA, Ronzier E. Systematic Identification of the Optimal Housekeeping Genes for Accurate Transcriptomic and Proteomic Profiling of Tissues following Complex Traumatic Injury. Methods Protoc 2023; 6:mps6020022. [PMID: 36961042 PMCID: PMC10037587 DOI: 10.3390/mps6020022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/17/2023] [Accepted: 02/19/2023] [Indexed: 02/25/2023] Open
Abstract
Trauma triggers critical molecular and cellular signaling cascades that drive biological outcomes and recovery. Variations in the gene expression of common endogenous reference housekeeping genes (HKGs) used in data normalization differ between tissue types and pathological states. Systematically, we investigated the gene stability of nine HKGs (Actb, B2m, Gapdh, Hprt1, Pgk1, Rplp0, Rplp2, Tbp, and Tfrc) from tissues prone to remote organ dysfunction (lung, liver, kidney, and muscle) following extremity trauma. Computational algorithms (geNorm, Normfinder, ΔCt, BestKeeper, RefFinder) were applied to estimate the expression stability of each HKG or combinations of them, within and between tissues, under both steady-state and systemic inflammatory conditions. Rplp2 was ranked as the most suitable in the healthy and injured lung, kidney, and skeletal muscle, whereas Rplp2 and either Hprt1 or Pgk1 were the most suitable in the healthy and injured liver, respectively. However, the geometric mean of the three most stable genes was deemed the most stable internal reference control. Actb and Tbp were the least stable in normal tissues, whereas Gapdh and Tbp were the least stable across all tissues post-trauma. Ct values correlated poorly with the translation from mRNA to protein. Our results provide a valuable resource for the accurate normalization of gene expression in trauma-related experiments.
Collapse
Affiliation(s)
- Andrea H Dragon
- Cell Biology and Regenerative Medicine Program, Department of Surgery, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 2081, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, MD 20817, USA
| | - Cassie J Rowe
- Cell Biology and Regenerative Medicine Program, Department of Surgery, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 2081, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, MD 20817, USA
| | - Alisha M Rhodes
- Cell Biology and Regenerative Medicine Program, Department of Surgery, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 2081, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, MD 20817, USA
| | - Olivia L Pak
- Cell Biology and Regenerative Medicine Program, Department of Surgery, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 2081, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, MD 20817, USA
| | - Thomas A Davis
- Cell Biology and Regenerative Medicine Program, Department of Surgery, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 2081, USA
| | - Elsa Ronzier
- Cell Biology and Regenerative Medicine Program, Department of Surgery, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 2081, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, MD 20817, USA
| |
Collapse
|
15
|
He S, Zhang Z, Lu W. Natural promoters and promoter engineering strategies for metabolic regulation in Saccharomyces cerevisiae. J Ind Microbiol Biotechnol 2023; 50:6986260. [PMID: 36633543 PMCID: PMC9936215 DOI: 10.1093/jimb/kuac029] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 12/19/2022] [Indexed: 01/13/2023]
Abstract
Sharomyces cerevisiae is currently one of the most important foreign gene expression systems. S. cerevisiae is an excellent host for high-value metabolite cell factories due to its advantages of simplicity, safety, and nontoxicity. A promoter, as one of the basic elements of gene transcription, plays an important role in regulating gene expression and optimizing metabolic pathways. Promoters control the direction and intensity of transcription, and the application of promoters with different intensities and performances will largely determine the effect of gene expression and ultimately affect the experimental results. Due to its significant role, there have been many studies on promoters for decades. While some studies have explored and analyzed new promoters with different functions, more studies have focused on artificially modifying promoters to meet their own scientific needs. Thus, this article reviews current research on promoter engineering techniques and related natural promoters in S. cerevisiae. First, we introduce the basic structure of promoters and the classification of natural promoters. Then, the classification of various promoter strategies is reviewed. Finally, by grouping related articles together using various strategies, this review anticipates the future development direction of promoter engineering.
Collapse
Affiliation(s)
| | - Zhanwei Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
| | - Wenyu Lu
- Correspondence should be addressed to: W. Y. Lu, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China. Phone: +86-22-853-56523. Fax: +86-22-274-00973. E-mail:
| |
Collapse
|
16
|
Comprehensive characterization of Cysteine-rich protein-coding genes of Giardia lamblia and their role during antigenic variation. Genomics 2022; 114:110462. [PMID: 35998788 DOI: 10.1016/j.ygeno.2022.110462] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 11/21/2022]
Abstract
Giardia lamblia encodes several families of cysteine-rich proteins, including the Variant-specific Surface Proteins (VSPs) involved in the process of antigenic variation. Their characteristics, definition and relationships are still controversial. An exhaustive analysis of the Cys-rich families including organization, features, evolution and levels of expression was performed, by combining pattern searches and predictions with massive sequencing techniques. Thus a new classification for Cys-rich proteins, genes and pseudogenes that better describes their involvement in Giardia's biology is presented. Moreover, three novel characteristics exclusive to the VSP genes, comprising an Initiator element/Kozak-like sequence, an extended polyadenylation signal and a unique pattern of mutually exclusive transcript accumulation is presented as well as the finding that High Cysteine Membrane Proteins, upregulated under stress, may protect the parasite during VSP switching. These results allow better interpretation of previous reports providing the basis for further studies of the biology of this early-branching eukaryote.
Collapse
|
17
|
Chou SP, Alexander AK, Rice EJ, Choate LA, Danko CG. Genetic dissection of the RNA polymerase II transcription cycle. eLife 2022; 11:e78458. [PMID: 35775732 PMCID: PMC9286732 DOI: 10.7554/elife.78458] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 06/30/2022] [Indexed: 11/20/2022] Open
Abstract
How DNA sequence affects the dynamics and position of RNA Polymerase II (Pol II) during transcription remains poorly understood. Here, we used naturally occurring genetic variation in F1 hybrid mice to explore how DNA sequence differences affect the genome-wide distribution of Pol II. We measured the position and orientation of Pol II in eight organs collected from heterozygous F1 hybrid mice using ChRO-seq. Our data revealed a strong genetic basis for the precise coordinates of transcription initiation and promoter proximal pause, allowing us to redefine molecular models of core transcriptional processes. Our results implicate DNA sequence, including both known and novel DNA sequence motifs, as key determinants of the position of Pol II initiation and pause. We report evidence that initiation site selection follows a stochastic process similar to Brownian motion along the DNA template. We found widespread differences in the position of transcription termination, which impact the primary structure and stability of mature mRNA. Finally, we report evidence that allelic changes in transcription often affect mRNA and ncRNA expression across broad genomic domains. Collectively, we reveal how DNA sequences shape core transcriptional processes at single nucleotide resolution in mammals.
Collapse
Affiliation(s)
- Shao-Pei Chou
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell UniversityIthacaUnited States
| | - Adriana K Alexander
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell UniversityIthacaUnited States
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell UniversityIthacaUnited States
| | - Edward J Rice
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell UniversityIthacaUnited States
| | - Lauren A Choate
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell UniversityIthacaUnited States
| | - Charles G Danko
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell UniversityIthacaUnited States
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell UniversityIthacaUnited States
| |
Collapse
|
18
|
Rojas DA, Urbina F, Valenzuela-Pérez L, Leiva L, Miralles VJ, Maldonado E. Initiator-Directed Transcription: Fission Yeast Nmtl Initiator Directs Preinitiation Complex Formation and Transcriptional Initiation. Genes (Basel) 2022; 13:genes13020256. [PMID: 35205301 PMCID: PMC8871863 DOI: 10.3390/genes13020256] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/22/2022] [Accepted: 01/25/2022] [Indexed: 02/01/2023] Open
Abstract
The initiator element is a core promoter element encompassing the transcription start site, which is found in yeast, Drosophila, and human promoters. This element is observed in TATA-less promoters. Several studies have defined transcription factor requirements and additional cofactors that are needed for transcription initiation of initiator-containing promoters. However, those studies have been performed with additional core promoters in addition to the initiator. In this work, we have defined the pathway of preinitiation complex formation on the fission yeast nmt1 gene promoter, which contains a functional initiator with striking similarity to the initiator of the human dihydrofolate reductase (hDHFR) gene and to the factor requirement for transcription initiation of the nmt1 gene promoter. The results show that the nmt1 gene promoter possesses an initiator encompassing the transcription start site, and several conserved base positions are required for initiator function. A preinitiation complex formation on the nmt1 initiator can be started by TBP/TFIIA or TBP/TFIIB, but not TBP alone, and afterwards follows the same pathway as preinitiation complex formation on TATA-containing promoters. Transcription initiation is dependent on the general transcription factors TBP, TFIIB, TFIIE, TFIIF, TFIIH, RNA polymerase II, Mediator, and a cofactor identified as transcription cofactor for initiator function (TCIF), which is a high-molecular-weight protein complex of around 500 kDa. However, the TAF subunits of TFIID were not required for the nmt1 initiator transcription, as far as we tested. We also demonstrate that other initiators of the nmt1/hDHFR family can be transcribed in fission yeast whole-cell extracts.
