1
|
Fallacaro S, Mukherjee A, Turner MA, Garcia HG, Mir M. Transcription factor hubs exhibit gene-specific properties that tune expression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.07.647578. [PMID: 40291650 PMCID: PMC12026892 DOI: 10.1101/2025.04.07.647578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
The spatial and temporal control of gene expression relies on transcription factors binding to and occupying their target sites. Transcription factor hubs-localized, high-concentration microenvironments-promote transcription by facilitating binding and recruitment of transcriptional machinery and co-factors. Hubs are often thought to have emergent nucleus-wide properties depending on transcription factor nuclear concentrations and intrinsic, protein sequence-dependent properties. This global model does not account for gene-specific hub regulation. Using high-resolution lattice light-sheet microscopy in Drosophila embryos, we examined hubs formed by the morphogen transcription factor, Dorsal, at reporter genes with distinct enhancer compositions. We found that snail recruits long-lived, high-intensity hubs; sog exhibits shorter-lived, lower-intensity hubs; and hunchback , lacking Dorsal binding sites, shows only transient hub interactions. Hub intensity and interaction duration correlate with burst amplitude, RNAPII loading rate, and transcriptional output. These findings challenge the global view of hub formation and support a model where hub properties are locally tuned in a gene-specific manner to regulate transcriptional kinetics.
Collapse
|
2
|
Waite JB, Boytz R, Traeger AR, Lind TM, Lumbao-Conradson K, Torigoe SE. A suboptimal OCT4-SOX2 binding site facilitates the naïve-state specific function of a Klf4 enhancer. PLoS One 2024; 19:e0311120. [PMID: 39348365 PMCID: PMC11441684 DOI: 10.1371/journal.pone.0311120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 09/12/2024] [Indexed: 10/02/2024] Open
Abstract
Enhancers have critical functions in the precise, spatiotemporal control of transcription during development. It is thought that enhancer grammar, or the characteristics and arrangements of transcription factor binding sites, underlie the specific functions of developmental enhancers. In this study, we sought to identify grammatical constraints that direct enhancer activity in the naïve state of pluripotency, focusing on the enhancers for the naïve-state specific gene, Klf4. Using a combination of biochemical tests, reporter assays, and endogenous mutations in mouse embryonic stem cells, we have studied the binding sites for the transcription factors OCT4 and SOX2. We have found that the three Klf4 enhancers contain suboptimal OCT4-SOX2 composite binding sites. Substitution with a high-affinity OCT4-SOX2 binding site in Klf4 enhancer E2 rescued enhancer function and Klf4 expression upon loss of the ESRRB and STAT3 binding sites. We also observed that the low-affinity of the OCT4-SOX2 binding site is crucial to drive the naïve-state specific activities of Klf4 enhancer E2. Altogether, our work suggests that the affinity of OCT4-SOX2 binding sites could facilitate enhancer functions in specific states of pluripotency.
Collapse
Affiliation(s)
- Jack B Waite
- Biochemistry & Molecular Biology Program, Lewis & Clark College, Portland, Oregon, United States of America
| | - RuthMabel Boytz
- Biology Department, Lewis & Clark College, Portland, Oregon, United States of America
| | - Alexis R Traeger
- Biochemistry & Molecular Biology Program, Lewis & Clark College, Portland, Oregon, United States of America
| | - Torrey M Lind
- Biochemistry & Molecular Biology Program, Lewis & Clark College, Portland, Oregon, United States of America
| | - Koya Lumbao-Conradson
- Biochemistry & Molecular Biology Program, Lewis & Clark College, Portland, Oregon, United States of America
| | - Sharon E Torigoe
- Biochemistry & Molecular Biology Program, Lewis & Clark College, Portland, Oregon, United States of America
- Biology Department, Lewis & Clark College, Portland, Oregon, United States of America
| |
Collapse
|
3
|
Makhijani K, Mar J, Gaziova I, Bhat KM. Posttranscriptional regulation of the T-box gene midline via the 3'UTR in Drosophila is complex and cell- and tissue-dependent. Genetics 2024; 227:iyae087. [PMID: 38805187 DOI: 10.1093/genetics/iyae087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/29/2024] Open
Abstract
The T-box (Tbx) proteins have a 180-230 amino acid DNA-binding domain, first reported in the Brachyury (T) protein. They are highly conserved among metazoans. They regulate a multitude of cellular functions in development and disease. Here, we report posttranscriptional and translational regulation of midline (mid), a Tbx member in Drosophila. We found that the 3'UTR of mid has mRNA degradation elements and AT-rich sequences. In Schneider S2 cells, mid-mRNA could be detected only when the transgene was without the 3'UTR. Similarly, the 3'UTR linked to the Renilla luciferase reporter significantly reduced the activity of the Luciferase, whereas deleting only the degradation elements from the 3'UTR resulted in reduced activity, but not as much. Overexpression of mid in MP2, an embryonic neuroblast, showed no significant difference in the levels of mid-mRNA between the 2 transgenes, with and without the 3'UTR, indicating the absence of posttranscriptional regulation of mid in MP2. Moreover, while elevated mid-RNA was detected in MP2 in nearly all hemisegments, only a fifth of those hemisegments had elevated levels of the protein. Overexpression of the 2 transgenes resulted in MP2-lineage defects at about the same frequency. These results indicate a translational/posttranslational regulation of mid in MP2. The regulation of ectopically expressed mid in the wing imaginal disc was complex. In the wing disc, where mid is not expressed, the ectopic expression of the transgene lacking the 3'UTR had a higher level of mid-RNA and the protein had a stronger phenotypic effect. These results indicate that the 3'UTR can subject mid-mRNA to degradation in a cell- and tissue-specific manner. We further report a balancer-mediated transgenerational modifier effect on the expression and gain of function effects of the 2 transgenes.
Collapse
Affiliation(s)
- Kalpana Makhijani
- Department of Molecular Medicine, University of South Florida, Tampa, FL 33613, USA
| | - Jordan Mar
- Department of Molecular Medicine, University of South Florida, Tampa, FL 33613, USA
| | - Ivana Gaziova
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch School of Medicine, Galveston, TX 77555, USA
| | - Krishna Moorthi Bhat
- Department of Molecular Medicine, University of South Florida, Tampa, FL 33613, USA
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch School of Medicine, Galveston, TX 77555, USA
- Department of Biomedical Engineering, Heersink School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35233, USA
- Department of Neurology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| |
Collapse
|
4
|
Hunt G, Vaid R, Pirogov S, Pfab A, Ziegenhain C, Sandberg R, Reimegård J, Mannervik M. Tissue-specific RNA Polymerase II promoter-proximal pause release and burst kinetics in a Drosophila embryonic patterning network. Genome Biol 2024; 25:2. [PMID: 38166964 PMCID: PMC10763363 DOI: 10.1186/s13059-023-03135-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 11/30/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Formation of tissue-specific transcriptional programs underlies multicellular development, including dorsoventral (DV) patterning of the Drosophila embryo. This involves interactions between transcriptional enhancers and promoters in a chromatin context, but how the chromatin landscape influences transcription is not fully understood. RESULTS Here we comprehensively resolve differential transcriptional and chromatin states during Drosophila DV patterning. We find that RNA Polymerase II pausing is established at DV promoters prior to zygotic genome activation (ZGA), that pausing persists irrespective of cell fate, but that release into productive elongation is tightly regulated and accompanied by tissue-specific P-TEFb recruitment. DV enhancers acquire distinct tissue-specific chromatin states through CBP-mediated histone acetylation that predict the transcriptional output of target genes, whereas promoter states are more tissue-invariant. Transcriptome-wide inference of burst kinetics in different cell types revealed that while DV genes are generally characterized by a high burst size, either burst size or frequency can differ between tissues. CONCLUSIONS The data suggest that pausing is established by pioneer transcription factors prior to ZGA and that release from pausing is imparted by enhancer chromatin state to regulate bursting in a tissue-specific manner in the early embryo. Our results uncover how developmental patterning is orchestrated by tissue-specific bursts of transcription from Pol II primed promoters in response to enhancer regulatory cues.
Collapse
Affiliation(s)
- George Hunt
- Department Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Roshan Vaid
- Department Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Sergei Pirogov
- Department Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Alexander Pfab
- Department Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | | | - Rickard Sandberg
- Department Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Johan Reimegård
- Department Cell and Molecular Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Mattias Mannervik
- Department Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
5
|
Burda I, Martin AC, Roeder AHK, Collins MA. The dynamics and biophysics of shape formation: Common themes in plant and animal morphogenesis. Dev Cell 2023; 58:2850-2866. [PMID: 38113851 PMCID: PMC10752614 DOI: 10.1016/j.devcel.2023.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 09/19/2023] [Accepted: 11/10/2023] [Indexed: 12/21/2023]
Abstract
The emergence of tissue form in multicellular organisms results from the complex interplay between genetics and physics. In both plants and animals, cells must act in concert to pattern their behaviors. Our understanding of the factors sculpting multicellular form has increased dramatically in the past few decades. From this work, common themes have emerged that connect plant and animal morphogenesis-an exciting connection that solidifies our understanding of the developmental basis of multicellular life. In this review, we will discuss the themes and the underlying principles that connect plant and animal morphogenesis, including the coordination of gene expression, signaling, growth, contraction, and mechanical and geometric feedback.
Collapse
Affiliation(s)
- Isabella Burda
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA; Genetic Genomics and Development Program, Cornell University, Ithaca, NY 14853, USA
| | - Adam C Martin
- Biology Department, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Adrienne H K Roeder
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA; Genetic Genomics and Development Program, Cornell University, Ithaca, NY 14853, USA; School of Integrative Plant Sciences, Section of Plant Biology, Cornell University, Ithaca, NY 14850, USA.
| | - Mary Ann Collins
- Biology Department, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
6
|
Zou J, Anai S, Ota S, Ishitani S, Oginuma M, Ishitani T. Determining zebrafish dorsal organizer size by a negative feedback loop between canonical/non-canonical Wnts and Tlr4/NFκB. Nat Commun 2023; 14:7194. [PMID: 37938219 PMCID: PMC10632484 DOI: 10.1038/s41467-023-42963-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 10/26/2023] [Indexed: 11/09/2023] Open
Abstract
In vertebrate embryos, the canonical Wnt ligand primes the formation of dorsal organizers that govern dorsal-ventral patterns by secreting BMP antagonists. In contrast, in Drosophila embryos, Toll-like receptor (Tlr)-mediated NFκB activation initiates dorsal-ventral patterning, wherein Wnt-mediated negative feedback regulation of Tlr/NFκB generates a BMP antagonist-secreting signalling centre to control the dorsal-ventral pattern. Although both Wnt and BMP antagonist are conserved among species, the involvement of Tlr/NFκB and feedback regulation in vertebrate organizer formation remains unclear. By imaging and genetic modification, we reveal that a negative feedback loop between canonical and non-canonical Wnts and Tlr4/NFκB determines the size of zebrafish organizer, and that Tlr/NFκB and Wnts switch initial cue and feedback mediator roles between Drosophila and zebrafish. Here, we show that canonical Wnt signalling stimulates the expression of the non-canonical Wnt5b ligand, activating the Tlr4 receptor to stimulate NFκB-mediated transcription of the Wnt antagonist frzb, restricting Wnt-dependent dorsal organizer formation.
Collapse
Affiliation(s)
- Juqi Zou
- Department of Homeostatic Regulation, Division of Cellular and Molecular Biology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Satoshi Anai
- Yuuai Medical Center, Tomigusuku, Okinawa, 901-0224, Japan
| | - Satoshi Ota
- Genome Science Division, Research Center for Advanced Science and Technology, The University of Tokyo, Komaba 4-6-1, Meguro-ku, Tokyo, 153-8904, Japan
| | - Shizuka Ishitani
- Department of Homeostatic Regulation, Division of Cellular and Molecular Biology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Masayuki Oginuma
- Department of Homeostatic Regulation, Division of Cellular and Molecular Biology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Tohru Ishitani
- Department of Homeostatic Regulation, Division of Cellular and Molecular Biology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan.
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
7
|
Abstract
Toll signaling plays a crucial role in pathogen defense throughout the animal kingdom. It was discovered, however, for its function in dorsoventral (DV) axis formation in Drosophila. In all other insects studied so far, but not outside the insects, Toll is also required for DV patterning. However, in insects more distantly related to Drosophila, Toll's patterning role is frequently reduced and substituted by an expanded influence of BMP signaling, the pathway implicated in DV axis formation in all major metazoan lineages. This suggests that Toll was integrated into an ancestral BMP-based patterning system at the base of the insects or during insect evolution. The observation that Toll signaling has an immune function in the extraembryonic serosa, an early differentiating tissue of most insect embryos, suggests a scenario of how Toll was co-opted from an ancestral immune function for its new role in axis formation.
Collapse
Affiliation(s)
- Siegfried Roth
- Institute of Zoology-Developmental Biology, Biocenter, University of Cologne, Cologne, Germany;
| |
Collapse
|
8
|
Cammarata-Mouchtouris A, Acker A, Goto A, Chen D, Matt N, Leclerc V. Dynamic Regulation of NF-κB Response in Innate Immunity: The Case of the IMD Pathway in Drosophila. Biomedicines 2022; 10:2304. [PMID: 36140409 PMCID: PMC9496462 DOI: 10.3390/biomedicines10092304] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/01/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Metazoans have developed strategies to protect themselves from pathogenic attack. These preserved mechanisms constitute the immune system, composed of innate and adaptive responses. Among the two kinds, the innate immune system involves the activation of a fast response. NF-κB signaling pathways are activated during infections and lead to the expression of timely-controlled immune response genes. However, activation of NF-κB pathways can be deleterious when uncontrolled. Their regulation is necessary to prevent the development of inflammatory diseases or cancers. The similarity of the NF-κB pathways mediating immune mechanisms in insects and mammals makes Drosophila melanogaster a suitable model for studying the innate immune response and learning general mechanisms that are also relevant for humans. In this review, we summarize what is known about the dynamic regulation of the central NF-κB-pathways and go into detail on the molecular level of the IMD pathway. We report on the role of the nuclear protein Akirin in the regulation of the NF-κB Relish immune response. The use of the Drosophila model allows the understanding of the fine-tuned regulation of this central NF-κB pathway.
Collapse
Affiliation(s)
| | - Adrian Acker
- Institut de Biologie Moléculaire et Cellulaire (IBMC), UPR9022, CNRS, Université de Strasbourg, 67084 Strasbourg, France
| | - Akira Goto
- Institut de Biologie Moléculaire et Cellulaire (IBMC), UPR9022, CNRS, Université de Strasbourg, 67084 Strasbourg, France
| | - Di Chen
- Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 511436, China
| | - Nicolas Matt
- Institut de Biologie Moléculaire et Cellulaire (IBMC), UPR9022, CNRS, Université de Strasbourg, 67084 Strasbourg, France
| | - Vincent Leclerc
- Institut de Biologie Moléculaire et Cellulaire (IBMC), UPR9022, CNRS, Université de Strasbourg, 67084 Strasbourg, France
| |
Collapse
|
9
|
Hegde S, Sreejan A, Gadgil CJ, Ratnaparkhi GS. SUMOylation of Dorsal attenuates Toll/NF-κB signaling. Genetics 2022; 221:iyac081. [PMID: 35567478 PMCID: PMC9252280 DOI: 10.1093/genetics/iyac081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 05/03/2022] [Indexed: 11/29/2022] Open
Abstract
In Drosophila, Toll/NF-κB signaling plays key roles in both animal development and in host defense. The activation, intensity, and kinetics of Toll signaling are regulated by posttranslational modifications such as phosphorylation, SUMOylation, or ubiquitination that target multiple proteins in the Toll/NF-κB cascade. Here, we have generated a CRISPR-Cas9 edited Dorsal (DL) variant that is SUMO conjugation resistant. Intriguingly, embryos laid by dlSCR mothers overcome dl haploinsufficiency and complete the developmental program. This ability appears to be a result of higher transcriptional activation by DLSCR. In contrast, SUMOylation dampens DL transcriptional activation, ultimately conferring robustness to the dorso-ventral program. In the larval immune response, dlSCR animals show an increase in crystal cell numbers, stronger activation of humoral defense genes, and high cactus levels. A mathematical model that evaluates the contribution of the small fraction of SUMOylated DL (1-5%) suggests that it acts to block transcriptional activation, which is driven primarily by DL that is not SUMO conjugated. Our findings define SUMO conjugation as an important regulator of the Toll signaling cascade, in both development and host defense. Our results broadly suggest that SUMO attenuates DL at the level of transcriptional activation. Furthermore, we hypothesize that SUMO conjugation of DL may be part of a Ubc9-dependent mechanism that restrains Toll/NF-κB signaling.
Collapse
Affiliation(s)
- Sushmitha Hegde
- Biology, Indian Institute of Science Education & Research, Pune 411008, India
| | - Ashley Sreejan
- Chemical Engineering and Process Development Division, CSIR—National Chemical Laboratory, Pune 411008, India
| | - Chetan J Gadgil
- Chemical Engineering and Process Development Division, CSIR—National Chemical Laboratory, Pune 411008, India
- CSIR—Institute of Genomics and Integrative Biology, New Delhi 110020, India
| | | |
Collapse
|
10
|
Shields A, Amcheslavsky A, Brown E, Lee TV, Nie Y, Tanji T, Ip YT, Bergmann A. Toll-9 interacts with Toll-1 to mediate a feedback loop during apoptosis-induced proliferation in Drosophila. Cell Rep 2022; 39:110817. [PMID: 35584678 PMCID: PMC9211775 DOI: 10.1016/j.celrep.2022.110817] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 02/25/2022] [Accepted: 04/22/2022] [Indexed: 11/30/2022] Open
Abstract
Drosophila Toll-1 and all mammalian Toll-like receptors regulate innate immunity. However, the functions of the remaining eight Toll-related proteins in Drosophila are not fully understood. Here, we show that Drosophila Toll-9 is necessary and sufficient for a special form of compensatory proliferation after apoptotic cell loss (undead apoptosis-induced proliferation [AiP]). Mechanistically, for AiP, Toll-9 interacts with Toll-1 to activate the intracellular Toll-1 pathway for nuclear translocation of the NF-κB-like transcription factor Dorsal, which induces expression of the pro-apoptotic genes reaper and hid. This activity contributes to the feedback amplification loop that operates in undead cells. Given that Toll-9 also functions in loser cells during cell competition, we define a general role of Toll-9 in cellular stress situations leading to the expression of pro-apoptotic genes that trigger apoptosis and apoptosis-induced processes such as AiP. This work identifies conceptual similarities between cell competition and AiP.
Collapse
Affiliation(s)
- Alicia Shields
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Alla Amcheslavsky
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Elizabeth Brown
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Tom V Lee
- Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yingchao Nie
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Takahiro Tanji
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Y Tony Ip
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Andreas Bergmann
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
11
|
Reed S, Chen W, Bergstein V, He B. Toll-Dorsal signaling regulates the spatiotemporal dynamics of yolk granule tubulation during Drosophila cleavage. Dev Biol 2022; 481:64-74. [PMID: 34627795 PMCID: PMC10835099 DOI: 10.1016/j.ydbio.2021.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 09/01/2021] [Accepted: 09/21/2021] [Indexed: 11/18/2022]
Abstract
The Toll-Dorsal signaling pathway controls dorsal-ventral (DV) patterning in early Drosophila embryos, which defines specific cell fates along the DV axis and controls morphogenetic behavior of cells during gastrulation and beyond. The extent by which DV patterning information regulates subcellular organization in pre-gastrulation embryos remains unclear. We find that during Drosophila cleavage, the late endosome marker Rab7 is increasingly recruited to the yolk granules and promotes the formation of dynamic membrane tubules. The biogenesis of yolk granule tubules is positively regulated by active Rab7 and its effector complex HOPS, but negatively regulated by the Rab7 effector retromer. The occurrence of tubules is strongly biased towards the ventral side of the embryo, which we show is controlled by the Toll-Dorsal signaling pathway. Our work provides the first evidence for the formation and regulation of yolk granule tubulation in oviparous embryos and elucidates an unexpected role of Toll-Dorsal signaling in regulating this process.
Collapse
Affiliation(s)
- Samuel Reed
- Department of Biological Sciences, Dartmouth College, Hanover, NH, 03755, USA
| | - Wei Chen
- Department of Biological Sciences, Dartmouth College, Hanover, NH, 03755, USA
| | - Victoria Bergstein
- Department of Biological Sciences, Dartmouth College, Hanover, NH, 03755, USA
| | - Bing He
- Department of Biological Sciences, Dartmouth College, Hanover, NH, 03755, USA.
| |
Collapse
|
12
|
Carmon S, Jonas F, Barkai N, Schejter ED, Shilo BZ. Generation and timing of graded responses to morphogen gradients. Development 2021; 148:273784. [PMID: 34918740 PMCID: PMC8722393 DOI: 10.1242/dev.199991] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/17/2021] [Indexed: 11/20/2022]
Abstract
Morphogen gradients are known to subdivide a naive cell field into distinct zones of gene expression. Here, we examine whether morphogens can also induce a graded response within such domains. To this end, we explore the role of the Dorsal protein nuclear gradient along the dorsoventral axis in defining the graded pattern of actomyosin constriction that initiates gastrulation in early Drosophila embryos. Two complementary mechanisms for graded accumulation of mRNAs of crucial zygotic Dorsal target genes were identified. First, activation of target-gene expression expands over time from the ventral-most region of high nuclear Dorsal to lateral regions, where the levels are lower, as a result of a Dorsal-dependent activation probability of transcription sites. Thus, sites that are activated earlier will exhibit more mRNA accumulation. Second, once the sites are activated, the rate of RNA Polymerase II loading is also dependent on Dorsal levels. Morphological restrictions require that translation of the graded mRNA be delayed until completion of embryonic cell formation. Such timing is achieved by large introns, which provide a delay in production of the mature mRNAs. Spatio-temporal regulation of key zygotic genes therefore shapes the pattern of gastrulation.