Collapse
Affiliation(s)
- Diego A. Rojas
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8910132, Chile
- Correspondence: address: (D.A.R.); (E.M.)
| | - Fabiola Urbina
- Programa de Biología Celular y Molecular, ICBM, Facultad de Medicina, Universidad de Chile, Santiago 8380492, Chile; (F.U.); (L.V.-P.); (L.L.)
| | - Lucía Valenzuela-Pérez
- Programa de Biología Celular y Molecular, ICBM, Facultad de Medicina, Universidad de Chile, Santiago 8380492, Chile; (F.U.); (L.V.-P.); (L.L.)
| | - Lorenzo Leiva
- Programa de Biología Celular y Molecular, ICBM, Facultad de Medicina, Universidad de Chile, Santiago 8380492, Chile; (F.U.); (L.V.-P.); (L.L.)
| | - Vicente J. Miralles
- Departamento Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Valencia, 46010 Valencia, Spain;
| | - Edio Maldonado
- Programa de Biología Celular y Molecular, ICBM, Facultad de Medicina, Universidad de Chile, Santiago 8380492, Chile; (F.U.); (L.V.-P.); (L.L.)
- Correspondence: address: (D.A.R.); (E.M.)
| |
Collapse
|
19
|
Yokoshi M, Kawasaki K, Cambón M, Fukaya T. Dynamic modulation of enhancer responsiveness by core promoter elements in living Drosophila embryos. Nucleic Acids Res 2021; 50:92-107. [PMID: 34897508 PMCID: PMC8754644 DOI: 10.1093/nar/gkab1177] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 11/08/2021] [Accepted: 11/12/2021] [Indexed: 11/12/2022] Open
Abstract
Regulatory interactions between enhancers and core promoters are fundamental for the temporal and spatial specificity of gene expression in development. The central role of core promoters is to initiate productive transcription in response to enhancer's activation cues. However, it has not been systematically assessed how individual core promoter elements affect the induction of transcriptional bursting by enhancers. Here, we provide evidence that each core promoter element differentially modulates functional parameters of transcriptional bursting in developing Drosophila embryos. Quantitative live imaging analysis revealed that the timing and the continuity of burst induction are common regulatory steps on which core promoter elements impact. We further show that the upstream TATA also affects the burst amplitude. On the other hand, Inr, MTE and DPE mainly contribute to the regulation of the burst frequency. Genome editing analysis of the pair-rule gene fushi tarazu revealed that the endogenous TATA and DPE are both essential for its correct expression and function during the establishment of body segments in early embryos. We suggest that core promoter elements serve as a key regulatory module in converting enhancer activity into transcription dynamics during animal development.
Collapse
Affiliation(s)
- Moe Yokoshi
- Laboratory of Transcription Dynamics, Research Center for Biological Visualization, Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Koji Kawasaki
- Laboratory of Transcription Dynamics, Research Center for Biological Visualization, Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Manuel Cambón
- Applied Mathematics Department, University of Granada, Granada, Spain
| | - Takashi Fukaya
- Laboratory of Transcription Dynamics, Research Center for Biological Visualization, Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.,Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
20
|
Barela Hudgell MA, Smith LC. Sequence Diversity, Locus Structure, and Evolutionary History of the SpTransformer Genes in the Sea Urchin Genome. Front Immunol 2021; 12:744783. [PMID: 34867968 PMCID: PMC8634487 DOI: 10.3389/fimmu.2021.744783] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/12/2021] [Indexed: 11/13/2022] Open
Abstract
The generation of large immune gene families is often driven by evolutionary pressure exerted on host genomes by their pathogens, which has been described as the immunological arms race. The SpTransformer (SpTrf) gene family from the California purple sea urchin, Strongylocentrotus purpuratus, is upregulated upon immune challenge and encodes the SpTrf proteins that interact with pathogens during an immune response. Native SpTrf proteins bind both bacteria and yeast, and augment phagocytosis of a marine Vibrio, while a recombinant SpTrf protein (rSpTrf-E1) binds a subset of pathogens and a range of pathogen associated molecular patterns. In the sequenced sea urchin genome, there are four SpTrf gene clusters for a total of 17 genes. Here, we report an in-depth analysis of these genes to understand the sequence complexities of this family, its genomic structure, and to derive a putative evolutionary history for the formation of the gene clusters. We report a detailed characterization of gene structure including the intron type and UTRs with conserved transcriptional start sites, the start codon and multiple stop codons, and locations of polyadenylation signals. Phylogenetic and percent mismatch analyses of the genes and the intergenic regions allowed us to predict the last common ancestral SpTrf gene and a theoretical evolutionary history of the gene family. The appearance of the gene clusters from the theoretical ancestral gene may have been driven by multiple duplication and deletion events of regions containing SpTrf genes. Duplications and ectopic insertion events, indels, and point mutations in the exons likely resulted in the extant genes and family structure. This theoretical evolutionary history is consistent with the involvement of these genes in the arms race in responses to pathogens and suggests that the diversification of these genes and their encoded proteins have been selected for based on the survival benefits of pathogen binding and host protection.
Collapse
Affiliation(s)
| | - L. Courtney Smith
- Department of Biological Sciences, George Washington University, Washington, DC, United States
| |
Collapse
|
21
|
Sloutskin A, Shir-Shapira H, Freiman RN, Juven-Gershon T. The Core Promoter Is a Regulatory Hub for Developmental Gene Expression. Front Cell Dev Biol 2021; 9:666508. [PMID: 34568311 PMCID: PMC8461331 DOI: 10.3389/fcell.2021.666508] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 08/25/2021] [Indexed: 11/13/2022] Open
Abstract
The development of multicellular organisms and the uniqueness of each cell are achieved by distinct transcriptional programs. Multiple processes that regulate gene expression converge at the core promoter region, an 80 bp region that directs accurate transcription initiation by RNA polymerase II (Pol II). In recent years, it has become apparent that the core promoter region is not a passive DNA component, but rather an active regulatory module of transcriptional programs. Distinct core promoter compositions were demonstrated to result in different transcriptional outputs. In this mini-review, we focus on the role of the core promoter, particularly its downstream region, as the regulatory hub for developmental genes. The downstream core promoter element (DPE) was implicated in the control of evolutionarily conserved developmental gene regulatory networks (GRNs) governing body plan in both the anterior-posterior and dorsal-ventral axes. Notably, the composition of the basal transcription machinery is not universal, but rather promoter-dependent, highlighting the importance of specialized transcription complexes and their core promoter target sequences as key hubs that drive embryonic development, differentiation and morphogenesis across metazoan species. The extent of transcriptional activation by a specific enhancer is dependent on its compatibility with the relevant core promoter. The core promoter content also regulates transcription burst size. Overall, while for many years it was thought that the specificity of gene expression is primarily determined by enhancers, it is now clear that the core promoter region comprises an important regulatory module in the intricate networks of developmental gene expression.
Collapse
Affiliation(s)
- Anna Sloutskin
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Hila Shir-Shapira
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Richard N. Freiman
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, United States
| | - Tamar Juven-Gershon
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
22
|
Shamie I, Duttke SH, Karottki KJLC, Han CZ, Hansen AH, Hefzi H, Xiong K, Li S, Roth SJ, Tao J, Lee GM, Glass CK, Kildegaard HF, Benner C, Lewis NE. A Chinese hamster transcription start site atlas that enables targeted editing of CHO cells. NAR Genom Bioinform 2021; 3:lqab061. [PMID: 34268494 PMCID: PMC8276764 DOI: 10.1093/nargab/lqab061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/29/2021] [Accepted: 06/14/2021] [Indexed: 01/05/2023] Open
Abstract
Chinese hamster ovary (CHO) cells are widely used for producing biopharmaceuticals, and engineering gene expression in CHO is key to improving drug quality and affordability. However, engineering gene expression or activating silent genes requires accurate annotation of the underlying regulatory elements and transcription start sites (TSSs). Unfortunately, most TSSs in the published Chinese hamster genome sequence were computationally predicted and are frequently inaccurate. Here, we use nascent transcription start site sequencing methods to revise TSS annotations for 15 308 Chinese hamster genes and 3034 non-coding RNAs based on experimental data from CHO-K1 cells and 10 hamster tissues. We further capture tens of thousands of putative transcribed enhancer regions with this method. Our revised TSSs improves upon the RefSeq annotation by revealing core sequence features of gene regulation such as the TATA box and the Initiator and, as exemplified by targeting the glycosyltransferase gene Mgat3, facilitate activating silent genes by CRISPRa. Together, we envision our revised annotation and data will provide a rich resource for the CHO community, improve genome engineering efforts and aid comparative and evolutionary studies.
Collapse
Affiliation(s)
- Isaac Shamie
- Novo Nordisk Foundation Center for Biosustainability at UC San Diego 92093, USA
| | - Sascha H Duttke
- Department of Medicine, University of California, San Diego 92093, USA
| | - Karen J la Cour Karottki
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Denmark
| | - Claudia Z Han
- Department of Cellular and Molecular Medicine, University of California, San Diego 92093, USA
| | - Anders H Hansen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Denmark
| | - Hooman Hefzi
- Novo Nordisk Foundation Center for Biosustainability at UC San Diego 92093, USA
| | - Kai Xiong
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Denmark
| | - Shangzhong Li
- Novo Nordisk Foundation Center for Biosustainability at UC San Diego 92093, USA
| | - Samuel J Roth
- Department of Medicine, University of California, San Diego 92093, USA
| | - Jenhan Tao
- Department of Cellular and Molecular Medicine, University of California, San Diego 92093, USA
| | - Gyun Min Lee
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Denmark
| | - Christopher K Glass
- Department of Cellular and Molecular Medicine, University of California, San Diego 92093, USA
| | | | | | - Nathan E Lewis
- Novo Nordisk Foundation Center for Biosustainability at UC San Diego 92093, USA
| |
Collapse
|
23
|
Compe E, Egly JM. The Long Road to Understanding RNAPII Transcription Initiation and Related Syndromes. Annu Rev Biochem 2021; 90:193-219. [PMID: 34153211 DOI: 10.1146/annurev-biochem-090220-112253] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In eukaryotes, transcription of protein-coding genes requires the assembly at core promoters of a large preinitiation machinery containing RNA polymerase II (RNAPII) and general transcription factors (GTFs). Transcription is potentiated by regulatory elements called enhancers, which are recognized by specific DNA-binding transcription factors that recruit cofactors and convey, following chromatin remodeling, the activating cues to the preinitiation complex. This review summarizes nearly five decades of work on transcription initiation by describing the sequential recruitment of diverse molecular players including the GTFs, the Mediator complex, and DNA repair factors that support RNAPII to enable RNA synthesis. The elucidation of the transcription initiation mechanism has greatly benefited from the study of altered transcription components associated with human diseases that could be considered transcription syndromes.
Collapse
Affiliation(s)
- Emmanuel Compe
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS, INSERM, Université de Strasbourg, 67404 Illkirch CEDEX, Commune Urbaine de Strasbourg, France; ,
| | - Jean-Marc Egly
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS, INSERM, Université de Strasbourg, 67404 Illkirch CEDEX, Commune Urbaine de Strasbourg, France; , .,College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| |
Collapse
|
24
|
Jores T, Tonnies J, Wrightsman T, Buckler ES, Cuperus JT, Fields S, Queitsch C. Synthetic promoter designs enabled by a comprehensive analysis of plant core promoters. NATURE PLANTS 2021; 7:842-855. [PMID: 34083762 PMCID: PMC10246763 DOI: 10.1038/s41477-021-00932-y] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/27/2021] [Indexed: 05/24/2023]
Abstract
Targeted engineering of plant gene expression holds great promise for ensuring food security and for producing biopharmaceuticals in plants. However, this engineering requires thorough knowledge of cis-regulatory elements to precisely control either endogenous or introduced genes. To generate this knowledge, we used a massively parallel reporter assay to measure the activity of nearly complete sets of promoters from Arabidopsis, maize and sorghum. We demonstrate that core promoter elements-notably the TATA box-as well as promoter GC content and promoter-proximal transcription factor binding sites influence promoter strength. By performing the experiments in two assay systems, leaves of the dicot tobacco and protoplasts of the monocot maize, we detect species-specific differences in the contributions of GC content and transcription factors to promoter strength. Using these observations, we built computational models to predict promoter strength in both assay systems, allowing us to design highly active promoters comparable in activity to the viral 35S minimal promoter. Our results establish a promising experimental approach to optimize native promoter elements and generate synthetic ones with desirable features.
Collapse
Affiliation(s)
- Tobias Jores
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Jackson Tonnies
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Graduate Program in Biology, University of Washington, Seattle, WA, USA
| | - Travis Wrightsman
- Section of Plant Breeding and Genetics, Cornell University, Ithaca, NY, USA
| | - Edward S Buckler
- Section of Plant Breeding and Genetics, Cornell University, Ithaca, NY, USA
- Agricultural Research Service, United States Department of Agriculture, Ithaca, NY, USA
- Institute for Genomic Diversity, Cornell University, Ithaca, NY, USA
| | - Josh T Cuperus
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
| | - Stanley Fields
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
- Department of Medicine, University of Washington, Seattle, WA, USA.
| | - Christine Queitsch
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
| |
Collapse
|
25
|
Linzer N, Trumbull A, Nar R, Gibbons MD, Yu DT, Strouboulis J, Bungert J. Regulation of RNA Polymerase II Transcription Initiation and Elongation by Transcription Factor TFII-I. Front Mol Biosci 2021; 8:681550. [PMID: 34055891 PMCID: PMC8155576 DOI: 10.3389/fmolb.2021.681550] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 04/20/2021] [Indexed: 11/13/2022] Open
Abstract
Transcription by RNA polymerase II (Pol II) is regulated by different processes, including alterations in chromatin structure, interactions between distal regulatory elements and promoters, formation of transcription domains enriched for Pol II and co-regulators, and mechanisms involved in the initiation, elongation, and termination steps of transcription. Transcription factor TFII-I, originally identified as an initiator (INR)-binding protein, contains multiple protein–protein interaction domains and plays diverse roles in the regulation of transcription. Genome-wide analysis revealed that TFII-I associates with expressed as well as repressed genes. Consistently, TFII-I interacts with co-regulators that either positively or negatively regulate the transcription. Furthermore, TFII-I has been shown to regulate transcription pausing by interacting with proteins that promote or inhibit the elongation step of transcription. Changes in TFII-I expression in humans are associated with neurological and immunological diseases as well as cancer. Furthermore, TFII-I is essential for the development of mice and represents a barrier for the induction of pluripotency. Here, we review the known functions of TFII-I related to the regulation of Pol II transcription at the stages of initiation and elongation.
Collapse
Affiliation(s)
- Niko Linzer
- Department of Biochemistry and Molecular Biology, College of Medicine, UF Health Cancer Center, Genetics Institute, Powell Gene Therapy Center, University of Florida, Gainesville, FL, United States
| | - Alexis Trumbull
- Department of Biochemistry and Molecular Biology, College of Medicine, UF Health Cancer Center, Genetics Institute, Powell Gene Therapy Center, University of Florida, Gainesville, FL, United States
| | - Rukiye Nar
- Department of Biochemistry and Molecular Biology, College of Medicine, UF Health Cancer Center, Genetics Institute, Powell Gene Therapy Center, University of Florida, Gainesville, FL, United States
| | - Matthew D Gibbons
- Department of Biochemistry and Molecular Biology, College of Medicine, UF Health Cancer Center, Genetics Institute, Powell Gene Therapy Center, University of Florida, Gainesville, FL, United States
| | - David T Yu
- Department of Biochemistry and Molecular Biology, College of Medicine, UF Health Cancer Center, Genetics Institute, Powell Gene Therapy Center, University of Florida, Gainesville, FL, United States
| | - John Strouboulis
- Comprehensive Cancer Center, School of Cancer and Pharmaceutical Sciences, King's College London, United Kingdom
| | - Jörg Bungert
- Department of Biochemistry and Molecular Biology, College of Medicine, UF Health Cancer Center, Genetics Institute, Powell Gene Therapy Center, University of Florida, Gainesville, FL, United States
| |
Collapse
|
26
|
Investigation of the Wilson gene ATP7B transcriptional start site and the effect of core promoter alterations. Sci Rep 2021; 11:7674. [PMID: 33828154 PMCID: PMC8027023 DOI: 10.1038/s41598-021-87000-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/22/2021] [Indexed: 02/01/2023] Open
Abstract
Pathogenic genetic variants in the ATP7B gene cause Wilson disease, a recessive disorder of copper metabolism showing a significant variability in clinical phenotype. Promoter mutations have been rarely reported, and controversial data exist on the site of transcription initiation (the core promoter). We quantitatively investigated transcription initiation and found it to be located in immediate proximity of the translational start. The effects human single-nucleotide alterations of conserved bases in the core promoter on transcriptional activity were moderate, explaining why clearly pathogenic mutations within the core promoter have not been reported. Furthermore, the core promoter contains two frequent polymorphisms (rs148013251 and rs2277448) that could contribute to phenotypical variability in Wilson disease patients with incompletely inactivating mutations. However, neither polymorphism significantly modulated ATP7B expression in vitro, nor were copper household parameters in healthy probands affected. In summary, the investigations allowed to determine the biologically relevant site of ATP7B transcription initiation and demonstrated that genetic variations in this site, although being the focus of transcriptional activity, do not contribute significantly to Wilson disease pathogenesis.