Collapse
Affiliation(s)
- Shari Carmon
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Felix Jonas
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Naama Barkai
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Eyal D Schejter
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ben-Zion Shilo
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
13
|
Nüsslein-Volhard C. The Toll gene in Drosophila pattern formation. Trends Genet 2021; 38:231-245. [PMID: 34649739 DOI: 10.1016/j.tig.2021.09.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 09/17/2021] [Indexed: 12/13/2022]
Abstract
Toll-like receptors (TLRs) play a crucial role in innate immunity in animals. Their discovery was rewarded a Nobel Prize to Jules Hoffmann and Bruce Beutler in 2011. The name Toll stems from a Drosophila mutant that was isolated in 1980 by Eric Wieschaus and myself as a byproduct of our screen for segmentation genes in Drosophila for which we received the Nobel Prize in 1995. It was named Toll due to its amazing dominant phenotype displayed in embryos from Toll/+ females. The analysis of Toll by Kathryn Anderson in my laboratory in Tübingen and subsequently in her own laboratory in Berkeley singled out Toll as a central component of the complex pathway regulating dorsoventral polarity and pattern of the Drosophila embryo. The Drosophila Toll story provides a striking example for the value of curiosity-driven research in providing fundamental insights that later gain strong impact on applied medical research.
Collapse
Affiliation(s)
- Christiane Nüsslein-Volhard
- Max-Planck-Institute for Developmental Biology, Tübingen, BW 72076, Germany; Dedicated to the memory of Kathryn Anderson (1952-2020).
| |
Collapse
|
14
|
Rosendo Machado S, van der Most T, Miesen P. Genetic determinants of antiviral immunity in dipteran insects - Compiling the experimental evidence. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 119:104010. [PMID: 33476667 DOI: 10.1016/j.dci.2021.104010] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/08/2021] [Accepted: 01/09/2021] [Indexed: 06/12/2023]
Abstract
The genetic basis of antiviral immunity in dipteran insects is extensively studied in Drosophila melanogaster and advanced technologies for genetic manipulation allow a better characterization of immune responses also in non-model insect species. Especially, immunity in vector mosquitoes is recently in the spotlight, due to the medical impact that these insects have by transmitting viruses and other pathogens. Here, we review the current state of experimental evidence that supports antiviral functions for immune genes acting in different cellular pathways. We discuss the well-characterized RNA interference mechanism along with the less well-defined JAK-STAT, Toll, and IMD signaling pathways. Furthermore, we highlight the initial evidence for antiviral activity observed for the autophagy pathway, transcriptional pausing, as well as piRNA production from endogenous viral elements. We focus our review on studies from Drosophila and mosquito species from the lineages Aedes, Culex, and Anopheles, which contain major vector species responsible for virus transmission.
Collapse
Affiliation(s)
- Samara Rosendo Machado
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, the Netherlands
| | - Tom van der Most
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, the Netherlands
| | - Pascal Miesen
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, the Netherlands.
| |
Collapse
|
15
|
Denk-Lobnig M, Totz JF, Heer NC, Dunkel J, Martin AC. Combinatorial patterns of graded RhoA activation and uniform F-actin depletion promote tissue curvature. Development 2021; 148:dev199232. [PMID: 34124762 PMCID: PMC8254875 DOI: 10.1242/dev.199232] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 05/04/2021] [Indexed: 01/03/2023]
Abstract
During development, gene expression regulates cell mechanics and shape to sculpt tissues. Epithelial folding proceeds through distinct cell shape changes that occur simultaneously in different regions of a tissue. Here, using quantitative imaging in Drosophila melanogaster, we investigate how patterned cell shape changes promote tissue bending during early embryogenesis. We find that the transcription factors Twist and Snail combinatorially regulate a multicellular pattern of lateral F-actin density that differs from the previously described Myosin-2 gradient. This F-actin pattern correlates with whether cells apically constrict, stretch or maintain their shape. We show that the Myosin-2 gradient and F-actin depletion do not depend on force transmission, suggesting that transcriptional activity is required to create these patterns. The Myosin-2 gradient width results from a gradient in RhoA activation that is refined through the balance between RhoGEF2 and the RhoGAP C-GAP. Our experimental results and simulations of a 3D elastic shell model show that tuning gradient width regulates tissue curvature.
Collapse
Affiliation(s)
- Marlis Denk-Lobnig
- Biology Department, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA
| | - Jan F. Totz
- Mathematics Department, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Natalie C. Heer
- Biology Department, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA
| | - Jörn Dunkel
- Mathematics Department, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA
| | - Adam C. Martin
- Biology Department, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA
| |
Collapse
|
16
|
Stevens LM, Kim G, Koromila T, Steele JW, McGehee J, Stathopoulos A, Stein DS. Light-dependent N-end rule-mediated disruption of protein function in Saccharomyces cerevisiae and Drosophila melanogaster. PLoS Genet 2021; 17:e1009544. [PMID: 33999957 PMCID: PMC8158876 DOI: 10.1371/journal.pgen.1009544] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 05/27/2021] [Accepted: 04/12/2021] [Indexed: 12/12/2022] Open
Abstract
Here we describe the development and characterization of the photo-N-degron, a peptide tag that can be used in optogenetic studies of protein function in vivo. The photo-N-degron can be expressed as a genetic fusion to the amino termini of other proteins, where it undergoes a blue light-dependent conformational change that exposes a signal for the class of ubiquitin ligases, the N-recognins, which mediate the N-end rule mechanism of proteasomal degradation. We demonstrate that the photo-N-degron can be used to direct light-mediated degradation of proteins in Saccharomyces cerevisiae and Drosophila melanogaster with fine temporal control. In addition, we compare the effectiveness of the photo-N-degron with that of two other light-dependent degrons that have been developed in their abilities to mediate the loss of function of Cactus, a component of the dorsal-ventral patterning system in the Drosophila embryo. We find that like the photo-N-degron, the blue light-inducible degradation (B-LID) domain, a light-activated degron that must be placed at the carboxy terminus of targeted proteins, is also effective in eliciting light-dependent loss of Cactus function, as determined by embryonic dorsal-ventral patterning phenotypes. In contrast, another previously described photosensitive degron (psd), which also must be located at the carboxy terminus of associated proteins, has little effect on Cactus-dependent phenotypes in response to illumination of developing embryos. These and other observations indicate that care must be taken in the selection and application of light-dependent and other inducible degrons for use in studies of protein function in vivo, but importantly demonstrate that N- and C-terminal fusions to the photo-N-degron and the B-LID domain, respectively, support light-dependent degradation in vivo. Much of what we know about biological processes has come from the analysis of mutants whose loss-of-function phenotypes provide insight into their normal functions. However, for genes that are required for viability and which have multiple functions in the life of a cell or organism one can only observe mutant phenotypes produced up to the time of death. Normal functions performed in wild-type individuals later than the time of death of mutants cannot be observed. In one approach to overcoming this limitation, a class of peptide degradation signals (degrons) have been developed, which when fused to proteins-of-interest, can target those proteins for degradation in response to various stimuli (temperature, chemical agents, co-expressed proteins, or light). Here we describe a new inducible degron (the photo-N-degron or PND), which when fused to the N-terminus of a protein, can induce N-end rule-mediated degradation in response to blue-light illumination and have validated its use in both yeast and Drosophila embryos. Moreover, using the Drosophila embryonic patterning protein Cactus, we show that like the PND, the previously-described B-LID domain, but not the previously-described photosensitive degron (psd), can produce detectable light-inducible phenotypes in Drosophila embryos that are consistent with the role of Cactus in dorsal-ventral patterning.
Collapse
Affiliation(s)
- Leslie M. Stevens
- Department of Molecular Biosciences and Institute for Molecular and Cellular Biology, The University of Texas at Austin, Austin, Texas, United States of America
| | - Goheun Kim
- Department of Molecular Biosciences and Institute for Molecular and Cellular Biology, The University of Texas at Austin, Austin, Texas, United States of America
| | - Theodora Koromila
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, United States of America
| | - John W. Steele
- Department of Molecular Biosciences and Institute for Molecular and Cellular Biology, The University of Texas at Austin, Austin, Texas, United States of America
| | - James McGehee
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, United States of America
| | - Angelike Stathopoulos
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, United States of America
- * E-mail: (AS); (DSS)
| | - David S. Stein
- Department of Molecular Biosciences and Institute for Molecular and Cellular Biology, The University of Texas at Austin, Austin, Texas, United States of America
- * E-mail: (AS); (DSS)
| |
Collapse
|
17
|
Irizarry J, Stathopoulos A. Dynamic patterning by morphogens illuminated by cis-regulatory studies. Development 2021; 148:148/2/dev196113. [PMID: 33472851 DOI: 10.1242/dev.196113] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Morphogen concentration changes in space as well as over time during development. However, how these dynamics are interpreted by cells to specify fate is not well understood. Here, we focus on two morphogens: the maternal transcription factors Bicoid and Dorsal, which directly regulate target genes to pattern Drosophila embryos. The actions of these factors at enhancers has been thoroughly dissected and provides a rich platform for understanding direct input by morphogens and their changing roles over time. Importantly, Bicoid and Dorsal do not work alone; we also discuss additional inputs that work with morphogens to control spatiotemporal gene expression in embryos.
Collapse
Affiliation(s)
- Jihyun Irizarry
- California Institute of Technology, Division of Biology and Biological Engineering, 1200 East California Blvd., Pasadena, CA 91125, USA
| | - Angelike Stathopoulos
- California Institute of Technology, Division of Biology and Biological Engineering, 1200 East California Blvd., Pasadena, CA 91125, USA
| |
Collapse
|
18
|
An Epigenetic Priming Mechanism Mediated by Nutrient Sensing Regulates Transcriptional Output during C. elegans Development. Curr Biol 2020; 31:809-826.e6. [PMID: 33357451 DOI: 10.1016/j.cub.2020.11.060] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/07/2020] [Accepted: 11/23/2020] [Indexed: 11/23/2022]
Abstract
Although precise tuning of gene expression levels is critical for most developmental pathways, the mechanisms by which the transcriptional output of dosage-sensitive molecules is established or modulated by the environment remain poorly understood. Here, we provide a mechanistic framework for how the conserved transcription factor BLMP-1/Blimp1 operates as a pioneer factor to decompact chromatin near its target loci during embryogenesis (hours prior to major transcriptional activation) and, by doing so, regulates both the duration and amplitude of subsequent target gene transcription during post-embryonic development. This priming mechanism is genetically separable from the mechanisms that establish the timing of transcriptional induction and functions to canalize aspects of cell-fate specification, animal size regulation, and molting. A key feature of the BLMP-1-dependent transcriptional priming mechanism is that chromatin decompaction is initially established during embryogenesis and maintained throughout larval development by nutrient sensing. This anticipatory mechanism integrates transcriptional output with environmental conditions and is essential for resuming normal temporal patterning after animals exit nutrient-mediated developmental arrests.
Collapse
|
19
|
Martin AC. Self-organized cytoskeletal alignment during Drosophila mesoderm invagination. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190551. [PMID: 32829683 PMCID: PMC7482211 DOI: 10.1098/rstb.2019.0551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2020] [Indexed: 12/17/2022] Open
Abstract
During tissue morphogenesis, mechanical forces are propagated across tissues, resulting in tissue shape changes. These forces in turn can influence cell behaviour, leading to a feedback process that can be described as self-organizing. Here, I discuss cytoskeletal self-organization and point to evidence that suggests its role in directing force during morphogenesis. During Drosophila mesoderm invagination, the shape of the region of cells that initiates constriction creates a mechanical pattern that in turn aligns the cytoskeleton with the axis of greatest resistance to contraction. The wild-type direction of the force controls the shape and orientation of the invaginating mesoderm. Given the ability of the actomyosin cytoskeleton to self-organize, these types of feedback mechanisms are likely to play important roles in a range of different morphogenetic events. This article is part of the discussion meeting issue 'Contemporary morphogenesis'.