Collapse
|
27
|
Chen X, Qi Y, Wu Z, Wang X, Li J, Zhao D, Hou H, Li Y, Yu Z, Liu W, Wang M, Ren Y, Li Z, Yang H, Xu Y. Structural insights into preinitiation complex assembly on core promoters. Science 2021; 372:science.aba8490. [PMID: 33795473 DOI: 10.1126/science.aba8490] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 02/01/2021] [Accepted: 03/25/2021] [Indexed: 12/24/2022]
Abstract
Transcription factor IID (TFIID) recognizes core promoters and supports preinitiation complex (PIC) assembly for RNA polymerase II (Pol II)-mediated eukaryotic transcription. We determined the structures of human TFIID-based PIC in three stepwise assembly states and revealed two-track PIC assembly: stepwise promoter deposition to Pol II and extensive modular reorganization on track I (on TATA-TFIID-binding element promoters) versus direct promoter deposition on track II (on TATA-only and TATA-less promoters). The two tracks converge at an ~50-subunit holo PIC in identical conformation, whereby TFIID stabilizes PIC organization and supports loading of cyclin-dependent kinase (CDK)-activating kinase (CAK) onto Pol II and CAK-mediated phosphorylation of the Pol II carboxyl-terminal domain. Unexpectedly, TBP of TFIID similarly bends TATA box and TATA-less promoters in PIC. Our study provides structural visualization of stepwise PIC assembly on highly diversified promoters.
Collapse
Affiliation(s)
- Xizi Chen
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Yilun Qi
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Zihan Wu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Xinxin Wang
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Jiabei Li
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Dan Zhao
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Haifeng Hou
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Yan Li
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Zishuo Yu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Weida Liu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Mo Wang
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Yulei Ren
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Ze Li
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Huirong Yang
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Yanhui Xu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China. .,The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, China, Department of Systems Biology for Medicine, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China.,Human Phenome Institute, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200433, China
| |
Collapse
|
28
|
Pachganov S, Murtazalieva K, Zarubin A, Taran T, Chartier D, Tatarinova TV. Prediction of Rice Transcription Start Sites Using TransPrise: A Novel Machine Learning Approach. Methods Mol Biol 2021; 2238:261-274. [PMID: 33471337 DOI: 10.1007/978-1-0716-1068-8_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
As the interest in genetic resequencing increases, so does the need for effective mathematical, computational, and statistical approaches. One of the difficult problems in genome annotation is determination of precise positions of transcription start sites. In this paper, we present TransPrise-an efficient deep learning tool for predicting positions of eukaryotic transcription start sites. TransPrise offers significant improvement over existing promoter-prediction methods. To illustrate this, we compared predictions of TransPrise with the TSSPlant approach for well-annotated genome of Oryza sativa. Using a computer with a graphics processing unit, the run time of TransPrise is 250 min on a genome of 374 Mb long.We provide the full basis for the comparison and encourage users to freely access a set of our computational tools to facilitate and streamline their own analyses. The ready-to-use Docker image with all the necessary packages, models, and code as well as the source code of the TransPrise algorithm are available at http://compubioverne.group/ . The source code is ready to use and to be customized to predict TSS in any eukaryotic organism.
Collapse
Affiliation(s)
- Stepan Pachganov
- Ugra Research Institute of Information Technologies, Khanty-Mansiysk, Russia
| | | | - Alexei Zarubin
- Tomsk National Research Medical Center of the Russian Academy of Sciences, Research Institute of Medical Genetics, Tomsk, Russia
| | | | - Duane Chartier
- International Center for Art Intelligence, Inc, Los Angeles, CA, USA
| | - Tatiana V Tatarinova
- Vavilov Institute of General Genetics, Moscow, Russia.
- Department of Biology, University of La Verne, La Verne, CA, USA.
- A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia.
- Siberian Federal University, Krasnoyarsk, Russia.
| |
Collapse
|
29
|
Liu Y, Zhu C, Tang L, Chen Q, Guan N, Xu K, Guan X. MYC dysfunction modulates stemness and tumorigenesis in breast cancer. Int J Biol Sci 2021; 17:178-187. [PMID: 33390842 PMCID: PMC7757029 DOI: 10.7150/ijbs.51458] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/12/2020] [Indexed: 12/28/2022] Open
Abstract
As a transcription factor and proto-oncogene, MYC is known to be deregulated in a variety of tumors, including breast cancer. However, no consistent conclusion on the role and mechanism of MYC deregulation during breast cancer carcinogenesis has been formed. Here, we used the UALCAN, bc-GenExMiner, TCGA, cBioportal, STRING and Kaplan-Meier Plotter databases to explore the mRNA expression, prognosis, transcriptional profile changes, signal pathway rewiring and interaction with the cancer stem cells of MYC in breast cancer. We found that the expression of MYC varies in different subtypes of breast cancer, with relatively high frequency in TNBC. As a transcription factor, MYC not only participates in the rewiring of cancer signaling pathways, such as estrogen, WNT, NOTCH and other pathways, but also interacts with cancer stem cells. MYC is significantly positively correlated with breast cancer stem cell markers such as CD44, CD24, and ALDH1. Collectively, our results highlight that MYC plays an important regulatory role in the occurrence of breast cancer, and its amplification can be used as a predictor of diagnosis and prognosis. The interaction between MYC and cancer stem cells may play a crucial role in regulating the initiation and metastasis of breast cancer.
Collapse
Affiliation(s)
- Yiqiu Liu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| | - Chengjun Zhu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| | - Lin Tang
- Department of Medical Oncology, Medical School of Nanjing University, Nanjing, 210002, China
| | - Qin Chen
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| | - Nan Guan
- College of Letters and Science, University of California, Los Angeles, 405 Hilgard Avenue, California, 90095, USA
| | - Kun Xu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| | - Xiaoxiang Guan
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| |
Collapse
|
30
|
Moxley AH, Reisman D. Context is key: Understanding the regulation, functional control, and activities of the p53 tumour suppressor. Cell Biochem Funct 2020; 39:235-247. [PMID: 32996618 DOI: 10.1002/cbf.3590] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/27/2020] [Accepted: 09/01/2020] [Indexed: 12/12/2022]
Abstract
The p53 tumour suppressor is considered one of the most critical genes in cancer biology. By upregulating apoptosis, cell cycle arrest, and DNA damage repair in normal cells, p53 prevents the propagation of cells with tumorigenic potential; therefore, mutations in p53 are associated with carcinogenic transformation and can be accompanied by the accumulation of a novel gain-of-function oncogenic protein, mutant p53. Although p53 is most often understood to utilize context-dependent post-translational modifications to achieve regulation of its many target genes, recent research has also sought to define other mechanisms of regulating p53 gene expression prior to translation and to understand how this alternative regulation of p53 may influence target gene expression and cellular outcome. This review attempts to summarize what is known about p53 regulation at the transcriptional, post-transcriptional, and post-translational levels while paying special attention to the ways in which context may influence p53 regulation and subsequent regulation of its target genes.
Collapse
Affiliation(s)
- Anne H Moxley
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, USA
| | - David Reisman
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, USA
| |
Collapse
|
31
|
SOX10-regulated promoter use defines isoform-specific gene expression in Schwann cells. BMC Genomics 2020; 21:549. [PMID: 32770939 PMCID: PMC7430845 DOI: 10.1186/s12864-020-06963-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 07/29/2020] [Indexed: 01/12/2023] Open
Abstract
Background Multicellular organisms adopt various strategies to tailor gene expression to cellular contexts including the employment of multiple promoters (and the associated transcription start sites (TSSs)) at a single locus that encodes distinct gene isoforms. Schwann cells—the myelinating cells of the peripheral nervous system (PNS)—exhibit a specialized gene expression profile directed by the transcription factor SOX10, which is essential for PNS myelination. SOX10 regulates promoter elements associated with unique TSSs and gene isoforms at several target loci, implicating SOX10-mediated, isoform-specific gene expression in Schwann cell function. Here, we report on genome-wide efforts to identify SOX10-regulated promoters and TSSs in Schwann cells to prioritize genes and isoforms for further study. Results We performed global TSS analyses and mined previously reported ChIP-seq datasets to assess the activity of SOX10-bound promoters in three models: (i) an adult mammalian nerve; (ii) differentiating primary Schwann cells, and (iii) cultured Schwann cells with ablated SOX10 function. We explored specific characteristics of SOX10-dependent TSSs, which provides confidence in defining them as SOX10 targets. Finally, we performed functional studies to validate our findings at four previously unreported SOX10 target loci: ARPC1A, CHN2, DDR1, and GAS7. These findings suggest roles for the associated SOX10-regulated gene products in PNS myelination. Conclusions In sum, we provide comprehensive computational and functional assessments of SOX10-regulated TSS use in Schwann cells. The data presented in this study will stimulate functional studies on the specific mRNA and protein isoforms that SOX10 regulates, which will improve our understanding of myelination in the peripheral nerve.
Collapse
|
32
|
Qiu C, Jin H, Vvedenskaya I, Llenas JA, Zhao T, Malik I, Visbisky AM, Schwartz SL, Cui P, Čabart P, Han KH, Lai WKM, Metz RP, Johnson CD, Sze SH, Pugh BF, Nickels BE, Kaplan CD. Universal promoter scanning by Pol II during transcription initiation in Saccharomyces cerevisiae. Genome Biol 2020; 21:132. [PMID: 32487207 PMCID: PMC7265651 DOI: 10.1186/s13059-020-02040-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 05/08/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The majority of eukaryotic promoters utilize multiple transcription start sites (TSSs). How multiple TSSs are specified at individual promoters across eukaryotes is not understood for most species. In Saccharomyces cerevisiae, a pre-initiation complex (PIC) comprised of Pol II and conserved general transcription factors (GTFs) assembles and opens DNA upstream of TSSs. Evidence from model promoters indicates that the PIC scans from upstream to downstream to identify TSSs. Prior results suggest that TSS distributions at promoters where scanning occurs shift in a polar fashion upon alteration in Pol II catalytic activity or GTF function. RESULTS To determine the extent of promoter scanning across promoter classes in S. cerevisiae, we perturb Pol II catalytic activity and GTF function and analyze their effects on TSS usage genome-wide. We find that alterations to Pol II, TFIIB, or TFIIF function widely alter the initiation landscape consistent with promoter scanning operating at all yeast promoters, regardless of promoter class. Promoter architecture, however, can determine the extent of promoter sensitivity to altered Pol II activity in ways that are predicted by a scanning model. CONCLUSIONS Our observations coupled with previous data validate key predictions of the scanning model for Pol II initiation in yeast, which we term the shooting gallery. In this model, Pol II catalytic activity and the rate and processivity of Pol II scanning together with promoter sequence determine the distribution of TSSs and their usage.
Collapse
Affiliation(s)
- Chenxi Qiu
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843-2128, USA
- Present Address: Department of Medicine, Division of Translational Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Huiyan Jin
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843-2128, USA
| | - Irina Vvedenskaya
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, 08854, USA
- Department of Genetics, Rutgers University, Piscataway, NJ, 08854, USA
| | - Jordi Abante Llenas
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, 77843-3128, USA
- Present Address: Whitaker Biomedical Engineering Institute, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Tingting Zhao
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Indranil Malik
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843-2128, USA
- Present Address: Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Alex M Visbisky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Scott L Schwartz
- Genomics and Bioinformatics Service, Texas A&M AgriLife, College Station, TX, 77845, USA
| | - Ping Cui
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843-2128, USA
| | - Pavel Čabart
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843-2128, USA
- Present Address: First Faculty of Medicine, Charles University, BIOCEV, 252 42, Vestec, Czech Republic
| | - Kang Hoo Han
- Department of Biochemistry and Molecular Biology, Penn State University, University Park, PA, 16802, USA
| | - William K M Lai
- Department of Biochemistry and Molecular Biology, Penn State University, University Park, PA, 16802, USA
- Present Address: Department of Molecular Biology and Genetics, 458 Biotechnology, Cornell University, New York, 14853, USA
| | - Richard P Metz
- Genomics and Bioinformatics Service, Texas A&M AgriLife, College Station, TX, 77845, USA
| | - Charles D Johnson
- Genomics and Bioinformatics Service, Texas A&M AgriLife, College Station, TX, 77845, USA
| | - Sing-Hoi Sze
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843-2128, USA
- Department of Computer Science and Engineering, Texas A&M University, College Station, TX, 77843-3127, USA
| | - B Franklin Pugh
- Department of Biochemistry and Molecular Biology, Penn State University, University Park, PA, 16802, USA
- Present Address: Department of Molecular Biology and Genetics, 458 Biotechnology, Cornell University, New York, 14853, USA
| | - Bryce E Nickels
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, 08854, USA
- Department of Genetics, Rutgers University, Piscataway, NJ, 08854, USA
| | - Craig D Kaplan
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
| |
Collapse
|
33
|
Pachganov S, Murtazalieva K, Zarubin A, Sokolov D, Chartier DR, Tatarinova TV. TransPrise: a novel machine learning approach for eukaryotic promoter prediction. PeerJ 2019; 7:e7990. [PMID: 31695967 PMCID: PMC6827441 DOI: 10.7717/peerj.7990] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 10/04/2019] [Indexed: 02/01/2023] Open
Abstract
As interest in genetic resequencing increases, so does the need for effective mathematical, computational, and statistical approaches. One of the difficult problems in genome annotation is determination of precise positions of transcription start sites. In this paper we present TransPrise-an efficient deep learning tool for prediction of positions of eukaryotic transcription start sites. Our pipeline consists of two parts: the binary classifier operates the first, and if a sequence is classified as TSS-containing the regression step follows, where the precise location of TSS is being identified. TransPrise offers significant improvement over existing promoter-prediction methods. To illustrate this, we compared predictions of TransPrise classification and regression models with the TSSPlant approach for the well annotated genome of Oryza sativa. Using a computer equipped with a graphics processing unit, the run time of TransPrise is 250 minutes on a genome of 374 Mb long. The Matthews correlation coefficient value for TransPrise is 0.79, more than two times larger than the 0.31 for TSSPlant classification models. This represents a high level of prediction accuracy. Additionally, the mean absolute error for the regression model is 29.19 nt, allowing for accurate prediction of TSS location. TransPrise was also tested in Homo sapiens, where mean absolute error of the regression model was 47.986 nt. We provide the full basis for the comparison and encourage users to freely access a set of our computational tools to facilitate and streamline their own analyses. The ready-to-use Docker image with all necessary packages, models, code as well as the source code of the TransPrise algorithm are available at (http://compubioverne.group/). The source code is ready to use and customizable to predict TSS in any eukaryotic organism.
Collapse
Affiliation(s)
- Stepan Pachganov
- Ugra Research Institute of Information Technologies, Khanty-Mansiysk, Russia
| | - Khalimat Murtazalieva
- Vavilov Institute for General Genetics, Moscow, Russia.,Institute of Bioinformatics, Moscow, Russia
| | - Aleksei Zarubin
- Tomsk National Research Medical Center of the Russian Academy of Sciences, Research Institute of Medical Genetics, Tomsk, Russia
| | | | - Duane R Chartier
- International Center for Art Intelligence, Inc., Los Angeles, CA, United States of America
| | - Tatiana V Tatarinova
- Vavilov Institute for General Genetics, Moscow, Russia.,Department of Biology, University of La Verne, La Verne, CA, United States of America.,A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia.,Siberian Federal University, Krasnoyarsk, Russia
| |
Collapse
|
34
|
Duttke SH, Chang MW, Heinz S, Benner C. Identification and dynamic quantification of regulatory elements using total RNA. Genome Res 2019; 29:1836-1846. [PMID: 31649059 PMCID: PMC6836739 DOI: 10.1101/gr.253492.119] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 09/23/2019] [Indexed: 12/30/2022]
Abstract
The spatial and temporal regulation of transcription initiation is pivotal for controlling gene expression. Here, we introduce capped-small RNA-seq (csRNA-seq), which uses total RNA as starting material to detect transcription start sites (TSSs) of both stable and unstable RNAs at single-nucleotide resolution. csRNA-seq is highly sensitive to acute changes in transcription and identifies an order of magnitude more regulated transcripts than does RNA-seq. Interrogating tissues from species across the eukaryotic kingdoms identified unstable transcripts resembling enhancer RNAs, pri-miRNAs, antisense transcripts, and promoter upstream transcripts in multicellular animals, plants, and fungi spanning 1.6 billion years of evolution. Integration of epigenomic data from these organisms revealed that histone H3 trimethylation (H3K4me3) was largely confined to TSSs of stable transcripts, whereas H3K27ac marked nucleosomes downstream from all active TSSs, suggesting an ancient role for posttranslational histone modifications in transcription. Our findings show that total RNA is sufficient to identify transcribed regulatory elements and capture the dynamics of initiated stable and unstable transcripts at single-nucleotide resolution in eukaryotes.
Collapse
Affiliation(s)
- Sascha H Duttke
- Department of Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | - Max W Chang
- Department of Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | - Sven Heinz
- Department of Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | - Christopher Benner
- Department of Medicine, University of California, San Diego, La Jolla, California 92093, USA
| |
Collapse
|
35
|
The RNA Polymerase II Core Promoter in Drosophila. Genetics 2019; 212:13-24. [PMID: 31053615 DOI: 10.1534/genetics.119.302021] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 03/05/2019] [Indexed: 11/18/2022] Open
Abstract
Transcription by RNA polymerase II initiates at the core promoter, which is sometimes referred to as the "gateway to transcription." Here, we describe the properties of the RNA polymerase II core promoter in Drosophila The core promoter is at a strategic position in the expression of genes, as it is the site of convergence of the signals that lead to transcriptional activation. Importantly, core promoters are diverse in terms of their structure and function. They are composed of various combinations of sequence motifs such as the TATA box, initiator (Inr), and downstream core promoter element (DPE). Different types of core promoters are transcribed via distinct mechanisms. Moreover, some transcriptional enhancers exhibit specificity for particular types of core promoters. These findings indicate that the core promoter is a central component of the transcriptional apparatus that regulates gene expression.