Collapse
Affiliation(s)
- Adam C. Martin
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| |
Collapse
|
20
|
Abstract
Key discoveries in Drosophila have shaped our understanding of cellular "enhancers." With a special focus on the fly, this chapter surveys properties of these adaptable cis-regulatory elements, whose actions are critical for the complex spatial/temporal transcriptional regulation of gene expression in metazoa. The powerful combination of genetics, molecular biology, and genomics available in Drosophila has provided an arena in which the developmental role of enhancers can be explored. Enhancers are characterized by diverse low- or high-throughput assays, which are challenging to interpret, as not all of these methods of identifying enhancers produce concordant results. As a model metazoan, the fly offers important advantages to comprehensive analysis of the central functions that enhancers play in gene expression, and their critical role in mediating the production of phenotypes from genotype and environmental inputs. A major challenge moving forward will be obtaining a quantitative understanding of how these cis-regulatory elements operate in development and disease.
Collapse
Affiliation(s)
- Stephen Small
- Department of Biology, Developmental Systems Training Program, New York University, 10003 and
| | - David N Arnosti
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
21
|
Gheisari E, Aakhte M, Müller HAJ. Gastrulation in Drosophila melanogaster: Genetic control, cellular basis and biomechanics. Mech Dev 2020; 163:103629. [PMID: 32615151 DOI: 10.1016/j.mod.2020.103629] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 06/08/2020] [Accepted: 06/24/2020] [Indexed: 01/31/2023]
Abstract
Gastrulation is generally understood as the morphogenetic processes that result in the spatial organization of the blastomere into the three germ layers, ectoderm, mesoderm and endoderm. This review summarizes our current knowledge of the morphogenetic mechanisms in Drosophila gastrulation. In addition to the events that drive mesoderm invagination and germband elongation, we pay particular attention to other, less well-known mechanisms including midgut invagination, cephalic furrow formation, dorsal fold formation, and mesoderm layer formation. This review covers topics ranging from the identification and functional characterization of developmental and morphogenetic control genes to the analysis of the physical properties of cells and tissues and the control of cell and tissue mechanics of the morphogenetic movements in the gastrula.
Collapse
Affiliation(s)
- Elham Gheisari
- Institute for Biology, Dept. Developmental Genetics, University of Kassel, Germany
| | - Mostafa Aakhte
- Institute for Biology, Dept. Developmental Genetics, University of Kassel, Germany
| | - H-Arno J Müller
- Institute for Biology, Dept. Developmental Genetics, University of Kassel, Germany.
| |
Collapse
|
22
|
Keller SH, Jena SG, Yamazaki Y, Lim B. Regulation of spatiotemporal limits of developmental gene expression via enhancer grammar. Proc Natl Acad Sci U S A 2020; 117:15096-15103. [PMID: 32541043 PMCID: PMC7334449 DOI: 10.1073/pnas.1917040117] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The regulatory specificity of a gene is determined by the structure of its enhancers, which contain multiple transcription factor binding sites. A unique combination of transcription factor binding sites in an enhancer determines the boundary of target gene expression, and their disruption often leads to developmental defects. Despite extensive characterization of binding motifs in an enhancer, it is still unclear how each binding site contributes to overall transcriptional activity. Using live imaging, quantitative analysis, and mathematical modeling, we measured the contribution of individual binding sites in transcriptional regulation. We show that binding site arrangement within the Rho-GTPase component t48 enhancer mediates the expression boundary by mainly regulating the timing of transcriptional activation along the dorsoventral axis of Drosophila embryos. By tuning the binding affinity of the Dorsal (Dl) and Zelda (Zld) sites, we show that single site modulations are sufficient to induce significant changes in transcription. Yet, no one site seems to have a dominant role; rather, multiple sites synergistically drive increases in transcriptional activity. Interestingly, Dl and Zld demonstrate distinct roles in transcriptional regulation. Dl site modulations change spatial boundaries of t48, mostly by affecting the timing of activation and bursting frequency rather than transcriptional amplitude or bursting duration. However, modulating the binding site for the pioneer factor Zld affects both the timing of activation and amplitude, suggesting that Zld may potentiate higher Dl recruitment to target DNAs. We propose that such fine-tuning of dynamic gene control via enhancer structure may play an important role in ensuring normal development.
Collapse
Affiliation(s)
- Samuel H Keller
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104
| | - Siddhartha G Jena
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - Yuji Yamazaki
- Yutaka Seino Distinguished Center for Diabetes Research, Kansai Electric Power Medical Research Institute, Kobe 650-0047, Japan
| | - Bomyi Lim
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104;
| |
Collapse
|
23
|
Schloop AE, Carrell-Noel S, Friedman J, Thomas A, Reeves GT. Mechanism and implications of morphogen shuttling: Lessons learned from dorsal and Cactus in Drosophila. Dev Biol 2020; 461:13-18. [PMID: 31987808 PMCID: PMC7513736 DOI: 10.1016/j.ydbio.2020.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 01/22/2020] [Accepted: 01/22/2020] [Indexed: 11/24/2022]
Abstract
In a developing animal, morphogen gradients act to pattern tissues into distinct domains of cell types. However, despite their prevalence in development, morphogen gradient formation is a matter of debate. In our recent publication, we showed that the Dorsal/NF-κB morphogen gradient, which patterns the DV axis of the early Drosophila embryo, is partially established by a mechanism of facilitated diffusion. This mechanism, also known as "shuttling," occurs when a binding partner of the morphogen facilitates the diffusion of the morphogen, allowing it to accumulate at a given site. In this case, the inhibitor Cactus/IκB facilitates the diffusion of Dorsal/NF-κB. In the fly embryo, we used computation and experiment to not only show that shuttling occurs in the embryo, but also that it enables the viability of embryos that inherit only one copy of dorsal maternally. In this commentary, we further discuss our evidence behind the shuttling mechanism, the previous literature data explained by the mechanism, and how it may also be critical for robustness of development. Finally, we briefly provide additional experimental data pointing toward an interaction between Dorsal and BMP signaling that is likely affected by shuttling.
Collapse
Affiliation(s)
| | - Sophia Carrell-Noel
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - Jeramey Friedman
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - Alexander Thomas
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - Gregory T Reeves
- Genetics Program, North Carolina State University, Raleigh, NC, USA; Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
24
|
Martin AC. The Physical Mechanisms of Drosophila Gastrulation: Mesoderm and Endoderm Invagination. Genetics 2020; 214:543-560. [PMID: 32132154 PMCID: PMC7054018 DOI: 10.1534/genetics.119.301292] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 11/21/2019] [Indexed: 12/14/2022] Open
Abstract
A critical juncture in early development is the partitioning of cells that will adopt different fates into three germ layers: the ectoderm, the mesoderm, and the endoderm. This step is achieved through the internalization of specified cells from the outermost surface layer, through a process called gastrulation. In Drosophila, gastrulation is achieved through cell shape changes (i.e., apical constriction) that change tissue curvature and lead to the folding of a surface epithelium. Folding of embryonic tissue results in mesoderm and endoderm invagination, not as individual cells, but as collective tissue units. The tractability of Drosophila as a model system is best exemplified by how much we know about Drosophila gastrulation, from the signals that pattern the embryo to the molecular components that generate force, and how these components are organized to promote cell and tissue shape changes. For mesoderm invagination, graded signaling by the morphogen, Spätzle, sets up a gradient in transcriptional activity that leads to the expression of a secreted ligand (Folded gastrulation) and a transmembrane protein (T48). Together with the GPCR Mist, which is expressed in the mesoderm, and the GPCR Smog, which is expressed uniformly, these signals activate heterotrimeric G-protein and small Rho-family G-protein signaling to promote apical contractility and changes in cell and tissue shape. A notable feature of this signaling pathway is its intricate organization in both space and time. At the cellular level, signaling components and the cytoskeleton exhibit striking polarity, not only along the apical-basal cell axis, but also within the apical domain. Furthermore, gene expression controls a highly choreographed chain of events, the dynamics of which are critical for primordium invagination; it does not simply throw the cytoskeletal "on" switch. Finally, studies of Drosophila gastrulation have provided insight into how global tissue mechanics and movements are intertwined as multiple tissues simultaneously change shape. Overall, these studies have contributed to the view that cells respond to forces that propagate over great distances, demonstrating that cellular decisions, and, ultimately, tissue shape changes, proceed by integrating cues across an entire embryo.
Collapse
Affiliation(s)
- Adam C Martin
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142
| |
Collapse
|
25
|
Schomburg C, Turetzek N, Prpic NM. Candidate gene screen for potential interaction partners and regulatory targets of the Hox gene labial in the spider Parasteatoda tepidariorum. Dev Genes Evol 2020; 230:105-120. [PMID: 32036446 PMCID: PMC7128011 DOI: 10.1007/s00427-020-00656-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 01/31/2020] [Indexed: 12/21/2022]
Abstract
The Hox gene labial (lab) governs the formation of the tritocerebral head segment in insects and spiders. However, the morphology that results from lab action is very different in the two groups. In insects, the tritocerebral segment (intercalary segment) is reduced and lacks appendages, whereas in spiders the corresponding segment (pedipalpal segment) is a proper segment including a pair of appendages (pedipalps). It is likely that this difference between lab action in insects and spiders is mediated by regulatory targets or interacting partners of lab. However, only a few such genes are known in insects and none in spiders. We have conducted a candidate gene screen in the spider Parasteatoda tepidariorum using as candidates Drosophila melanogaster genes known to (potentially) interact with lab or to be expressed in the intercalary segment. We have studied 75 P. tepidariorum genes (including previously published and duplicated genes). Only 3 of these (proboscipedia-A (pb-A) and two paralogs of extradenticle (exd)) showed differential expression between leg and pedipalp. The low success rate points to a weakness of the candidate gene approach when it is applied to lineage specific organs. The spider pedipalp has no counterpart in insects, and therefore relying on insect data apparently cannot identify larger numbers of factors implicated in its specification and formation. We argue that in these cases a de novo approach to gene discovery might be superior to the candidate gene approach.