Collapse
|
36
|
Nguyen LN, Baumann M, Dhiman H, Marx N, Schmieder V, Hussein M, Eisenhut P, Hernandez I, Koehn J, Borth N. Novel Promoters Derived from Chinese Hamster Ovary Cells via In Silico and In Vitro Analysis. Biotechnol J 2019; 14:e1900125. [DOI: 10.1002/biot.201900125] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/14/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Ly N. Nguyen
- Department of BiotechnologyBOKU University of Natural Resources and Life SciencesMuthgasse 18 1190 Vienna Austria
- Austrian Center of Industrial Biotechnology GmbH1190 Vienna Austria
| | - Martina Baumann
- Austrian Center of Industrial Biotechnology GmbH1190 Vienna Austria
| | - Heena Dhiman
- Department of BiotechnologyBOKU University of Natural Resources and Life SciencesMuthgasse 18 1190 Vienna Austria
- Austrian Center of Industrial Biotechnology GmbH1190 Vienna Austria
| | - Nicolas Marx
- Department of BiotechnologyBOKU University of Natural Resources and Life SciencesMuthgasse 18 1190 Vienna Austria
- Austrian Center of Industrial Biotechnology GmbH1190 Vienna Austria
| | - Valerie Schmieder
- Department of BiotechnologyBOKU University of Natural Resources and Life SciencesMuthgasse 18 1190 Vienna Austria
- Austrian Center of Industrial Biotechnology GmbH1190 Vienna Austria
| | - Mohamed Hussein
- Department of BiotechnologyBOKU University of Natural Resources and Life SciencesMuthgasse 18 1190 Vienna Austria
- Austrian Center of Industrial Biotechnology GmbH1190 Vienna Austria
| | - Peter Eisenhut
- Department of BiotechnologyBOKU University of Natural Resources and Life SciencesMuthgasse 18 1190 Vienna Austria
- Austrian Center of Industrial Biotechnology GmbH1190 Vienna Austria
| | | | | | - Nicole Borth
- Department of BiotechnologyBOKU University of Natural Resources and Life SciencesMuthgasse 18 1190 Vienna Austria
- Austrian Center of Industrial Biotechnology GmbH1190 Vienna Austria
| |
Collapse
|
37
|
Shir-Shapira H, Sloutskin A, Adato O, Ovadia-Shochat A, Ideses D, Zehavi Y, Kassavetis G, Kadonaga JT, Unger R, Juven-Gershon T. Identification of evolutionarily conserved downstream core promoter elements required for the transcriptional regulation of Fushi tarazu target genes. PLoS One 2019; 14:e0215695. [PMID: 30998799 PMCID: PMC6472829 DOI: 10.1371/journal.pone.0215695] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 04/07/2019] [Indexed: 12/21/2022] Open
Abstract
The regulation of transcription initiation is critical for developmental and cellular processes. RNA polymerase II (Pol II) is recruited by the basal transcription machinery to the core promoter where Pol II initiates transcription. The core promoter encompasses the region from -40 to +40 bp relative to the +1 transcription start site (TSS). Core promoters may contain one or more core promoter motifs that confer specific properties to the core promoter, such as the TATA box, initiator (Inr) and motifs that are located downstream of the TSS, namely, motif 10 element (MTE), the downstream core promoter element (DPE) and the Bridge, a bipartite core promoter element. We had previously shown that Caudal, an enhancer-binding homeodomain transcription factor and a key regulator of the Hox gene network, is a DPE-specific activator. Interestingly, pair-rule proteins have been implicated in enhancer-promoter communication at the engrailed locus. Fushi tarazu (Ftz) is an enhancer-binding homeodomain transcription factor encoded by the ftz pair-rule gene. Ftz works in concert with its co-factor, Ftz-F1, to activate transcription. Here, we examined whether Ftz and Ftz-F1 activate transcription with a preference for a specific core promoter motif. Our analysis revealed that similarly to Caudal, Ftz and Ftz-F1 activate the promoter containing a TATA box mutation to significantly higher levels than the promoter containing a DPE mutation, thus demonstrating a preference for the DPE motif. We further discovered that Ftz target genes are enriched for a combination of functional downstream core promoter elements that are conserved among Drosophila species. Thus, the unique combination (Inr, Bridge and DPE) of functional downstream core promoter elements within Ftz target genes highlights the complexity of transcriptional regulation via the core promoter in the transcription of different developmental gene regulatory networks.
Collapse
Affiliation(s)
- Hila Shir-Shapira
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Anna Sloutskin
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Orit Adato
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Avital Ovadia-Shochat
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Diana Ideses
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Yonathan Zehavi
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - George Kassavetis
- Section of Molecular Biology, University of California, San Diego, La Jolla, CA, United States of America
| | - James T. Kadonaga
- Section of Molecular Biology, University of California, San Diego, La Jolla, CA, United States of America
| | - Ron Unger
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Tamar Juven-Gershon
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
- * E-mail:
| |
Collapse
|
38
|
Rotwein P. Gene Mapping by RNA-sequencing: A Direct Way to Characterize Genes and Gene Expression through Targeted Queries of Large Public Databases. Bio Protoc 2019; 9:e3129. [PMID: 32699811 DOI: 10.21769/bioprotoc.3129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Recent advances in genomics present new opportunities for enhancing knowledge about gene regulation and function across a wide spectrum of organisms and species. Understanding and evaluating this information at the individual gene level is challenging, and not only requires extracting, collating and interpreting data from public genetic repositories, but also recognizing that much of the information has been developed through implementation of computationally based exon-calling algorithms, and thus may be inaccurate. Moreover, as these data usually have not been validated experimentally, results also may be incomplete and incorrect. This has created a quality-control problem for scientists who want to use individual gene-specific information in their research. Here, I describe a simple experimental strategy that takes advantage of the large amounts of untapped primary experimental data for characterizing gene expression that have been deposited in the Sequence Read Archive of the National Center for Biotechnology Information. The approach consists of a readily adaptable pipeline that may be used to confirm exons, to define 5' and 3' un-translated regions and the beginnings and ends of individual genes, and to quantify alternative RNA splicing. The series of experimental strategies described offers effective replacements for older molecular biological methods, and can rapidly and reproducibly resolve major gene mapping problems.
Collapse
Affiliation(s)
- Peter Rotwein
- Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech Health University Health Sciences Center, El Paso, Texas 79905, USA
| |
Collapse
|
39
|
Haberle V, Stark A. Eukaryotic core promoters and the functional basis of transcription initiation. Nat Rev Mol Cell Biol 2018; 19:621-637. [PMID: 29946135 PMCID: PMC6205604 DOI: 10.1038/s41580-018-0028-8] [Citation(s) in RCA: 448] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
RNA polymerase II (Pol II) core promoters are specialized DNA sequences at transcription start sites of protein-coding and non-coding genes that support the assembly of the transcription machinery and transcription initiation. They enable the highly regulated transcription of genes by selectively integrating regulatory cues from distal enhancers and their associated regulatory proteins. In this Review, we discuss the defining properties of gene core promoters, including their sequence features, chromatin architecture and transcription initiation patterns. We provide an overview of molecular mechanisms underlying the function and regulation of core promoters and their emerging functional diversity, which defines distinct transcription programmes. On the basis of the established properties of gene core promoters, we discuss transcription start sites within enhancers and integrate recent results obtained from dedicated functional assays to propose a functional model of transcription initiation. This model can explain the nature and function of transcription initiation at gene starts and at enhancers and can explain the different roles of core promoters, of Pol II and its associated factors and of the activating cues provided by enhancers and the transcription factors and cofactors they recruit.
Collapse
Affiliation(s)
- Vanja Haberle
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Alexander Stark
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria.
- Medical University of Vienna, Vienna Biocenter (VBC), Vienna, Austria.
| |
Collapse
|
40
|
Control of human gene expression: High abundance of divergent transcription in genes containing both INR and BRE elements in the core promoter. PLoS One 2018; 13:e0202927. [PMID: 30138429 PMCID: PMC6107252 DOI: 10.1371/journal.pone.0202927] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 08/10/2018] [Indexed: 11/19/2022] Open
Abstract
Background DNA sequence elements in the core promoter can play a central role in regulation of gene expression. Core elements (e.g. INR and TATA box) are located within ~50bp of the transcription start site and both upstream and downstream elements are known. Although all can affect the level of gene expression, their mechanism of action has yet to be fully defined. The studies described here are focused on two core promoter elements, INR and BRE, in the human genome. The locations of the two elements were determined in a large number of human promoters and the results were interpreted in terms of overall promoter function. Results A total of 13,406 promoters were collected from the reference version of the human genome and found to contain 62,891 INR sequences and 32,290 BRE. An INR sequence was found in the core region of 1231 (9.2%) promoters and a BRE in 2592 (19.3%); 121 promoters (0.9%) have both INR and BRE elements. Counts support the view that most human promoters lack an INR or BRE element in the core promoter. Further analysis was carried out with the aligned aggregate of promoters from each chromosome. The results showed distinct INR distributions in separate chromosome groups indicating a degree of chromosome specificity to the way core promoter elements are deployed in the genome. The rare promoters with both INR and BRE elements were found to be enriched among the genes with divergent transcription. Enrichment raises the possibility that core promoter elements can have a function in chromosome organization as well as in initiation of transcription.