Collapse
Affiliation(s)
- Christoph Schomburg
- Institut für Allgemeine Zoologie und Entwicklungsbiologie, AG Zoologie mit dem Schwerpunkt Molekulare Entwicklungsbiologie, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 38, 35392, Gießen, Germany
| | - Natascha Turetzek
- Ludwig-Maximilians-Universität München, Lehrstuhl für Evolutionäre Ökologie, Biozentrum II, Großhadernerstraße 2, 82152, Planegg-Martinsried, Germany
| | - Nikola-Michael Prpic
- Institut für Allgemeine Zoologie und Entwicklungsbiologie, AG Zoologie mit dem Schwerpunkt Molekulare Entwicklungsbiologie, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 38, 35392, Gießen, Germany.
| |
Collapse
|
26
|
Mehta SJK, Kumar V, Mishra RK. Drosophila ELYS regulates Dorsal dynamics during development. J Biol Chem 2020; 295:2421-2437. [PMID: 31941789 DOI: 10.1074/jbc.ra119.009451] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 01/13/2020] [Indexed: 11/06/2022] Open
Abstract
Embryonic large molecule derived from yolk sac (ELYS) is a constituent protein of nuclear pores. It initiates assembly of nuclear pore complexes into functional nuclear pores toward the end of mitosis. Using cellular, molecular, and genetic tools, including fluorescence and Electron microscopy, quantitative PCR, and RNAi-mediated depletion, we report here that the ELYS ortholog (dElys) plays critical roles during Drosophila development. dElys localized to the nuclear rim in interphase cells, but during mitosis it was absent from kinetochores and enveloped chromatin. We observed that RNAi-mediated dElys depletion leads to aberrant development and, at the cellular level, to defects in the nuclear pore and nuclear lamina assembly. Further genetic analyses indicated that dElys depletion re-activates the Dorsal (NF-κB) pathway during late larval stages. Re-activated Dorsal caused untimely expression of the Dorsal target genes in the post-embryonic stages. We also demonstrate that activated Dorsal triggers apoptosis during later developmental stages by up-regulating the pro-apoptotic genes reaper and hid The apoptosis induced by Reaper and Hid was probably the underlying cause for developmental abnormalities observed upon dElys depletion. Moreover, we noted that dElys has conserved structural features, but contains a noncanonical AT-hook-like motif through which it strongly binds to DNA. Together, our results uncover a novel epistatic interaction that regulates Dorsal dynamics by dElys during development.
Collapse
Affiliation(s)
- Saurabh Jayesh Kumar Mehta
- Nups and SUMO Biology Group, Department of Biological Sciences, Academic Building 3, Indian Institute of Science Education and Research-Bhopal, Bhopal By-pass Road, Bhauri, Bhopal, Madhya Pradesh-462066, India
| | - Vimlesh Kumar
- Laboratory of Neurogenetics, Department of Biological Sciences, Academic Building 3, Indian Institute of Science Education and Research-Bhopal, Bhopal By-pass Road, Bhauri, Bhopal, Madhya Pradesh-462066, India
| | - Ram Kumar Mishra
- Nups and SUMO Biology Group, Department of Biological Sciences, Academic Building 3, Indian Institute of Science Education and Research-Bhopal, Bhopal By-pass Road, Bhauri, Bhopal, Madhya Pradesh-462066, India.
| |
Collapse
|
27
|
Maternal factors regulating symmetry breaking and dorsal–ventral axis formation in the sea urchin embryo. Curr Top Dev Biol 2020; 140:283-316. [DOI: 10.1016/bs.ctdb.2019.10.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
28
|
Schloop AE, Bandodkar PU, Reeves GT. Formation, interpretation, and regulation of the Drosophila Dorsal/NF-κB gradient. Curr Top Dev Biol 2019; 137:143-191. [PMID: 32143742 DOI: 10.1016/bs.ctdb.2019.11.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The morphogen gradient of the transcription factor Dorsal in the early Drosophila embryo has become one of the most widely studied tissue patterning systems. Dorsal is a Drosophila homolog of mammalian NF-κB and patterns the dorsal-ventral axis of the blastoderm embryo into several tissue types by spatially regulating upwards of 100 zygotic genes. Recent studies using fluorescence microscopy and live imaging have quantified the Dorsal gradient and its target genes, which has paved the way for mechanistic modeling of the gradient. In this review, we describe the mechanisms behind the initiation of the Dorsal gradient and its regulation of target genes. The main focus of the review is a discussion of quantitative and computational studies of the Dl gradient system, including regulation of the Dl gradient. We conclude with a discussion of potential future directions.
Collapse
Affiliation(s)
- Allison E Schloop
- Genetics Program, North Carolina State University, Raleigh, NC, United States
| | - Prasad U Bandodkar
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, United States
| | - Gregory T Reeves
- Genetics Program, North Carolina State University, Raleigh, NC, United States; Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, United States.
| |
Collapse
|
29
|
Mahmud AKMF, Yang D, Stenberg P, Ioshikhes I, Nandi S. Exploring a Drosophila Transcription Factor Interaction Network to Identify Cis-Regulatory Modules. J Comput Biol 2019; 27:1313-1328. [PMID: 31855461 DOI: 10.1089/cmb.2018.0160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Multiple transcription factors (TFs) bind to specific sites in the genome and interact among themselves to form the cis-regulatory modules (CRMs). They are essential in modulating the expression of genes, and it is important to study this interplay to understand gene regulation. In the present study, we integrated experimentally identified TF binding sites collected from published studies with computationally predicted TF binding sites to identify Drosophila CRMs. Along with the detection of the previously known CRMs, this approach identified novel protein combinations. We determined high-occupancy target sites, where a large number of TFs bind. Investigating these sites revealed that Giant, Dichaete, and Knirp are highly enriched in these locations. A common TAG team motif was observed at these sites, which might play a role in recruiting other TFs. While comparing the binding sites at distal and proximal promoters, we found that certain regulatory TFs, such as Zelda, were highly enriched in enhancers. Our study has shown that, from the information available concerning the TF binding sites, the real CRMs could be predicted accurately and efficiently. Although we only may claim co-occurrence of these proteins in this study, it may actually point to their interaction (as known interaction proteins typically co-occur together). Such an integrative approach can, therefore, help us to provide a better understanding of the interplay among the factors, even though further experimental verification is required.
Collapse
Affiliation(s)
| | - Doo Yang
- Ottawa Institute of Computational Biology and Bioinformatics (OICBB) and Ottawa Institute of Systems Biology (OISB) and Department of Biochemistry, Microbiology and Immunology (BMI), Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Per Stenberg
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Ilya Ioshikhes
- Ottawa Institute of Computational Biology and Bioinformatics (OICBB) and Ottawa Institute of Systems Biology (OISB) and Department of Biochemistry, Microbiology and Immunology (BMI), Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Soumyadeep Nandi
- Life Sciences Division, Institute of Advanced Study in Science and Technology, Vigyan Path, Paschim Boragaon, Guwahati, India; Amity University Haryana, Gurugram, India
| |
Collapse
|
30
|
Abstract
Drosophila melanogaster embryos develop initially as a syncytium of totipotent nuclei and subsequently, once cellularized, undergo morphogenetic movements associated with gastrulation to generate the three somatic germ layers of the embryo: mesoderm, ectoderm, and endoderm. In this chapter, we focus on the first phase of gastrulation in Drosophila involving patterning of early embryos when cells differentiate their gene expression programs. This patterning process requires coordination of multiple developmental processes including genome reprogramming at the maternal-to-zygotic transition, combinatorial action of transcription factors to support distinct gene expression, and dynamic feedback between this genetic patterning by transcription factors and changes in cell morphology. We discuss the gene regulatory programs acting during patterning to specify the three germ layers, which involve the regulation of spatiotemporal gene expression coupled to physical tissue morphogenesis.
Collapse
Affiliation(s)
- Angelike Stathopoulos
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, United States.
| | - Susan Newcomb
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| |
Collapse
|
31
|
Merkle JA, Wittes J, Schüpbach T. Signaling between somatic follicle cells and the germline patterns the egg and embryo of Drosophila. Curr Top Dev Biol 2019; 140:55-86. [PMID: 32591083 DOI: 10.1016/bs.ctdb.2019.10.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In Drosophila, specification of the embryonic body axes requires signaling between the germline and the somatic follicle cells. These signaling events are necessary to properly localize embryonic patterning determinants in the egg or eggshell during oogenesis. There are three maternal patterning systems that specify the anterior-posterior axis, and one that establishes the dorsal-ventral axis. We will first review oogenesis, focusing on the establishment of the oocyte and nurse cells and patterning of the follicle cells into different subpopulations. We then describe how two coordinated signaling events between the oocyte and follicle cells establish polarity of the oocyte and localize the anterior determinant bicoid, the posterior determinant oskar, and Gurken/epidermal growth factor (EGF), which breaks symmetry to initiate dorsal-ventral axis establishment. Next, we review how dorsal-ventral asymmetry of the follicle cells is transmitted to the embryo. This process also involves Gurken-EGF receptor (EGFR) signaling between the oocyte and follicle cells, leading to ventrally-restricted expression of the sulfotransferase Pipe. These events promote the ventral processing of Spaetzle, a ligand for Toll, which ultimately sets up the embryonic dorsal-ventral axis. We then describe the activation of the terminal patterning system by specialized polar follicle cells. Finally, we present open questions regarding soma-germline signaling during Drosophila oogenesis required for cell identity and embryonic axis formation.
Collapse
Affiliation(s)
- Julie A Merkle
- Department of Biology, University of Evansville, Evansville, IN, United States
| | - Julia Wittes
- Department of Biological Sciences, Columbia University, New York, NY, United States
| | - Trudi Schüpbach
- Department of Molecular Biology, Princeton University, Princeton, NJ, United States.
| |
Collapse
|
32
|
Vargesson N. Positional Information—A concept underpinning our understanding of developmental biology. Dev Dyn 2019; 249:298-312. [DOI: 10.1002/dvdy.116] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/03/2019] [Accepted: 09/12/2019] [Indexed: 01/07/2023] Open
Affiliation(s)
- Neil Vargesson
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical SciencesUniversity of Aberdeen Aberdeen UK
| |
Collapse
|
33
|
Alpar L, Bergantiños C, Johnston LA. Spatially Restricted Regulation of Spätzle/Toll Signaling during Cell Competition. Dev Cell 2018; 46:706-719.e5. [PMID: 30146479 PMCID: PMC6156939 DOI: 10.1016/j.devcel.2018.08.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 06/11/2018] [Accepted: 07/25/2018] [Indexed: 01/15/2023]
Abstract
Cell competition employs comparisons of fitness to selectively eliminate cells sensed as less healthy. In Drosophila, apoptotic elimination of the weaker "loser" cells from growing wing discs is induced by a signaling module consisting of the Toll ligand Spätzle (Spz), several Toll-related receptors, and NF-κB factors. How this module is activated and restricted to competing disc cells is unknown. Here, we use Myc-induced cell competition to demonstrate that loser cell elimination requires local wing disc synthesis of Spz. We identify Spz processing enzyme (SPE) and modular serine protease (ModSP) as activators of Spz-regulated competitive signaling and show that "winner" cells trigger elimination of nearby WT cells by boosting SPE production. Moreover, Spz requires both Toll and Toll-8 to induce apoptosis of wing disc cells. Thus, during cell competition, Spz-mediated signaling is strictly confined to the imaginal disc, allowing errors in tissue fitness to be corrected without compromising organismal physiology.
Collapse
Affiliation(s)
- Lale Alpar
- Department of Biological Sciences, Columbia University Medical Center, New York, NY, 10032, USA.,Department of Genetics and Development, Columbia University Medical Center, New York, NY, 10032, USA
| | - Cora Bergantiños
- Department of Genetics and Development, Columbia University Medical Center, New York, NY, 10032, USA
| | - Laura A. Johnston
- Department of Genetics and Development, Columbia University Medical Center, New York, NY, 10032, USA.,Correspondence:
| |
Collapse
|
34
|
Snipes SA, Rodriguez K, DeVries AE, Miyawaki KN, Perales M, Xie M, Reddy GV. Cytokinin stabilizes WUSCHEL by acting on the protein domains required for nuclear enrichment and transcription. PLoS Genet 2018; 14:e1007351. [PMID: 29659567 PMCID: PMC5919686 DOI: 10.1371/journal.pgen.1007351] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 04/26/2018] [Accepted: 04/03/2018] [Indexed: 11/18/2022] Open
Abstract
Concentration-dependent transcriptional regulation and the spatial regulation of transcription factor levels are poorly studied in plant development. WUSCHEL, a stem cell-promoting homeodomain transcription factor, accumulates at a higher level in the rib meristem than in the overlying central zone, which harbors stem cells in the shoot apical meristems of Arabidopsis thaliana. The differential accumulation of WUSCHEL in adjacent cells is critical for the spatial regulation and levels of CLAVATA3, a negative regulator of WUSCHEL transcription. Earlier studies have revealed that DNA-dependent dimerization, subcellular partitioning and protein destabilization control WUSCHEL protein levels and spatial accumulation. Moreover, the destabilization of WUSCHEL may also depend on the protein concentration. However, the roles of extrinsic spatial cues in maintaining differential accumulation of WUS are not understood. Through transient manipulation of hormone levels, hormone response patterns and analysis of the receptor mutants, we show that cytokinin signaling in the rib meristem acts through the transcriptional regulatory domains, the acidic domain and the WUSCHEL-box, to stabilize the WUS protein. Furthermore, we show that the same WUSCHEL-box functions as a degron sequence in cytokinin deficient regions in the central zone, leading to the destabilization of WUSCHEL. The coupled functions of the WUSCHEL-box in nuclear retention as described earlier, together with cytokinin sensing, reinforce higher nuclear accumulation of WUSCHEL in the rib meristem. In contrast a sub-threshold level may expose the WUSCHEL-box to destabilizing signals in the central zone. Thus, the cytokinin signaling acts as an asymmetric spatial cue in stabilizing the WUSCHEL protein to lead to its differential accumulation in neighboring cells, which is critical for concentration-dependent spatial regulation of CLAVATA3 transcription and meristem maintenance. Furthermore, our work shows that cytokinin response is regulated independently of the WUSCHEL function which may provide robustness to the regulation of WUSCHEL concentration. Stem cell regulation is critical for the development of all organisms, and plants have particularly unique stem cell populations that are maintained throughout their lifespan at the tips of both the shoots and roots. Proper spatial and temporal regulation of gene expression by mobile proteins is essential for maintaining these stem cell populations. Here we show that in the shoot, the mobile stem cell promoting factor WUSCHEL is stabilized at the protein level by the plant hormone cytokinin. This stabilization occurs in a tightly restricted spatial context, and movement of WUSCHEL outside of this region results in WUSCHEL instability that leads to its degradation. The specific regions on the WUSCHEL protein that respond to the cytokinin signaling are the same regions that are essential for both proper WUSCHEL localization in the nucleus and regulation of its target genes. This spatially specific response to cytokinin results in differential accumulation of WUSCHEL in space, and reveals an intrinsic link between protein stability and the regulation of target genes to maintain a stable population of stem cells.
Collapse
Affiliation(s)
- Stephen A. Snipes
- Department of Botany and Plant Sciences, Center for Plant Cell Biology (CEPCEB), Institute of Integrative Genome Biology (IIGB), University of California, Riverside, California, United States of America
| | - Kevin Rodriguez
- Department of Botany and Plant Sciences, Center for Plant Cell Biology (CEPCEB), Institute of Integrative Genome Biology (IIGB), University of California, Riverside, California, United States of America
| | - Aaron E. DeVries
- Department of Botany and Plant Sciences, Center for Plant Cell Biology (CEPCEB), Institute of Integrative Genome Biology (IIGB), University of California, Riverside, California, United States of America
| | - Kaori N. Miyawaki
- Department of Botany and Plant Sciences, Center for Plant Cell Biology (CEPCEB), Institute of Integrative Genome Biology (IIGB), University of California, Riverside, California, United States of America
| | - Mariano Perales
- Department of Botany and Plant Sciences, Center for Plant Cell Biology (CEPCEB), Institute of Integrative Genome Biology (IIGB), University of California, Riverside, California, United States of America
| | - Mingtang Xie
- Department of Botany and Plant Sciences, Center for Plant Cell Biology (CEPCEB), Institute of Integrative Genome Biology (IIGB), University of California, Riverside, California, United States of America
| | - G. Venugopala Reddy
- Department of Botany and Plant Sciences, Center for Plant Cell Biology (CEPCEB), Institute of Integrative Genome Biology (IIGB), University of California, Riverside, California, United States of America
- * E-mail:
| |
Collapse
|
35
|
NF-kappaB: Two Sides of the Same Coin. Genes (Basel) 2018; 9:genes9010024. [PMID: 29315242 PMCID: PMC5793177 DOI: 10.3390/genes9010024] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/02/2018] [Accepted: 01/05/2018] [Indexed: 01/05/2023] Open
Abstract
Nuclear Factor-kappa B (NF-κB) is a transcription factor family that regulates a large number of genes that are involved in important physiological processes, including survival, inflammation, and immune responses. More recently, constitutive expression of NF-κB has been associated with several types of cancer. In addition, microorganisms, such as viruses and bacteria, cooperate in the activation of NF-κB in tumors, confirming the multifactorial role of this transcription factor as a cancer driver. Recent reports have shown that the NF-κB signaling pathway should receive attention for the development of therapies. In addition to the direct effects of NF-κB in cancer cells, it might also impact immune cells that can both promote or prevent tumor development. Currently, with the rise of cancer immunotherapy, the link among immune cells, inflammation, and cancer is a major focus, and NF-κB could be an important regulator for the success of these therapies. This review discusses the contrasting roles of NF-κB as a regulator of pro- and antitumor processes and its potential as a therapeutic target.
Collapse
|
36
|
Wilcockson SG, Sutcliffe C, Ashe HL. Control of signaling molecule range during developmental patterning. Cell Mol Life Sci 2017; 74:1937-1956. [PMID: 27999899 PMCID: PMC5418326 DOI: 10.1007/s00018-016-2433-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 11/24/2016] [Accepted: 12/05/2016] [Indexed: 12/22/2022]
Abstract
Tissue patterning, through the concerted activity of a small number of signaling pathways, is critical to embryonic development. While patterning can involve signaling between neighbouring cells, in other contexts signals act over greater distances by traversing complex cellular landscapes to instruct the fate of distant cells. In this review, we explore different strategies adopted by cells to modulate signaling molecule range to allow correct patterning. We describe mechanisms for restricting signaling range and highlight how such short-range signaling can be exploited to not only control the fate of adjacent cells, but also to generate graded signaling within a field of cells. Other strategies include modulation of signaling molecule action by tissue architectural properties and the use of cellular membranous structures, such as signaling filopodia and exosomes, to actively deliver signaling ligands to target cells. Signaling filopodia can also be deployed to reach out and collect particular signals, thereby precisely controlling their site of action.
Collapse
Affiliation(s)
- Scott G Wilcockson
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Catherine Sutcliffe
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Hilary L Ashe
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK.
| |
Collapse
|
37
|
López Y, Vandenbon A, Nose A, Nakai K. Modeling the cis-regulatory modules of genes expressed in developmental stages of Drosophila melanogaster. PeerJ 2017; 5:e3389. [PMID: 28584716 PMCID: PMC5452948 DOI: 10.7717/peerj.3389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 05/08/2017] [Indexed: 12/30/2022] Open
Abstract
Because transcription is the first step in the regulation of gene expression, understanding how transcription factors bind to their DNA binding motifs has become absolutely necessary. It has been shown that the promoters of genes with similar expression profiles share common structural patterns. This paper presents an extensive study of the regulatory regions of genes expressed in 24 developmental stages of Drosophila melanogaster. It proposes the use of a combination of structural features, such as positioning of individual motifs relative to the transcription start site, orientation, pairwise distance between motifs, and presence of motifs anywhere in the promoter for predicting gene expression from structural features of promoter sequences. RNA-sequencing data was utilized to create and validate the 24 models. When genes with high-scoring promoters were compared to those identified by RNA-seq samples, 19 (79.2%) statistically significant models, a number that exceeds previous studies, were obtained. Each model yielded a set of highly informative features, which were used to search for genes with similar biological functions.
Collapse
Affiliation(s)
- Yosvany López
- Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Department of Computational Biology, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Alexis Vandenbon
- Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Akinao Nose
- Department of Complexity Science and Engineering, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Kenta Nakai
- Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
38
|
Missirlis F, Nahmad M. We also CanFly! The 2nd MexFly drosophila research conference. Fly (Austin) 2017; 11:148-152. [PMID: 27960619 DOI: 10.1080/19336934.2016.1271517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
The 2nd Mexican Drosophila Research Conference (MexFly) took place on June 30th and July 1st, 2016 in Mexico City, at the Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav). Principal investigators, postdocs, students, and technicians from Drosophila labs across Mexico attended. The guest speaker was Chris Rushlow from New York University, who presented work on Zelda, a key transcriptional activator of the early zygotic genome. Here we provide a brief report of the meeting, which sketches the present landscape of Drosophila research in Mexico. We also provide a brief historical note on one of the pioneers of the field in this country, Victor Salceda, personally trained by Theodosius Dobzhansky. Salceda presented at the meeting an update of his collaborative project with Dobzhansky on the distribution of Drosophila pseudoobscura chromosomal inversions, initiated over forty years ago.