Collapse
|
41
|
Three newly identified Immediate Early Genes of Bovine herpesvirus 1 lack the characteristic Octamer binding motif- 1. Sci Rep 2018; 8:11441. [PMID: 30061689 PMCID: PMC6065388 DOI: 10.1038/s41598-018-29490-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 07/11/2018] [Indexed: 02/06/2023] Open
Abstract
Only three immediate early genes (IE) BICP0, BICP4 and BICP22 of Bovine herpesvirus 1 (BoHV-1) are known. These genes are expressed coordinately and their promoters are well characterized. We provide evidence for expression of three additional IE genes of BoHV-1 i.e. UL21, UL33 and UL34. These genes are expressed in the presence of cycloheximide (CH) at the same time as known IE genes. Surprisingly, the promoters of newly identified IE genes (UL21, UL33, UL34) lack the OCT-1 binding site, a considered site of transactivation of the BoHV-1 IE genes. The other difference in the promoters of the newly identified IE genes is the presence of TATA box at near optimal site. However, all the IE genes have similar spatial placements of C/EBPα, DPE and INR elements.
Collapse
|
42
|
Abstract
ZmbZIP25 (Zea mays bZIP (basic leucine zipper) transcription factor 25) is a function-unknown protein that belongs to the D group of the bZIP transcription factor family. RNA-seq data showed that the expression of ZmbZIP25 was tissue-specific in maize silks, and this specificity was confirmed by RT-PCR (reverse transcription-polymerase chain reaction). In situ RNA hybridization showed that ZmbZIP25 was expressed exclusively in the xylem of maize silks. A 5' RACE (rapid amplification of cDNA ends) assay identified an adenine residue as the transcription start site of the ZmbZIP25 gene. To characterize this silk-specific promoter, we isolated and analyzed a 2450 bp (from -2083 to +367) and a 2600 bp sequence of ZmbZIP25 (from -2083 to +517, the transcription start site was denoted +1). Stable expression assays in Arabidopsis showed that the expression of the reporter gene GUS driven by the 2450 bp ZmbZIP25 5'-flanking fragment occurred exclusively in the papillae of Arabidopsis stigmas. Furthermore, transient expression assays in maize indicated that GUS and GFP expression driven by the 2450 bp ZmbZIP25 5'-flanking sequences occurred only in maize silks and not in other tissues. However, no GUS or GFP expression was driven by the 2600 bp ZmbZIP25 5'-flanking sequences in either stable or transient expression assays. A series of deletion analyses of the 2450 bp ZmbZIP25 5'-flanking sequence was performed in transgenic Arabidopsis plants, and probable elements prediction analysis revealed the possible presence of negative regulatory elements within the 161 bp region from -1117 to -957 that were responsible for the specificity of the ZmbZIP25 5'-flanking sequence.
Collapse
|
43
|
Expression of steroidogenic enzymes and metabolism of steroids in COS-7 cells known as non-steroidogenic cells. Sci Rep 2018; 8:2167. [PMID: 29391479 PMCID: PMC5794755 DOI: 10.1038/s41598-018-20226-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 01/15/2018] [Indexed: 12/25/2022] Open
Abstract
The COS-7 (CV-1 in Origin with SV40 genes) cells are known as non-steroidogenic cells because they are derived from kidney cells and the kidney is defined as a non-steroidogenic organ. Therefore, COS-7 cells are used for transfection experiments to analyze the actions of functional molecules including steroids. However, a preliminary study suggested that COS-7 cells metabolize [3H]testosterone to [3H]androstenedione. These results suggest that COS-7 cells are able to metabolize steroids. Therefore, the present study investigated the expression of steroidogenic enzymes and the metabolism of steroids in COS-7 cells. RT-PCR analyses demonstrated the expressions of several kinds of steroidogenic enzymes, such as cytochrome P450 side-chain cleavage enzyme, 3β-hydroxysteroid dehydrogenase/Δ5-Δ4 isomerase, cytochrome P450 7α-hydroxylase, cytochrome P450 17α-hydroxylase/17,20-lyase, 17β-hydroxysteroid dehydrogenase, 5α-reductase, cytochrome P450 21-hydroxylase, cytochrome P450 11β-hydroxylase, and cytochrome P450 aromatase in COS-7 cells. In addition, steroidogenic enzymes 3β-HSD, P4507α, 5α-reductase, P450c17, P450c21, P450c11β, and 17β-HSD actively metabolized various steroids in cultured COS-7 cells. Finally, we demonstrated that 17β-HSD activity toward androstenedione formation was greater than other steroidogenic enzyme activities. Our results provide new evidence that COS-7 cells express a series of steroidogenic enzyme mRNAs and actively metabolize a variety of steroids.
Collapse
|
44
|
Rizeq B, Zakaria Z, Ouhtit A. Towards understanding the mechanisms of actions of carcinoembryonic antigen-related cell adhesion molecule 6 in cancer progression. Cancer Sci 2018; 109:33-42. [PMID: 29110374 PMCID: PMC5765285 DOI: 10.1111/cas.13437] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 10/31/2017] [Accepted: 11/01/2017] [Indexed: 12/21/2022] Open
Abstract
Human carcinoembryonic antigen (CEA) is the prototypic member of a family of highly related cell surface glycoproteins that includes carcinoembryonic antigen‐related cell adhesion molecule 6 (CEACAM6) and others. CEACAM6 (formerly NCA), which belongs to the immunoglobulin superfamily, is a cell adhesion protein of the CEA family. It is normally expressed on the epithelial surfaces and on the surface of myeloid cells (CD66c). CEACAM6 is a multi‐functional glycoprotein that mediates homotypic binding with other CEA family members and heterotypic binding with integrin receptors. It functions by organizing tissue architecture and regulating different signal transduction, while aberrant expression leads to the development of human malignancies. It was first discovered in proliferating cells of adenomas and hyperplastic polyps in comparison to benign colonic tissue when overexpressed on the surface of various cell types in model systems. CEACAM6 functions as a pan‐inhibitor of cell differentiation and cell polarization, and it also causes distortion of tissue architecture. Moreover, overexpression of CEACAM6 modulates cancer progression through aberrant cell differentiation, anti‐apoptosis, cell growth and resistance to therapeutic agents. In addition, CEACAM6 overexpression in multiple malignancies promotes cell invasion and metastasis, thereby representing an acquired advantage of tumor cells directly responsible for an invasive phenotype. This review focuses on the findings supporting the mechanisms of actions linking the oncogenic potential of CEACAM6 to the onset of cancer progression and pathogenesis, especially in breast cancer, and to validating CEACAM6 as a target to pave the way towards the design of efficient therapeutic strategies against breast cancer.
Collapse
Affiliation(s)
- Balsam Rizeq
- Department of Biological and Environmental Sciences, College of Arts and Science, Qatar University, Doha, Qatar
| | - Zain Zakaria
- Department of Biological and Environmental Sciences, College of Arts and Science, Qatar University, Doha, Qatar
| | - Allal Ouhtit
- Department of Biological and Environmental Sciences, College of Arts and Science, Qatar University, Doha, Qatar
| |
Collapse
|
45
|
Russo M, Natoli G, Ghisletti S. Housekeeping and tissue-specific cis-regulatory elements: Recipes for specificity and recipes for activity. Transcription 2017; 9:177-181. [PMID: 28992423 DOI: 10.1080/21541264.2017.1378158] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Cell type-specific and housekeeping enhancers and promoters collectively control the transcriptional output of mammalian cells. Recent data clarify how DNA sequence features on the one hand control functional coupling of promoters with selected enhancers, and on the other impart high level of activity to a broad range of regulatory elements.
Collapse
Affiliation(s)
- Marta Russo
- a Department of Biomedical Sciences , Humanitas University (Hunimed) , Rozzano , Milan , Italy
| | - Gioacchino Natoli
- a Department of Biomedical Sciences , Humanitas University (Hunimed) , Rozzano , Milan , Italy
| | - Serena Ghisletti
- b Humanitas Clinical and Research Center , Rozzano , Milan , Italy
| |
Collapse
|
46
|
Abstract
This review by Vo ngoc et al. expands the view of the RNA polymerase II core promoter, which is comprised of classical DNA sequence motifs, sequence-specific DNA-binding transcription factors, chromatin signals, and DNA structure. The signals that direct the initiation of transcription ultimately converge at the core promoter, which is the gateway to transcription. Here we provide an overview of the RNA polymerase II core promoter in bilateria (bilaterally symmetric animals). The core promoter is diverse in terms of its composition and function yet is also punctilious, as it acts with strict rules and precision. We additionally describe an expanded view of the core promoter that comprises the classical DNA sequence motifs, sequence-specific DNA-binding transcription factors, chromatin signals, and DNA structure. This model may eventually lead to a more unified conceptual understanding of the core promoter.