Collapse
Affiliation(s)
- Fanis Missirlis
- a Department of Physiology , Biophysics and Neuroscience, CINVESTAV , Mexico City
| | - Marcos Nahmad
- a Department of Physiology , Biophysics and Neuroscience, CINVESTAV , Mexico City
| |
Collapse
|
39
|
Chambers M, Turki-Judeh W, Kim MW, Chen K, Gallaher SD, Courey AJ. Mechanisms of Groucho-mediated repression revealed by genome-wide analysis of Groucho binding and activity. BMC Genomics 2017; 18:215. [PMID: 28245789 PMCID: PMC5331681 DOI: 10.1186/s12864-017-3589-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 02/13/2017] [Indexed: 12/24/2022] Open
Abstract
Background The transcriptional corepressor Groucho (Gro) is required for the function of many developmentally regulated DNA binding repressors, thus helping to define the gene expression profile of each cell during development. The ability of Gro to repress transcription at a distance together with its ability to oligomerize and bind to histones has led to the suggestion that Gro may spread along chromatin. However, much is unknown about the mechanism of Gro-mediated repression and about the dynamics of Gro targeting. Results Our chromatin immunoprecipitation sequencing analysis of temporally staged Drosophila embryos shows that Gro binds in a highly dynamic manner primarily to clusters of discrete (<1 kb) segments. Consistent with the idea that Gro may facilitate communication between silencers and promoters, Gro binding is enriched at both cis-regulatory modules, as well as within the promotors of potential target genes. While this Gro-recruitment is required for repression, our data show that it is not sufficient for repression. Integration of Gro binding data with transcriptomic analysis suggests that, contrary to what has been observed for another Gro family member, Drosophila Gro is probably a dedicated repressor. This analysis also allows us to define a set of high confidence Gro repression targets. Using publically available data regarding the physical and genetic interactions between these targets, we are able to place them in the regulatory network controlling development. Through analysis of chromatin associated pre-mRNA levels at these targets, we find that genes regulated by Gro in the embryo are enriched for characteristics of promoter proximal paused RNA polymerase II. Conclusions Our findings are inconsistent with a one-dimensional spreading model for long-range repression and suggest that Gro-mediated repression must be regulated at a post-recruitment step. They also show that Gro is likely a dedicated repressor that sits at a prominent highly interconnected regulatory hub in the developmental network. Furthermore, our findings suggest a role for RNA polymerase II pausing in Gro-mediated repression. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3589-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Michael Chambers
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA
| | - Wiam Turki-Judeh
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA.,Molecular Biology Institute, University of California, Los Angeles, CA, 90095, USA
| | - Min Woo Kim
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA
| | - Kenny Chen
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA
| | - Sean D Gallaher
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA.,Department of Energy, Institute of Genomics and Proteomics, University of California, Los Angeles, CA, 90095, USA
| | - Albert J Courey
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA. .,Molecular Biology Institute, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
40
|
Rahimi N, Averbukh I, Haskel-Ittah M, Degani N, Schejter ED, Barkai N, Shilo BZ. A WntD-Dependent Integral Feedback Loop Attenuates Variability in Drosophila Toll Signaling. Dev Cell 2016; 36:401-14. [PMID: 26906736 DOI: 10.1016/j.devcel.2016.01.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 11/22/2015] [Accepted: 01/27/2016] [Indexed: 12/25/2022]
Abstract
Patterning by morphogen gradients relies on the capacity to generate reproducible distribution profiles. Morphogen spread depends on kinetic parameters, including diffusion and degradation rates, which vary between embryos, raising the question of how variability is controlled. We examined this in the context of Toll-dependent dorsoventral (DV) patterning of the Drosophila embryo. We find that low embryo-to-embryo variability in DV patterning relies on wntD, a Toll-target gene expressed initially at the posterior pole. WntD protein is secreted and disperses in the extracellular milieu, associates with its receptor Frizzled4, and inhibits the Toll pathway by blocking the Toll extracellular domain. Mathematical modeling predicts that WntD accumulates until the Toll gradient narrows to its desired spread, and we support this feedback experimentally. This circuit exemplifies a broadly applicable induction-contraction mechanism, which reduces patterning variability through a restricted morphogen-dependent expression of a secreted diffusible inhibitor.
Collapse
Affiliation(s)
- Neta Rahimi
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Inna Averbukh
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Michal Haskel-Ittah
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Neta Degani
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Eyal D Schejter
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Naama Barkai
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel.
| | - Ben-Zion Shilo
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
41
|
Stappert D, Frey N, von Levetzow C, Roth S. Genome-wide identification of Tribolium dorsoventral patterning genes. Development 2016; 143:2443-54. [PMID: 27287803 DOI: 10.1242/dev.130641] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 05/19/2016] [Indexed: 01/24/2023]
Abstract
The gene regulatory network controlling dorsoventral axis formation in insects has undergone drastic evolutionary changes. In Drosophila, a stable long-range gradient of Toll signalling specifies ventral cell fates and restricts BMP signalling to the dorsal half of the embryo. In Tribolium, however, Toll signalling is transient and only indirectly controls BMP signalling. In order to gain unbiased insights into the Tribolium network, we performed comparative transcriptome analyses of embryos with various dorsoventral pattering defects produced by parental RNAi for Toll and BMP signalling components. We also included embryos lacking the mesoderm (produced by Tc-twist RNAi) and characterized similarities and differences between Drosophila and Tribolium twist loss-of-function phenotypes. Using stringent conditions, we identified over 750 differentially expressed genes and analysed a subset with altered expression in more than one knockdown condition. We found new genes with localized expression and showed that conserved genes frequently possess earlier and stronger phenotypes than their Drosophila orthologues. For example, the leucine-rich repeat (LRR) protein Tartan, which has only a minor influence on nervous system development in Drosophila, is essential for early neurogenesis in Tribolium and the Tc-zinc-finger homeodomain protein 1 (Tc-zfh1), the orthologue of which plays a minor role in Drosophila muscle development, is essential for maintaining early Tc-twist expression, indicating an important function for mesoderm specification.
Collapse
Affiliation(s)
- Dominik Stappert
- Institute of Developmental Biology, Biocenter, Zuelpicher Str. 47b, University of Cologne, Cologne 50674, Germany
| | - Nadine Frey
- Institute of Developmental Biology, Biocenter, Zuelpicher Str. 47b, University of Cologne, Cologne 50674, Germany
| | - Cornelia von Levetzow
- Centrum für Integrierte Onkologie (CIO) Köln Bonn, Universitätsklinikum Köln, Kerpener Str. 62, Köln 50937, Germany
| | - Siegfried Roth
- Institute of Developmental Biology, Biocenter, Zuelpicher Str. 47b, University of Cologne, Cologne 50674, Germany
| |
Collapse
|
42
|
Sandler JE, Stathopoulos A. Stepwise Progression of Embryonic Patterning. Trends Genet 2016; 32:432-443. [PMID: 27230753 DOI: 10.1016/j.tig.2016.04.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 04/20/2016] [Accepted: 04/21/2016] [Indexed: 01/23/2023]
Abstract
It is long established that the graded distribution of Dorsal transcription factor influences spatial domains of gene expression along the dorsoventral (DV) axis of Drosophila melanogaster embryos. However, the more recent realization that Dorsal levels also change with time raises the question of whether these dynamics are instructive. An overview of DV axis patterning is provided, focusing on new insights identified through quantitative analysis of temporal changes in Dorsal target gene expression from one nuclear cycle to the next ('steps'). Possible roles for the stepwise progression of this patterning program are discussed including (i) tight temporal regulation of signaling pathway activation, (ii) control of gene expression cohorts, and (iii) ensuring the irreversibility of the patterning and cell fate specification process.
Collapse
Affiliation(s)
- Jeremy E Sandler
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Angelike Stathopoulos
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
43
|
Sayal R, Dresch JM, Pushel I, Taylor BR, Arnosti DN. Quantitative perturbation-based analysis of gene expression predicts enhancer activity in early Drosophila embryo. eLife 2016; 5. [PMID: 27152947 PMCID: PMC4859806 DOI: 10.7554/elife.08445] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 04/04/2016] [Indexed: 01/02/2023] Open
Abstract
Enhancers constitute one of the major components of regulatory machinery of metazoans. Although several genome-wide studies have focused on finding and locating enhancers in the genomes, the fundamental principles governing their internal architecture and cis-regulatory grammar remain elusive. Here, we describe an extensive, quantitative perturbation analysis targeting the dorsal-ventral patterning gene regulatory network (GRN) controlled by Drosophila NF-κB homolog Dorsal. To understand transcription factor interactions on enhancers, we employed an ensemble of mathematical models, testing effects of cooperativity, repression, and factor potency. Models trained on the dataset correctly predict activity of evolutionarily divergent regulatory regions, providing insights into spatial relationships between repressor and activator binding sites. Importantly, the collective predictions of sets of models were effective at novel enhancer identification and characterization. Our study demonstrates how experimental dataset and modeling can be effectively combined to provide quantitative insights into cis-regulatory information on a genome-wide scale. DOI:http://dx.doi.org/10.7554/eLife.08445.001 DNA contains regions known as genes, which may be “transcribed” to produce the RNA molecules that act as templates for building proteins and regulate cell activity. Proteins called transcription factors can bind to specific sequences of DNA to influence whether nearby genes are transcribed. For example, so-called enhancer regions of DNA contain several binding sites for transcription factors, and this binding activates gene transcription. Little is known about how the transcription factor binding sites are organized in enhancer regions, which makes it difficult to use DNA sequence information alone to predict the regulation of genes. A transcription factor called Dorsal controls the activity of a network of genes that plays a crucial role in the development of fruit fly embryos. Dorsal binds to the enhancer region of a gene called rhomboid, which has been well studied and is known to be a fairly typical example of an enhancer region. To understand the regulatory information encoded in the DNA sequences of enhancers, Sayal, Dresch et al. have now used a technique called perturbation analysis to investigate the interactions that are likely to occur between Dorsal and other transcription factors as they bind to the rhomboid enhancer. This technique involves systematically mutating the enhancer to remove different combinations of transcription factor binding sites and quantitatively investigating the effect this has on gene activity. A large set of mathematical models were then trained using this data and shown to correctly predict the activity of a range of other gene regulatory regions. The collective predictions of the models identified new enhancer regions and revealed details about how different types of transcription factor binding sites are arranged within enhancers. As we enter an era where the DNA sequences of entire human populations are increasingly accessible, we would like to know the functional significance of changes in gene regulatory regions. Sayal, Dresch et al. show that the regulatory properties of specific control proteins are accessible by employing quantitative experiments and mathematical models. Similar studies will be required to learn how mutations found across the genome may alter gene expression, leading to better diagnosis and treatment of disease. DOI:http://dx.doi.org/10.7554/eLife.08445.002
Collapse
Affiliation(s)
- Rupinder Sayal
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, United States.,Department of Biochemistry, DAV University, Jalandhar, India
| | - Jacqueline M Dresch
- Department of Mathematics, Michigan State University, East Lansing, United States.,Department of Mathematics and Computer Science, Clark University, Worcester, United States
| | - Irina Pushel
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, United States.,Stowers Institute for Medical Research, Kansas City, United States
| | - Benjamin R Taylor
- Department of Computer Science and Engineering, Michigan State University, East Lansing, United States.,School of Computer Science, Georgia Institute of Technology, Atlanta, United States
| | - David N Arnosti
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, United States
| |
Collapse
|
44
|
Levario TJ, Lim B, Shvartsman SY, Lu H. Microfluidics for High-Throughput Quantitative Studies of Early Development. Annu Rev Biomed Eng 2016; 18:285-309. [PMID: 26928208 DOI: 10.1146/annurev-bioeng-100515-013926] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Developmental biology has traditionally relied on qualitative analyses; recently, however, as in other fields of biology, researchers have become increasingly interested in acquiring quantitative knowledge about embryogenesis. Advances in fluorescence microscopy are enabling high-content imaging in live specimens. At the same time, microfluidics and automation technologies are increasing experimental throughput for studies of multicellular models of development. Furthermore, computer vision methods for processing and analyzing bioimage data are now leading the way toward quantitative biology. Here, we review advances in the areas of fluorescence microscopy, microfluidics, and data analysis that are instrumental to performing high-content, high-throughput studies in biology and specifically in development. We discuss a case study of how these techniques have allowed quantitative analysis and modeling of pattern formation in the Drosophila embryo.
Collapse
Affiliation(s)
- Thomas J Levario
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332;
| | - Bomyi Lim
- Department of Chemical and Biological Engineering and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544;
| | - Stanislav Y Shvartsman
- Department of Chemical and Biological Engineering and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544;
| | - Hang Lu
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332;
| |
Collapse
|
45
|
Zehavi Y, Sloutskin A, Kuznetsov O, Juven-Gershon T. The core promoter composition establishes a new dimension in developmental gene networks. Nucleus 2015; 5:298-303. [PMID: 25482118 DOI: 10.4161/nucl.29838] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Developmental processes are highly dependent on transcriptional regulation by RNA polymerase II, which initiates transcription at the core promoter. The dorsal-ventral gene regulatory network (GRN) includes multiple genes that are activated by different nuclear concentrations of the Dorsal transcription factor along the dorsal-ventral axis. Downstream core promoter element (DPE)-containing genes are conserved and highly prevalent among Dorsal target genes. Moreover, the DPE motif is functional in multiple Dorsal target genes, as mutation of the DPE results in the loss of transcriptional activity. Furthermore, analysis of hybrid enhancer-promoter constructs reveals that the core promoter composition plays a pivotal role in the transcriptional output. Importantly, we provide in vivo evidence that expression driven by the homeotic Antennapedia P2 promoter during Drosophila embryogenesis is dependent on the DPE. Taken together, we propose that transcriptional regulation results from the interplay between enhancers and core promoter composition, thus establishing a novel dimension in developmental GRNs.
Collapse
Affiliation(s)
- Yonathan Zehavi
- a The Mina and Everard Goodman Faculty of Life Sciences; Bar-Ilan University; Ramat Gan, Israel
| | | | | | | |
Collapse
|
46
|
Haillot E, Molina MD, Lapraz F, Lepage T. The Maternal Maverick/GDF15-like TGF-β Ligand Panda Directs Dorsal-Ventral Axis Formation by Restricting Nodal Expression in the Sea Urchin Embryo. PLoS Biol 2015; 13:e1002247. [PMID: 26352141 PMCID: PMC4564238 DOI: 10.1371/journal.pbio.1002247] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 08/05/2015] [Indexed: 01/26/2023] Open
Abstract
Specification of the dorsal-ventral axis in the highly regulative sea urchin embryo critically relies on the zygotic expression of nodal, but whether maternal factors provide the initial spatial cue to orient this axis is not known. Although redox gradients have been proposed to entrain the dorsal-ventral axis by acting upstream of nodal, manipulating the activity of redox gradients only has modest consequences, suggesting that other factors are responsible for orienting nodal expression and defining the dorsal-ventral axis. Here we uncover the function of Panda, a maternally provided transforming growth factor beta (TGF-β) ligand that requires the activin receptor-like kinases (Alk) Alk3/6 and Alk1/2 receptors to break the radial symmetry of the embryo and orient the dorsal-ventral axis by restricting nodal expression. We found that the double inhibition of the bone morphogenetic protein (BMP) type I receptors Alk3/6 and Alk1/2 causes a phenotype dramatically more severe than the BMP2/4 loss-of-function phenotype, leading to extreme ventralization of the embryo through massive ectopic expression of nodal, suggesting that an unidentified signal acting through BMP type I receptors cooperates with BMP2/4 to restrict nodal expression. We identified this ligand as the product of maternal Panda mRNA. Double inactivation of panda and bmp2/4 led to extreme ventralization, mimicking the phenotype caused by inactivation of the two BMP receptors. Inhibition of maternal panda mRNA translation disrupted the early spatial restriction of nodal, leading to persistent massive ectopic expression of nodal on the dorsal side despite the presence of Lefty. Phylogenetic analysis indicates that Panda is not a prototypical BMP ligand but a member of a subfamily of TGF-β distantly related to Inhibins, Lefty, and TGF-β that includes Maverick from Drosophila and GDF15 from vertebrates. Indeed, overexpression of Panda does not appear to directly or strongly activate phosphoSmad1/5/8 signaling, suggesting that although this TGF-β may require Alk1/2 and/or Alk3/6 to antagonize nodal expression, it may do so by sequestering a factor essential for Nodal signaling, by activating a non-Smad pathway downstream of the type I receptors, or by activating extremely low levels of pSmad1/5/8. We provide evidence that, although panda mRNA is broadly distributed in the early embryo, local expression of panda mRNA efficiently orients the dorsal-ventral axis and that Panda activity is required locally in the early embryo to specify this axis. Taken together, these findings demonstrate that maternal panda mRNA is both necessary and sufficient to orient the dorsal-ventral axis. These results therefore provide evidence that in the highly regulative sea urchin embryo, the activity of spatially restricted maternal factors regulates patterning along the dorsal-ventral axis.
Collapse
Affiliation(s)
- Emmanuel Haillot
- Institut de Biologie Valrose, iBV, UMR 7277 CNRS, Inserm U1091, UNS, University of Nice Sophia Antipolis, Nice, France
| | - Maria Dolores Molina
- Institut de Biologie Valrose, iBV, UMR 7277 CNRS, Inserm U1091, UNS, University of Nice Sophia Antipolis, Nice, France
| | - François Lapraz
- Institut de Biologie Valrose, iBV, UMR 7277 CNRS, Inserm U1091, UNS, University of Nice Sophia Antipolis, Nice, France
| | - Thierry Lepage
- Institut de Biologie Valrose, iBV, UMR 7277 CNRS, Inserm U1091, UNS, University of Nice Sophia Antipolis, Nice, France
| |
Collapse
|
47
|
Zelda overcomes the high intrinsic nucleosome barrier at enhancers during Drosophila zygotic genome activation. Genome Res 2015; 25:1703-14. [PMID: 26335633 PMCID: PMC4617966 DOI: 10.1101/gr.192542.115] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 08/20/2015] [Indexed: 11/25/2022]
Abstract
The Drosophila genome activator Vielfaltig (Vfl), also known as Zelda (Zld), is thought to prime enhancers for activation by patterning transcription factors (TFs). Such priming is accompanied by increased chromatin accessibility, but the mechanisms by which this occurs are poorly understood. Here, we analyze the effect of Zld on genome-wide nucleosome occupancy and binding of the patterning TF Dorsal (Dl). Our results show that early enhancers are characterized by an intrinsically high nucleosome barrier. Zld tackles this nucleosome barrier through local depletion of nucleosomes with the effect being dependent on the number and position of Zld motifs. Without Zld, Dl binding decreases at enhancers and redistributes to open regions devoid of enhancer activity. We propose that Zld primes enhancers by lowering the high nucleosome barrier just enough to assist TFs in accessing their binding motifs and promoting spatially controlled enhancer activation if the right patterning TFs are present. We envision that genome activators in general will utilize this mechanism to activate the zygotic genome in a robust and precise manner.
Collapse
|
48
|
Zhou B, Lindsay SA, Wasserman SA. Alternative NF-κB Isoforms in the Drosophila Neuromuscular Junction and Brain. PLoS One 2015; 10:e0132793. [PMID: 26167685 PMCID: PMC4500392 DOI: 10.1371/journal.pone.0132793] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 06/19/2015] [Indexed: 11/19/2022] Open
Abstract
The Drosophila NF-κB protein Dorsal is expressed at the larval neuromuscular junction, where its expression appears unrelated to known Dorsal functions in embryonic patterning and innate immunity. Using confocal microscopy with domain-specific antisera, we demonstrate that larval muscle expresses only the B isoform of Dorsal, which arises by intron retention. We find that Dorsal B interacts with and stabilizes Cactus at the neuromuscular junction, but exhibits Cactus independent localization and an absence of detectable nuclear translocation. We further find that the Dorsal-related immune factor Dif encodes a B isoform, reflecting a conservation of B domains across a range of insect NF-κB proteins. Carrying out mutagenesis of the Dif locus via a site-specific recombineering approach, we demonstrate that Dif B is the major, if not sole, Dif isoform in the mushroom bodies of the larval brain. The Dorsal and Dif B isoforms thus share a specific association with nervous system tissues as well as an alternative protein structure.
Collapse
Affiliation(s)
- Bo Zhou
- Section of Cell & Developmental Biology, Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Scott A. Lindsay
- Section of Cell & Developmental Biology, Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Steven A. Wasserman
- Section of Cell & Developmental Biology, Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
49
|
Shin DH, Hong JW. Capicua is involved in Dorsal-mediated repression of zerknüllt expression in Drosophila embryo. BMB Rep 2015; 47:518-23. [PMID: 25059278 PMCID: PMC4206728 DOI: 10.5483/bmbrep.2014.47.9.122] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Indexed: 01/30/2023] Open
Abstract
The maternal transcription factor Dorsal (Dl) functions as both an activator and a repressor in a context-dependent manner to control dorsal-ventral patterning in the Drosophila embryo. Previous studies have suggested that Dl is an intrinsic activator and its repressive activity requires additional corepressors that bind corepressor-binding sites near Dl-binding sites. However, the molecular identities of the corepressors have yet to be identified. Here, we present evidence that Capicua (Cic) is involved in Dl-mediated repression in the zerknüllt (zen) ventral repression element (VRE). Computational and genetic analyses indicate that a DNA-binding consensus sequence of Cic is highly analogous with previously identified corepressorbinding sequences and that Dl failed to repress zen expression in lateral regions of cic mutant embryos. Furthermore, electrophoretic mobility shift assay (EMSA) shows that Cic directly interacts with several corepressor-binding sites in the zen VRE. These results suggest that Cic may function as a corepressor by binding the VRE. [BMB Reports 2014; 47(9):518-523]
Collapse
Affiliation(s)
- Dong-Hyeon Shin
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin 446-702, Korea
| | - Joung-Woo Hong
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin 446-702, Korea
| |
Collapse
|
50
|
Linz DM, Tomoyasu Y. RNAi screening of developmental toolkit genes: a search for novel wing genes in the red flour beetle, Tribolium castaneum. Dev Genes Evol 2015; 225:11-22. [PMID: 25613748 DOI: 10.1007/s00427-015-0488-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 01/05/2015] [Indexed: 10/24/2022]
Abstract
The amazing array of diversity among insect wings offers a powerful opportunity to study the mechanisms guiding morphological evolution. Studies in Drosophila (the fruit fly) have identified dozens of genes important for wing development. These genes are often called candidate genes, serving as an ideal starting point to study wing development in other insects. However, we also need to explore beyond the candidate genes to gain a more comprehensive view of insect wing evolution. As a first step away from the traditional candidate genes, we utilized Tribolium (the red flour beetle) as a model and assessed the potential involvement of a group of developmental toolkit genes (embryonic patterning genes) in beetle wing development. We hypothesized that the highly pleiotropic nature of these developmental genes would increase the likelihood of finding novel wing genes in Tribolium. Through the RNA interference screening, we found that Tc-cactus has a less characterized (but potentially evolutionarily conserved) role in wing development. We also found that the odd-skipped family genes are essential for the formation of the thoracic pleural plates, including the recently discovered wing serial homologs in Tribolium. In addition, we obtained several novel insights into the function of these developmental genes, such as the involvement of mille-pattes and Tc-odd-paired in metamorphosis. Despite these findings, no gene we examined was found to have novel wing-related roles unique in Tribolium. These results suggest a relatively conserved nature of developmental toolkit genes and highlight the limited degree to which these genes are co-opted during insect wing evolution.
Collapse
Affiliation(s)
- David M Linz
- Department of Biology, Miami University, 700E High St., Oxford, OH, 45056, USA
| | | |
Collapse
|