Collapse
Affiliation(s)
- Long Vo Ngoc
- Section of Molecular Biology, University of California at San Diego, La Jolla, California 92093, USA
| | - Yuan-Liang Wang
- Section of Molecular Biology, University of California at San Diego, La Jolla, California 92093, USA
| | - George A Kassavetis
- Section of Molecular Biology, University of California at San Diego, La Jolla, California 92093, USA
| | - James T Kadonaga
- Section of Molecular Biology, University of California at San Diego, La Jolla, California 92093, USA
| |
Collapse
|
47
|
Barnes SK, Eiby YA, Lee S, Lingwood BE, Dawson PA. Structure, organization and tissue expression of the pig SLC13A1 and SLC13A4 sulfate transporter genes. Biochem Biophys Rep 2017; 10:215-223. [PMID: 28955749 PMCID: PMC5614667 DOI: 10.1016/j.bbrep.2017.04.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 02/27/2017] [Accepted: 04/12/2017] [Indexed: 02/04/2023] Open
Abstract
Sulfate is an obligate nutrient for fetal growth and development. In mice, the renal Slc13a1 sulfate transporter maintains high maternal circulating levels of sulfate in pregnancy, and the placental Slc13a4 sulfate transporter mediates sulfate supply to the fetus. Both of these genes have been linked to severe embryonal defects and fetal loss in mice. However, the clinical significance of SLC13A1 and SLC13A4 in human gestation is unknown. One approach towards understanding the potential involvement of these genes in human fetal pathologies is to use an animal model, such as the pig, which mimics the developmental trajectory of the human fetus more closely than the previously studied mouse models. In this study, we determined the tissue distribution of pig SLC13A1 and SLC13A4 mRNA, and compared the gene, cDNA and protein sequences of the pig, human and mouse homologues. Pig SLC13A1 mRNA was expressed in the ileum and kidney, whereas pig SLC13A4 mRNA was expressed in the placenta, choroid plexus and eye, which is similar to the tissue distribution in human and mouse. The pig SLC13A1 gene contains 15 exons spread over 76 kb on chromosome 8, and encodes a protein of 594 amino acids that shares 90% and 85% identity with the human and mouse homologues, respectively. The pig SLC13A4 gene is located approximately 11 Mb from SLC13A1 on chromosome 8, and contains 16 exons spanning approximately 70 kb. The pig SLC13A4 protein contains 626 amino acids that share 91% and 90% identity with human and mouse homologues, respectively. The 5’-flanking region of SLC13A1 contains several putative transcription factor binding sites, including GATA-1, GATA-3, Oct1 and TATA-box consensus sequences, which are conserved in the homologous human and mouse sequences. The 5’-flanking sequence of SLC13A4 contains multiple putative transcription factor consensus sites, including GATA-1, TATA-box and Vitamin D responsive elements. This is the first report to define the tissue distribution of pig SLC13A1 and SLC13A4 mRNAs, and compare the gene, cDNA, 5’-flanking region and protein sequences to human and mouse. Pig SLC13A1 and SLC13A4 are highly conserved with human and mouse homologues. Pig SLC13A1 and SLC13A4 proteins share high identity with human and mouse sequences. Tissue distribution of pig SLC13A1 and SLC26A1 mRNA is similar to human and mouse.
Collapse
Affiliation(s)
- Samuel K Barnes
- Mater Research Institute, The University of Queensland, Woolloongabba, Queensland, Australia
| | - Yvonne A Eiby
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, Queensland, Australia
| | - Soohyun Lee
- Mater Research Institute, The University of Queensland, Woolloongabba, Queensland, Australia
| | - Barbara E Lingwood
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, Queensland, Australia
| | - Paul A Dawson
- Mater Research Institute, The University of Queensland, Woolloongabba, Queensland, Australia
| |
Collapse
|
48
|
Curina A, Termanini A, Barozzi I, Prosperini E, Simonatto M, Polletti S, Silvola A, Soldi M, Austenaa L, Bonaldi T, Ghisletti S, Natoli G. High constitutive activity of a broad panel of housekeeping and tissue-specific cis-regulatory elements depends on a subset of ETS proteins. Genes Dev 2017; 31:399-412. [PMID: 28275002 PMCID: PMC5358759 DOI: 10.1101/gad.293134.116] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 02/03/2017] [Indexed: 11/24/2022]
Abstract
Here, Curina et al. found that a subgroup of ETS family transcription factors (the ELF proteins) shows a strong bias in its genomic distribution by binding in very close proximity (<60 nt) to the transcription start sites of housekeeping genes. They show that a limited number of highly active transcription factors can equip cis-regulatory elements with disparate functional roles and cell type specificity with the ability to efficiently promote transcription. Enhancers and promoters that control the transcriptional output of terminally differentiated cells include cell type-specific and broadly active housekeeping elements. Whether the high constitutive activity of these two groups of cis-regulatory elements relies on entirely distinct or instead also on shared regulators is unknown. By dissecting the cis-regulatory repertoire of macrophages, we found that the ELF subfamily of ETS proteins selectively bound within 60 base pairs (bp) from the transcription start sites of highly active housekeeping genes. ELFs also bound constitutively active, but not poised, macrophage-specific enhancers and promoters. The role of ELFs in promoting high-level constitutive transcription was suggested by multiple evidence: ELF sites enabled robust transcriptional activation by endogenous and minimal synthetic promoters, ELF recruitment was stabilized by the transcriptional machinery, and ELF proteins mediated recruitment of transcriptional and chromatin regulators to core promoters. These data suggest that the co-optation of a limited number of highly active transcription factors represents a broadly adopted strategy to equip both cell type-specific and housekeeping cis-regulatory elements with the ability to efficiently promote transcription.
Collapse
Affiliation(s)
- Alessia Curina
- Department of Experimental Oncology, European Institute of Oncology (IEO), 20139 Milan, Italy
| | | | - Iros Barozzi
- Department of Experimental Oncology, European Institute of Oncology (IEO), 20139 Milan, Italy
| | - Elena Prosperini
- Department of Experimental Oncology, European Institute of Oncology (IEO), 20139 Milan, Italy
| | - Marta Simonatto
- Department of Experimental Oncology, European Institute of Oncology (IEO), 20139 Milan, Italy
| | - Sara Polletti
- Department of Experimental Oncology, European Institute of Oncology (IEO), 20139 Milan, Italy
| | - Alessio Silvola
- Department of Experimental Oncology, European Institute of Oncology (IEO), 20139 Milan, Italy
| | - Monica Soldi
- Department of Experimental Oncology, European Institute of Oncology (IEO), 20139 Milan, Italy
| | - Liv Austenaa
- Department of Experimental Oncology, European Institute of Oncology (IEO), 20139 Milan, Italy
| | - Tiziana Bonaldi
- Department of Experimental Oncology, European Institute of Oncology (IEO), 20139 Milan, Italy
| | - Serena Ghisletti
- Humanitas Clinical and Research Center, 20089 Rozzano-Milan, Italy
| | - Gioacchino Natoli
- Department of Experimental Oncology, European Institute of Oncology (IEO), 20139 Milan, Italy.,Humanitas University, 20089 Rozzano-Milan, Italy
| |
Collapse
|
49
|
The human initiator is a distinct and abundant element that is precisely positioned in focused core promoters. Genes Dev 2017; 31:6-11. [PMID: 28108474 PMCID: PMC5287114 DOI: 10.1101/gad.293837.116] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 12/19/2016] [Indexed: 12/19/2022]
Abstract
Vo ngoc et al. show that the human initiator has the consensus of BBCA+1BW at focused promoters in which transcription initiates at a single site or a narrow cluster of sites. DNA sequence signals in the core promoter, such as the initiator (Inr), direct transcription initiation by RNA polymerase II. Here we show that the human Inr has the consensus of BBCA+1BW at focused promoters in which transcription initiates at a single site or a narrow cluster of sites. The analysis of 7678 focused transcription start sites revealed 40% with a perfect match to the Inr and 16% with a single mismatch outside of the CA+1 core. TATA-like sequences are underrepresented in Inr promoters. This consensus is a key component of the DNA sequence rules that specify transcription initiation in humans.
Collapse
|
50
|
Lai WKM, Pugh BF. Genome-wide uniformity of human 'open' pre-initiation complexes. Genome Res 2016; 27:15-26. [PMID: 27927716 PMCID: PMC5204339 DOI: 10.1101/gr.210955.116] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 11/03/2016] [Indexed: 01/05/2023]
Abstract
Transcription of protein-coding and noncoding DNA occurs pervasively throughout the mammalian genome. Their sites of initiation are generally inferred from transcript 5' ends and are thought to be either locally dispersed or focused. How these two modes of initiation relate is unclear. Here, we apply permanganate treatment and chromatin immunoprecipitation (PIP-seq) of initiation factors to identify the precise location of melted DNA separately associated with the preinitiation complex (PIC) and the adjacent paused complex (PC). This approach revealed the two known modes of transcription initiation. However, in contrast to prevailing views, they co-occurred within the same promoter region: initiation originating from a focused PIC, and broad nucleosome-linked initiation. PIP-seq allowed transcriptional orientation of Pol II to be determined, which may be useful near promoters where sufficient sense/anti-sense transcript mapping information is lacking. PIP-seq detected divergently oriented Pol II at both coding and noncoding promoters, as well as at enhancers. Their occupancy levels were not necessarily coupled in the two orientations. DNA sequence and shape analysis of initiation complex sites suggest that both sequence and shape contribute to specificity, but in a context-restricted manner. That is, initiation sites have the locally "best" initiator (INR) sequence and/or shape. These findings reveal a common core to pervasive Pol II initiation throughout the human genome.
Collapse
Affiliation(s)
- William K M Lai
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - B Franklin Pugh
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|